linux/net/sunrpc/xprtrdma/svc_rdma_sendto.c

1101 lines
32 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (c) 2016-2018 Oracle. All rights reserved.
* Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
* Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Tom Tucker <tom@opengridcomputing.com>
*/
/* Operation
*
* The main entry point is svc_rdma_sendto. This is called by the
* RPC server when an RPC Reply is ready to be transmitted to a client.
*
* The passed-in svc_rqst contains a struct xdr_buf which holds an
* XDR-encoded RPC Reply message. sendto must construct the RPC-over-RDMA
* transport header, post all Write WRs needed for this Reply, then post
* a Send WR conveying the transport header and the RPC message itself to
* the client.
*
* svc_rdma_sendto must fully transmit the Reply before returning, as
* the svc_rqst will be recycled as soon as sendto returns. Remaining
* resources referred to by the svc_rqst are also recycled at that time.
* Therefore any resources that must remain longer must be detached
* from the svc_rqst and released later.
*
* Page Management
*
* The I/O that performs Reply transmission is asynchronous, and may
* complete well after sendto returns. Thus pages under I/O must be
* removed from the svc_rqst before sendto returns.
*
* The logic here depends on Send Queue and completion ordering. Since
* the Send WR is always posted last, it will always complete last. Thus
* when it completes, it is guaranteed that all previous Write WRs have
* also completed.
*
* Write WRs are constructed and posted. Each Write segment gets its own
* svc_rdma_rw_ctxt, allowing the Write completion handler to find and
* DMA-unmap the pages under I/O for that Write segment. The Write
* completion handler does not release any pages.
*
* When the Send WR is constructed, it also gets its own svc_rdma_send_ctxt.
* The ownership of all of the Reply's pages are transferred into that
* ctxt, the Send WR is posted, and sendto returns.
*
* The svc_rdma_send_ctxt is presented when the Send WR completes. The
* Send completion handler finally releases the Reply's pages.
*
* This mechanism also assumes that completions on the transport's Send
* Completion Queue do not run in parallel. Otherwise a Write completion
* and Send completion running at the same time could release pages that
* are still DMA-mapped.
*
* Error Handling
*
* - If the Send WR is posted successfully, it will either complete
* successfully, or get flushed. Either way, the Send completion
* handler releases the Reply's pages.
* - If the Send WR cannot be not posted, the forward path releases
* the Reply's pages.
*
* This handles the case, without the use of page reference counting,
* where two different Write segments send portions of the same page.
*/
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/sunrpc/debug.h>
#include <linux/sunrpc/svc_rdma.h>
#include "xprt_rdma.h"
#include <trace/events/rpcrdma.h>
static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc);
static struct svc_rdma_send_ctxt *
svc_rdma_send_ctxt_alloc(struct svcxprt_rdma *rdma)
{
int node = ibdev_to_node(rdma->sc_cm_id->device);
struct svc_rdma_send_ctxt *ctxt;
dma_addr_t addr;
void *buffer;
int i;
ctxt = kzalloc_node(struct_size(ctxt, sc_sges, rdma->sc_max_send_sges),
GFP_KERNEL, node);
if (!ctxt)
goto fail0;
buffer = kmalloc_node(rdma->sc_max_req_size, GFP_KERNEL, node);
if (!buffer)
goto fail1;
addr = ib_dma_map_single(rdma->sc_pd->device, buffer,
rdma->sc_max_req_size, DMA_TO_DEVICE);
if (ib_dma_mapping_error(rdma->sc_pd->device, addr))
goto fail2;
svc_rdma_send_cid_init(rdma, &ctxt->sc_cid);
ctxt->sc_rdma = rdma;
ctxt->sc_send_wr.next = NULL;
ctxt->sc_send_wr.wr_cqe = &ctxt->sc_cqe;
ctxt->sc_send_wr.sg_list = ctxt->sc_sges;
ctxt->sc_send_wr.send_flags = IB_SEND_SIGNALED;
ctxt->sc_cqe.done = svc_rdma_wc_send;
ctxt->sc_xprt_buf = buffer;
xdr_buf_init(&ctxt->sc_hdrbuf, ctxt->sc_xprt_buf,
rdma->sc_max_req_size);
ctxt->sc_sges[0].addr = addr;
for (i = 0; i < rdma->sc_max_send_sges; i++)
ctxt->sc_sges[i].lkey = rdma->sc_pd->local_dma_lkey;
return ctxt;
fail2:
kfree(buffer);
fail1:
kfree(ctxt);
fail0:
return NULL;
}
/**
* svc_rdma_send_ctxts_destroy - Release all send_ctxt's for an xprt
* @rdma: svcxprt_rdma being torn down
*
*/
void svc_rdma_send_ctxts_destroy(struct svcxprt_rdma *rdma)
{
struct svc_rdma_send_ctxt *ctxt;
struct llist_node *node;
while ((node = llist_del_first(&rdma->sc_send_ctxts)) != NULL) {
ctxt = llist_entry(node, struct svc_rdma_send_ctxt, sc_node);
ib_dma_unmap_single(rdma->sc_pd->device,
ctxt->sc_sges[0].addr,
rdma->sc_max_req_size,
DMA_TO_DEVICE);
kfree(ctxt->sc_xprt_buf);
kfree(ctxt);
}
}
/**
* svc_rdma_send_ctxt_get - Get a free send_ctxt
* @rdma: controlling svcxprt_rdma
*
* Returns a ready-to-use send_ctxt, or NULL if none are
* available and a fresh one cannot be allocated.
*/
struct svc_rdma_send_ctxt *svc_rdma_send_ctxt_get(struct svcxprt_rdma *rdma)
{
struct svc_rdma_send_ctxt *ctxt;
struct llist_node *node;
spin_lock(&rdma->sc_send_lock);
node = llist_del_first(&rdma->sc_send_ctxts);
spin_unlock(&rdma->sc_send_lock);
if (!node)
goto out_empty;
ctxt = llist_entry(node, struct svc_rdma_send_ctxt, sc_node);
out:
rpcrdma_set_xdrlen(&ctxt->sc_hdrbuf, 0);
xdr_init_encode(&ctxt->sc_stream, &ctxt->sc_hdrbuf,
ctxt->sc_xprt_buf, NULL);
svc_rdma_cc_init(rdma, &ctxt->sc_reply_info.wi_cc);
ctxt->sc_send_wr.num_sge = 0;
ctxt->sc_cur_sge_no = 0;
ctxt->sc_page_count = 0;
ctxt->sc_wr_chain = &ctxt->sc_send_wr;
ctxt->sc_sqecount = 1;
return ctxt;
out_empty:
ctxt = svc_rdma_send_ctxt_alloc(rdma);
if (!ctxt)
return NULL;
goto out;
}
static void svc_rdma_send_ctxt_release(struct svcxprt_rdma *rdma,
struct svc_rdma_send_ctxt *ctxt)
{
struct ib_device *device = rdma->sc_cm_id->device;
unsigned int i;
svc_rdma_reply_chunk_release(rdma, ctxt);
if (ctxt->sc_page_count)
release_pages(ctxt->sc_pages, ctxt->sc_page_count);
/* The first SGE contains the transport header, which
* remains mapped until @ctxt is destroyed.
*/
for (i = 1; i < ctxt->sc_send_wr.num_sge; i++) {
trace_svcrdma_dma_unmap_page(&ctxt->sc_cid,
ctxt->sc_sges[i].addr,
ctxt->sc_sges[i].length);
ib_dma_unmap_page(device,
ctxt->sc_sges[i].addr,
ctxt->sc_sges[i].length,
DMA_TO_DEVICE);
}
llist_add(&ctxt->sc_node, &rdma->sc_send_ctxts);
}
static void svc_rdma_send_ctxt_put_async(struct work_struct *work)
{
struct svc_rdma_send_ctxt *ctxt;
ctxt = container_of(work, struct svc_rdma_send_ctxt, sc_work);
svc_rdma_send_ctxt_release(ctxt->sc_rdma, ctxt);
}
/**
* svc_rdma_send_ctxt_put - Return send_ctxt to free list
* @rdma: controlling svcxprt_rdma
* @ctxt: object to return to the free list
*
* Pages left in sc_pages are DMA unmapped and released.
*/
void svc_rdma_send_ctxt_put(struct svcxprt_rdma *rdma,
struct svc_rdma_send_ctxt *ctxt)
{
INIT_WORK(&ctxt->sc_work, svc_rdma_send_ctxt_put_async);
queue_work(svcrdma_wq, &ctxt->sc_work);
}
/**
* svc_rdma_wake_send_waiters - manage Send Queue accounting
* @rdma: controlling transport
* @avail: Number of additional SQEs that are now available
*
*/
void svc_rdma_wake_send_waiters(struct svcxprt_rdma *rdma, int avail)
{
atomic_add(avail, &rdma->sc_sq_avail);
smp_mb__after_atomic();
if (unlikely(waitqueue_active(&rdma->sc_send_wait)))
wake_up(&rdma->sc_send_wait);
}
/**
* svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC
* @cq: Completion Queue context
* @wc: Work Completion object
*
* NB: The svc_xprt/svcxprt_rdma is pinned whenever it's possible that
* the Send completion handler could be running.
*/
static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
{
struct svcxprt_rdma *rdma = cq->cq_context;
struct ib_cqe *cqe = wc->wr_cqe;
struct svc_rdma_send_ctxt *ctxt =
container_of(cqe, struct svc_rdma_send_ctxt, sc_cqe);
svc_rdma_wake_send_waiters(rdma, ctxt->sc_sqecount);
if (unlikely(wc->status != IB_WC_SUCCESS))
goto flushed;
trace_svcrdma_wc_send(&ctxt->sc_cid);
svc_rdma_send_ctxt_put(rdma, ctxt);
return;
flushed:
if (wc->status != IB_WC_WR_FLUSH_ERR)
trace_svcrdma_wc_send_err(wc, &ctxt->sc_cid);
else
trace_svcrdma_wc_send_flush(wc, &ctxt->sc_cid);
svc_rdma_send_ctxt_put(rdma, ctxt);
svc_xprt_deferred_close(&rdma->sc_xprt);
}
/**
* svc_rdma_post_send - Post a WR chain to the Send Queue
* @rdma: transport context
* @ctxt: WR chain to post
*
* Copy fields in @ctxt to stack variables in order to guarantee
* that these values remain available after the ib_post_send() call.
* In some error flow cases, svc_rdma_wc_send() releases @ctxt.
*
* Note there is potential for starvation when the Send Queue is
* full because there is no order to when waiting threads are
* awoken. The transport is typically provisioned with a deep
* enough Send Queue that SQ exhaustion should be a rare event.
*
* Return values:
* %0: @ctxt's WR chain was posted successfully
* %-ENOTCONN: The connection was lost
*/
int svc_rdma_post_send(struct svcxprt_rdma *rdma,
struct svc_rdma_send_ctxt *ctxt)
{
struct ib_send_wr *first_wr = ctxt->sc_wr_chain;
struct ib_send_wr *send_wr = &ctxt->sc_send_wr;
const struct ib_send_wr *bad_wr = first_wr;
struct rpc_rdma_cid cid = ctxt->sc_cid;
int ret, sqecount = ctxt->sc_sqecount;
might_sleep();
/* Sync the transport header buffer */
ib_dma_sync_single_for_device(rdma->sc_pd->device,
send_wr->sg_list[0].addr,
send_wr->sg_list[0].length,
DMA_TO_DEVICE);
/* If the SQ is full, wait until an SQ entry is available */
while (!test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags)) {
if (atomic_sub_return(sqecount, &rdma->sc_sq_avail) < 0) {
svc_rdma_wake_send_waiters(rdma, sqecount);
/* When the transport is torn down, assume
* ib_drain_sq() will trigger enough Send
* completions to wake us. The XPT_CLOSE test
* above should then cause the while loop to
* exit.
*/
percpu_counter_inc(&svcrdma_stat_sq_starve);
trace_svcrdma_sq_full(rdma, &cid);
wait_event(rdma->sc_send_wait,
atomic_read(&rdma->sc_sq_avail) > 0);
trace_svcrdma_sq_retry(rdma, &cid);
continue;
}
trace_svcrdma_post_send(ctxt);
ret = ib_post_send(rdma->sc_qp, first_wr, &bad_wr);
if (ret) {
trace_svcrdma_sq_post_err(rdma, &cid, ret);
svc_xprt_deferred_close(&rdma->sc_xprt);
/* If even one WR was posted, there will be a
* Send completion that bumps sc_sq_avail.
*/
if (bad_wr == first_wr) {
svc_rdma_wake_send_waiters(rdma, sqecount);
break;
}
}
svcrdma: Fix trace point use-after-free race I hit this while testing nfsd-5.7 with kernel memory debugging enabled on my server: Mar 30 13:21:45 klimt kernel: BUG: unable to handle page fault for address: ffff8887e6c279a8 Mar 30 13:21:45 klimt kernel: #PF: supervisor read access in kernel mode Mar 30 13:21:45 klimt kernel: #PF: error_code(0x0000) - not-present page Mar 30 13:21:45 klimt kernel: PGD 3601067 P4D 3601067 PUD 87c519067 PMD 87c3e2067 PTE 800ffff8193d8060 Mar 30 13:21:45 klimt kernel: Oops: 0000 [#1] SMP DEBUG_PAGEALLOC PTI Mar 30 13:21:45 klimt kernel: CPU: 2 PID: 1933 Comm: nfsd Not tainted 5.6.0-rc6-00040-g881e87a3c6f9 #1591 Mar 30 13:21:45 klimt kernel: Hardware name: Supermicro Super Server/X10SRL-F, BIOS 1.0c 09/09/2015 Mar 30 13:21:45 klimt kernel: RIP: 0010:svc_rdma_post_chunk_ctxt+0xab/0x284 [rpcrdma] Mar 30 13:21:45 klimt kernel: Code: c1 83 34 02 00 00 29 d0 85 c0 7e 72 48 8b bb a0 02 00 00 48 8d 54 24 08 4c 89 e6 48 8b 07 48 8b 40 20 e8 5a 5c 2b e1 41 89 c6 <8b> 45 20 89 44 24 04 8b 05 02 e9 01 00 85 c0 7e 33 e9 5e 01 00 00 Mar 30 13:21:45 klimt kernel: RSP: 0018:ffffc90000dfbdd8 EFLAGS: 00010286 Mar 30 13:21:45 klimt kernel: RAX: 0000000000000000 RBX: ffff8887db8db400 RCX: 0000000000000030 Mar 30 13:21:45 klimt kernel: RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000246 Mar 30 13:21:45 klimt kernel: RBP: ffff8887e6c27988 R08: 0000000000000000 R09: 0000000000000004 Mar 30 13:21:45 klimt kernel: R10: ffffc90000dfbdd8 R11: 00c068ef00000000 R12: ffff8887eb4e4a80 Mar 30 13:21:45 klimt kernel: R13: ffff8887db8db634 R14: 0000000000000000 R15: ffff8887fc931000 Mar 30 13:21:45 klimt kernel: FS: 0000000000000000(0000) GS:ffff88885bd00000(0000) knlGS:0000000000000000 Mar 30 13:21:45 klimt kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 Mar 30 13:21:45 klimt kernel: CR2: ffff8887e6c279a8 CR3: 000000081b72e002 CR4: 00000000001606e0 Mar 30 13:21:45 klimt kernel: Call Trace: Mar 30 13:21:45 klimt kernel: ? svc_rdma_vec_to_sg+0x7f/0x7f [rpcrdma] Mar 30 13:21:45 klimt kernel: svc_rdma_send_write_chunk+0x59/0xce [rpcrdma] Mar 30 13:21:45 klimt kernel: svc_rdma_sendto+0xf9/0x3ae [rpcrdma] Mar 30 13:21:45 klimt kernel: ? nfsd_destroy+0x51/0x51 [nfsd] Mar 30 13:21:45 klimt kernel: svc_send+0x105/0x1e3 [sunrpc] Mar 30 13:21:45 klimt kernel: nfsd+0xf2/0x149 [nfsd] Mar 30 13:21:45 klimt kernel: kthread+0xf6/0xfb Mar 30 13:21:45 klimt kernel: ? kthread_queue_delayed_work+0x74/0x74 Mar 30 13:21:45 klimt kernel: ret_from_fork+0x3a/0x50 Mar 30 13:21:45 klimt kernel: Modules linked in: ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm ocfs2_nodemanager ocfs2_stackglue ib_umad ib_ipoib mlx4_ib sb_edac x86_pkg_temp_thermal iTCO_wdt iTCO_vendor_support coretemp kvm_intel kvm irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel glue_helper crypto_simd cryptd pcspkr rpcrdma i2c_i801 rdma_ucm lpc_ich mfd_core ib_iser rdma_cm iw_cm ib_cm mei_me raid0 libiscsi mei sg scsi_transport_iscsi ioatdma wmi ipmi_si ipmi_devintf ipmi_msghandler acpi_power_meter nfsd nfs_acl lockd auth_rpcgss grace sunrpc ip_tables xfs libcrc32c mlx4_en sd_mod sr_mod cdrom mlx4_core crc32c_intel igb nvme i2c_algo_bit ahci i2c_core libahci nvme_core dca libata t10_pi qedr dm_mirror dm_region_hash dm_log dm_mod dax qede qed crc8 ib_uverbs ib_core Mar 30 13:21:45 klimt kernel: CR2: ffff8887e6c279a8 Mar 30 13:21:45 klimt kernel: ---[ end trace 87971d2ad3429424 ]--- It's absolutely not safe to use resources pointed to by the @send_wr argument of ib_post_send() _after_ that function returns. Those resources are typically freed by the Send completion handler, which can run before ib_post_send() returns. Thus the trace points currently around ib_post_send() in the server's RPC/RDMA transport are a hazard, even when they are disabled. Rearrange them so that they touch the Work Request only _before_ ib_post_send() is invoked. Fixes: bd2abef33394 ("svcrdma: Trace key RDMA API events") Fixes: 4201c7464753 ("svcrdma: Introduce svc_rdma_send_ctxt") Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-31 02:27:37 +08:00
return 0;
}
return -ENOTCONN;
}
/**
* svc_rdma_encode_read_list - Encode RPC Reply's Read chunk list
* @sctxt: Send context for the RPC Reply
*
* Return values:
* On success, returns length in bytes of the Reply XDR buffer
* that was consumed by the Reply Read list
* %-EMSGSIZE on XDR buffer overflow
*/
static ssize_t svc_rdma_encode_read_list(struct svc_rdma_send_ctxt *sctxt)
{
/* RPC-over-RDMA version 1 replies never have a Read list. */
return xdr_stream_encode_item_absent(&sctxt->sc_stream);
}
/**
* svc_rdma_encode_write_segment - Encode one Write segment
* @sctxt: Send context for the RPC Reply
* @chunk: Write chunk to push
* @remaining: remaining bytes of the payload left in the Write chunk
* @segno: which segment in the chunk
*
* Return values:
* On success, returns length in bytes of the Reply XDR buffer
* that was consumed by the Write segment, and updates @remaining
* %-EMSGSIZE on XDR buffer overflow
*/
static ssize_t svc_rdma_encode_write_segment(struct svc_rdma_send_ctxt *sctxt,
const struct svc_rdma_chunk *chunk,
u32 *remaining, unsigned int segno)
{
const struct svc_rdma_segment *segment = &chunk->ch_segments[segno];
const size_t len = rpcrdma_segment_maxsz * sizeof(__be32);
u32 length;
__be32 *p;
p = xdr_reserve_space(&sctxt->sc_stream, len);
if (!p)
return -EMSGSIZE;
length = min_t(u32, *remaining, segment->rs_length);
*remaining -= length;
xdr_encode_rdma_segment(p, segment->rs_handle, length,
segment->rs_offset);
trace_svcrdma_encode_wseg(sctxt, segno, segment->rs_handle, length,
segment->rs_offset);
return len;
}
/**
* svc_rdma_encode_write_chunk - Encode one Write chunk
* @sctxt: Send context for the RPC Reply
* @chunk: Write chunk to push
*
* Copy a Write chunk from the Call transport header to the
* Reply transport header. Update each segment's length field
* to reflect the number of bytes written in that segment.
*
* Return values:
* On success, returns length in bytes of the Reply XDR buffer
* that was consumed by the Write chunk
* %-EMSGSIZE on XDR buffer overflow
*/
static ssize_t svc_rdma_encode_write_chunk(struct svc_rdma_send_ctxt *sctxt,
const struct svc_rdma_chunk *chunk)
{
u32 remaining = chunk->ch_payload_length;
unsigned int segno;
ssize_t len, ret;
len = 0;
ret = xdr_stream_encode_item_present(&sctxt->sc_stream);
if (ret < 0)
return ret;
len += ret;
ret = xdr_stream_encode_u32(&sctxt->sc_stream, chunk->ch_segcount);
if (ret < 0)
return ret;
len += ret;
for (segno = 0; segno < chunk->ch_segcount; segno++) {
ret = svc_rdma_encode_write_segment(sctxt, chunk, &remaining, segno);
if (ret < 0)
return ret;
len += ret;
}
return len;
}
/**
* svc_rdma_encode_write_list - Encode RPC Reply's Write chunk list
* @rctxt: Reply context with information about the RPC Call
* @sctxt: Send context for the RPC Reply
*
* Return values:
* On success, returns length in bytes of the Reply XDR buffer
* that was consumed by the Reply's Write list
* %-EMSGSIZE on XDR buffer overflow
*/
static ssize_t svc_rdma_encode_write_list(struct svc_rdma_recv_ctxt *rctxt,
struct svc_rdma_send_ctxt *sctxt)
{
struct svc_rdma_chunk *chunk;
ssize_t len, ret;
len = 0;
pcl_for_each_chunk(chunk, &rctxt->rc_write_pcl) {
ret = svc_rdma_encode_write_chunk(sctxt, chunk);
if (ret < 0)
return ret;
len += ret;
}
/* Terminate the Write list */
ret = xdr_stream_encode_item_absent(&sctxt->sc_stream);
if (ret < 0)
return ret;
return len + ret;
}
/**
* svc_rdma_encode_reply_chunk - Encode RPC Reply's Reply chunk
* @rctxt: Reply context with information about the RPC Call
* @sctxt: Send context for the RPC Reply
* @length: size in bytes of the payload in the Reply chunk
*
* Return values:
* On success, returns length in bytes of the Reply XDR buffer
* that was consumed by the Reply's Reply chunk
* %-EMSGSIZE on XDR buffer overflow
* %-E2BIG if the RPC message is larger than the Reply chunk
*/
static ssize_t
svc_rdma_encode_reply_chunk(struct svc_rdma_recv_ctxt *rctxt,
struct svc_rdma_send_ctxt *sctxt,
unsigned int length)
{
struct svc_rdma_chunk *chunk;
if (pcl_is_empty(&rctxt->rc_reply_pcl))
return xdr_stream_encode_item_absent(&sctxt->sc_stream);
chunk = pcl_first_chunk(&rctxt->rc_reply_pcl);
if (length > chunk->ch_length)
return -E2BIG;
chunk->ch_payload_length = length;
return svc_rdma_encode_write_chunk(sctxt, chunk);
}
struct svc_rdma_map_data {
struct svcxprt_rdma *md_rdma;
struct svc_rdma_send_ctxt *md_ctxt;
};
/**
* svc_rdma_page_dma_map - DMA map one page
* @data: pointer to arguments
* @page: struct page to DMA map
* @offset: offset into the page
* @len: number of bytes to map
*
* Returns:
* %0 if DMA mapping was successful
* %-EIO if the page cannot be DMA mapped
*/
static int svc_rdma_page_dma_map(void *data, struct page *page,
unsigned long offset, unsigned int len)
{
struct svc_rdma_map_data *args = data;
struct svcxprt_rdma *rdma = args->md_rdma;
struct svc_rdma_send_ctxt *ctxt = args->md_ctxt;
struct ib_device *dev = rdma->sc_cm_id->device;
dma_addr_t dma_addr;
++ctxt->sc_cur_sge_no;
dma_addr = ib_dma_map_page(dev, page, offset, len, DMA_TO_DEVICE);
if (ib_dma_mapping_error(dev, dma_addr))
goto out_maperr;
trace_svcrdma_dma_map_page(&ctxt->sc_cid, dma_addr, len);
ctxt->sc_sges[ctxt->sc_cur_sge_no].addr = dma_addr;
ctxt->sc_sges[ctxt->sc_cur_sge_no].length = len;
ctxt->sc_send_wr.num_sge++;
return 0;
out_maperr:
trace_svcrdma_dma_map_err(&ctxt->sc_cid, dma_addr, len);
return -EIO;
}
/**
* svc_rdma_iov_dma_map - DMA map an iovec
* @data: pointer to arguments
* @iov: kvec to DMA map
*
* ib_dma_map_page() is used here because svc_rdma_dma_unmap()
* handles DMA-unmap and it uses ib_dma_unmap_page() exclusively.
*
* Returns:
* %0 if DMA mapping was successful
* %-EIO if the iovec cannot be DMA mapped
*/
static int svc_rdma_iov_dma_map(void *data, const struct kvec *iov)
{
if (!iov->iov_len)
return 0;
return svc_rdma_page_dma_map(data, virt_to_page(iov->iov_base),
offset_in_page(iov->iov_base),
iov->iov_len);
}
/**
* svc_rdma_xb_dma_map - DMA map all segments of an xdr_buf
* @xdr: xdr_buf containing portion of an RPC message to transmit
* @data: pointer to arguments
*
* Returns:
* %0 if DMA mapping was successful
* %-EIO if DMA mapping failed
*
* On failure, any DMA mappings that have been already done must be
* unmapped by the caller.
*/
static int svc_rdma_xb_dma_map(const struct xdr_buf *xdr, void *data)
{
unsigned int len, remaining;
unsigned long pageoff;
struct page **ppages;
int ret;
ret = svc_rdma_iov_dma_map(data, &xdr->head[0]);
if (ret < 0)
return ret;
ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
pageoff = offset_in_page(xdr->page_base);
remaining = xdr->page_len;
while (remaining) {
len = min_t(u32, PAGE_SIZE - pageoff, remaining);
ret = svc_rdma_page_dma_map(data, *ppages++, pageoff, len);
if (ret < 0)
return ret;
remaining -= len;
pageoff = 0;
}
ret = svc_rdma_iov_dma_map(data, &xdr->tail[0]);
if (ret < 0)
return ret;
return xdr->len;
}
struct svc_rdma_pullup_data {
u8 *pd_dest;
unsigned int pd_length;
unsigned int pd_num_sges;
};
/**
* svc_rdma_xb_count_sges - Count how many SGEs will be needed
* @xdr: xdr_buf containing portion of an RPC message to transmit
* @data: pointer to arguments
*
* Returns:
* Number of SGEs needed to Send the contents of @xdr inline
*/
static int svc_rdma_xb_count_sges(const struct xdr_buf *xdr,
void *data)
{
struct svc_rdma_pullup_data *args = data;
unsigned int remaining;
unsigned long offset;
if (xdr->head[0].iov_len)
++args->pd_num_sges;
offset = offset_in_page(xdr->page_base);
remaining = xdr->page_len;
while (remaining) {
++args->pd_num_sges;
remaining -= min_t(u32, PAGE_SIZE - offset, remaining);
offset = 0;
}
if (xdr->tail[0].iov_len)
++args->pd_num_sges;
args->pd_length += xdr->len;
return 0;
}
/**
* svc_rdma_pull_up_needed - Determine whether to use pull-up
* @rdma: controlling transport
* @sctxt: send_ctxt for the Send WR
* @write_pcl: Write chunk list provided by client
* @xdr: xdr_buf containing RPC message to transmit
*
* Returns:
* %true if pull-up must be used
* %false otherwise
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
*/
static bool svc_rdma_pull_up_needed(const struct svcxprt_rdma *rdma,
const struct svc_rdma_send_ctxt *sctxt,
const struct svc_rdma_pcl *write_pcl,
const struct xdr_buf *xdr)
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
{
/* Resources needed for the transport header */
struct svc_rdma_pullup_data args = {
.pd_length = sctxt->sc_hdrbuf.len,
.pd_num_sges = 1,
};
int ret;
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
ret = pcl_process_nonpayloads(write_pcl, xdr,
svc_rdma_xb_count_sges, &args);
if (ret < 0)
return false;
if (args.pd_length < RPCRDMA_PULLUP_THRESH)
return true;
return args.pd_num_sges >= rdma->sc_max_send_sges;
}
/**
* svc_rdma_xb_linearize - Copy region of xdr_buf to flat buffer
* @xdr: xdr_buf containing portion of an RPC message to copy
* @data: pointer to arguments
*
* Returns:
* Always zero.
*/
static int svc_rdma_xb_linearize(const struct xdr_buf *xdr,
void *data)
{
struct svc_rdma_pullup_data *args = data;
unsigned int len, remaining;
unsigned long pageoff;
struct page **ppages;
if (xdr->head[0].iov_len) {
memcpy(args->pd_dest, xdr->head[0].iov_base, xdr->head[0].iov_len);
args->pd_dest += xdr->head[0].iov_len;
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
}
ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
pageoff = offset_in_page(xdr->page_base);
remaining = xdr->page_len;
while (remaining) {
len = min_t(u32, PAGE_SIZE - pageoff, remaining);
memcpy(args->pd_dest, page_address(*ppages) + pageoff, len);
remaining -= len;
args->pd_dest += len;
pageoff = 0;
ppages++;
}
if (xdr->tail[0].iov_len) {
memcpy(args->pd_dest, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
args->pd_dest += xdr->tail[0].iov_len;
}
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
args->pd_length += xdr->len;
return 0;
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
}
/**
* svc_rdma_pull_up_reply_msg - Copy Reply into a single buffer
* @rdma: controlling transport
* @sctxt: send_ctxt for the Send WR; xprt hdr is already prepared
* @write_pcl: Write chunk list provided by client
* @xdr: prepared xdr_buf containing RPC message
*
* The device is not capable of sending the reply directly.
* Assemble the elements of @xdr into the transport header buffer.
*
* Assumptions:
* pull_up_needed has determined that @xdr will fit in the buffer.
*
* Returns:
* %0 if pull-up was successful
* %-EMSGSIZE if a buffer manipulation problem occurred
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
*/
static int svc_rdma_pull_up_reply_msg(const struct svcxprt_rdma *rdma,
struct svc_rdma_send_ctxt *sctxt,
const struct svc_rdma_pcl *write_pcl,
const struct xdr_buf *xdr)
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
{
struct svc_rdma_pullup_data args = {
.pd_dest = sctxt->sc_xprt_buf + sctxt->sc_hdrbuf.len,
};
int ret;
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
ret = pcl_process_nonpayloads(write_pcl, xdr,
svc_rdma_xb_linearize, &args);
if (ret < 0)
return ret;
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len + args.pd_length;
trace_svcrdma_send_pullup(sctxt, args.pd_length);
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
return 0;
}
/* svc_rdma_map_reply_msg - DMA map the buffer holding RPC message
* @rdma: controlling transport
* @sctxt: send_ctxt for the Send WR
* @write_pcl: Write chunk list provided by client
* @reply_pcl: Reply chunk provided by client
* @xdr: prepared xdr_buf containing RPC message
*
* Returns:
* %0 if DMA mapping was successful.
* %-EMSGSIZE if a buffer manipulation problem occurred
* %-EIO if DMA mapping failed
*
* The Send WR's num_sge field is set in all cases.
*/
int svc_rdma_map_reply_msg(struct svcxprt_rdma *rdma,
struct svc_rdma_send_ctxt *sctxt,
const struct svc_rdma_pcl *write_pcl,
const struct svc_rdma_pcl *reply_pcl,
const struct xdr_buf *xdr)
{
struct svc_rdma_map_data args = {
.md_rdma = rdma,
.md_ctxt = sctxt,
};
/* Set up the (persistently-mapped) transport header SGE. */
sctxt->sc_send_wr.num_sge = 1;
sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len;
/* If there is a Reply chunk, nothing follows the transport
* header, so there is nothing to map.
*/
if (!pcl_is_empty(reply_pcl))
return 0;
/* For pull-up, svc_rdma_send() will sync the transport header.
* No additional DMA mapping is necessary.
*/
if (svc_rdma_pull_up_needed(rdma, sctxt, write_pcl, xdr))
return svc_rdma_pull_up_reply_msg(rdma, sctxt, write_pcl, xdr);
svcrdma: Remove max_sge check at connect time Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-01-26 05:54:54 +08:00
return pcl_process_nonpayloads(write_pcl, xdr,
svc_rdma_xb_dma_map, &args);
}
/* The svc_rqst and all resources it owns are released as soon as
* svc_rdma_sendto returns. Transfer pages under I/O to the ctxt
* so they are released by the Send completion handler.
*/
static void svc_rdma_save_io_pages(struct svc_rqst *rqstp,
struct svc_rdma_send_ctxt *ctxt)
{
int i, pages = rqstp->rq_next_page - rqstp->rq_respages;
ctxt->sc_page_count += pages;
for (i = 0; i < pages; i++) {
ctxt->sc_pages[i] = rqstp->rq_respages[i];
rqstp->rq_respages[i] = NULL;
}
/* Prevent svc_xprt_release from releasing pages in rq_pages */
rqstp->rq_next_page = rqstp->rq_respages;
}
/* Prepare the portion of the RPC Reply that will be transmitted
* via RDMA Send. The RPC-over-RDMA transport header is prepared
* in sc_sges[0], and the RPC xdr_buf is prepared in following sges.
*
* Depending on whether a Write list or Reply chunk is present,
* the server may Send all, a portion of, or none of the xdr_buf.
* In the latter case, only the transport header (sc_sges[0]) is
* transmitted.
*
* Assumptions:
* - The Reply's transport header will never be larger than a page.
*/
static int svc_rdma_send_reply_msg(struct svcxprt_rdma *rdma,
struct svc_rdma_send_ctxt *sctxt,
const struct svc_rdma_recv_ctxt *rctxt,
struct svc_rqst *rqstp)
{
struct ib_send_wr *send_wr = &sctxt->sc_send_wr;
int ret;
ret = svc_rdma_map_reply_msg(rdma, sctxt, &rctxt->rc_write_pcl,
&rctxt->rc_reply_pcl, &rqstp->rq_res);
if (ret < 0)
return ret;
/* Transfer pages involved in RDMA Writes to the sctxt's
* page array. Completion handling releases these pages.
*/
svc_rdma_save_io_pages(rqstp, sctxt);
if (rctxt->rc_inv_rkey) {
send_wr->opcode = IB_WR_SEND_WITH_INV;
send_wr->ex.invalidate_rkey = rctxt->rc_inv_rkey;
} else {
send_wr->opcode = IB_WR_SEND;
}
return svc_rdma_post_send(rdma, sctxt);
}
/**
* svc_rdma_send_error_msg - Send an RPC/RDMA v1 error response
* @rdma: controlling transport context
* @sctxt: Send context for the response
* @rctxt: Receive context for incoming bad message
* @status: negative errno indicating error that occurred
*
* Given the client-provided Read, Write, and Reply chunks, the
* server was not able to parse the Call or form a complete Reply.
* Return an RDMA_ERROR message so the client can retire the RPC
* transaction.
*
* The caller does not have to release @sctxt. It is released by
* Send completion, or by this function on error.
*/
void svc_rdma_send_error_msg(struct svcxprt_rdma *rdma,
struct svc_rdma_send_ctxt *sctxt,
struct svc_rdma_recv_ctxt *rctxt,
int status)
{
__be32 *rdma_argp = rctxt->rc_recv_buf;
__be32 *p;
rpcrdma_set_xdrlen(&sctxt->sc_hdrbuf, 0);
xdr_init_encode(&sctxt->sc_stream, &sctxt->sc_hdrbuf,
sctxt->sc_xprt_buf, NULL);
p = xdr_reserve_space(&sctxt->sc_stream,
rpcrdma_fixed_maxsz * sizeof(*p));
if (!p)
goto put_ctxt;
*p++ = *rdma_argp;
*p++ = *(rdma_argp + 1);
*p++ = rdma->sc_fc_credits;
*p = rdma_error;
switch (status) {
case -EPROTONOSUPPORT:
p = xdr_reserve_space(&sctxt->sc_stream, 3 * sizeof(*p));
if (!p)
goto put_ctxt;
*p++ = err_vers;
*p++ = rpcrdma_version;
*p = rpcrdma_version;
trace_svcrdma_err_vers(*rdma_argp);
break;
default:
p = xdr_reserve_space(&sctxt->sc_stream, sizeof(*p));
if (!p)
goto put_ctxt;
*p = err_chunk;
trace_svcrdma_err_chunk(*rdma_argp);
}
/* Remote Invalidation is skipped for simplicity. */
sctxt->sc_send_wr.num_sge = 1;
sctxt->sc_send_wr.opcode = IB_WR_SEND;
sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len;
if (svc_rdma_post_send(rdma, sctxt))
goto put_ctxt;
return;
put_ctxt:
svc_rdma_send_ctxt_put(rdma, sctxt);
}
/**
* svc_rdma_sendto - Transmit an RPC reply
* @rqstp: processed RPC request, reply XDR already in ::rq_res
*
* Any resources still associated with @rqstp are released upon return.
* If no reply message was possible, the connection is closed.
*
* Returns:
* %0 if an RPC reply has been successfully posted,
* %-ENOMEM if a resource shortage occurred (connection is lost),
* %-ENOTCONN if posting failed (connection is lost).
*/
int svc_rdma_sendto(struct svc_rqst *rqstp)
{
struct svc_xprt *xprt = rqstp->rq_xprt;
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt;
__be32 *rdma_argp = rctxt->rc_recv_buf;
struct svc_rdma_send_ctxt *sctxt;
unsigned int rc_size;
__be32 *p;
int ret;
ret = -ENOTCONN;
if (svc_xprt_is_dead(xprt))
goto drop_connection;
ret = -ENOMEM;
sctxt = svc_rdma_send_ctxt_get(rdma);
if (!sctxt)
goto drop_connection;
ret = -EMSGSIZE;
p = xdr_reserve_space(&sctxt->sc_stream,
rpcrdma_fixed_maxsz * sizeof(*p));
if (!p)
goto put_ctxt;
ret = svc_rdma_send_write_list(rdma, rctxt, &rqstp->rq_res);
if (ret < 0)
goto put_ctxt;
rc_size = 0;
if (!pcl_is_empty(&rctxt->rc_reply_pcl)) {
ret = svc_rdma_prepare_reply_chunk(rdma, &rctxt->rc_write_pcl,
&rctxt->rc_reply_pcl, sctxt,
&rqstp->rq_res);
if (ret < 0)
goto reply_chunk;
rc_size = ret;
}
*p++ = *rdma_argp;
*p++ = *(rdma_argp + 1);
*p++ = rdma->sc_fc_credits;
*p = pcl_is_empty(&rctxt->rc_reply_pcl) ? rdma_msg : rdma_nomsg;
ret = svc_rdma_encode_read_list(sctxt);
if (ret < 0)
goto put_ctxt;
ret = svc_rdma_encode_write_list(rctxt, sctxt);
if (ret < 0)
goto put_ctxt;
ret = svc_rdma_encode_reply_chunk(rctxt, sctxt, rc_size);
if (ret < 0)
goto put_ctxt;
ret = svc_rdma_send_reply_msg(rdma, sctxt, rctxt, rqstp);
if (ret < 0)
goto put_ctxt;
return 0;
reply_chunk:
if (ret != -E2BIG && ret != -EINVAL)
goto put_ctxt;
/* Send completion releases payload pages that were part
* of previously posted RDMA Writes.
*/
svc_rdma_save_io_pages(rqstp, sctxt);
svc_rdma_send_error_msg(rdma, sctxt, rctxt, ret);
return 0;
put_ctxt:
svc_rdma_send_ctxt_put(rdma, sctxt);
drop_connection:
trace_svcrdma_send_err(rqstp, ret);
svc_xprt_deferred_close(&rdma->sc_xprt);
return -ENOTCONN;
}
/**
* svc_rdma_result_payload - special processing for a result payload
* @rqstp: RPC transaction context
* @offset: payload's byte offset in @rqstp->rq_res
* @length: size of payload, in bytes
*
* Assign the passed-in result payload to the current Write chunk,
* and advance to cur_result_payload to the next Write chunk, if
* there is one.
*
* Return values:
* %0 if successful or nothing needed to be done
* %-E2BIG if the payload was larger than the Write chunk
*/
int svc_rdma_result_payload(struct svc_rqst *rqstp, unsigned int offset,
unsigned int length)
{
struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt;
struct svc_rdma_chunk *chunk;
chunk = rctxt->rc_cur_result_payload;
if (!length || !chunk)
return 0;
rctxt->rc_cur_result_payload =
pcl_next_chunk(&rctxt->rc_write_pcl, chunk);
if (length > chunk->ch_length)
return -E2BIG;
chunk->ch_position = offset;
chunk->ch_payload_length = length;
return 0;
}