linux/drivers/cpuidle/cpuidle-pseries.c

302 lines
6.7 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* cpuidle-pseries - idle state cpuidle driver.
* Adapted from drivers/idle/intel_idle.c and
* drivers/acpi/processor_idle.c
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/cpuidle.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <asm/paca.h>
#include <asm/reg.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/runlatch.h>
#include <asm/plpar_wrappers.h>
struct cpuidle_driver pseries_idle_driver = {
.name = "pseries_idle",
.owner = THIS_MODULE,
};
static int max_idle_state __read_mostly;
static struct cpuidle_state *cpuidle_state_table __read_mostly;
static u64 snooze_timeout __read_mostly;
static bool snooze_timeout_en __read_mostly;
static inline void idle_loop_prolog(unsigned long *in_purr)
{
sched/idle, PPC: Remove redundant cpuidle_idle_call() The core idle loop now takes care of it. However a few things need checking: - Invocation of cpuidle_idle_call() in pseries_lpar_idle() happened through arch_cpu_idle() and was therefore always preceded by a call to ppc64_runlatch_off(). To preserve this property now that cpuidle_idle_call() is invoked directly from core code, a call to ppc64_runlatch_off() has been added to idle_loop_prolog() in platforms/pseries/processor_idle.c. - Similarly, cpuidle_idle_call() was followed by ppc64_runlatch_off() so a call to the later has been added to idle_loop_epilog(). - And since arch_cpu_idle() always made sure to re-enable IRQs if they were not enabled, this is now done in idle_loop_epilog() as well. The above was made in order to keep the execution flow close to the original. I don't know if that was strictly necessary. Someone well aquainted with the platform details might find some room for possible optimizations. Signed-off-by: Nicolas Pitre <nico@linaro.org> Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: linux-arm-kernel@lists.infradead.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-sh@vger.kernel.org Cc: linux-pm@vger.kernel.org Cc: Russell King <linux@arm.linux.org.uk> Cc: linaro-kernel@lists.linaro.org Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-47o4m03citrfg9y1vxic5asb@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-30 01:45:10 +08:00
ppc64_runlatch_off();
*in_purr = mfspr(SPRN_PURR);
/*
* Indicate to the HV that we are idle. Now would be
* a good time to find other work to dispatch.
*/
get_lppaca()->idle = 1;
}
static inline void idle_loop_epilog(unsigned long in_purr)
{
u64 wait_cycles;
wait_cycles = be64_to_cpu(get_lppaca()->wait_state_cycles);
wait_cycles += mfspr(SPRN_PURR) - in_purr;
get_lppaca()->wait_state_cycles = cpu_to_be64(wait_cycles);
get_lppaca()->idle = 0;
sched/idle, PPC: Remove redundant cpuidle_idle_call() The core idle loop now takes care of it. However a few things need checking: - Invocation of cpuidle_idle_call() in pseries_lpar_idle() happened through arch_cpu_idle() and was therefore always preceded by a call to ppc64_runlatch_off(). To preserve this property now that cpuidle_idle_call() is invoked directly from core code, a call to ppc64_runlatch_off() has been added to idle_loop_prolog() in platforms/pseries/processor_idle.c. - Similarly, cpuidle_idle_call() was followed by ppc64_runlatch_off() so a call to the later has been added to idle_loop_epilog(). - And since arch_cpu_idle() always made sure to re-enable IRQs if they were not enabled, this is now done in idle_loop_epilog() as well. The above was made in order to keep the execution flow close to the original. I don't know if that was strictly necessary. Someone well aquainted with the platform details might find some room for possible optimizations. Signed-off-by: Nicolas Pitre <nico@linaro.org> Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: linux-arm-kernel@lists.infradead.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-sh@vger.kernel.org Cc: linux-pm@vger.kernel.org Cc: Russell King <linux@arm.linux.org.uk> Cc: linaro-kernel@lists.linaro.org Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-47o4m03citrfg9y1vxic5asb@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-30 01:45:10 +08:00
ppc64_runlatch_on();
}
static int snooze_loop(struct cpuidle_device *dev,
struct cpuidle_driver *drv,
int index)
{
unsigned long in_purr;
u64 snooze_exit_time;
set_thread_flag(TIF_POLLING_NRFLAG);
idle_loop_prolog(&in_purr);
cpuidle/powerpc: Fix snooze state problem in the cpuidle design on pseries. Earlier without cpuidle framework on pseries, the native arch idle routine comprised of both snooze and nap states. smt_snooze_delay variable was used to delay the idle process entry to deeper idle state like nap. With the coming of cpuidle, this arch specific idle was replaced by two different idle routines, one for supporting snooze and other for nap. This enabled addition of more low level idle states on pseries in the future. On adopting the generic cpuidle framework for POWER systems, the decision of which idle state to choose from, given a predicted idle time is taken by the menu governor based on target_residency and exit_latency of the idle states. target_residency is the minimum time to be resident in that idle state. Exit_latency is time taken to exit out of idle state. Deeper the idle state, both the target residency and exit latency would be higher. In the current design, smt_snooze_delay is used as target_residency for the snooze state which is incorrect, as it is not the minimum but the maximum duration to be in snooze state. This would result in the governor in taking bad decision, as presently target_residency of nap < target_residency of snooze inspite of nap being deeper idle state. This patch aims to fix this problem by replacing the smt_snooze_delay loop in snooze state, with the need_resched() as the governor is aware of entry and exit of various idle transitions based on which next idle time prediction. The governor is intelligent enough to determine the idle state the needs to be transitioned to and maintains a whole of heuristics including io load, previous idle states predictions etc for the same, based on which idle state entry decision is taken. With this fix, of setting target_residency of snooze to 0 nap to smt_snooze_delay if the predicted idle time is less than smt_snooze_delay (target_residency of nap) value governor would pick snooze state, else nap. This adhers to the previous native idle design. Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-10-04 02:42:26 +08:00
local_irq_enable();
snooze_exit_time = get_tb() + snooze_timeout;
while (!need_resched()) {
cpuidle/powerpc: Fix snooze state problem in the cpuidle design on pseries. Earlier without cpuidle framework on pseries, the native arch idle routine comprised of both snooze and nap states. smt_snooze_delay variable was used to delay the idle process entry to deeper idle state like nap. With the coming of cpuidle, this arch specific idle was replaced by two different idle routines, one for supporting snooze and other for nap. This enabled addition of more low level idle states on pseries in the future. On adopting the generic cpuidle framework for POWER systems, the decision of which idle state to choose from, given a predicted idle time is taken by the menu governor based on target_residency and exit_latency of the idle states. target_residency is the minimum time to be resident in that idle state. Exit_latency is time taken to exit out of idle state. Deeper the idle state, both the target residency and exit latency would be higher. In the current design, smt_snooze_delay is used as target_residency for the snooze state which is incorrect, as it is not the minimum but the maximum duration to be in snooze state. This would result in the governor in taking bad decision, as presently target_residency of nap < target_residency of snooze inspite of nap being deeper idle state. This patch aims to fix this problem by replacing the smt_snooze_delay loop in snooze state, with the need_resched() as the governor is aware of entry and exit of various idle transitions based on which next idle time prediction. The governor is intelligent enough to determine the idle state the needs to be transitioned to and maintains a whole of heuristics including io load, previous idle states predictions etc for the same, based on which idle state entry decision is taken. With this fix, of setting target_residency of snooze to 0 nap to smt_snooze_delay if the predicted idle time is less than smt_snooze_delay (target_residency of nap) value governor would pick snooze state, else nap. This adhers to the previous native idle design. Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-10-04 02:42:26 +08:00
HMT_low();
HMT_very_low();
if (likely(snooze_timeout_en) && get_tb() > snooze_exit_time) {
/*
* Task has not woken up but we are exiting the polling
* loop anyway. Require a barrier after polling is
* cleared to order subsequent test of need_resched().
*/
clear_thread_flag(TIF_POLLING_NRFLAG);
smp_mb();
break;
}
}
HMT_medium();
cpuidle/powerpc: Fix snooze state problem in the cpuidle design on pseries. Earlier without cpuidle framework on pseries, the native arch idle routine comprised of both snooze and nap states. smt_snooze_delay variable was used to delay the idle process entry to deeper idle state like nap. With the coming of cpuidle, this arch specific idle was replaced by two different idle routines, one for supporting snooze and other for nap. This enabled addition of more low level idle states on pseries in the future. On adopting the generic cpuidle framework for POWER systems, the decision of which idle state to choose from, given a predicted idle time is taken by the menu governor based on target_residency and exit_latency of the idle states. target_residency is the minimum time to be resident in that idle state. Exit_latency is time taken to exit out of idle state. Deeper the idle state, both the target residency and exit latency would be higher. In the current design, smt_snooze_delay is used as target_residency for the snooze state which is incorrect, as it is not the minimum but the maximum duration to be in snooze state. This would result in the governor in taking bad decision, as presently target_residency of nap < target_residency of snooze inspite of nap being deeper idle state. This patch aims to fix this problem by replacing the smt_snooze_delay loop in snooze state, with the need_resched() as the governor is aware of entry and exit of various idle transitions based on which next idle time prediction. The governor is intelligent enough to determine the idle state the needs to be transitioned to and maintains a whole of heuristics including io load, previous idle states predictions etc for the same, based on which idle state entry decision is taken. With this fix, of setting target_residency of snooze to 0 nap to smt_snooze_delay if the predicted idle time is less than smt_snooze_delay (target_residency of nap) value governor would pick snooze state, else nap. This adhers to the previous native idle design. Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-10-04 02:42:26 +08:00
clear_thread_flag(TIF_POLLING_NRFLAG);
local_irq_disable();
idle_loop_epilog(in_purr);
return index;
}
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 15:27:59 +08:00
static void check_and_cede_processor(void)
{
/*
* Ensure our interrupt state is properly tracked,
* also checks if no interrupt has occurred while we
* were soft-disabled
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 15:27:59 +08:00
*/
if (prep_irq_for_idle()) {
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 15:27:59 +08:00
cede_processor();
#ifdef CONFIG_TRACE_IRQFLAGS
/* Ensure that H_CEDE returns with IRQs on */
if (WARN_ON(!(mfmsr() & MSR_EE)))
__hard_irq_enable();
#endif
}
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 15:27:59 +08:00
}
static int dedicated_cede_loop(struct cpuidle_device *dev,
struct cpuidle_driver *drv,
int index)
{
unsigned long in_purr;
idle_loop_prolog(&in_purr);
get_lppaca()->donate_dedicated_cpu = 1;
HMT_medium();
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 15:27:59 +08:00
check_and_cede_processor();
local_irq_disable();
get_lppaca()->donate_dedicated_cpu = 0;
idle_loop_epilog(in_purr);
return index;
}
static int shared_cede_loop(struct cpuidle_device *dev,
struct cpuidle_driver *drv,
int index)
{
unsigned long in_purr;
idle_loop_prolog(&in_purr);
/*
* Yield the processor to the hypervisor. We return if
* an external interrupt occurs (which are driven prior
* to returning here) or if a prod occurs from another
* processor. When returning here, external interrupts
* are enabled.
*/
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 15:27:59 +08:00
check_and_cede_processor();
local_irq_disable();
idle_loop_epilog(in_purr);
return index;
}
/*
* States for dedicated partition case.
*/
static struct cpuidle_state dedicated_states[] = {
{ /* Snooze */
.name = "snooze",
.desc = "snooze",
.exit_latency = 0,
.target_residency = 0,
.enter = &snooze_loop },
{ /* CEDE */
.name = "CEDE",
.desc = "CEDE",
cpuidle/powerpc: Fix snooze state problem in the cpuidle design on pseries. Earlier without cpuidle framework on pseries, the native arch idle routine comprised of both snooze and nap states. smt_snooze_delay variable was used to delay the idle process entry to deeper idle state like nap. With the coming of cpuidle, this arch specific idle was replaced by two different idle routines, one for supporting snooze and other for nap. This enabled addition of more low level idle states on pseries in the future. On adopting the generic cpuidle framework for POWER systems, the decision of which idle state to choose from, given a predicted idle time is taken by the menu governor based on target_residency and exit_latency of the idle states. target_residency is the minimum time to be resident in that idle state. Exit_latency is time taken to exit out of idle state. Deeper the idle state, both the target residency and exit latency would be higher. In the current design, smt_snooze_delay is used as target_residency for the snooze state which is incorrect, as it is not the minimum but the maximum duration to be in snooze state. This would result in the governor in taking bad decision, as presently target_residency of nap < target_residency of snooze inspite of nap being deeper idle state. This patch aims to fix this problem by replacing the smt_snooze_delay loop in snooze state, with the need_resched() as the governor is aware of entry and exit of various idle transitions based on which next idle time prediction. The governor is intelligent enough to determine the idle state the needs to be transitioned to and maintains a whole of heuristics including io load, previous idle states predictions etc for the same, based on which idle state entry decision is taken. With this fix, of setting target_residency of snooze to 0 nap to smt_snooze_delay if the predicted idle time is less than smt_snooze_delay (target_residency of nap) value governor would pick snooze state, else nap. This adhers to the previous native idle design. Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-10-04 02:42:26 +08:00
.exit_latency = 10,
.target_residency = 100,
.enter = &dedicated_cede_loop },
};
/*
* States for shared partition case.
*/
static struct cpuidle_state shared_states[] = {
{ /* Snooze */
.name = "snooze",
.desc = "snooze",
.exit_latency = 0,
.target_residency = 0,
.enter = &snooze_loop },
{ /* Shared Cede */
.name = "Shared Cede",
.desc = "Shared Cede",
.exit_latency = 10,
.target_residency = 100,
.enter = &shared_cede_loop },
};
static int pseries_cpuidle_cpu_online(unsigned int cpu)
{
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
if (dev && cpuidle_get_driver()) {
cpuidle_pause_and_lock();
cpuidle_enable_device(dev);
cpuidle_resume_and_unlock();
}
return 0;
}
static int pseries_cpuidle_cpu_dead(unsigned int cpu)
{
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
if (dev && cpuidle_get_driver()) {
cpuidle_pause_and_lock();
cpuidle_disable_device(dev);
cpuidle_resume_and_unlock();
}
return 0;
}
/*
* pseries_cpuidle_driver_init()
*/
static int pseries_cpuidle_driver_init(void)
{
int idle_state;
struct cpuidle_driver *drv = &pseries_idle_driver;
drv->state_count = 0;
for (idle_state = 0; idle_state < max_idle_state; ++idle_state) {
/* Is the state not enabled? */
if (cpuidle_state_table[idle_state].enter == NULL)
continue;
drv->states[drv->state_count] = /* structure copy */
cpuidle_state_table[idle_state];
drv->state_count += 1;
}
return 0;
}
/*
* pseries_idle_probe()
* Choose state table for shared versus dedicated partition
*/
static int pseries_idle_probe(void)
{
if (cpuidle_disable != IDLE_NO_OVERRIDE)
return -ENODEV;
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
powerpc/pseries/cpuidle: Fix preempt warning When booting a pseries kernel with PREEMPT enabled, it dumps the following warning: BUG: using smp_processor_id() in preemptible [00000000] code: swapper/0/1 caller is pseries_processor_idle_init+0x5c/0x22c CPU: 13 PID: 1 Comm: swapper/0 Not tainted 4.20.0-rc3-00090-g12201a0128bc-dirty #828 Call Trace: [c000000429437ab0] [c0000000009c8878] dump_stack+0xec/0x164 (unreliable) [c000000429437b00] [c0000000005f2f24] check_preemption_disabled+0x154/0x160 [c000000429437b90] [c000000000cab8e8] pseries_processor_idle_init+0x5c/0x22c [c000000429437c10] [c000000000010ed4] do_one_initcall+0x64/0x300 [c000000429437ce0] [c000000000c54500] kernel_init_freeable+0x3f0/0x500 [c000000429437db0] [c0000000000112dc] kernel_init+0x2c/0x160 [c000000429437e20] [c00000000000c1d0] ret_from_kernel_thread+0x5c/0x6c This happens because the code calls get_lppaca() which calls get_paca() and it checks if preemption is disabled through check_preemption_disabled(). Preemption should be disabled because the per CPU variable may make no sense if there is a preemption (and a CPU switch) after it reads the per CPU data and when it is used. In this device driver specifically, it is not a problem, because this code just needs to have access to one lppaca struct, and it does not matter if it is the current per CPU lppaca struct or not (i.e. when there is a preemption and a CPU migration). That said, the most appropriate fix seems to be related to avoiding the debug_smp_processor_id() call at get_paca(), instead of calling preempt_disable() before get_paca(). Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-11-24 00:30:11 +08:00
/*
* Use local_paca instead of get_lppaca() since
* preemption is not disabled, and it is not required in
* fact, since lppaca_ptr does not need to be the value
* associated to the current CPU, it can be from any CPU.
*/
if (lppaca_shared_proc(local_paca->lppaca_ptr)) {
cpuidle_state_table = shared_states;
max_idle_state = ARRAY_SIZE(shared_states);
} else {
cpuidle_state_table = dedicated_states;
max_idle_state = ARRAY_SIZE(dedicated_states);
}
} else
return -ENODEV;
if (max_idle_state > 1) {
snooze_timeout_en = true;
snooze_timeout = cpuidle_state_table[1].target_residency *
tb_ticks_per_usec;
}
return 0;
}
static int __init pseries_processor_idle_init(void)
{
int retval;
retval = pseries_idle_probe();
if (retval)
return retval;
pseries_cpuidle_driver_init();
retval = cpuidle_register(&pseries_idle_driver, NULL);
if (retval) {
printk(KERN_DEBUG "Registration of pseries driver failed.\n");
return retval;
}
retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
"cpuidle/pseries:online",
pseries_cpuidle_cpu_online, NULL);
WARN_ON(retval < 0);
retval = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_DEAD,
"cpuidle/pseries:DEAD", NULL,
pseries_cpuidle_cpu_dead);
WARN_ON(retval < 0);
printk(KERN_DEBUG "pseries_idle_driver registered\n");
return 0;
}
device_initcall(pseries_processor_idle_init);