linux/mm/huge_memory.c

3230 lines
86 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
/*
* Copyright (C) 2009 Red Hat, Inc.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/sched/numa_balancing.h>
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/shrinker.h>
2011-01-14 07:46:58 +08:00
#include <linux/mm_inline.h>
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
#include <linux/swapops.h>
#include <linux/dax.h>
2011-01-14 07:46:58 +08:00
#include <linux/khugepaged.h>
#include <linux/freezer.h>
#include <linux/pfn_t.h>
#include <linux/mman.h>
#include <linux/memremap.h>
#include <linux/pagemap.h>
#include <linux/debugfs.h>
#include <linux/migrate.h>
#include <linux/hashtable.h>
#include <linux/userfaultfd_k.h>
mm: introduce idle page tracking Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 06:35:45 +08:00
#include <linux/page_idle.h>
#include <linux/shmem_fs.h>
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
#include <linux/oom.h>
mm: replace all open encodings for NUMA_NO_NODE Patch series "Replace all open encodings for NUMA_NO_NODE", v3. All these places for replacement were found by running the following grep patterns on the entire kernel code. Please let me know if this might have missed some instances. This might also have replaced some false positives. I will appreciate suggestions, inputs and review. 1. git grep "nid == -1" 2. git grep "node == -1" 3. git grep "nid = -1" 4. git grep "node = -1" This patch (of 2): At present there are multiple places where invalid node number is encoded as -1. Even though implicitly understood it is always better to have macros in there. Replace these open encodings for an invalid node number with the global macro NUMA_NO_NODE. This helps remove NUMA related assumptions like 'invalid node' from various places redirecting them to a common definition. Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe] Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx] Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband] Cc: Joseph Qi <jiangqi903@gmail.com> Cc: Hans Verkuil <hverkuil@xs4all.nl> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 07:42:58 +08:00
#include <linux/numa.h>
#include <linux/page_owner.h>
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
2011-01-14 07:46:58 +08:00
/*
* By default, transparent hugepage support is disabled in order to avoid
* risking an increased memory footprint for applications that are not
* guaranteed to benefit from it. When transparent hugepage support is
* enabled, it is for all mappings, and khugepaged scans all mappings.
* Defrag is invoked by khugepaged hugepage allocations and by page faults
* for all hugepage allocations.
2011-01-14 07:46:58 +08:00
*/
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
unsigned long transparent_hugepage_flags __read_mostly =
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
2011-01-14 07:46:58 +08:00
(1<<TRANSPARENT_HUGEPAGE_FLAG)|
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
2011-01-14 07:46:58 +08:00
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
static struct shrinker deferred_split_shrinker;
static atomic_t huge_zero_refcount;
struct page *huge_zero_page __read_mostly;
mm/thp: make is_huge_zero_pmd() safe and quicker Most callers of is_huge_zero_pmd() supply a pmd already verified present; but a few (notably zap_huge_pmd()) do not - it might be a pmd migration entry, in which the pfn is encoded differently from a present pmd: which might pass the is_huge_zero_pmd() test (though not on x86, since L1TF forced us to protect against that); or perhaps even crash in pmd_page() applied to a swap-like entry. Make it safe by adding pmd_present() check into is_huge_zero_pmd() itself; and make it quicker by saving huge_zero_pfn, so that is_huge_zero_pmd() will not need to do that pmd_page() lookup each time. __split_huge_pmd_locked() checked pmd_trans_huge() before: that worked, but is unnecessary now that is_huge_zero_pmd() checks present. Link: https://lkml.kernel.org/r/21ea9ca-a1f5-8b90-5e88-95fb1c49bbfa@google.com Fixes: e71769ae5260 ("mm: enable thp migration for shmem thp") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:23:49 +08:00
unsigned long huge_zero_pfn __read_mostly = ~0UL;
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
mm/huge_memory.c: add missing read-only THP checking in transparent_hugepage_enabled() Since commit 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS"), read-only THP file mapping is supported. But it forgot to add checking for it in transparent_hugepage_enabled(). To fix it, we add checking for read-only THP file mapping and also introduce helper transhuge_vma_enabled() to check whether thp is enabled for specified vma to reduce duplicated code. We rename transparent_hugepage_enabled to transparent_hugepage_active to make the code easier to follow as suggested by David Hildenbrand. [linmiaohe@huawei.com: define transhuge_vma_enabled next to transhuge_vma_suitable] Link: https://lkml.kernel.org/r/20210514093007.4117906-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210511134857.1581273-4-linmiaohe@huawei.com Fixes: 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Rik van Riel <riel@surriel.com> Cc: Song Liu <songliubraving@fb.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:47:50 +08:00
static inline bool file_thp_enabled(struct vm_area_struct *vma)
{
return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
!inode_is_open_for_write(vma->vm_file->f_inode) &&
(vma->vm_flags & VM_EXEC);
}
bool transparent_hugepage_active(struct vm_area_struct *vma)
mm, thp, proc: report THP eligibility for each vma Userspace falls short when trying to find out whether a specific memory range is eligible for THP. There are usecases that would like to know that http://lkml.kernel.org/r/alpine.DEB.2.21.1809251248450.50347@chino.kir.corp.google.com : This is used to identify heap mappings that should be able to fault thp : but do not, and they normally point to a low-on-memory or fragmentation : issue. The only way to deduce this now is to query for hg resp. nh flags and confronting the state with the global setting. Except that there is also PR_SET_THP_DISABLE that might change the picture. So the final logic is not trivial. Moreover the eligibility of the vma depends on the type of VMA as well. In the past we have supported only anononymous memory VMAs but things have changed and shmem based vmas are supported as well these days and the query logic gets even more complicated because the eligibility depends on the mount option and another global configuration knob. Simplify the current state and report the THP eligibility in /proc/<pid>/smaps for each existing vma. Reuse transparent_hugepage_enabled for this purpose. The original implementation of this function assumes that the caller knows that the vma itself is supported for THP so make the core checks into __transparent_hugepage_enabled and use it for existing callers. __show_smap just use the new transparent_hugepage_enabled which also checks the vma support status (please note that this one has to be out of line due to include dependency issues). [mhocko@kernel.org: fix oops with NULL ->f_mapping] Link: http://lkml.kernel.org/r/20181224185106.GC16738@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20181211143641.3503-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Paul Oppenheimer <bepvte@gmail.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 16:38:21 +08:00
{
mm: thp: fix false negative of shmem vma's THP eligibility Commit 7635d9cbe832 ("mm, thp, proc: report THP eligibility for each vma") introduced THPeligible bit for processes' smaps. But, when checking the eligibility for shmem vma, __transparent_hugepage_enabled() is called to override the result from shmem_huge_enabled(). It may result in the anonymous vma's THP flag override shmem's. For example, running a simple test which create THP for shmem, but with anonymous THP disabled, when reading the process's smaps, it may show: 7fc92ec00000-7fc92f000000 rw-s 00000000 00:14 27764 /dev/shm/test Size: 4096 kB ... [snip] ... ShmemPmdMapped: 4096 kB ... [snip] ... THPeligible: 0 And, /proc/meminfo does show THP allocated and PMD mapped too: ShmemHugePages: 4096 kB ShmemPmdMapped: 4096 kB This doesn't make too much sense. The shmem objects should be treated separately from anonymous THP. Calling shmem_huge_enabled() with checking MMF_DISABLE_THP sounds good enough. And, we could skip stack and dax vma check since we already checked if the vma is shmem already. Also check if vma is suitable for THP by calling transhuge_vma_suitable(). And minor fix to smaps output format and documentation. Link: http://lkml.kernel.org/r/1560401041-32207-3-git-send-email-yang.shi@linux.alibaba.com Fixes: 7635d9cbe832 ("mm, thp, proc: report THP eligibility for each vma") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 06:57:27 +08:00
/* The addr is used to check if the vma size fits */
unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
if (!transhuge_vma_suitable(vma, addr))
return false;
mm, thp, proc: report THP eligibility for each vma Userspace falls short when trying to find out whether a specific memory range is eligible for THP. There are usecases that would like to know that http://lkml.kernel.org/r/alpine.DEB.2.21.1809251248450.50347@chino.kir.corp.google.com : This is used to identify heap mappings that should be able to fault thp : but do not, and they normally point to a low-on-memory or fragmentation : issue. The only way to deduce this now is to query for hg resp. nh flags and confronting the state with the global setting. Except that there is also PR_SET_THP_DISABLE that might change the picture. So the final logic is not trivial. Moreover the eligibility of the vma depends on the type of VMA as well. In the past we have supported only anononymous memory VMAs but things have changed and shmem based vmas are supported as well these days and the query logic gets even more complicated because the eligibility depends on the mount option and another global configuration knob. Simplify the current state and report the THP eligibility in /proc/<pid>/smaps for each existing vma. Reuse transparent_hugepage_enabled for this purpose. The original implementation of this function assumes that the caller knows that the vma itself is supported for THP so make the core checks into __transparent_hugepage_enabled and use it for existing callers. __show_smap just use the new transparent_hugepage_enabled which also checks the vma support status (please note that this one has to be out of line due to include dependency issues). [mhocko@kernel.org: fix oops with NULL ->f_mapping] Link: http://lkml.kernel.org/r/20181224185106.GC16738@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20181211143641.3503-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Paul Oppenheimer <bepvte@gmail.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 16:38:21 +08:00
if (vma_is_anonymous(vma))
return __transparent_hugepage_enabled(vma);
mm: thp: fix false negative of shmem vma's THP eligibility Commit 7635d9cbe832 ("mm, thp, proc: report THP eligibility for each vma") introduced THPeligible bit for processes' smaps. But, when checking the eligibility for shmem vma, __transparent_hugepage_enabled() is called to override the result from shmem_huge_enabled(). It may result in the anonymous vma's THP flag override shmem's. For example, running a simple test which create THP for shmem, but with anonymous THP disabled, when reading the process's smaps, it may show: 7fc92ec00000-7fc92f000000 rw-s 00000000 00:14 27764 /dev/shm/test Size: 4096 kB ... [snip] ... ShmemPmdMapped: 4096 kB ... [snip] ... THPeligible: 0 And, /proc/meminfo does show THP allocated and PMD mapped too: ShmemHugePages: 4096 kB ShmemPmdMapped: 4096 kB This doesn't make too much sense. The shmem objects should be treated separately from anonymous THP. Calling shmem_huge_enabled() with checking MMF_DISABLE_THP sounds good enough. And, we could skip stack and dax vma check since we already checked if the vma is shmem already. Also check if vma is suitable for THP by calling transhuge_vma_suitable(). And minor fix to smaps output format and documentation. Link: http://lkml.kernel.org/r/1560401041-32207-3-git-send-email-yang.shi@linux.alibaba.com Fixes: 7635d9cbe832 ("mm, thp, proc: report THP eligibility for each vma") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 06:57:27 +08:00
if (vma_is_shmem(vma))
return shmem_huge_enabled(vma);
mm/huge_memory.c: add missing read-only THP checking in transparent_hugepage_enabled() Since commit 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS"), read-only THP file mapping is supported. But it forgot to add checking for it in transparent_hugepage_enabled(). To fix it, we add checking for read-only THP file mapping and also introduce helper transhuge_vma_enabled() to check whether thp is enabled for specified vma to reduce duplicated code. We rename transparent_hugepage_enabled to transparent_hugepage_active to make the code easier to follow as suggested by David Hildenbrand. [linmiaohe@huawei.com: define transhuge_vma_enabled next to transhuge_vma_suitable] Link: https://lkml.kernel.org/r/20210514093007.4117906-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210511134857.1581273-4-linmiaohe@huawei.com Fixes: 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Rik van Riel <riel@surriel.com> Cc: Song Liu <songliubraving@fb.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:47:50 +08:00
if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
return file_thp_enabled(vma);
mm, thp, proc: report THP eligibility for each vma Userspace falls short when trying to find out whether a specific memory range is eligible for THP. There are usecases that would like to know that http://lkml.kernel.org/r/alpine.DEB.2.21.1809251248450.50347@chino.kir.corp.google.com : This is used to identify heap mappings that should be able to fault thp : but do not, and they normally point to a low-on-memory or fragmentation : issue. The only way to deduce this now is to query for hg resp. nh flags and confronting the state with the global setting. Except that there is also PR_SET_THP_DISABLE that might change the picture. So the final logic is not trivial. Moreover the eligibility of the vma depends on the type of VMA as well. In the past we have supported only anononymous memory VMAs but things have changed and shmem based vmas are supported as well these days and the query logic gets even more complicated because the eligibility depends on the mount option and another global configuration knob. Simplify the current state and report the THP eligibility in /proc/<pid>/smaps for each existing vma. Reuse transparent_hugepage_enabled for this purpose. The original implementation of this function assumes that the caller knows that the vma itself is supported for THP so make the core checks into __transparent_hugepage_enabled and use it for existing callers. __show_smap just use the new transparent_hugepage_enabled which also checks the vma support status (please note that this one has to be out of line due to include dependency issues). [mhocko@kernel.org: fix oops with NULL ->f_mapping] Link: http://lkml.kernel.org/r/20181224185106.GC16738@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20181211143641.3503-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Paul Oppenheimer <bepvte@gmail.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 16:38:21 +08:00
return false;
}
static bool get_huge_zero_page(void)
{
struct page *zero_page;
retry:
if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
return true;
zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
HPAGE_PMD_ORDER);
if (!zero_page) {
count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
return false;
}
count_vm_event(THP_ZERO_PAGE_ALLOC);
preempt_disable();
if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
preempt_enable();
__free_pages(zero_page, compound_order(zero_page));
goto retry;
}
mm/thp: make is_huge_zero_pmd() safe and quicker Most callers of is_huge_zero_pmd() supply a pmd already verified present; but a few (notably zap_huge_pmd()) do not - it might be a pmd migration entry, in which the pfn is encoded differently from a present pmd: which might pass the is_huge_zero_pmd() test (though not on x86, since L1TF forced us to protect against that); or perhaps even crash in pmd_page() applied to a swap-like entry. Make it safe by adding pmd_present() check into is_huge_zero_pmd() itself; and make it quicker by saving huge_zero_pfn, so that is_huge_zero_pmd() will not need to do that pmd_page() lookup each time. __split_huge_pmd_locked() checked pmd_trans_huge() before: that worked, but is unnecessary now that is_huge_zero_pmd() checks present. Link: https://lkml.kernel.org/r/21ea9ca-a1f5-8b90-5e88-95fb1c49bbfa@google.com Fixes: e71769ae5260 ("mm: enable thp migration for shmem thp") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:23:49 +08:00
WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
/* We take additional reference here. It will be put back by shrinker */
atomic_set(&huge_zero_refcount, 2);
preempt_enable();
return true;
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
}
thp: reduce usage of huge zero page's atomic counter The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:00:08 +08:00
static void put_huge_zero_page(void)
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
{
/*
* Counter should never go to zero here. Only shrinker can put
* last reference.
*/
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
}
thp: reduce usage of huge zero page's atomic counter The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:00:08 +08:00
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
return READ_ONCE(huge_zero_page);
if (!get_huge_zero_page())
return NULL;
if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
put_huge_zero_page();
return READ_ONCE(huge_zero_page);
}
void mm_put_huge_zero_page(struct mm_struct *mm)
{
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
put_huge_zero_page();
}
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
struct shrink_control *sc)
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
{
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
/* we can free zero page only if last reference remains */
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
struct page *zero_page = xchg(&huge_zero_page, NULL);
BUG_ON(zero_page == NULL);
mm/thp: make is_huge_zero_pmd() safe and quicker Most callers of is_huge_zero_pmd() supply a pmd already verified present; but a few (notably zap_huge_pmd()) do not - it might be a pmd migration entry, in which the pfn is encoded differently from a present pmd: which might pass the is_huge_zero_pmd() test (though not on x86, since L1TF forced us to protect against that); or perhaps even crash in pmd_page() applied to a swap-like entry. Make it safe by adding pmd_present() check into is_huge_zero_pmd() itself; and make it quicker by saving huge_zero_pfn, so that is_huge_zero_pmd() will not need to do that pmd_page() lookup each time. __split_huge_pmd_locked() checked pmd_trans_huge() before: that worked, but is unnecessary now that is_huge_zero_pmd() checks present. Link: https://lkml.kernel.org/r/21ea9ca-a1f5-8b90-5e88-95fb1c49bbfa@google.com Fixes: e71769ae5260 ("mm: enable thp migration for shmem thp") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:23:49 +08:00
WRITE_ONCE(huge_zero_pfn, ~0UL);
__free_pages(zero_page, compound_order(zero_page));
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
return HPAGE_PMD_NR;
}
return 0;
thp: huge zero page: basic preparation During testing I noticed big (up to 2.5 times) memory consumption overhead on some workloads (e.g. ft.A from NPB) if THP is enabled. The main reason for that big difference is lacking zero page in THP case. We have to allocate a real page on read page fault. A program to demonstrate the issue: #include <assert.h> #include <stdlib.h> #include <unistd.h> #define MB 1024*1024 int main(int argc, char **argv) { char *p; int i; posix_memalign((void **)&p, 2 * MB, 200 * MB); for (i = 0; i < 200 * MB; i+= 4096) assert(p[i] == 0); pause(); return 0; } With thp-never RSS is about 400k, but with thp-always it's 200M. After the patcheset thp-always RSS is 400k too. Design overview. Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. The way how we allocate it changes in the patchset: - [01/10] simplest way: hzp allocated on boot time in hugepage_init(); - [09/10] lazy allocation on first use; - [10/10] lockless refcounting + shrinker-reclaimable hzp; We setup it in do_huge_pmd_anonymous_page() if area around fault address is suitable for THP and we've got read page fault. If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we normally do in THP. On wp fault to hzp we allocate real memory for the huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. We cannot split hzp (and it's bug if we try), but we can split the pmd which points to it. On splitting the pmd we create a table with all ptes set to normal zero page. === By hpa's request I've tried alternative approach for hzp implementation (see Virtual huge zero page patchset): pmd table with all entries set to zero page. This way should be more cache friendly, but it increases TLB pressure. The problem with virtual huge zero page: it requires per-arch enabling. We need a way to mark that pmd table has all ptes set to zero page. Some numbers to compare two implementations (on 4s Westmere-EX): Mirobenchmark1 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 100; i++) { assert(memcmp(p, p + 4*GB, 4*GB) == 0); asm volatile ("": : :"memory"); } hzp: Performance counter stats for './test_memcmp' (5 runs): 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 40 context-switches # 0.001 K/sec ( +- 0.94% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] 134,355,715,816 instructions # 1.75 insns per cycle # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] 32.413866442 seconds time elapsed ( +- 0.13% ) vhzp: Performance counter stats for './test_memcmp' (5 runs): 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) 38 context-switches # 0.001 K/sec ( +- 1.53% ) 0 CPU-migrations # 0.000 K/sec 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] 134,982,215,437 instructions # 1.88 insns per cycle # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] 30.381324695 seconds time elapsed ( +- 0.13% ) Mirobenchmark2 ============== test: posix_memalign((void **)&p, 2 * MB, 8 * GB); for (i = 0; i < 1000; i++) { char *_p = p; while (_p < p+4*GB) { assert(*_p == *(_p+4*GB)); _p += 4096; asm volatile ("": : :"memory"); } } hzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) 9 context-switches # 0.003 K/sec ( +- 4.97% ) 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] 9,494,670,537 instructions # 1.14 insns per cycle # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] 3,168,102,115 L1-dcache-loads # 903.693 M/sec ( +- 0.11% ) [41.70%] 1,048,710,998 L1-dcache-misses # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] 1,047,699,685 LLC-load # 298.854 M/sec ( +- 0.03% ) [33.38%] 2,287 LLC-misses # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] 3,166,187,367 dTLB-loads # 903.147 M/sec ( +- 0.02% ) [33.35%] 4,266,538 dTLB-misses # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] 3.513339813 seconds time elapsed ( +- 0.26% ) vhzp: Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) 62 context-switches # 0.002 K/sec ( +- 0.61% ) 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] 10,033,724,846 instructions # 0.15 insns per cycle # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] 3,302,006,540 L1-dcache-loads # 120.891 M/sec ( +- 0.11% ) [41.68%] 271,374,358 L1-dcache-misses # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] 20,385,476 LLC-load # 0.746 M/sec ( +- 1.64% ) [33.34%] 76,754 LLC-misses # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] 3,309,927,290 dTLB-loads # 121.181 M/sec ( +- 0.03% ) [33.34%] 2,098,967,427 dTLB-misses # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] 27.364448741 seconds time elapsed ( +- 0.24% ) === I personally prefer implementation present in this patchset. It doesn't touch arch-specific code. This patch: Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with zeros. For now let's allocate the page on hugepage_init(). We'll switch to lazy allocation later. We are not going to map the huge zero page until we can handle it properly on all code paths. is_huge_zero_{pfn,pmd}() functions will be used by following patches to check whether the pfn/pmd is huge zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-13 05:50:47 +08:00
}
static struct shrinker huge_zero_page_shrinker = {
hugepage: convert huge zero page shrinker to new shrinker API It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 08:18:15 +08:00
.count_objects = shrink_huge_zero_page_count,
.scan_objects = shrink_huge_zero_page_scan,
.seeks = DEFAULT_SEEKS,
};
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
const char *output;
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
output = "[always] madvise never";
else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags))
output = "always [madvise] never";
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
else
output = "always madvise [never]";
return sysfs_emit(buf, "%s\n", output);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
static ssize_t enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
ssize_t ret = count;
2011-01-14 07:46:58 +08:00
mm, thp: fix defrag setting if newline is not used If thp defrag setting "defer" is used and a newline is *not* used when writing to the sysfs file, this is interpreted as the "defer+madvise" option. This is because we do prefix matching and if five characters are written without a newline, the current code ends up comparing to the first five bytes of the "defer+madvise" option and using that instead. Use the more appropriate sysfs_streq() that handles the trailing newline for us. Since this doubles as a nice cleanup, do it in enabled_store() as well. The current implementation relies on prefix matching: the number of bytes compared is either the number of bytes written or the length of the option being compared. With a newline, "defer\n" does not match "defer+"madvise"; without a newline, however, "defer" is considered to match "defer+madvise" (prefix matching is only comparing the first five bytes). End result is that writing "defer" is broken unless it has an additional trailing character. This means that writing "madv" in the past would match and set "madvise". With strict checking, that no longer is the case but it is unlikely anybody is currently doing this. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001171411020.56385@chino.kir.corp.google.com Fixes: 21440d7eb904 ("mm, thp: add new defer+madvise defrag option") Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 14:14:48 +08:00
if (sysfs_streq(buf, "always")) {
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
mm, thp: fix defrag setting if newline is not used If thp defrag setting "defer" is used and a newline is *not* used when writing to the sysfs file, this is interpreted as the "defer+madvise" option. This is because we do prefix matching and if five characters are written without a newline, the current code ends up comparing to the first five bytes of the "defer+madvise" option and using that instead. Use the more appropriate sysfs_streq() that handles the trailing newline for us. Since this doubles as a nice cleanup, do it in enabled_store() as well. The current implementation relies on prefix matching: the number of bytes compared is either the number of bytes written or the length of the option being compared. With a newline, "defer\n" does not match "defer+"madvise"; without a newline, however, "defer" is considered to match "defer+madvise" (prefix matching is only comparing the first five bytes). End result is that writing "defer" is broken unless it has an additional trailing character. This means that writing "madv" in the past would match and set "madvise". With strict checking, that no longer is the case but it is unlikely anybody is currently doing this. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001171411020.56385@chino.kir.corp.google.com Fixes: 21440d7eb904 ("mm, thp: add new defer+madvise defrag option") Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 14:14:48 +08:00
} else if (sysfs_streq(buf, "madvise")) {
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
mm, thp: fix defrag setting if newline is not used If thp defrag setting "defer" is used and a newline is *not* used when writing to the sysfs file, this is interpreted as the "defer+madvise" option. This is because we do prefix matching and if five characters are written without a newline, the current code ends up comparing to the first five bytes of the "defer+madvise" option and using that instead. Use the more appropriate sysfs_streq() that handles the trailing newline for us. Since this doubles as a nice cleanup, do it in enabled_store() as well. The current implementation relies on prefix matching: the number of bytes compared is either the number of bytes written or the length of the option being compared. With a newline, "defer\n" does not match "defer+"madvise"; without a newline, however, "defer" is considered to match "defer+madvise" (prefix matching is only comparing the first five bytes). End result is that writing "defer" is broken unless it has an additional trailing character. This means that writing "madv" in the past would match and set "madvise". With strict checking, that no longer is the case but it is unlikely anybody is currently doing this. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001171411020.56385@chino.kir.corp.google.com Fixes: 21440d7eb904 ("mm, thp: add new defer+madvise defrag option") Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 14:14:48 +08:00
} else if (sysfs_streq(buf, "never")) {
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
} else
ret = -EINVAL;
2011-01-14 07:46:58 +08:00
if (ret > 0) {
int err = start_stop_khugepaged();
2011-01-14 07:46:58 +08:00
if (err)
ret = err;
}
return ret;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
static struct kobj_attribute enabled_attr =
__ATTR(enabled, 0644, enabled_show, enabled_store);
ssize_t single_hugepage_flag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf,
enum transparent_hugepage_flag flag)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
return sysfs_emit(buf, "%d\n",
!!test_bit(flag, &transparent_hugepage_flags));
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
ssize_t single_hugepage_flag_store(struct kobject *kobj,
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
struct kobj_attribute *attr,
const char *buf, size_t count,
enum transparent_hugepage_flag flag)
{
unsigned long value;
int ret;
ret = kstrtoul(buf, 10, &value);
if (ret < 0)
return ret;
if (value > 1)
return -EINVAL;
if (value)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
set_bit(flag, &transparent_hugepage_flags);
else
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
clear_bit(flag, &transparent_hugepage_flags);
return count;
}
static ssize_t defrag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
const char *output;
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
&transparent_hugepage_flags))
output = "[always] defer defer+madvise madvise never";
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
&transparent_hugepage_flags))
output = "always [defer] defer+madvise madvise never";
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
&transparent_hugepage_flags))
output = "always defer [defer+madvise] madvise never";
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
&transparent_hugepage_flags))
output = "always defer defer+madvise [madvise] never";
else
output = "always defer defer+madvise madvise [never]";
return sysfs_emit(buf, "%s\n", output);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
static ssize_t defrag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
mm, thp: fix defrag setting if newline is not used If thp defrag setting "defer" is used and a newline is *not* used when writing to the sysfs file, this is interpreted as the "defer+madvise" option. This is because we do prefix matching and if five characters are written without a newline, the current code ends up comparing to the first five bytes of the "defer+madvise" option and using that instead. Use the more appropriate sysfs_streq() that handles the trailing newline for us. Since this doubles as a nice cleanup, do it in enabled_store() as well. The current implementation relies on prefix matching: the number of bytes compared is either the number of bytes written or the length of the option being compared. With a newline, "defer\n" does not match "defer+"madvise"; without a newline, however, "defer" is considered to match "defer+madvise" (prefix matching is only comparing the first five bytes). End result is that writing "defer" is broken unless it has an additional trailing character. This means that writing "madv" in the past would match and set "madvise". With strict checking, that no longer is the case but it is unlikely anybody is currently doing this. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001171411020.56385@chino.kir.corp.google.com Fixes: 21440d7eb904 ("mm, thp: add new defer+madvise defrag option") Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 14:14:48 +08:00
if (sysfs_streq(buf, "always")) {
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
mm, thp: fix defrag setting if newline is not used If thp defrag setting "defer" is used and a newline is *not* used when writing to the sysfs file, this is interpreted as the "defer+madvise" option. This is because we do prefix matching and if five characters are written without a newline, the current code ends up comparing to the first five bytes of the "defer+madvise" option and using that instead. Use the more appropriate sysfs_streq() that handles the trailing newline for us. Since this doubles as a nice cleanup, do it in enabled_store() as well. The current implementation relies on prefix matching: the number of bytes compared is either the number of bytes written or the length of the option being compared. With a newline, "defer\n" does not match "defer+"madvise"; without a newline, however, "defer" is considered to match "defer+madvise" (prefix matching is only comparing the first five bytes). End result is that writing "defer" is broken unless it has an additional trailing character. This means that writing "madv" in the past would match and set "madvise". With strict checking, that no longer is the case but it is unlikely anybody is currently doing this. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001171411020.56385@chino.kir.corp.google.com Fixes: 21440d7eb904 ("mm, thp: add new defer+madvise defrag option") Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 14:14:48 +08:00
} else if (sysfs_streq(buf, "defer+madvise")) {
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
mm, thp: fix defrag setting if newline is not used If thp defrag setting "defer" is used and a newline is *not* used when writing to the sysfs file, this is interpreted as the "defer+madvise" option. This is because we do prefix matching and if five characters are written without a newline, the current code ends up comparing to the first five bytes of the "defer+madvise" option and using that instead. Use the more appropriate sysfs_streq() that handles the trailing newline for us. Since this doubles as a nice cleanup, do it in enabled_store() as well. The current implementation relies on prefix matching: the number of bytes compared is either the number of bytes written or the length of the option being compared. With a newline, "defer\n" does not match "defer+"madvise"; without a newline, however, "defer" is considered to match "defer+madvise" (prefix matching is only comparing the first five bytes). End result is that writing "defer" is broken unless it has an additional trailing character. This means that writing "madv" in the past would match and set "madvise". With strict checking, that no longer is the case but it is unlikely anybody is currently doing this. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001171411020.56385@chino.kir.corp.google.com Fixes: 21440d7eb904 ("mm, thp: add new defer+madvise defrag option") Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 14:14:48 +08:00
} else if (sysfs_streq(buf, "defer")) {
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
mm, thp: fix defrag setting if newline is not used If thp defrag setting "defer" is used and a newline is *not* used when writing to the sysfs file, this is interpreted as the "defer+madvise" option. This is because we do prefix matching and if five characters are written without a newline, the current code ends up comparing to the first five bytes of the "defer+madvise" option and using that instead. Use the more appropriate sysfs_streq() that handles the trailing newline for us. Since this doubles as a nice cleanup, do it in enabled_store() as well. The current implementation relies on prefix matching: the number of bytes compared is either the number of bytes written or the length of the option being compared. With a newline, "defer\n" does not match "defer+"madvise"; without a newline, however, "defer" is considered to match "defer+madvise" (prefix matching is only comparing the first five bytes). End result is that writing "defer" is broken unless it has an additional trailing character. This means that writing "madv" in the past would match and set "madvise". With strict checking, that no longer is the case but it is unlikely anybody is currently doing this. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001171411020.56385@chino.kir.corp.google.com Fixes: 21440d7eb904 ("mm, thp: add new defer+madvise defrag option") Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 14:14:48 +08:00
} else if (sysfs_streq(buf, "madvise")) {
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
mm, thp: fix defrag setting if newline is not used If thp defrag setting "defer" is used and a newline is *not* used when writing to the sysfs file, this is interpreted as the "defer+madvise" option. This is because we do prefix matching and if five characters are written without a newline, the current code ends up comparing to the first five bytes of the "defer+madvise" option and using that instead. Use the more appropriate sysfs_streq() that handles the trailing newline for us. Since this doubles as a nice cleanup, do it in enabled_store() as well. The current implementation relies on prefix matching: the number of bytes compared is either the number of bytes written or the length of the option being compared. With a newline, "defer\n" does not match "defer+"madvise"; without a newline, however, "defer" is considered to match "defer+madvise" (prefix matching is only comparing the first five bytes). End result is that writing "defer" is broken unless it has an additional trailing character. This means that writing "madv" in the past would match and set "madvise". With strict checking, that no longer is the case but it is unlikely anybody is currently doing this. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001171411020.56385@chino.kir.corp.google.com Fixes: 21440d7eb904 ("mm, thp: add new defer+madvise defrag option") Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 14:14:48 +08:00
} else if (sysfs_streq(buf, "never")) {
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
} else
return -EINVAL;
return count;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
static struct kobj_attribute defrag_attr =
__ATTR(defrag, 0644, defrag_show, defrag_store);
static ssize_t use_zero_page_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return single_hugepage_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
return single_hugepage_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
static ssize_t hpage_pmd_size_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
__ATTR_RO(hpage_pmd_size);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
static struct attribute *hugepage_attr[] = {
&enabled_attr.attr,
&defrag_attr.attr,
&use_zero_page_attr.attr,
&hpage_pmd_size_attr.attr,
#ifdef CONFIG_SHMEM
shmem: prepare huge= mount option and sysfs knob This patch adds new mount option "huge=". It can have following values: - "always": Attempt to allocate huge pages every time we need a new page; - "never": Do not allocate huge pages; - "within_size": Only allocate huge page if it will be fully within i_size. Also respect fadvise()/madvise() hints; - "advise: Only allocate huge pages if requested with fadvise()/madvise(); Default is "never" for now. "mount -o remount,huge= /mountpoint" works fine after mount: remounting huge=never will not attempt to break up huge pages at all, just stop more from being allocated. No new config option: put this under CONFIG_TRANSPARENT_HUGEPAGE, which is the appropriate option to protect those who don't want the new bloat, and with which we shall share some pmd code. Prohibit the option when !CONFIG_TRANSPARENT_HUGEPAGE, just as mpol is invalid without CONFIG_NUMA (was hidden in mpol_parse_str(): make it explicit). Allow enabling THP only if the machine has_transparent_hugepage(). But what about Shmem with no user-visible mount? SysV SHM, memfds, shared anonymous mmaps (of /dev/zero or MAP_ANONYMOUS), GPU drivers' DRM objects, Ashmem. Though unlikely to suit all usages, provide sysfs knob /sys/kernel/mm/transparent_hugepage/shmem_enabled to experiment with huge on those. And allow shmem_enabled two further values: - "deny": For use in emergencies, to force the huge option off from all mounts; - "force": Force the huge option on for all - very useful for testing; Based on patch by Hugh Dickins. Link: http://lkml.kernel.org/r/1466021202-61880-28-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 06:26:13 +08:00
&shmem_enabled_attr.attr,
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
#endif
NULL,
};
static const struct attribute_group hugepage_attr_group = {
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
.attrs = hugepage_attr,
2011-01-14 07:46:58 +08:00
};
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
int err;
*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
if (unlikely(!*hugepage_kobj)) {
pr_err("failed to create transparent hugepage kobject\n");
return -ENOMEM;
2011-01-14 07:46:58 +08:00
}
err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
2011-01-14 07:46:58 +08:00
if (err) {
pr_err("failed to register transparent hugepage group\n");
goto delete_obj;
2011-01-14 07:46:58 +08:00
}
err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
2011-01-14 07:46:58 +08:00
if (err) {
pr_err("failed to register transparent hugepage group\n");
goto remove_hp_group;
2011-01-14 07:46:58 +08:00
}
return 0;
remove_hp_group:
sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
kobject_put(*hugepage_kobj);
return err;
}
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
return 0;
}
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */
static int __init hugepage_init(void)
{
int err;
struct kobject *hugepage_kobj;
if (!has_transparent_hugepage()) {
/*
* Hardware doesn't support hugepages, hence disable
* DAX PMD support.
*/
transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
return -EINVAL;
}
/*
* hugepages can't be allocated by the buddy allocator
*/
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
/*
* we use page->mapping and page->index in second tail page
* as list_head: assuming THP order >= 2
*/
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
err = hugepage_init_sysfs(&hugepage_kobj);
if (err)
goto err_sysfs;
2011-01-14 07:46:58 +08:00
err = khugepaged_init();
2011-01-14 07:46:58 +08:00
if (err)
goto err_slab;
2011-01-14 07:46:58 +08:00
err = register_shrinker(&huge_zero_page_shrinker);
if (err)
goto err_hzp_shrinker;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
err = register_shrinker(&deferred_split_shrinker);
if (err)
goto err_split_shrinker;
/*
* By default disable transparent hugepages on smaller systems,
* where the extra memory used could hurt more than TLB overhead
* is likely to save. The admin can still enable it through /sys.
*/
if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
transparent_hugepage_flags = 0;
return 0;
}
err = start_stop_khugepaged();
if (err)
goto err_khugepaged;
2011-01-14 07:46:58 +08:00
return 0;
err_khugepaged:
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
khugepaged_destroy();
err_slab:
hugepage_exit_sysfs(hugepage_kobj);
err_sysfs:
2011-01-14 07:46:58 +08:00
return err;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm: audit/fix non-modular users of module_init in core code Code that is obj-y (always built-in) or dependent on a bool Kconfig (built-in or absent) can never be modular. So using module_init as an alias for __initcall can be somewhat misleading. Fix these up now, so that we can relocate module_init from init.h into module.h in the future. If we don't do this, we'd have to add module.h to obviously non-modular code, and that would be a worse thing. The audit targets the following module_init users for change: mm/ksm.c bool KSM mm/mmap.c bool MMU mm/huge_memory.c bool TRANSPARENT_HUGEPAGE mm/mmu_notifier.c bool MMU_NOTIFIER Note that direct use of __initcall is discouraged, vs. one of the priority categorized subgroups. As __initcall gets mapped onto device_initcall, our use of subsys_initcall (which makes sense for these files) will thus change this registration from level 6-device to level 4-subsys (i.e. slightly earlier). However no observable impact of that difference has been observed during testing. One might think that core_initcall (l2) or postcore_initcall (l3) would be more appropriate for anything in mm/ but if we look at some actual init functions themselves, we see things like: mm/huge_memory.c --> hugepage_init --> hugepage_init_sysfs mm/mmap.c --> init_user_reserve --> sysctl_user_reserve_kbytes mm/ksm.c --> ksm_init --> sysfs_create_group and hence the choice of subsys_initcall (l4) seems reasonable, and at the same time minimizes the risk of changing the priority too drastically all at once. We can adjust further in the future. Also, several instances of missing ";" at EOL are fixed. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 07:53:30 +08:00
subsys_initcall(hugepage_init);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
static int __init setup_transparent_hugepage(char *str)
{
int ret = 0;
if (!str)
goto out;
if (!strcmp(str, "always")) {
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
} else if (!strcmp(str, "madvise")) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
} else if (!strcmp(str, "never")) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
}
out:
if (!ret)
pr_warn("transparent_hugepage= cannot parse, ignored\n");
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
if (likely(vma->vm_flags & VM_WRITE))
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pmd = pmd_mkwrite(pmd);
return pmd;
}
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
{
mm: memcontrol: Use helpers to read page's memcg data Patch series "mm: allow mapping accounted kernel pages to userspace", v6. Currently a non-slab kernel page which has been charged to a memory cgroup can't be mapped to userspace. The underlying reason is simple: PageKmemcg flag is defined as a page type (like buddy, offline, etc), so it takes a bit from a page->mapped counter. Pages with a type set can't be mapped to userspace. But in general the kmemcg flag has nothing to do with mapping to userspace. It only means that the page has been accounted by the page allocator, so it has to be properly uncharged on release. Some bpf maps are mapping the vmalloc-based memory to userspace, and their memory can't be accounted because of this implementation detail. This patchset removes this limitation by moving the PageKmemcg flag into one of the free bits of the page->mem_cgroup pointer. Also it formalizes accesses to the page->mem_cgroup and page->obj_cgroups using new helpers, adds several checks and removes a couple of obsolete functions. As the result the code became more robust with fewer open-coded bit tricks. This patch (of 4): Currently there are many open-coded reads of the page->mem_cgroup pointer, as well as a couple of read helpers, which are barely used. It creates an obstacle on a way to reuse some bits of the pointer for storing additional bits of information. In fact, we already do this for slab pages, where the last bit indicates that a pointer has an attached vector of objcg pointers instead of a regular memcg pointer. This commits uses 2 existing helpers and introduces a new helper to converts all read sides to calls of these helpers: struct mem_cgroup *page_memcg(struct page *page); struct mem_cgroup *page_memcg_rcu(struct page *page); struct mem_cgroup *page_memcg_check(struct page *page); page_memcg_check() is intended to be used in cases when the page can be a slab page and have a memcg pointer pointing at objcg vector. It does check the lowest bit, and if set, returns NULL. page_memcg() contains a VM_BUG_ON_PAGE() check for the page not being a slab page. To make sure nobody uses a direct access, struct page's mem_cgroup/obj_cgroups is converted to unsigned long memcg_data. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
2020-12-02 05:58:27 +08:00
struct mem_cgroup *memcg = page_memcg(compound_head(page));
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
if (memcg)
return &memcg->deferred_split_queue;
else
return &pgdat->deferred_split_queue;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
return &pgdat->deferred_split_queue;
}
#endif
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
void prep_transhuge_page(struct page *page)
{
/*
* we use page->mapping and page->indexlru in second tail page
* as list_head: assuming THP order >= 2
*/
INIT_LIST_HEAD(page_deferred_list(page));
set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}
bool is_transparent_hugepage(struct page *page)
{
if (!PageCompound(page))
return false;
page = compound_head(page);
return is_huge_zero_page(page) ||
page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);
mm/huge_memory.c: thp: fix conflict of above-47bit hint address and PMD alignment Patch series "Fix two above-47bit hint address vs. THP bugs". The two get_unmapped_area() implementations have to be fixed to provide THP-friendly mappings if above-47bit hint address is specified. This patch (of 2): Filesystems use thp_get_unmapped_area() to provide THP-friendly mappings. For DAX in particular. Normally, the kernel doesn't create userspace mappings above 47-bit, even if the machine allows this (such as with 5-level paging on x86-64). Not all user space is ready to handle wide addresses. It's known that at least some JIT compilers use higher bits in pointers to encode their information. Userspace can ask for allocation from full address space by specifying hint address (with or without MAP_FIXED) above 47-bits. If the application doesn't need a particular address, but wants to allocate from whole address space it can specify -1 as a hint address. Unfortunately, this trick breaks thp_get_unmapped_area(): the function would not try to allocate PMD-aligned area if *any* hint address specified. Modify the routine to handle it correctly: - Try to allocate the space at the specified hint address with length padding required for PMD alignment. - If failed, retry without length padding (but with the same hint address); - If the returned address matches the hint address return it. - Otherwise, align the address as required for THP and return. The user specified hint address is passed down to get_unmapped_area() so above-47bit hint address will be taken into account without breaking alignment requirements. Link: http://lkml.kernel.org/r/20191220142548.7118-2-kirill.shutemov@linux.intel.com Fixes: b569bab78d8d ("x86/mm: Prepare to expose larger address space to userspace") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Thomas Willhalm <thomas.willhalm@intel.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Bruggeman, Otto G" <otto.g.bruggeman@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 08:29:10 +08:00
static unsigned long __thp_get_unmapped_area(struct file *filp,
unsigned long addr, unsigned long len,
thp, dax: add thp_get_unmapped_area for pmd mappings When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size. This feature relies on both mmap virtual address and FS block (i.e. physical address) to be aligned by the pmd page size. Users can use mkfs options to specify FS to align block allocations. However, aligning mmap address requires code changes to existing applications for providing a pmd-aligned address to mmap(). For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1]. It calls mmap() with a NULL address, which needs to be changed to provide a pmd-aligned address for testing with DAX pmd mappings. Changing all applications that call mmap() with NULL is undesirable. Add thp_get_unmapped_area(), which can be called by filesystem's get_unmapped_area to align an mmap address by the pmd size for a DAX file. It calls the default handler, mm->get_unmapped_area(), to find a range and then aligns it for a DAX file. The patch is based on Matthew Wilcox's change that allows adding support of the pud page size easily. [1]: https://github.com/axboe/fio/blob/master/engines/mmap.c Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 07:59:56 +08:00
loff_t off, unsigned long flags, unsigned long size)
{
loff_t off_end = off + len;
loff_t off_align = round_up(off, size);
mm/huge_memory.c: thp: fix conflict of above-47bit hint address and PMD alignment Patch series "Fix two above-47bit hint address vs. THP bugs". The two get_unmapped_area() implementations have to be fixed to provide THP-friendly mappings if above-47bit hint address is specified. This patch (of 2): Filesystems use thp_get_unmapped_area() to provide THP-friendly mappings. For DAX in particular. Normally, the kernel doesn't create userspace mappings above 47-bit, even if the machine allows this (such as with 5-level paging on x86-64). Not all user space is ready to handle wide addresses. It's known that at least some JIT compilers use higher bits in pointers to encode their information. Userspace can ask for allocation from full address space by specifying hint address (with or without MAP_FIXED) above 47-bits. If the application doesn't need a particular address, but wants to allocate from whole address space it can specify -1 as a hint address. Unfortunately, this trick breaks thp_get_unmapped_area(): the function would not try to allocate PMD-aligned area if *any* hint address specified. Modify the routine to handle it correctly: - Try to allocate the space at the specified hint address with length padding required for PMD alignment. - If failed, retry without length padding (but with the same hint address); - If the returned address matches the hint address return it. - Otherwise, align the address as required for THP and return. The user specified hint address is passed down to get_unmapped_area() so above-47bit hint address will be taken into account without breaking alignment requirements. Link: http://lkml.kernel.org/r/20191220142548.7118-2-kirill.shutemov@linux.intel.com Fixes: b569bab78d8d ("x86/mm: Prepare to expose larger address space to userspace") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Thomas Willhalm <thomas.willhalm@intel.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Bruggeman, Otto G" <otto.g.bruggeman@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 08:29:10 +08:00
unsigned long len_pad, ret;
thp, dax: add thp_get_unmapped_area for pmd mappings When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size. This feature relies on both mmap virtual address and FS block (i.e. physical address) to be aligned by the pmd page size. Users can use mkfs options to specify FS to align block allocations. However, aligning mmap address requires code changes to existing applications for providing a pmd-aligned address to mmap(). For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1]. It calls mmap() with a NULL address, which needs to be changed to provide a pmd-aligned address for testing with DAX pmd mappings. Changing all applications that call mmap() with NULL is undesirable. Add thp_get_unmapped_area(), which can be called by filesystem's get_unmapped_area to align an mmap address by the pmd size for a DAX file. It calls the default handler, mm->get_unmapped_area(), to find a range and then aligns it for a DAX file. The patch is based on Matthew Wilcox's change that allows adding support of the pud page size easily. [1]: https://github.com/axboe/fio/blob/master/engines/mmap.c Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 07:59:56 +08:00
if (off_end <= off_align || (off_end - off_align) < size)
return 0;
len_pad = len + size;
if (len_pad < len || (off + len_pad) < off)
return 0;
mm/huge_memory.c: thp: fix conflict of above-47bit hint address and PMD alignment Patch series "Fix two above-47bit hint address vs. THP bugs". The two get_unmapped_area() implementations have to be fixed to provide THP-friendly mappings if above-47bit hint address is specified. This patch (of 2): Filesystems use thp_get_unmapped_area() to provide THP-friendly mappings. For DAX in particular. Normally, the kernel doesn't create userspace mappings above 47-bit, even if the machine allows this (such as with 5-level paging on x86-64). Not all user space is ready to handle wide addresses. It's known that at least some JIT compilers use higher bits in pointers to encode their information. Userspace can ask for allocation from full address space by specifying hint address (with or without MAP_FIXED) above 47-bits. If the application doesn't need a particular address, but wants to allocate from whole address space it can specify -1 as a hint address. Unfortunately, this trick breaks thp_get_unmapped_area(): the function would not try to allocate PMD-aligned area if *any* hint address specified. Modify the routine to handle it correctly: - Try to allocate the space at the specified hint address with length padding required for PMD alignment. - If failed, retry without length padding (but with the same hint address); - If the returned address matches the hint address return it. - Otherwise, align the address as required for THP and return. The user specified hint address is passed down to get_unmapped_area() so above-47bit hint address will be taken into account without breaking alignment requirements. Link: http://lkml.kernel.org/r/20191220142548.7118-2-kirill.shutemov@linux.intel.com Fixes: b569bab78d8d ("x86/mm: Prepare to expose larger address space to userspace") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Thomas Willhalm <thomas.willhalm@intel.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Bruggeman, Otto G" <otto.g.bruggeman@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 08:29:10 +08:00
ret = current->mm->get_unmapped_area(filp, addr, len_pad,
thp, dax: add thp_get_unmapped_area for pmd mappings When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size. This feature relies on both mmap virtual address and FS block (i.e. physical address) to be aligned by the pmd page size. Users can use mkfs options to specify FS to align block allocations. However, aligning mmap address requires code changes to existing applications for providing a pmd-aligned address to mmap(). For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1]. It calls mmap() with a NULL address, which needs to be changed to provide a pmd-aligned address for testing with DAX pmd mappings. Changing all applications that call mmap() with NULL is undesirable. Add thp_get_unmapped_area(), which can be called by filesystem's get_unmapped_area to align an mmap address by the pmd size for a DAX file. It calls the default handler, mm->get_unmapped_area(), to find a range and then aligns it for a DAX file. The patch is based on Matthew Wilcox's change that allows adding support of the pud page size easily. [1]: https://github.com/axboe/fio/blob/master/engines/mmap.c Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 07:59:56 +08:00
off >> PAGE_SHIFT, flags);
mm/huge_memory.c: thp: fix conflict of above-47bit hint address and PMD alignment Patch series "Fix two above-47bit hint address vs. THP bugs". The two get_unmapped_area() implementations have to be fixed to provide THP-friendly mappings if above-47bit hint address is specified. This patch (of 2): Filesystems use thp_get_unmapped_area() to provide THP-friendly mappings. For DAX in particular. Normally, the kernel doesn't create userspace mappings above 47-bit, even if the machine allows this (such as with 5-level paging on x86-64). Not all user space is ready to handle wide addresses. It's known that at least some JIT compilers use higher bits in pointers to encode their information. Userspace can ask for allocation from full address space by specifying hint address (with or without MAP_FIXED) above 47-bits. If the application doesn't need a particular address, but wants to allocate from whole address space it can specify -1 as a hint address. Unfortunately, this trick breaks thp_get_unmapped_area(): the function would not try to allocate PMD-aligned area if *any* hint address specified. Modify the routine to handle it correctly: - Try to allocate the space at the specified hint address with length padding required for PMD alignment. - If failed, retry without length padding (but with the same hint address); - If the returned address matches the hint address return it. - Otherwise, align the address as required for THP and return. The user specified hint address is passed down to get_unmapped_area() so above-47bit hint address will be taken into account without breaking alignment requirements. Link: http://lkml.kernel.org/r/20191220142548.7118-2-kirill.shutemov@linux.intel.com Fixes: b569bab78d8d ("x86/mm: Prepare to expose larger address space to userspace") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Thomas Willhalm <thomas.willhalm@intel.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Bruggeman, Otto G" <otto.g.bruggeman@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 08:29:10 +08:00
/*
* The failure might be due to length padding. The caller will retry
* without the padding.
*/
if (IS_ERR_VALUE(ret))
thp, dax: add thp_get_unmapped_area for pmd mappings When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size. This feature relies on both mmap virtual address and FS block (i.e. physical address) to be aligned by the pmd page size. Users can use mkfs options to specify FS to align block allocations. However, aligning mmap address requires code changes to existing applications for providing a pmd-aligned address to mmap(). For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1]. It calls mmap() with a NULL address, which needs to be changed to provide a pmd-aligned address for testing with DAX pmd mappings. Changing all applications that call mmap() with NULL is undesirable. Add thp_get_unmapped_area(), which can be called by filesystem's get_unmapped_area to align an mmap address by the pmd size for a DAX file. It calls the default handler, mm->get_unmapped_area(), to find a range and then aligns it for a DAX file. The patch is based on Matthew Wilcox's change that allows adding support of the pud page size easily. [1]: https://github.com/axboe/fio/blob/master/engines/mmap.c Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 07:59:56 +08:00
return 0;
mm/huge_memory.c: thp: fix conflict of above-47bit hint address and PMD alignment Patch series "Fix two above-47bit hint address vs. THP bugs". The two get_unmapped_area() implementations have to be fixed to provide THP-friendly mappings if above-47bit hint address is specified. This patch (of 2): Filesystems use thp_get_unmapped_area() to provide THP-friendly mappings. For DAX in particular. Normally, the kernel doesn't create userspace mappings above 47-bit, even if the machine allows this (such as with 5-level paging on x86-64). Not all user space is ready to handle wide addresses. It's known that at least some JIT compilers use higher bits in pointers to encode their information. Userspace can ask for allocation from full address space by specifying hint address (with or without MAP_FIXED) above 47-bits. If the application doesn't need a particular address, but wants to allocate from whole address space it can specify -1 as a hint address. Unfortunately, this trick breaks thp_get_unmapped_area(): the function would not try to allocate PMD-aligned area if *any* hint address specified. Modify the routine to handle it correctly: - Try to allocate the space at the specified hint address with length padding required for PMD alignment. - If failed, retry without length padding (but with the same hint address); - If the returned address matches the hint address return it. - Otherwise, align the address as required for THP and return. The user specified hint address is passed down to get_unmapped_area() so above-47bit hint address will be taken into account without breaking alignment requirements. Link: http://lkml.kernel.org/r/20191220142548.7118-2-kirill.shutemov@linux.intel.com Fixes: b569bab78d8d ("x86/mm: Prepare to expose larger address space to userspace") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Thomas Willhalm <thomas.willhalm@intel.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Bruggeman, Otto G" <otto.g.bruggeman@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 08:29:10 +08:00
/*
* Do not try to align to THP boundary if allocation at the address
* hint succeeds.
*/
if (ret == addr)
return addr;
ret += (off - ret) & (size - 1);
return ret;
thp, dax: add thp_get_unmapped_area for pmd mappings When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size. This feature relies on both mmap virtual address and FS block (i.e. physical address) to be aligned by the pmd page size. Users can use mkfs options to specify FS to align block allocations. However, aligning mmap address requires code changes to existing applications for providing a pmd-aligned address to mmap(). For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1]. It calls mmap() with a NULL address, which needs to be changed to provide a pmd-aligned address for testing with DAX pmd mappings. Changing all applications that call mmap() with NULL is undesirable. Add thp_get_unmapped_area(), which can be called by filesystem's get_unmapped_area to align an mmap address by the pmd size for a DAX file. It calls the default handler, mm->get_unmapped_area(), to find a range and then aligns it for a DAX file. The patch is based on Matthew Wilcox's change that allows adding support of the pud page size easily. [1]: https://github.com/axboe/fio/blob/master/engines/mmap.c Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 07:59:56 +08:00
}
unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
mm/huge_memory.c: thp: fix conflict of above-47bit hint address and PMD alignment Patch series "Fix two above-47bit hint address vs. THP bugs". The two get_unmapped_area() implementations have to be fixed to provide THP-friendly mappings if above-47bit hint address is specified. This patch (of 2): Filesystems use thp_get_unmapped_area() to provide THP-friendly mappings. For DAX in particular. Normally, the kernel doesn't create userspace mappings above 47-bit, even if the machine allows this (such as with 5-level paging on x86-64). Not all user space is ready to handle wide addresses. It's known that at least some JIT compilers use higher bits in pointers to encode their information. Userspace can ask for allocation from full address space by specifying hint address (with or without MAP_FIXED) above 47-bits. If the application doesn't need a particular address, but wants to allocate from whole address space it can specify -1 as a hint address. Unfortunately, this trick breaks thp_get_unmapped_area(): the function would not try to allocate PMD-aligned area if *any* hint address specified. Modify the routine to handle it correctly: - Try to allocate the space at the specified hint address with length padding required for PMD alignment. - If failed, retry without length padding (but with the same hint address); - If the returned address matches the hint address return it. - Otherwise, align the address as required for THP and return. The user specified hint address is passed down to get_unmapped_area() so above-47bit hint address will be taken into account without breaking alignment requirements. Link: http://lkml.kernel.org/r/20191220142548.7118-2-kirill.shutemov@linux.intel.com Fixes: b569bab78d8d ("x86/mm: Prepare to expose larger address space to userspace") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Thomas Willhalm <thomas.willhalm@intel.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Bruggeman, Otto G" <otto.g.bruggeman@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 08:29:10 +08:00
unsigned long ret;
thp, dax: add thp_get_unmapped_area for pmd mappings When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size. This feature relies on both mmap virtual address and FS block (i.e. physical address) to be aligned by the pmd page size. Users can use mkfs options to specify FS to align block allocations. However, aligning mmap address requires code changes to existing applications for providing a pmd-aligned address to mmap(). For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1]. It calls mmap() with a NULL address, which needs to be changed to provide a pmd-aligned address for testing with DAX pmd mappings. Changing all applications that call mmap() with NULL is undesirable. Add thp_get_unmapped_area(), which can be called by filesystem's get_unmapped_area to align an mmap address by the pmd size for a DAX file. It calls the default handler, mm->get_unmapped_area(), to find a range and then aligns it for a DAX file. The patch is based on Matthew Wilcox's change that allows adding support of the pud page size easily. [1]: https://github.com/axboe/fio/blob/master/engines/mmap.c Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 07:59:56 +08:00
loff_t off = (loff_t)pgoff << PAGE_SHIFT;
if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
goto out;
mm/huge_memory.c: thp: fix conflict of above-47bit hint address and PMD alignment Patch series "Fix two above-47bit hint address vs. THP bugs". The two get_unmapped_area() implementations have to be fixed to provide THP-friendly mappings if above-47bit hint address is specified. This patch (of 2): Filesystems use thp_get_unmapped_area() to provide THP-friendly mappings. For DAX in particular. Normally, the kernel doesn't create userspace mappings above 47-bit, even if the machine allows this (such as with 5-level paging on x86-64). Not all user space is ready to handle wide addresses. It's known that at least some JIT compilers use higher bits in pointers to encode their information. Userspace can ask for allocation from full address space by specifying hint address (with or without MAP_FIXED) above 47-bits. If the application doesn't need a particular address, but wants to allocate from whole address space it can specify -1 as a hint address. Unfortunately, this trick breaks thp_get_unmapped_area(): the function would not try to allocate PMD-aligned area if *any* hint address specified. Modify the routine to handle it correctly: - Try to allocate the space at the specified hint address with length padding required for PMD alignment. - If failed, retry without length padding (but with the same hint address); - If the returned address matches the hint address return it. - Otherwise, align the address as required for THP and return. The user specified hint address is passed down to get_unmapped_area() so above-47bit hint address will be taken into account without breaking alignment requirements. Link: http://lkml.kernel.org/r/20191220142548.7118-2-kirill.shutemov@linux.intel.com Fixes: b569bab78d8d ("x86/mm: Prepare to expose larger address space to userspace") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Thomas Willhalm <thomas.willhalm@intel.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Bruggeman, Otto G" <otto.g.bruggeman@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 08:29:10 +08:00
ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
if (ret)
return ret;
out:
thp, dax: add thp_get_unmapped_area for pmd mappings When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size. This feature relies on both mmap virtual address and FS block (i.e. physical address) to be aligned by the pmd page size. Users can use mkfs options to specify FS to align block allocations. However, aligning mmap address requires code changes to existing applications for providing a pmd-aligned address to mmap(). For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1]. It calls mmap() with a NULL address, which needs to be changed to provide a pmd-aligned address for testing with DAX pmd mappings. Changing all applications that call mmap() with NULL is undesirable. Add thp_get_unmapped_area(), which can be called by filesystem's get_unmapped_area to align an mmap address by the pmd size for a DAX file. It calls the default handler, mm->get_unmapped_area(), to find a range and then aligns it for a DAX file. The patch is based on Matthew Wilcox's change that allows adding support of the pud page size easily. [1]: https://github.com/axboe/fio/blob/master/engines/mmap.c Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 07:59:56 +08:00
return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
struct page *page, gfp_t gfp)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
struct vm_area_struct *vma = vmf->vma;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pgtable_t pgtable;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
vm_fault_t ret = 0;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
VM_BUG_ON_PAGE(!PageCompound(page), page);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
put_page(page);
count_vm_event(THP_FAULT_FALLBACK);
count_vm_event(THP_FAULT_FALLBACK_CHARGE);
return VM_FAULT_FALLBACK;
}
cgroup_throttle_swaprate(page, gfp);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
mm: treewide: remove unused address argument from pte_alloc functions Patch series "Add support for fast mremap". This series speeds up the mremap(2) syscall by copying page tables at the PMD level even for non-THP systems. There is concern that the extra 'address' argument that mremap passes to pte_alloc may do something subtle architecture related in the future that may make the scheme not work. Also we find that there is no point in passing the 'address' to pte_alloc since its unused. This patch therefore removes this argument tree-wide resulting in a nice negative diff as well. Also ensuring along the way that the enabled architectures do not do anything funky with the 'address' argument that goes unnoticed by the optimization. Build and boot tested on x86-64. Build tested on arm64. The config enablement patch for arm64 will be posted in the future after more testing. The changes were obtained by applying the following Coccinelle script. (thanks Julia for answering all Coccinelle questions!). Following fix ups were done manually: * Removal of address argument from pte_fragment_alloc * Removal of pte_alloc_one_fast definitions from m68k and microblaze. // Options: --include-headers --no-includes // Note: I split the 'identifier fn' line, so if you are manually // running it, please unsplit it so it runs for you. virtual patch @pte_alloc_func_def depends on patch exists@ identifier E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; type T2; @@ fn(... - , T2 E2 ) { ... } @pte_alloc_func_proto_noarg depends on patch exists@ type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1, T2); + T3 fn(T1); | - T3 fn(T1, T2, T4); + T3 fn(T1, T2); ) @pte_alloc_func_proto depends on patch exists@ identifier E1, E2, E4; type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1 E1, T2 E2); + T3 fn(T1 E1); | - T3 fn(T1 E1, T2 E2, T4 E4); + T3 fn(T1 E1, T2 E2); ) @pte_alloc_func_call depends on patch exists@ expression E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ fn(... -, E2 ) @pte_alloc_macro depends on patch exists@ identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; identifier a, b, c; expression e; position p; @@ ( - #define fn(a, b, c) e + #define fn(a, b) e | - #define fn(a, b) e + #define fn(a) e ) Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Suggested-by: Kirill A. Shutemov <kirill@shutemov.name> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 07:28:34 +08:00
pgtable = pte_alloc_one(vma->vm_mm);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
if (unlikely(!pgtable)) {
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
ret = VM_FAULT_OOM;
goto release;
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:19:20 +08:00
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
mm: hugetlb: clear target sub-page last when clearing huge page Huge page helps to reduce TLB miss rate, but it has higher cache footprint, sometimes this may cause some issue. For example, when clearing huge page on x86_64 platform, the cache footprint is 2M. But on a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC (last level cache). That is, in average, there are 2.5M LLC for each core and 1.25M LLC for each thread. If the cache pressure is heavy when clearing the huge page, and we clear the huge page from the begin to the end, it is possible that the begin of huge page is evicted from the cache after we finishing clearing the end of the huge page. And it is possible for the application to access the begin of the huge page after clearing the huge page. To help the above situation, in this patch, when we clear a huge page, the order to clear sub-pages is changed. In quite some situation, we can get the address that the application will access after we clear the huge page, for example, in a page fault handler. Instead of clearing the huge page from begin to end, we will clear the sub-pages farthest from the the sub-page to access firstly, and clear the sub-page to access last. This will make the sub-page to access most cache-hot and sub-pages around it more cache-hot too. If we cannot know the address the application will access, the begin of the huge page is assumed to be the the address the application will access. With this patch, the throughput increases ~28.3% in vm-scalability anon-w-seq test case with 72 processes on a 2 socket Xeon E5 v3 2699 system (36 cores, 72 threads). The test case creates 72 processes, each process mmap a big anonymous memory area and writes to it from the begin to the end. For each process, other processes could be seen as other workload which generates heavy cache pressure. At the same time, the cache miss rate reduced from ~33.4% to ~31.7%, the IPC (instruction per cycle) increased from 0.56 to 0.74, and the time spent in user space is reduced ~7.9% Christopher Lameter suggests to clear bytes inside a sub-page from end to begin too. But tests show no visible performance difference in the tests. May because the size of page is small compared with the cache size. Thanks Andi Kleen to propose to use address to access to determine the order of sub-pages to clear. The hugetlbfs access address could be improved, will do that in another patch. [ying.huang@intel.com: improve readability of clear_huge_page()] Link: http://lkml.kernel.org/r/20170830051842.1397-1-ying.huang@intel.com Link: http://lkml.kernel.org/r/20170815014618.15842-1-ying.huang@intel.com Suggested-by: Andi Kleen <andi.kleen@intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Jan Kara <jack@suse.cz> Reviewed-by: Michal Hocko <mhocko@suse.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Nadia Yvette Chambers <nyc@holomorphy.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Christopher Lameter <cl@linux.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 07:25:04 +08:00
clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
/*
* The memory barrier inside __SetPageUptodate makes sure that
* clear_huge_page writes become visible before the set_pmd_at()
* write.
*/
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
__SetPageUptodate(page);
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
if (unlikely(!pmd_none(*vmf->pmd))) {
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
goto unlock_release;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
} else {
pmd_t entry;
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
ret = check_stable_address_space(vma->vm_mm);
if (ret)
goto unlock_release;
/* Deliver the page fault to userland */
if (userfaultfd_missing(vma)) {
spin_unlock(vmf->ptl);
put_page(page);
pte_free(vma->vm_mm, pgtable);
ret = handle_userfault(vmf, VM_UFFD_MISSING);
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
return ret;
}
entry = mk_huge_pmd(page, vma->vm_page_prot);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
page_add_new_anon_rmap(page, vma, haddr, true);
mm/vmscan: protect the workingset on anonymous LRU In current implementation, newly created or swap-in anonymous page is started on active list. Growing active list results in rebalancing active/inactive list so old pages on active list are demoted to inactive list. Hence, the page on active list isn't protected at all. Following is an example of this situation. Assume that 50 hot pages on active list. Numbers denote the number of pages on active/inactive list (active | inactive). 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(uo) | 50(h) 3. workload: another 50 newly created (used-once) pages 50(uo) | 50(uo), swap-out 50(h) This patch tries to fix this issue. Like as file LRU, newly created or swap-in anonymous pages will be inserted to the inactive list. They are promoted to active list if enough reference happens. This simple modification changes the above example as following. 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(h) | 50(uo) 3. workload: another 50 newly created (used-once) pages 50(h) | 50(uo), swap-out 50(uo) As you can see, hot pages on active list would be protected. Note that, this implementation has a drawback that the page cannot be promoted and will be swapped-out if re-access interval is greater than the size of inactive list but less than the size of total(active+inactive). To solve this potential issue, following patch will apply workingset detection similar to the one that's already applied to file LRU. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1595490560-15117-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 09:30:40 +08:00
lru_cache_add_inactive_or_unevictable(page, vma);
pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
mm_inc_nr_ptes(vma->vm_mm);
spin_unlock(vmf->ptl);
count_vm_event(THP_FAULT_ALLOC);
count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
return 0;
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
unlock_release:
spin_unlock(vmf->ptl);
release:
if (pgtable)
pte_free(vma->vm_mm, pgtable);
put_page(page);
return ret;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
/*
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
* always: directly stall for all thp allocations
* defer: wake kswapd and fail if not immediately available
* defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
* fail if not immediately available
* madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
* available
* never: never stall for any thp allocation
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
*/
mm,thp,shmem: limit shmem THP alloc gfp_mask Patch series "mm,thp,shm: limit shmem THP alloc gfp_mask", v6. The allocation flags of anonymous transparent huge pages can be controlled through the files in /sys/kernel/mm/transparent_hugepage/defrag, which can help the system from getting bogged down in the page reclaim and compaction code when many THPs are getting allocated simultaneously. However, the gfp_mask for shmem THP allocations were not limited by those configuration settings, and some workloads ended up with all CPUs stuck on the LRU lock in the page reclaim code, trying to allocate dozens of THPs simultaneously. This patch applies the same configurated limitation of THPs to shmem hugepage allocations, to prevent that from happening. This way a THP defrag setting of "never" or "defer+madvise" will result in quick allocation failures without direct reclaim when no 2MB free pages are available. With this patch applied, THP allocations for tmpfs will be a little more aggressive than today for files mmapped with MADV_HUGEPAGE, and a little less aggressive for files that are not mmapped or mapped without that flag. This patch (of 4): The allocation flags of anonymous transparent huge pages can be controlled through the files in /sys/kernel/mm/transparent_hugepage/defrag, which can help the system from getting bogged down in the page reclaim and compaction code when many THPs are getting allocated simultaneously. However, the gfp_mask for shmem THP allocations were not limited by those configuration settings, and some workloads ended up with all CPUs stuck on the LRU lock in the page reclaim code, trying to allocate dozens of THPs simultaneously. This patch applies the same configurated limitation of THPs to shmem hugepage allocations, to prevent that from happening. Controlling the gfp_mask of THP allocations through the knobs in sysfs allows users to determine the balance between how aggressively the system tries to allocate THPs at fault time, and how much the application may end up stalling attempting those allocations. This way a THP defrag setting of "never" or "defer+madvise" will result in quick allocation failures without direct reclaim when no 2MB free pages are available. With this patch applied, THP allocations for tmpfs will be a little more aggressive than today for files mmapped with MADV_HUGEPAGE, and a little less aggressive for files that are not mmapped or mapped without that flag. Link: https://lkml.kernel.org/r/20201124194925.623931-1-riel@surriel.com Link: https://lkml.kernel.org/r/20201124194925.623931-2-riel@surriel.com Signed-off-by: Rik van Riel <riel@surriel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Xu Yu <xuyu@linux.alibaba.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:16:18 +08:00
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
{
mm,thp,shmem: limit shmem THP alloc gfp_mask Patch series "mm,thp,shm: limit shmem THP alloc gfp_mask", v6. The allocation flags of anonymous transparent huge pages can be controlled through the files in /sys/kernel/mm/transparent_hugepage/defrag, which can help the system from getting bogged down in the page reclaim and compaction code when many THPs are getting allocated simultaneously. However, the gfp_mask for shmem THP allocations were not limited by those configuration settings, and some workloads ended up with all CPUs stuck on the LRU lock in the page reclaim code, trying to allocate dozens of THPs simultaneously. This patch applies the same configurated limitation of THPs to shmem hugepage allocations, to prevent that from happening. This way a THP defrag setting of "never" or "defer+madvise" will result in quick allocation failures without direct reclaim when no 2MB free pages are available. With this patch applied, THP allocations for tmpfs will be a little more aggressive than today for files mmapped with MADV_HUGEPAGE, and a little less aggressive for files that are not mmapped or mapped without that flag. This patch (of 4): The allocation flags of anonymous transparent huge pages can be controlled through the files in /sys/kernel/mm/transparent_hugepage/defrag, which can help the system from getting bogged down in the page reclaim and compaction code when many THPs are getting allocated simultaneously. However, the gfp_mask for shmem THP allocations were not limited by those configuration settings, and some workloads ended up with all CPUs stuck on the LRU lock in the page reclaim code, trying to allocate dozens of THPs simultaneously. This patch applies the same configurated limitation of THPs to shmem hugepage allocations, to prevent that from happening. Controlling the gfp_mask of THP allocations through the knobs in sysfs allows users to determine the balance between how aggressively the system tries to allocate THPs at fault time, and how much the application may end up stalling attempting those allocations. This way a THP defrag setting of "never" or "defer+madvise" will result in quick allocation failures without direct reclaim when no 2MB free pages are available. With this patch applied, THP allocations for tmpfs will be a little more aggressive than today for files mmapped with MADV_HUGEPAGE, and a little less aggressive for files that are not mmapped or mapped without that flag. Link: https://lkml.kernel.org/r/20201124194925.623931-1-riel@surriel.com Link: https://lkml.kernel.org/r/20201124194925.623931-2-riel@surriel.com Signed-off-by: Rik van Riel <riel@surriel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Xu Yu <xuyu@linux.alibaba.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:16:18 +08:00
const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
mm, thp: restore node-local hugepage allocations This is a full revert of ac5b2c18911f ("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") and a partial revert of 89c83fb539f9 ("mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask"). By not setting __GFP_THISNODE, applications can allocate remote hugepages when the local node is fragmented or low on memory when either the thp defrag setting is "always" or the vma has been madvised with MADV_HUGEPAGE. Remote access to hugepages often has much higher latency than local pages of the native page size. On Haswell, ac5b2c18911f was shown to have a 13.9% access regression after this commit for binaries that remap their text segment to be backed by transparent hugepages. The intent of ac5b2c18911f is to address an issue where a local node is low on memory or fragmented such that a hugepage cannot be allocated. In every scenario where this was described as a fix, there is abundant and unfragmented remote memory available to allocate from, even with a greater access latency. If remote memory is also low or fragmented, not setting __GFP_THISNODE was also measured on Haswell to have a 40% regression in allocation latency. Restore __GFP_THISNODE for thp allocations. Fixes: ac5b2c18911f ("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") Fixes: 89c83fb539f9 ("mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask") Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-06 07:45:54 +08:00
Revert "Revert "mm, thp: restore node-local hugepage allocations"" This reverts commit a8282608c88e08b1782141026eab61204c1e533f. The commit references the original intended semantic for MADV_HUGEPAGE which has subsequently taken on three unique purposes: - enables or disables thp for a range of memory depending on the system's config (is thp "enabled" set to "always" or "madvise"), - determines the synchronous compaction behavior for thp allocations at fault (is thp "defrag" set to "always", "defer+madvise", or "madvise"), and - reverts a previous MADV_NOHUGEPAGE (there is no madvise mode to only clear previous hugepage advice). These are the three purposes that currently exist in 5.2 and over the past several years that userspace has been written around. Adding a NUMA locality preference adds a fourth dimension to an already conflated advice mode. Based on the semantic that MADV_HUGEPAGE has provided over the past several years, there exist workloads that use the tunable based on these principles: specifically that the allocation should attempt to defragment a local node before falling back. It is agreed that remote hugepages typically (but not always) have a better access latency than remote native pages, although on Naples this is at parity for intersocket. The revert commit that this patch reverts allows hugepage allocation to immediately allocate remotely when local memory is fragmented. This is contrary to the semantic of MADV_HUGEPAGE over the past several years: that is, memory compaction should be attempted locally before falling back. The performance degradation of remote hugepages over local hugepages on Rome, for example, is 53.5% increased access latency. For this reason, the goal is to revert back to the 5.2 and previous behavior that would attempt local defragmentation before falling back. With the patch that is reverted by this patch, we see performance degradations at the tail because the allocator happily allocates the remote hugepage rather than even attempting to make a local hugepage available. zone_reclaim_mode is not a solution to this problem since it does not only impact hugepage allocations but rather changes the memory allocation strategy for *all* page allocations. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-05 03:54:18 +08:00
/* Always do synchronous compaction */
Revert "mm, thp: restore node-local hugepage allocations" This reverts commit 2f0799a0ffc033b ("mm, thp: restore node-local hugepage allocations"). commit 2f0799a0ffc033b was rightfully applied to avoid the risk of a severe regression that was reported by the kernel test robot at the end of the merge window. Now we understood the regression was a false positive and was caused by a significant increase in fairness during a swap trashing benchmark. So it's safe to re-apply the fix and continue improving the code from there. The benchmark that reported the regression is very useful, but it provides a meaningful result only when there is no significant alteration in fairness during the workload. The removal of __GFP_THISNODE increased fairness. __GFP_THISNODE cannot be used in the generic page faults path for new memory allocations under the MPOL_DEFAULT mempolicy, or the allocation behavior significantly deviates from what the MPOL_DEFAULT semantics are supposed to be for THP and 4k allocations alike. Setting THP defrag to "always" or using MADV_HUGEPAGE (with THP defrag set to "madvise") has never meant to provide an implicit MPOL_BIND on the "current" node the task is running on, causing swap storms and providing a much more aggressive behavior than even zone_reclaim_node = 3. Any workload who could have benefited from __GFP_THISNODE has now to enable zone_reclaim_mode=1||2||3. __GFP_THISNODE implicitly provided the zone_reclaim_mode behavior, but it only did so if THP was enabled: if THP was disabled, there would have been no chance to get any 4k page from the current node if the current node was full of pagecache, which further shows how this __GFP_THISNODE was misplaced in MADV_HUGEPAGE. MADV_HUGEPAGE has never been intended to provide any zone_reclaim_mode semantics, in fact the two are orthogonal, zone_reclaim_mode = 1|2|3 must work exactly the same with MADV_HUGEPAGE set or not. The performance characteristic of memory depends on the hardware details. The numbers below are obtained on Naples/EPYC architecture and the N/A projection extends them to show what we should aim for in the future as a good THP NUMA locality default. The benchmark used exercises random memory seeks (note: the cost of the page faults is not part of the measurement). D0 THP | D0 4k | D1 THP | D1 4k | D2 THP | D2 4k | D3 THP | D3 4k | ... 0% | +43% | +45% | +106% | +131% | +224% | N/A | N/A D0 means distance zero (i.e. local memory), D1 means distance one (i.e. intra socket memory), D2 means distance two (i.e. inter socket memory), etc... For the guest physical memory allocated by qemu and for guest mode kernel the performance characteristic of RAM is more complex and an ideal default could be: D0 THP | D1 THP | D0 4k | D2 THP | D1 4k | D3 THP | D2 4k | D3 4k | ... 0% | +58% | +101% | N/A | +222% | N/A | N/A | N/A NOTE: the N/A are projections and haven't been measured yet, the measurement in this case is done on a 1950x with only two NUMA nodes. The THP case here means THP was used both in the host and in the guest. After applying this commit the THP NUMA locality order that we'll get out of MADV_HUGEPAGE is this: D0 THP | D1 THP | D2 THP | D3 THP | ... | D0 4k | D1 4k | D2 4k | D3 4k | ... Before this commit it was: D0 THP | D0 4k | D1 4k | D2 4k | D3 4k | ... Even if we ignore the breakage of large workloads that can't fit in a single node that the __GFP_THISNODE implicit "current node" mbind caused, the THP NUMA locality order provided by __GFP_THISNODE was still not the one we shall aim for in the long term (i.e. the first one at the top). After this commit is applied, we can introduce a new allocator multi order API and to replace those two alloc_pages_vmas calls in the page fault path, with a single multi order call: unsigned int order = (1 << HPAGE_PMD_ORDER) | (1 << 0); page = alloc_pages_multi_order(..., &order); if (!page) goto out; if (!(order & (1 << 0))) { VM_WARN_ON(order != 1 << HPAGE_PMD_ORDER); /* THP fault */ } else { VM_WARN_ON(order != 1 << 0); /* 4k fallback */ } The page allocator logic has to be altered so that when it fails on any zone with order 9, it has to try again with a order 0 before falling back to the next zone in the zonelist. After that we need to do more measurements and evaluate if adding an opt-in feature for guest mode is worth it, to swap "DN 4k | DN+1 THP" with "DN+1 THP | DN 4k" at every NUMA distance crossing. Link: http://lkml.kernel.org/r/20190503223146.2312-3-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-14 06:37:53 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
Revert "Revert "mm, thp: restore node-local hugepage allocations"" This reverts commit a8282608c88e08b1782141026eab61204c1e533f. The commit references the original intended semantic for MADV_HUGEPAGE which has subsequently taken on three unique purposes: - enables or disables thp for a range of memory depending on the system's config (is thp "enabled" set to "always" or "madvise"), - determines the synchronous compaction behavior for thp allocations at fault (is thp "defrag" set to "always", "defer+madvise", or "madvise"), and - reverts a previous MADV_NOHUGEPAGE (there is no madvise mode to only clear previous hugepage advice). These are the three purposes that currently exist in 5.2 and over the past several years that userspace has been written around. Adding a NUMA locality preference adds a fourth dimension to an already conflated advice mode. Based on the semantic that MADV_HUGEPAGE has provided over the past several years, there exist workloads that use the tunable based on these principles: specifically that the allocation should attempt to defragment a local node before falling back. It is agreed that remote hugepages typically (but not always) have a better access latency than remote native pages, although on Naples this is at parity for intersocket. The revert commit that this patch reverts allows hugepage allocation to immediately allocate remotely when local memory is fragmented. This is contrary to the semantic of MADV_HUGEPAGE over the past several years: that is, memory compaction should be attempted locally before falling back. The performance degradation of remote hugepages over local hugepages on Rome, for example, is 53.5% increased access latency. For this reason, the goal is to revert back to the 5.2 and previous behavior that would attempt local defragmentation before falling back. With the patch that is reverted by this patch, we see performance degradations at the tail because the allocator happily allocates the remote hugepage rather than even attempting to make a local hugepage available. zone_reclaim_mode is not a solution to this problem since it does not only impact hugepage allocations but rather changes the memory allocation strategy for *all* page allocations. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-05 03:54:18 +08:00
/* Kick kcompactd and fail quickly */
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
Revert "Revert "mm, thp: restore node-local hugepage allocations"" This reverts commit a8282608c88e08b1782141026eab61204c1e533f. The commit references the original intended semantic for MADV_HUGEPAGE which has subsequently taken on three unique purposes: - enables or disables thp for a range of memory depending on the system's config (is thp "enabled" set to "always" or "madvise"), - determines the synchronous compaction behavior for thp allocations at fault (is thp "defrag" set to "always", "defer+madvise", or "madvise"), and - reverts a previous MADV_NOHUGEPAGE (there is no madvise mode to only clear previous hugepage advice). These are the three purposes that currently exist in 5.2 and over the past several years that userspace has been written around. Adding a NUMA locality preference adds a fourth dimension to an already conflated advice mode. Based on the semantic that MADV_HUGEPAGE has provided over the past several years, there exist workloads that use the tunable based on these principles: specifically that the allocation should attempt to defragment a local node before falling back. It is agreed that remote hugepages typically (but not always) have a better access latency than remote native pages, although on Naples this is at parity for intersocket. The revert commit that this patch reverts allows hugepage allocation to immediately allocate remotely when local memory is fragmented. This is contrary to the semantic of MADV_HUGEPAGE over the past several years: that is, memory compaction should be attempted locally before falling back. The performance degradation of remote hugepages over local hugepages on Rome, for example, is 53.5% increased access latency. For this reason, the goal is to revert back to the 5.2 and previous behavior that would attempt local defragmentation before falling back. With the patch that is reverted by this patch, we see performance degradations at the tail because the allocator happily allocates the remote hugepage rather than even attempting to make a local hugepage available. zone_reclaim_mode is not a solution to this problem since it does not only impact hugepage allocations but rather changes the memory allocation strategy for *all* page allocations. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-05 03:54:18 +08:00
/* Synchronous compaction if madvised, otherwise kick kcompactd */
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE_LIGHT |
(vma_madvised ? __GFP_DIRECT_RECLAIM :
__GFP_KSWAPD_RECLAIM);
Revert "Revert "mm, thp: restore node-local hugepage allocations"" This reverts commit a8282608c88e08b1782141026eab61204c1e533f. The commit references the original intended semantic for MADV_HUGEPAGE which has subsequently taken on three unique purposes: - enables or disables thp for a range of memory depending on the system's config (is thp "enabled" set to "always" or "madvise"), - determines the synchronous compaction behavior for thp allocations at fault (is thp "defrag" set to "always", "defer+madvise", or "madvise"), and - reverts a previous MADV_NOHUGEPAGE (there is no madvise mode to only clear previous hugepage advice). These are the three purposes that currently exist in 5.2 and over the past several years that userspace has been written around. Adding a NUMA locality preference adds a fourth dimension to an already conflated advice mode. Based on the semantic that MADV_HUGEPAGE has provided over the past several years, there exist workloads that use the tunable based on these principles: specifically that the allocation should attempt to defragment a local node before falling back. It is agreed that remote hugepages typically (but not always) have a better access latency than remote native pages, although on Naples this is at parity for intersocket. The revert commit that this patch reverts allows hugepage allocation to immediately allocate remotely when local memory is fragmented. This is contrary to the semantic of MADV_HUGEPAGE over the past several years: that is, memory compaction should be attempted locally before falling back. The performance degradation of remote hugepages over local hugepages on Rome, for example, is 53.5% increased access latency. For this reason, the goal is to revert back to the 5.2 and previous behavior that would attempt local defragmentation before falling back. With the patch that is reverted by this patch, we see performance degradations at the tail because the allocator happily allocates the remote hugepage rather than even attempting to make a local hugepage available. zone_reclaim_mode is not a solution to this problem since it does not only impact hugepage allocations but rather changes the memory allocation strategy for *all* page allocations. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-05 03:54:18 +08:00
/* Only do synchronous compaction if madvised */
mm, thp: add new defer+madvise defrag option There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:49 +08:00
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE_LIGHT |
(vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
Revert "Revert "mm, thp: restore node-local hugepage allocations"" This reverts commit a8282608c88e08b1782141026eab61204c1e533f. The commit references the original intended semantic for MADV_HUGEPAGE which has subsequently taken on three unique purposes: - enables or disables thp for a range of memory depending on the system's config (is thp "enabled" set to "always" or "madvise"), - determines the synchronous compaction behavior for thp allocations at fault (is thp "defrag" set to "always", "defer+madvise", or "madvise"), and - reverts a previous MADV_NOHUGEPAGE (there is no madvise mode to only clear previous hugepage advice). These are the three purposes that currently exist in 5.2 and over the past several years that userspace has been written around. Adding a NUMA locality preference adds a fourth dimension to an already conflated advice mode. Based on the semantic that MADV_HUGEPAGE has provided over the past several years, there exist workloads that use the tunable based on these principles: specifically that the allocation should attempt to defragment a local node before falling back. It is agreed that remote hugepages typically (but not always) have a better access latency than remote native pages, although on Naples this is at parity for intersocket. The revert commit that this patch reverts allows hugepage allocation to immediately allocate remotely when local memory is fragmented. This is contrary to the semantic of MADV_HUGEPAGE over the past several years: that is, memory compaction should be attempted locally before falling back. The performance degradation of remote hugepages over local hugepages on Rome, for example, is 53.5% increased access latency. For this reason, the goal is to revert back to the 5.2 and previous behavior that would attempt local defragmentation before falling back. With the patch that is reverted by this patch, we see performance degradations at the tail because the allocator happily allocates the remote hugepage rather than even attempting to make a local hugepage available. zone_reclaim_mode is not a solution to this problem since it does not only impact hugepage allocations but rather changes the memory allocation strategy for *all* page allocations. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-05 03:54:18 +08:00
return GFP_TRANSHUGE_LIGHT;
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:19:23 +08:00
}
/* Caller must hold page table lock. */
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
struct page *zero_page)
{
pmd_t entry;
if (!pmd_none(*pmd))
return;
entry = mk_pmd(zero_page, vma->vm_page_prot);
entry = pmd_mkhuge(entry);
if (pgtable)
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, haddr, pmd, entry);
mm_inc_nr_ptes(mm);
}
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
struct vm_area_struct *vma = vmf->vma;
gfp_t gfp;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
struct page *page;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
if (!transhuge_vma_suitable(vma, haddr))
return VM_FAULT_FALLBACK;
if (unlikely(anon_vma_prepare(vma)))
return VM_FAULT_OOM;
if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
return VM_FAULT_OOM;
if (!(vmf->flags & FAULT_FLAG_WRITE) &&
!mm_forbids_zeropage(vma->vm_mm) &&
transparent_hugepage_use_zero_page()) {
pgtable_t pgtable;
struct page *zero_page;
vm_fault_t ret;
mm: treewide: remove unused address argument from pte_alloc functions Patch series "Add support for fast mremap". This series speeds up the mremap(2) syscall by copying page tables at the PMD level even for non-THP systems. There is concern that the extra 'address' argument that mremap passes to pte_alloc may do something subtle architecture related in the future that may make the scheme not work. Also we find that there is no point in passing the 'address' to pte_alloc since its unused. This patch therefore removes this argument tree-wide resulting in a nice negative diff as well. Also ensuring along the way that the enabled architectures do not do anything funky with the 'address' argument that goes unnoticed by the optimization. Build and boot tested on x86-64. Build tested on arm64. The config enablement patch for arm64 will be posted in the future after more testing. The changes were obtained by applying the following Coccinelle script. (thanks Julia for answering all Coccinelle questions!). Following fix ups were done manually: * Removal of address argument from pte_fragment_alloc * Removal of pte_alloc_one_fast definitions from m68k and microblaze. // Options: --include-headers --no-includes // Note: I split the 'identifier fn' line, so if you are manually // running it, please unsplit it so it runs for you. virtual patch @pte_alloc_func_def depends on patch exists@ identifier E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; type T2; @@ fn(... - , T2 E2 ) { ... } @pte_alloc_func_proto_noarg depends on patch exists@ type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1, T2); + T3 fn(T1); | - T3 fn(T1, T2, T4); + T3 fn(T1, T2); ) @pte_alloc_func_proto depends on patch exists@ identifier E1, E2, E4; type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1 E1, T2 E2); + T3 fn(T1 E1); | - T3 fn(T1 E1, T2 E2, T4 E4); + T3 fn(T1 E1, T2 E2); ) @pte_alloc_func_call depends on patch exists@ expression E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ fn(... -, E2 ) @pte_alloc_macro depends on patch exists@ identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; identifier a, b, c; expression e; position p; @@ ( - #define fn(a, b, c) e + #define fn(a, b) e | - #define fn(a, b) e + #define fn(a) e ) Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Suggested-by: Kirill A. Shutemov <kirill@shutemov.name> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 07:28:34 +08:00
pgtable = pte_alloc_one(vma->vm_mm);
if (unlikely(!pgtable))
2011-01-14 07:46:58 +08:00
return VM_FAULT_OOM;
thp: reduce usage of huge zero page's atomic counter The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 08:00:08 +08:00
zero_page = mm_get_huge_zero_page(vma->vm_mm);
if (unlikely(!zero_page)) {
pte_free(vma->vm_mm, pgtable);
count_vm_event(THP_FAULT_FALLBACK);
return VM_FAULT_FALLBACK;
}
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
ret = 0;
if (pmd_none(*vmf->pmd)) {
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
ret = check_stable_address_space(vma->vm_mm);
if (ret) {
spin_unlock(vmf->ptl);
mm/userfaultfd: do not access vma->vm_mm after calling handle_userfault() Alexander reported a syzkaller / KASAN finding on s390, see below for complete output. In do_huge_pmd_anonymous_page(), the pre-allocated pagetable will be freed in some cases. In the case of userfaultfd_missing(), this will happen after calling handle_userfault(), which might have released the mmap_lock. Therefore, the following pte_free(vma->vm_mm, pgtable) will access an unstable vma->vm_mm, which could have been freed or re-used already. For all architectures other than s390 this will go w/o any negative impact, because pte_free() simply frees the page and ignores the passed-in mm. The implementation for SPARC32 would also access mm->page_table_lock for pte_free(), but there is no THP support in SPARC32, so the buggy code path will not be used there. For s390, the mm->context.pgtable_list is being used to maintain the 2K pagetable fragments, and operating on an already freed or even re-used mm could result in various more or less subtle bugs due to list / pagetable corruption. Fix this by calling pte_free() before handle_userfault(), similar to how it is already done in __do_huge_pmd_anonymous_page() for the WRITE / non-huge_zero_page case. Commit 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults") actually introduced both, the do_huge_pmd_anonymous_page() and also __do_huge_pmd_anonymous_page() changes wrt to calling handle_userfault(), but only in the latter case it put the pte_free() before calling handle_userfault(). BUG: KASAN: use-after-free in do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744 Read of size 8 at addr 00000000962d6988 by task syz-executor.0/9334 CPU: 1 PID: 9334 Comm: syz-executor.0 Not tainted 5.10.0-rc1-syzkaller-07083-g4c9720875573 #0 Hardware name: IBM 3906 M04 701 (KVM/Linux) Call Trace: do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744 create_huge_pmd mm/memory.c:4256 [inline] __handle_mm_fault+0xe6e/0x1068 mm/memory.c:4480 handle_mm_fault+0x288/0x748 mm/memory.c:4607 do_exception+0x394/0xae0 arch/s390/mm/fault.c:479 do_dat_exception+0x34/0x80 arch/s390/mm/fault.c:567 pgm_check_handler+0x1da/0x22c arch/s390/kernel/entry.S:706 copy_from_user_mvcos arch/s390/lib/uaccess.c:111 [inline] raw_copy_from_user+0x3a/0x88 arch/s390/lib/uaccess.c:174 _copy_from_user+0x48/0xa8 lib/usercopy.c:16 copy_from_user include/linux/uaccess.h:192 [inline] __do_sys_sigaltstack kernel/signal.c:4064 [inline] __s390x_sys_sigaltstack+0xc8/0x240 kernel/signal.c:4060 system_call+0xe0/0x28c arch/s390/kernel/entry.S:415 Allocated by task 9334: slab_alloc_node mm/slub.c:2891 [inline] slab_alloc mm/slub.c:2899 [inline] kmem_cache_alloc+0x118/0x348 mm/slub.c:2904 vm_area_dup+0x9c/0x2b8 kernel/fork.c:356 __split_vma+0xba/0x560 mm/mmap.c:2742 split_vma+0xca/0x108 mm/mmap.c:2800 mlock_fixup+0x4ae/0x600 mm/mlock.c:550 apply_vma_lock_flags+0x2c6/0x398 mm/mlock.c:619 do_mlock+0x1aa/0x718 mm/mlock.c:711 __do_sys_mlock2 mm/mlock.c:738 [inline] __s390x_sys_mlock2+0x86/0xa8 mm/mlock.c:728 system_call+0xe0/0x28c arch/s390/kernel/entry.S:415 Freed by task 9333: slab_free mm/slub.c:3142 [inline] kmem_cache_free+0x7c/0x4b8 mm/slub.c:3158 __vma_adjust+0x7b2/0x2508 mm/mmap.c:960 vma_merge+0x87e/0xce0 mm/mmap.c:1209 userfaultfd_release+0x412/0x6b8 fs/userfaultfd.c:868 __fput+0x22c/0x7a8 fs/file_table.c:281 task_work_run+0x200/0x320 kernel/task_work.c:151 tracehook_notify_resume include/linux/tracehook.h:188 [inline] do_notify_resume+0x100/0x148 arch/s390/kernel/signal.c:538 system_call+0xe6/0x28c arch/s390/kernel/entry.S:416 The buggy address belongs to the object at 00000000962d6948 which belongs to the cache vm_area_struct of size 200 The buggy address is located 64 bytes inside of 200-byte region [00000000962d6948, 00000000962d6a10) The buggy address belongs to the page: page:00000000313a09fe refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x962d6 flags: 0x3ffff00000000200(slab) raw: 3ffff00000000200 000040000257e080 0000000c0000000c 000000008020ba00 raw: 0000000000000000 000f001e00000000 ffffffff00000001 0000000096959501 page dumped because: kasan: bad access detected page->mem_cgroup:0000000096959501 Memory state around the buggy address: 00000000962d6880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00000000962d6900: 00 fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb >00000000962d6980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ 00000000962d6a00: fb fb fc fc fc fc fc fc fc fc 00 00 00 00 00 00 00000000962d6a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Fixes: 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults") Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com> Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: <stable@vger.kernel.org> [4.3+] Link: https://lkml.kernel.org/r/20201110190329.11920-1-gerald.schaefer@linux.ibm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-22 14:17:15 +08:00
pte_free(vma->vm_mm, pgtable);
mm, oom: fix potential data corruption when oom_reaper races with writer Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 06:16:15 +08:00
} else if (userfaultfd_missing(vma)) {
spin_unlock(vmf->ptl);
mm/userfaultfd: do not access vma->vm_mm after calling handle_userfault() Alexander reported a syzkaller / KASAN finding on s390, see below for complete output. In do_huge_pmd_anonymous_page(), the pre-allocated pagetable will be freed in some cases. In the case of userfaultfd_missing(), this will happen after calling handle_userfault(), which might have released the mmap_lock. Therefore, the following pte_free(vma->vm_mm, pgtable) will access an unstable vma->vm_mm, which could have been freed or re-used already. For all architectures other than s390 this will go w/o any negative impact, because pte_free() simply frees the page and ignores the passed-in mm. The implementation for SPARC32 would also access mm->page_table_lock for pte_free(), but there is no THP support in SPARC32, so the buggy code path will not be used there. For s390, the mm->context.pgtable_list is being used to maintain the 2K pagetable fragments, and operating on an already freed or even re-used mm could result in various more or less subtle bugs due to list / pagetable corruption. Fix this by calling pte_free() before handle_userfault(), similar to how it is already done in __do_huge_pmd_anonymous_page() for the WRITE / non-huge_zero_page case. Commit 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults") actually introduced both, the do_huge_pmd_anonymous_page() and also __do_huge_pmd_anonymous_page() changes wrt to calling handle_userfault(), but only in the latter case it put the pte_free() before calling handle_userfault(). BUG: KASAN: use-after-free in do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744 Read of size 8 at addr 00000000962d6988 by task syz-executor.0/9334 CPU: 1 PID: 9334 Comm: syz-executor.0 Not tainted 5.10.0-rc1-syzkaller-07083-g4c9720875573 #0 Hardware name: IBM 3906 M04 701 (KVM/Linux) Call Trace: do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744 create_huge_pmd mm/memory.c:4256 [inline] __handle_mm_fault+0xe6e/0x1068 mm/memory.c:4480 handle_mm_fault+0x288/0x748 mm/memory.c:4607 do_exception+0x394/0xae0 arch/s390/mm/fault.c:479 do_dat_exception+0x34/0x80 arch/s390/mm/fault.c:567 pgm_check_handler+0x1da/0x22c arch/s390/kernel/entry.S:706 copy_from_user_mvcos arch/s390/lib/uaccess.c:111 [inline] raw_copy_from_user+0x3a/0x88 arch/s390/lib/uaccess.c:174 _copy_from_user+0x48/0xa8 lib/usercopy.c:16 copy_from_user include/linux/uaccess.h:192 [inline] __do_sys_sigaltstack kernel/signal.c:4064 [inline] __s390x_sys_sigaltstack+0xc8/0x240 kernel/signal.c:4060 system_call+0xe0/0x28c arch/s390/kernel/entry.S:415 Allocated by task 9334: slab_alloc_node mm/slub.c:2891 [inline] slab_alloc mm/slub.c:2899 [inline] kmem_cache_alloc+0x118/0x348 mm/slub.c:2904 vm_area_dup+0x9c/0x2b8 kernel/fork.c:356 __split_vma+0xba/0x560 mm/mmap.c:2742 split_vma+0xca/0x108 mm/mmap.c:2800 mlock_fixup+0x4ae/0x600 mm/mlock.c:550 apply_vma_lock_flags+0x2c6/0x398 mm/mlock.c:619 do_mlock+0x1aa/0x718 mm/mlock.c:711 __do_sys_mlock2 mm/mlock.c:738 [inline] __s390x_sys_mlock2+0x86/0xa8 mm/mlock.c:728 system_call+0xe0/0x28c arch/s390/kernel/entry.S:415 Freed by task 9333: slab_free mm/slub.c:3142 [inline] kmem_cache_free+0x7c/0x4b8 mm/slub.c:3158 __vma_adjust+0x7b2/0x2508 mm/mmap.c:960 vma_merge+0x87e/0xce0 mm/mmap.c:1209 userfaultfd_release+0x412/0x6b8 fs/userfaultfd.c:868 __fput+0x22c/0x7a8 fs/file_table.c:281 task_work_run+0x200/0x320 kernel/task_work.c:151 tracehook_notify_resume include/linux/tracehook.h:188 [inline] do_notify_resume+0x100/0x148 arch/s390/kernel/signal.c:538 system_call+0xe6/0x28c arch/s390/kernel/entry.S:416 The buggy address belongs to the object at 00000000962d6948 which belongs to the cache vm_area_struct of size 200 The buggy address is located 64 bytes inside of 200-byte region [00000000962d6948, 00000000962d6a10) The buggy address belongs to the page: page:00000000313a09fe refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x962d6 flags: 0x3ffff00000000200(slab) raw: 3ffff00000000200 000040000257e080 0000000c0000000c 000000008020ba00 raw: 0000000000000000 000f001e00000000 ffffffff00000001 0000000096959501 page dumped because: kasan: bad access detected page->mem_cgroup:0000000096959501 Memory state around the buggy address: 00000000962d6880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00000000962d6900: 00 fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb >00000000962d6980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ 00000000962d6a00: fb fb fc fc fc fc fc fc fc fc 00 00 00 00 00 00 00000000962d6a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Fixes: 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults") Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com> Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: <stable@vger.kernel.org> [4.3+] Link: https://lkml.kernel.org/r/20201110190329.11920-1-gerald.schaefer@linux.ibm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-22 14:17:15 +08:00
pte_free(vma->vm_mm, pgtable);
ret = handle_userfault(vmf, VM_UFFD_MISSING);
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
} else {
set_huge_zero_page(pgtable, vma->vm_mm, vma,
haddr, vmf->pmd, zero_page);
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
spin_unlock(vmf->ptl);
}
mm/userfaultfd: do not access vma->vm_mm after calling handle_userfault() Alexander reported a syzkaller / KASAN finding on s390, see below for complete output. In do_huge_pmd_anonymous_page(), the pre-allocated pagetable will be freed in some cases. In the case of userfaultfd_missing(), this will happen after calling handle_userfault(), which might have released the mmap_lock. Therefore, the following pte_free(vma->vm_mm, pgtable) will access an unstable vma->vm_mm, which could have been freed or re-used already. For all architectures other than s390 this will go w/o any negative impact, because pte_free() simply frees the page and ignores the passed-in mm. The implementation for SPARC32 would also access mm->page_table_lock for pte_free(), but there is no THP support in SPARC32, so the buggy code path will not be used there. For s390, the mm->context.pgtable_list is being used to maintain the 2K pagetable fragments, and operating on an already freed or even re-used mm could result in various more or less subtle bugs due to list / pagetable corruption. Fix this by calling pte_free() before handle_userfault(), similar to how it is already done in __do_huge_pmd_anonymous_page() for the WRITE / non-huge_zero_page case. Commit 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults") actually introduced both, the do_huge_pmd_anonymous_page() and also __do_huge_pmd_anonymous_page() changes wrt to calling handle_userfault(), but only in the latter case it put the pte_free() before calling handle_userfault(). BUG: KASAN: use-after-free in do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744 Read of size 8 at addr 00000000962d6988 by task syz-executor.0/9334 CPU: 1 PID: 9334 Comm: syz-executor.0 Not tainted 5.10.0-rc1-syzkaller-07083-g4c9720875573 #0 Hardware name: IBM 3906 M04 701 (KVM/Linux) Call Trace: do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744 create_huge_pmd mm/memory.c:4256 [inline] __handle_mm_fault+0xe6e/0x1068 mm/memory.c:4480 handle_mm_fault+0x288/0x748 mm/memory.c:4607 do_exception+0x394/0xae0 arch/s390/mm/fault.c:479 do_dat_exception+0x34/0x80 arch/s390/mm/fault.c:567 pgm_check_handler+0x1da/0x22c arch/s390/kernel/entry.S:706 copy_from_user_mvcos arch/s390/lib/uaccess.c:111 [inline] raw_copy_from_user+0x3a/0x88 arch/s390/lib/uaccess.c:174 _copy_from_user+0x48/0xa8 lib/usercopy.c:16 copy_from_user include/linux/uaccess.h:192 [inline] __do_sys_sigaltstack kernel/signal.c:4064 [inline] __s390x_sys_sigaltstack+0xc8/0x240 kernel/signal.c:4060 system_call+0xe0/0x28c arch/s390/kernel/entry.S:415 Allocated by task 9334: slab_alloc_node mm/slub.c:2891 [inline] slab_alloc mm/slub.c:2899 [inline] kmem_cache_alloc+0x118/0x348 mm/slub.c:2904 vm_area_dup+0x9c/0x2b8 kernel/fork.c:356 __split_vma+0xba/0x560 mm/mmap.c:2742 split_vma+0xca/0x108 mm/mmap.c:2800 mlock_fixup+0x4ae/0x600 mm/mlock.c:550 apply_vma_lock_flags+0x2c6/0x398 mm/mlock.c:619 do_mlock+0x1aa/0x718 mm/mlock.c:711 __do_sys_mlock2 mm/mlock.c:738 [inline] __s390x_sys_mlock2+0x86/0xa8 mm/mlock.c:728 system_call+0xe0/0x28c arch/s390/kernel/entry.S:415 Freed by task 9333: slab_free mm/slub.c:3142 [inline] kmem_cache_free+0x7c/0x4b8 mm/slub.c:3158 __vma_adjust+0x7b2/0x2508 mm/mmap.c:960 vma_merge+0x87e/0xce0 mm/mmap.c:1209 userfaultfd_release+0x412/0x6b8 fs/userfaultfd.c:868 __fput+0x22c/0x7a8 fs/file_table.c:281 task_work_run+0x200/0x320 kernel/task_work.c:151 tracehook_notify_resume include/linux/tracehook.h:188 [inline] do_notify_resume+0x100/0x148 arch/s390/kernel/signal.c:538 system_call+0xe6/0x28c arch/s390/kernel/entry.S:416 The buggy address belongs to the object at 00000000962d6948 which belongs to the cache vm_area_struct of size 200 The buggy address is located 64 bytes inside of 200-byte region [00000000962d6948, 00000000962d6a10) The buggy address belongs to the page: page:00000000313a09fe refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x962d6 flags: 0x3ffff00000000200(slab) raw: 3ffff00000000200 000040000257e080 0000000c0000000c 000000008020ba00 raw: 0000000000000000 000f001e00000000 ffffffff00000001 0000000096959501 page dumped because: kasan: bad access detected page->mem_cgroup:0000000096959501 Memory state around the buggy address: 00000000962d6880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00000000962d6900: 00 fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb >00000000962d6980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ 00000000962d6a00: fb fb fc fc fc fc fc fc fc fc 00 00 00 00 00 00 00000000962d6a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Fixes: 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults") Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com> Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: <stable@vger.kernel.org> [4.3+] Link: https://lkml.kernel.org/r/20201110190329.11920-1-gerald.schaefer@linux.ibm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-22 14:17:15 +08:00
} else {
spin_unlock(vmf->ptl);
pte_free(vma->vm_mm, pgtable);
mm/userfaultfd: do not access vma->vm_mm after calling handle_userfault() Alexander reported a syzkaller / KASAN finding on s390, see below for complete output. In do_huge_pmd_anonymous_page(), the pre-allocated pagetable will be freed in some cases. In the case of userfaultfd_missing(), this will happen after calling handle_userfault(), which might have released the mmap_lock. Therefore, the following pte_free(vma->vm_mm, pgtable) will access an unstable vma->vm_mm, which could have been freed or re-used already. For all architectures other than s390 this will go w/o any negative impact, because pte_free() simply frees the page and ignores the passed-in mm. The implementation for SPARC32 would also access mm->page_table_lock for pte_free(), but there is no THP support in SPARC32, so the buggy code path will not be used there. For s390, the mm->context.pgtable_list is being used to maintain the 2K pagetable fragments, and operating on an already freed or even re-used mm could result in various more or less subtle bugs due to list / pagetable corruption. Fix this by calling pte_free() before handle_userfault(), similar to how it is already done in __do_huge_pmd_anonymous_page() for the WRITE / non-huge_zero_page case. Commit 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults") actually introduced both, the do_huge_pmd_anonymous_page() and also __do_huge_pmd_anonymous_page() changes wrt to calling handle_userfault(), but only in the latter case it put the pte_free() before calling handle_userfault(). BUG: KASAN: use-after-free in do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744 Read of size 8 at addr 00000000962d6988 by task syz-executor.0/9334 CPU: 1 PID: 9334 Comm: syz-executor.0 Not tainted 5.10.0-rc1-syzkaller-07083-g4c9720875573 #0 Hardware name: IBM 3906 M04 701 (KVM/Linux) Call Trace: do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744 create_huge_pmd mm/memory.c:4256 [inline] __handle_mm_fault+0xe6e/0x1068 mm/memory.c:4480 handle_mm_fault+0x288/0x748 mm/memory.c:4607 do_exception+0x394/0xae0 arch/s390/mm/fault.c:479 do_dat_exception+0x34/0x80 arch/s390/mm/fault.c:567 pgm_check_handler+0x1da/0x22c arch/s390/kernel/entry.S:706 copy_from_user_mvcos arch/s390/lib/uaccess.c:111 [inline] raw_copy_from_user+0x3a/0x88 arch/s390/lib/uaccess.c:174 _copy_from_user+0x48/0xa8 lib/usercopy.c:16 copy_from_user include/linux/uaccess.h:192 [inline] __do_sys_sigaltstack kernel/signal.c:4064 [inline] __s390x_sys_sigaltstack+0xc8/0x240 kernel/signal.c:4060 system_call+0xe0/0x28c arch/s390/kernel/entry.S:415 Allocated by task 9334: slab_alloc_node mm/slub.c:2891 [inline] slab_alloc mm/slub.c:2899 [inline] kmem_cache_alloc+0x118/0x348 mm/slub.c:2904 vm_area_dup+0x9c/0x2b8 kernel/fork.c:356 __split_vma+0xba/0x560 mm/mmap.c:2742 split_vma+0xca/0x108 mm/mmap.c:2800 mlock_fixup+0x4ae/0x600 mm/mlock.c:550 apply_vma_lock_flags+0x2c6/0x398 mm/mlock.c:619 do_mlock+0x1aa/0x718 mm/mlock.c:711 __do_sys_mlock2 mm/mlock.c:738 [inline] __s390x_sys_mlock2+0x86/0xa8 mm/mlock.c:728 system_call+0xe0/0x28c arch/s390/kernel/entry.S:415 Freed by task 9333: slab_free mm/slub.c:3142 [inline] kmem_cache_free+0x7c/0x4b8 mm/slub.c:3158 __vma_adjust+0x7b2/0x2508 mm/mmap.c:960 vma_merge+0x87e/0xce0 mm/mmap.c:1209 userfaultfd_release+0x412/0x6b8 fs/userfaultfd.c:868 __fput+0x22c/0x7a8 fs/file_table.c:281 task_work_run+0x200/0x320 kernel/task_work.c:151 tracehook_notify_resume include/linux/tracehook.h:188 [inline] do_notify_resume+0x100/0x148 arch/s390/kernel/signal.c:538 system_call+0xe6/0x28c arch/s390/kernel/entry.S:416 The buggy address belongs to the object at 00000000962d6948 which belongs to the cache vm_area_struct of size 200 The buggy address is located 64 bytes inside of 200-byte region [00000000962d6948, 00000000962d6a10) The buggy address belongs to the page: page:00000000313a09fe refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x962d6 flags: 0x3ffff00000000200(slab) raw: 3ffff00000000200 000040000257e080 0000000c0000000c 000000008020ba00 raw: 0000000000000000 000f001e00000000 ffffffff00000001 0000000096959501 page dumped because: kasan: bad access detected page->mem_cgroup:0000000096959501 Memory state around the buggy address: 00000000962d6880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00000000962d6900: 00 fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb >00000000962d6980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ 00000000962d6a00: fb fb fc fc fc fc fc fc fc fc 00 00 00 00 00 00 00000000962d6a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Fixes: 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults") Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com> Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: <stable@vger.kernel.org> [4.3+] Link: https://lkml.kernel.org/r/20201110190329.11920-1-gerald.schaefer@linux.ibm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-22 14:17:15 +08:00
}
return ret;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm,thp,shmem: limit shmem THP alloc gfp_mask Patch series "mm,thp,shm: limit shmem THP alloc gfp_mask", v6. The allocation flags of anonymous transparent huge pages can be controlled through the files in /sys/kernel/mm/transparent_hugepage/defrag, which can help the system from getting bogged down in the page reclaim and compaction code when many THPs are getting allocated simultaneously. However, the gfp_mask for shmem THP allocations were not limited by those configuration settings, and some workloads ended up with all CPUs stuck on the LRU lock in the page reclaim code, trying to allocate dozens of THPs simultaneously. This patch applies the same configurated limitation of THPs to shmem hugepage allocations, to prevent that from happening. This way a THP defrag setting of "never" or "defer+madvise" will result in quick allocation failures without direct reclaim when no 2MB free pages are available. With this patch applied, THP allocations for tmpfs will be a little more aggressive than today for files mmapped with MADV_HUGEPAGE, and a little less aggressive for files that are not mmapped or mapped without that flag. This patch (of 4): The allocation flags of anonymous transparent huge pages can be controlled through the files in /sys/kernel/mm/transparent_hugepage/defrag, which can help the system from getting bogged down in the page reclaim and compaction code when many THPs are getting allocated simultaneously. However, the gfp_mask for shmem THP allocations were not limited by those configuration settings, and some workloads ended up with all CPUs stuck on the LRU lock in the page reclaim code, trying to allocate dozens of THPs simultaneously. This patch applies the same configurated limitation of THPs to shmem hugepage allocations, to prevent that from happening. Controlling the gfp_mask of THP allocations through the knobs in sysfs allows users to determine the balance between how aggressively the system tries to allocate THPs at fault time, and how much the application may end up stalling attempting those allocations. This way a THP defrag setting of "never" or "defer+madvise" will result in quick allocation failures without direct reclaim when no 2MB free pages are available. With this patch applied, THP allocations for tmpfs will be a little more aggressive than today for files mmapped with MADV_HUGEPAGE, and a little less aggressive for files that are not mmapped or mapped without that flag. Link: https://lkml.kernel.org/r/20201124194925.623931-1-riel@surriel.com Link: https://lkml.kernel.org/r/20201124194925.623931-2-riel@surriel.com Signed-off-by: Rik van Riel <riel@surriel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Xu Yu <xuyu@linux.alibaba.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:16:18 +08:00
gfp = vma_thp_gfp_mask(vma);
page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
if (unlikely(!page)) {
count_vm_event(THP_FAULT_FALLBACK);
return VM_FAULT_FALLBACK;
}
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
prep_transhuge_page(page);
return __do_huge_pmd_anonymous_page(vmf, page, gfp);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
pgtable_t pgtable)
{
struct mm_struct *mm = vma->vm_mm;
pmd_t entry;
spinlock_t *ptl;
ptl = pmd_lock(mm, pmd);
if (!pmd_none(*pmd)) {
if (write) {
if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
goto out_unlock;
}
entry = pmd_mkyoung(*pmd);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
update_mmu_cache_pmd(vma, addr, pmd);
}
goto out_unlock;
}
entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
if (pfn_t_devmap(pfn))
entry = pmd_mkdevmap(entry);
if (write) {
entry = pmd_mkyoung(pmd_mkdirty(entry));
entry = maybe_pmd_mkwrite(entry, vma);
}
if (pgtable) {
pgtable_trans_huge_deposit(mm, pmd, pgtable);
mm_inc_nr_ptes(mm);
pgtable = NULL;
}
set_pmd_at(mm, addr, pmd, entry);
update_mmu_cache_pmd(vma, addr, pmd);
out_unlock:
spin_unlock(ptl);
if (pgtable)
pte_free(mm, pgtable);
}
/**
* vmf_insert_pfn_pmd_prot - insert a pmd size pfn
* @vmf: Structure describing the fault
* @pfn: pfn to insert
* @pgprot: page protection to use
* @write: whether it's a write fault
*
* Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
* also consult the vmf_insert_mixed_prot() documentation when
* @pgprot != @vmf->vma->vm_page_prot.
*
* Return: vm_fault_t value.
*/
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
pgprot_t pgprot, bool write)
{
mm/huge_memory: fix vmf_insert_pfn_{pmd, pud}() crash, handle unaligned addresses Starting with c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") vmf_insert_pfn_pmd() internally calls pmdp_set_access_flags(). That helper enforces a pmd aligned @address argument via VM_BUG_ON() assertion. Update the implementation to take a 'struct vm_fault' argument directly and apply the address alignment fixup internally to fix crash signatures like: kernel BUG at arch/x86/mm/pgtable.c:515! invalid opcode: 0000 [#1] SMP NOPTI CPU: 51 PID: 43713 Comm: java Tainted: G OE 4.19.35 #1 [..] RIP: 0010:pmdp_set_access_flags+0x48/0x50 [..] Call Trace: vmf_insert_pfn_pmd+0x198/0x350 dax_iomap_fault+0xe82/0x1190 ext4_dax_huge_fault+0x103/0x1f0 ? __switch_to_asm+0x40/0x70 __handle_mm_fault+0x3f6/0x1370 ? __switch_to_asm+0x34/0x70 ? __switch_to_asm+0x40/0x70 handle_mm_fault+0xda/0x200 __do_page_fault+0x249/0x4f0 do_page_fault+0x32/0x110 ? page_fault+0x8/0x30 page_fault+0x1e/0x30 Link: http://lkml.kernel.org/r/155741946350.372037.11148198430068238140.stgit@dwillia2-desk3.amr.corp.intel.com Fixes: c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Piotr Balcer <piotr.balcer@intel.com> Tested-by: Yan Ma <yan.ma@intel.com> Tested-by: Pankaj Gupta <pagupta@redhat.com> Reviewed-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Chandan Rajendra <chandan@linux.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:15:33 +08:00
unsigned long addr = vmf->address & PMD_MASK;
struct vm_area_struct *vma = vmf->vma;
pgtable_t pgtable = NULL;
mm/huge_memory: fix vmf_insert_pfn_{pmd, pud}() crash, handle unaligned addresses Starting with c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") vmf_insert_pfn_pmd() internally calls pmdp_set_access_flags(). That helper enforces a pmd aligned @address argument via VM_BUG_ON() assertion. Update the implementation to take a 'struct vm_fault' argument directly and apply the address alignment fixup internally to fix crash signatures like: kernel BUG at arch/x86/mm/pgtable.c:515! invalid opcode: 0000 [#1] SMP NOPTI CPU: 51 PID: 43713 Comm: java Tainted: G OE 4.19.35 #1 [..] RIP: 0010:pmdp_set_access_flags+0x48/0x50 [..] Call Trace: vmf_insert_pfn_pmd+0x198/0x350 dax_iomap_fault+0xe82/0x1190 ext4_dax_huge_fault+0x103/0x1f0 ? __switch_to_asm+0x40/0x70 __handle_mm_fault+0x3f6/0x1370 ? __switch_to_asm+0x34/0x70 ? __switch_to_asm+0x40/0x70 handle_mm_fault+0xda/0x200 __do_page_fault+0x249/0x4f0 do_page_fault+0x32/0x110 ? page_fault+0x8/0x30 page_fault+0x1e/0x30 Link: http://lkml.kernel.org/r/155741946350.372037.11148198430068238140.stgit@dwillia2-desk3.amr.corp.intel.com Fixes: c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Piotr Balcer <piotr.balcer@intel.com> Tested-by: Yan Ma <yan.ma@intel.com> Tested-by: Pankaj Gupta <pagupta@redhat.com> Reviewed-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Chandan Rajendra <chandan@linux.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:15:33 +08:00
/*
* If we had pmd_special, we could avoid all these restrictions,
* but we need to be consistent with PTEs and architectures that
* can't support a 'special' bit.
*/
dax: remove VM_MIXEDMAP for fsdax and device dax This patch is reworked from an earlier patch that Dan has posted: https://patchwork.kernel.org/patch/10131727/ VM_MIXEDMAP is used by dax to direct mm paths like vm_normal_page() that the memory page it is dealing with is not typical memory from the linear map. The get_user_pages_fast() path, since it does not resolve the vma, is already using {pte,pmd}_devmap() as a stand-in for VM_MIXEDMAP, so we use that as a VM_MIXEDMAP replacement in some locations. In the cases where there is no pte to consult we fallback to using vma_is_dax() to detect the VM_MIXEDMAP special case. Now that we have explicit driver pfn_t-flag opt-in/opt-out for get_user_pages() support for DAX we can stop setting VM_MIXEDMAP. This also means we no longer need to worry about safely manipulating vm_flags in a future where we support dynamically changing the dax mode of a file. DAX should also now be supported with madvise_behavior(), vma_merge(), and copy_page_range(). This patch has been tested against ndctl unit test. It has also been tested against xfstests commit: 625515d using fake pmem created by memmap and no additional issues have been observed. Link: http://lkml.kernel.org/r/152847720311.55924.16999195879201817653.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Dave Jiang <dave.jiang@intel.com> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:43:40 +08:00
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
!pfn_t_devmap(pfn));
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
(VM_PFNMAP|VM_MIXEDMAP));
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
if (addr < vma->vm_start || addr >= vma->vm_end)
return VM_FAULT_SIGBUS;
if (arch_needs_pgtable_deposit()) {
mm: treewide: remove unused address argument from pte_alloc functions Patch series "Add support for fast mremap". This series speeds up the mremap(2) syscall by copying page tables at the PMD level even for non-THP systems. There is concern that the extra 'address' argument that mremap passes to pte_alloc may do something subtle architecture related in the future that may make the scheme not work. Also we find that there is no point in passing the 'address' to pte_alloc since its unused. This patch therefore removes this argument tree-wide resulting in a nice negative diff as well. Also ensuring along the way that the enabled architectures do not do anything funky with the 'address' argument that goes unnoticed by the optimization. Build and boot tested on x86-64. Build tested on arm64. The config enablement patch for arm64 will be posted in the future after more testing. The changes were obtained by applying the following Coccinelle script. (thanks Julia for answering all Coccinelle questions!). Following fix ups were done manually: * Removal of address argument from pte_fragment_alloc * Removal of pte_alloc_one_fast definitions from m68k and microblaze. // Options: --include-headers --no-includes // Note: I split the 'identifier fn' line, so if you are manually // running it, please unsplit it so it runs for you. virtual patch @pte_alloc_func_def depends on patch exists@ identifier E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; type T2; @@ fn(... - , T2 E2 ) { ... } @pte_alloc_func_proto_noarg depends on patch exists@ type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1, T2); + T3 fn(T1); | - T3 fn(T1, T2, T4); + T3 fn(T1, T2); ) @pte_alloc_func_proto depends on patch exists@ identifier E1, E2, E4; type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1 E1, T2 E2); + T3 fn(T1 E1); | - T3 fn(T1 E1, T2 E2, T4 E4); + T3 fn(T1 E1, T2 E2); ) @pte_alloc_func_call depends on patch exists@ expression E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ fn(... -, E2 ) @pte_alloc_macro depends on patch exists@ identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; identifier a, b, c; expression e; position p; @@ ( - #define fn(a, b, c) e + #define fn(a, b) e | - #define fn(a, b) e + #define fn(a) e ) Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Suggested-by: Kirill A. Shutemov <kirill@shutemov.name> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 07:28:34 +08:00
pgtable = pte_alloc_one(vma->vm_mm);
if (!pgtable)
return VM_FAULT_OOM;
}
track_pfn_insert(vma, &pgprot, pfn);
mm/huge_memory: fix vmf_insert_pfn_{pmd, pud}() crash, handle unaligned addresses Starting with c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") vmf_insert_pfn_pmd() internally calls pmdp_set_access_flags(). That helper enforces a pmd aligned @address argument via VM_BUG_ON() assertion. Update the implementation to take a 'struct vm_fault' argument directly and apply the address alignment fixup internally to fix crash signatures like: kernel BUG at arch/x86/mm/pgtable.c:515! invalid opcode: 0000 [#1] SMP NOPTI CPU: 51 PID: 43713 Comm: java Tainted: G OE 4.19.35 #1 [..] RIP: 0010:pmdp_set_access_flags+0x48/0x50 [..] Call Trace: vmf_insert_pfn_pmd+0x198/0x350 dax_iomap_fault+0xe82/0x1190 ext4_dax_huge_fault+0x103/0x1f0 ? __switch_to_asm+0x40/0x70 __handle_mm_fault+0x3f6/0x1370 ? __switch_to_asm+0x34/0x70 ? __switch_to_asm+0x40/0x70 handle_mm_fault+0xda/0x200 __do_page_fault+0x249/0x4f0 do_page_fault+0x32/0x110 ? page_fault+0x8/0x30 page_fault+0x1e/0x30 Link: http://lkml.kernel.org/r/155741946350.372037.11148198430068238140.stgit@dwillia2-desk3.amr.corp.intel.com Fixes: c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Piotr Balcer <piotr.balcer@intel.com> Tested-by: Yan Ma <yan.ma@intel.com> Tested-by: Pankaj Gupta <pagupta@redhat.com> Reviewed-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Chandan Rajendra <chandan@linux.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:15:33 +08:00
insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
{
if (likely(vma->vm_flags & VM_WRITE))
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
pud = pud_mkwrite(pud);
return pud;
}
static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
struct mm_struct *mm = vma->vm_mm;
pud_t entry;
spinlock_t *ptl;
ptl = pud_lock(mm, pud);
if (!pud_none(*pud)) {
if (write) {
if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
WARN_ON_ONCE(!is_huge_zero_pud(*pud));
goto out_unlock;
}
entry = pud_mkyoung(*pud);
entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
if (pudp_set_access_flags(vma, addr, pud, entry, 1))
update_mmu_cache_pud(vma, addr, pud);
}
goto out_unlock;
}
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
entry = pud_mkhuge(pfn_t_pud(pfn, prot));
if (pfn_t_devmap(pfn))
entry = pud_mkdevmap(entry);
if (write) {
entry = pud_mkyoung(pud_mkdirty(entry));
entry = maybe_pud_mkwrite(entry, vma);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
}
set_pud_at(mm, addr, pud, entry);
update_mmu_cache_pud(vma, addr, pud);
out_unlock:
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
spin_unlock(ptl);
}
/**
* vmf_insert_pfn_pud_prot - insert a pud size pfn
* @vmf: Structure describing the fault
* @pfn: pfn to insert
* @pgprot: page protection to use
* @write: whether it's a write fault
*
* Insert a pud size pfn. See vmf_insert_pfn() for additional info and
* also consult the vmf_insert_mixed_prot() documentation when
* @pgprot != @vmf->vma->vm_page_prot.
*
* Return: vm_fault_t value.
*/
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
pgprot_t pgprot, bool write)
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
{
mm/huge_memory: fix vmf_insert_pfn_{pmd, pud}() crash, handle unaligned addresses Starting with c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") vmf_insert_pfn_pmd() internally calls pmdp_set_access_flags(). That helper enforces a pmd aligned @address argument via VM_BUG_ON() assertion. Update the implementation to take a 'struct vm_fault' argument directly and apply the address alignment fixup internally to fix crash signatures like: kernel BUG at arch/x86/mm/pgtable.c:515! invalid opcode: 0000 [#1] SMP NOPTI CPU: 51 PID: 43713 Comm: java Tainted: G OE 4.19.35 #1 [..] RIP: 0010:pmdp_set_access_flags+0x48/0x50 [..] Call Trace: vmf_insert_pfn_pmd+0x198/0x350 dax_iomap_fault+0xe82/0x1190 ext4_dax_huge_fault+0x103/0x1f0 ? __switch_to_asm+0x40/0x70 __handle_mm_fault+0x3f6/0x1370 ? __switch_to_asm+0x34/0x70 ? __switch_to_asm+0x40/0x70 handle_mm_fault+0xda/0x200 __do_page_fault+0x249/0x4f0 do_page_fault+0x32/0x110 ? page_fault+0x8/0x30 page_fault+0x1e/0x30 Link: http://lkml.kernel.org/r/155741946350.372037.11148198430068238140.stgit@dwillia2-desk3.amr.corp.intel.com Fixes: c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Piotr Balcer <piotr.balcer@intel.com> Tested-by: Yan Ma <yan.ma@intel.com> Tested-by: Pankaj Gupta <pagupta@redhat.com> Reviewed-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Chandan Rajendra <chandan@linux.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:15:33 +08:00
unsigned long addr = vmf->address & PUD_MASK;
struct vm_area_struct *vma = vmf->vma;
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
/*
* If we had pud_special, we could avoid all these restrictions,
* but we need to be consistent with PTEs and architectures that
* can't support a 'special' bit.
*/
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
!pfn_t_devmap(pfn));
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
(VM_PFNMAP|VM_MIXEDMAP));
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
if (addr < vma->vm_start || addr >= vma->vm_end)
return VM_FAULT_SIGBUS;
track_pfn_insert(vma, &pgprot, pfn);
mm/huge_memory: fix vmf_insert_pfn_{pmd, pud}() crash, handle unaligned addresses Starting with c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") vmf_insert_pfn_pmd() internally calls pmdp_set_access_flags(). That helper enforces a pmd aligned @address argument via VM_BUG_ON() assertion. Update the implementation to take a 'struct vm_fault' argument directly and apply the address alignment fixup internally to fix crash signatures like: kernel BUG at arch/x86/mm/pgtable.c:515! invalid opcode: 0000 [#1] SMP NOPTI CPU: 51 PID: 43713 Comm: java Tainted: G OE 4.19.35 #1 [..] RIP: 0010:pmdp_set_access_flags+0x48/0x50 [..] Call Trace: vmf_insert_pfn_pmd+0x198/0x350 dax_iomap_fault+0xe82/0x1190 ext4_dax_huge_fault+0x103/0x1f0 ? __switch_to_asm+0x40/0x70 __handle_mm_fault+0x3f6/0x1370 ? __switch_to_asm+0x34/0x70 ? __switch_to_asm+0x40/0x70 handle_mm_fault+0xda/0x200 __do_page_fault+0x249/0x4f0 do_page_fault+0x32/0x110 ? page_fault+0x8/0x30 page_fault+0x1e/0x30 Link: http://lkml.kernel.org/r/155741946350.372037.11148198430068238140.stgit@dwillia2-desk3.amr.corp.intel.com Fixes: c6f3c5ee40c1 ("mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()") Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Piotr Balcer <piotr.balcer@intel.com> Tested-by: Yan Ma <yan.ma@intel.com> Tested-by: Pankaj Gupta <pagupta@redhat.com> Reviewed-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Chandan Rajendra <chandan@linux.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:15:33 +08:00
insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, int flags)
{
pmd_t _pmd;
_pmd = pmd_mkyoung(*pmd);
if (flags & FOLL_WRITE)
_pmd = pmd_mkdirty(_pmd);
if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
pmd, _pmd, flags & FOLL_WRITE))
update_mmu_cache_pmd(vma, addr, pmd);
}
struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
{
unsigned long pfn = pmd_pfn(*pmd);
struct mm_struct *mm = vma->vm_mm;
struct page *page;
assert_spin_locked(pmd_lockptr(mm, pmd));
mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thp In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-25 07:17:48 +08:00
/*
* When we COW a devmap PMD entry, we split it into PTEs, so we should
* not be in this function with `flags & FOLL_COW` set.
*/
WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
mm/gup: track FOLL_PIN pages Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
(FOLL_PIN | FOLL_GET)))
return NULL;
Revert "mm: replace p??_write with pte_access_permitted in fault + gup paths" This reverts commits 5c9d2d5c269c, c7da82b894e9, and e7fe7b5cae90. We'll probably need to revisit this, but basically we should not complicate the get_user_pages_fast() case, and checking the actual page table protection key bits will require more care anyway, since the protection keys depend on the exact state of the VM in question. Particularly when doing a "remote" page lookup (ie in somebody elses VM, not your own), you need to be much more careful than this was. Dave Hansen says: "So, the underlying bug here is that we now a get_user_pages_remote() and then go ahead and do the p*_access_permitted() checks against the current PKRU. This was introduced recently with the addition of the new p??_access_permitted() calls. We have checks in the VMA path for the "remote" gups and we avoid consulting PKRU for them. This got missed in the pkeys selftests because I did a ptrace read, but not a *write*. I also didn't explicitly test it against something where a COW needed to be done" It's also not entirely clear that it makes sense to check the protection key bits at this level at all. But one possible eventual solution is to make the get_user_pages_fast() case just abort if it sees protection key bits set, which makes us fall back to the regular get_user_pages() case, which then has a vma and can do the check there if we want to. We'll see. Somewhat related to this all: what we _do_ want to do some day is to check the PAGE_USER bit - it should obviously always be set for user pages, but it would be a good check to have back. Because we have no generic way to test for it, we lost it as part of moving over from the architecture-specific x86 GUP implementation to the generic one in commit e585513b76f7 ("x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation"). Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-12-16 10:53:22 +08:00
if (flags & FOLL_WRITE && !pmd_write(*pmd))
return NULL;
if (pmd_present(*pmd) && pmd_devmap(*pmd))
/* pass */;
else
return NULL;
if (flags & FOLL_TOUCH)
touch_pmd(vma, addr, pmd, flags);
/*
* device mapped pages can only be returned if the
* caller will manage the page reference count.
*/
mm/gup: track FOLL_PIN pages Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
if (!(flags & (FOLL_GET | FOLL_PIN)))
return ERR_PTR(-EEXIST);
pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
*pgmap = get_dev_pagemap(pfn, *pgmap);
if (!*pgmap)
return ERR_PTR(-EFAULT);
page = pfn_to_page(pfn);
mm/gup: track FOLL_PIN pages Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
if (!try_grab_page(page, flags))
page = ERR_PTR(-ENOMEM);
return page;
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
mm/userfaultfd: fix uffd-wp special cases for fork() We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:49:02 +08:00
struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
spinlock_t *dst_ptl, *src_ptl;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
struct page *src_page;
pmd_t pmd;
pgtable_t pgtable = NULL;
int ret = -ENOMEM;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
/* Skip if can be re-fill on fault */
mm/userfaultfd: fix uffd-wp special cases for fork() We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:49:02 +08:00
if (!vma_is_anonymous(dst_vma))
return 0;
mm: treewide: remove unused address argument from pte_alloc functions Patch series "Add support for fast mremap". This series speeds up the mremap(2) syscall by copying page tables at the PMD level even for non-THP systems. There is concern that the extra 'address' argument that mremap passes to pte_alloc may do something subtle architecture related in the future that may make the scheme not work. Also we find that there is no point in passing the 'address' to pte_alloc since its unused. This patch therefore removes this argument tree-wide resulting in a nice negative diff as well. Also ensuring along the way that the enabled architectures do not do anything funky with the 'address' argument that goes unnoticed by the optimization. Build and boot tested on x86-64. Build tested on arm64. The config enablement patch for arm64 will be posted in the future after more testing. The changes were obtained by applying the following Coccinelle script. (thanks Julia for answering all Coccinelle questions!). Following fix ups were done manually: * Removal of address argument from pte_fragment_alloc * Removal of pte_alloc_one_fast definitions from m68k and microblaze. // Options: --include-headers --no-includes // Note: I split the 'identifier fn' line, so if you are manually // running it, please unsplit it so it runs for you. virtual patch @pte_alloc_func_def depends on patch exists@ identifier E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; type T2; @@ fn(... - , T2 E2 ) { ... } @pte_alloc_func_proto_noarg depends on patch exists@ type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1, T2); + T3 fn(T1); | - T3 fn(T1, T2, T4); + T3 fn(T1, T2); ) @pte_alloc_func_proto depends on patch exists@ identifier E1, E2, E4; type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1 E1, T2 E2); + T3 fn(T1 E1); | - T3 fn(T1 E1, T2 E2, T4 E4); + T3 fn(T1 E1, T2 E2); ) @pte_alloc_func_call depends on patch exists@ expression E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ fn(... -, E2 ) @pte_alloc_macro depends on patch exists@ identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; identifier a, b, c; expression e; position p; @@ ( - #define fn(a, b, c) e + #define fn(a, b) e | - #define fn(a, b) e + #define fn(a) e ) Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Suggested-by: Kirill A. Shutemov <kirill@shutemov.name> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 07:28:34 +08:00
pgtable = pte_alloc_one(dst_mm);
if (unlikely(!pgtable))
goto out;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
dst_ptl = pmd_lock(dst_mm, dst_pmd);
src_ptl = pmd_lockptr(src_mm, src_pmd);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
ret = -EAGAIN;
pmd = *src_pmd;
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
if (unlikely(is_swap_pmd(pmd))) {
swp_entry_t entry = pmd_to_swp_entry(pmd);
VM_BUG_ON(!is_pmd_migration_entry(pmd));
if (is_writable_migration_entry(entry)) {
entry = make_readable_migration_entry(
swp_offset(entry));
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
pmd = swp_entry_to_pmd(entry);
if (pmd_swp_soft_dirty(*src_pmd))
pmd = pmd_swp_mksoft_dirty(pmd);
mm/userfaultfd: fix uffd-wp special cases for fork() We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:49:02 +08:00
if (pmd_swp_uffd_wp(*src_pmd))
pmd = pmd_swp_mkuffd_wp(pmd);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
set_pmd_at(src_mm, addr, src_pmd, pmd);
}
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
mm: consolidate page table accounting Currently, we account page tables separately for each page table level, but that's redundant -- we only make use of total memory allocated to page tables for oom_badness calculation. We also provide the information to userspace, but it has dubious value there too. This patch switches page table accounting to single counter. mm->pgtables_bytes is now used to account all page table levels. We use bytes, because page table size for different levels of page table tree may be different. The change has user-visible effect: we don't have VmPMD and VmPUD reported in /proc/[pid]/status. Not sure if anybody uses them. (As alternative, we can always report 0 kB for them.) OOM-killer report is also slightly changed: we now report pgtables_bytes instead of nr_ptes, nr_pmd, nr_puds. Apart from reducing number of counters per-mm, the benefit is that we now calculate oom_badness() more correctly for machines which have different size of page tables depending on level or where page tables are less than a page in size. The only downside can be debuggability because we do not know which page table level could leak. But I do not remember many bugs that would be caught by separate counters so I wouldn't lose sleep over this. [akpm@linux-foundation.org: fix mm/huge_memory.c] Link: http://lkml.kernel.org/r/20171006100651.44742-2-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> [kirill.shutemov@linux.intel.com: fix build] Link: http://lkml.kernel.org/r/20171016150113.ikfxy3e7zzfvsr4w@black.fi.intel.com Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:35:40 +08:00
mm_inc_nr_ptes(dst_mm);
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
mm/userfaultfd: fix uffd-wp special cases for fork() We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:49:02 +08:00
if (!userfaultfd_wp(dst_vma))
pmd = pmd_swp_clear_uffd_wp(pmd);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
ret = 0;
goto out_unlock;
}
#endif
if (unlikely(!pmd_trans_huge(pmd))) {
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pte_free(dst_mm, pgtable);
goto out_unlock;
}
/*
* When page table lock is held, the huge zero pmd should not be
* under splitting since we don't split the page itself, only pmd to
* a page table.
*/
if (is_huge_zero_pmd(pmd)) {
/*
* get_huge_zero_page() will never allocate a new page here,
* since we already have a zero page to copy. It just takes a
* reference.
*/
mm/thp: simplify copying of huge zero page pmd when fork Patch series "mm/uffd: Misc fix for uffd-wp and one more test". This series tries to fix some corner case bugs for uffd-wp on either thp or fork(). Then it introduced a new test with pagemap/pageout. Patch layout: Patch 1: cleanup for THP, it'll slightly simplify the follow up patches Patch 2-4: misc fixes for uffd-wp here and there; please refer to each patch Patch 5: add pagemap support for uffd-wp Patch 6: add pagemap/pageout test for uffd-wp The last test introduced can also verify some of the fixes in previous patches, as the test will fail without the fixes. However it's not easy to verify all the changes in patch 2-4, but hopefully they can still be properly reviewed. Note that if considering the ongoing uffd-wp shmem & hugetlbfs work, patch 5 will be incomplete as it's missing e.g. hugetlbfs part or the special swap pte detection. However that's not needed in this series, and since that series is still during review, this series does not depend on that one (the last test only runs with anonymous memory, not file-backed). So this series can be merged even before that series. This patch (of 6): Huge zero page is handled in a special path in copy_huge_pmd(), however it should share most codes with a normal thp page. Trying to share more code with it by removing the special path. The only leftover so far is the huge zero page refcounting (mm_get_huge_zero_page()), because that's separately done with a global counter. This prepares for a future patch to modify the huge pmd to be installed, so that we don't need to duplicate it explicitly into huge zero page case too. Link: https://lkml.kernel.org/r/20210428225030.9708-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-2-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mike Kravetz <mike.kravetz@oracle.com>, peterx@redhat.com Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:48:59 +08:00
mm_get_huge_zero_page(dst_mm);
goto out_zero_page;
}
src_page = pmd_page(pmd);
VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
/*
* If this page is a potentially pinned page, split and retry the fault
* with smaller page size. Normally this should not happen because the
* userspace should use MADV_DONTFORK upon pinned regions. This is a
* best effort that the pinned pages won't be replaced by another
* random page during the coming copy-on-write.
*/
mm/userfaultfd: fix uffd-wp special cases for fork() We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:49:02 +08:00
if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
pte_free(dst_mm, pgtable);
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
mm/userfaultfd: fix uffd-wp special cases for fork() We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:49:02 +08:00
__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
return -EAGAIN;
}
get_page(src_page);
page_dup_rmap(src_page, true);
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
mm/thp: simplify copying of huge zero page pmd when fork Patch series "mm/uffd: Misc fix for uffd-wp and one more test". This series tries to fix some corner case bugs for uffd-wp on either thp or fork(). Then it introduced a new test with pagemap/pageout. Patch layout: Patch 1: cleanup for THP, it'll slightly simplify the follow up patches Patch 2-4: misc fixes for uffd-wp here and there; please refer to each patch Patch 5: add pagemap support for uffd-wp Patch 6: add pagemap/pageout test for uffd-wp The last test introduced can also verify some of the fixes in previous patches, as the test will fail without the fixes. However it's not easy to verify all the changes in patch 2-4, but hopefully they can still be properly reviewed. Note that if considering the ongoing uffd-wp shmem & hugetlbfs work, patch 5 will be incomplete as it's missing e.g. hugetlbfs part or the special swap pte detection. However that's not needed in this series, and since that series is still during review, this series does not depend on that one (the last test only runs with anonymous memory, not file-backed). So this series can be merged even before that series. This patch (of 6): Huge zero page is handled in a special path in copy_huge_pmd(), however it should share most codes with a normal thp page. Trying to share more code with it by removing the special path. The only leftover so far is the huge zero page refcounting (mm_get_huge_zero_page()), because that's separately done with a global counter. This prepares for a future patch to modify the huge pmd to be installed, so that we don't need to duplicate it explicitly into huge zero page case too. Link: https://lkml.kernel.org/r/20210428225030.9708-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-2-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mike Kravetz <mike.kravetz@oracle.com>, peterx@redhat.com Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:48:59 +08:00
out_zero_page:
mm_inc_nr_ptes(dst_mm);
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pmdp_set_wrprotect(src_mm, addr, src_pmd);
mm/userfaultfd: fix uffd-wp special cases for fork() We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:49:02 +08:00
if (!userfaultfd_wp(dst_vma))
pmd = pmd_clear_uffd_wp(pmd);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pmd = pmd_mkold(pmd_wrprotect(pmd));
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
ret = 0;
out_unlock:
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
out:
return ret;
}
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
pud_t *pud, int flags)
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
{
pud_t _pud;
_pud = pud_mkyoung(*pud);
if (flags & FOLL_WRITE)
_pud = pud_mkdirty(_pud);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
pud, _pud, flags & FOLL_WRITE))
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
update_mmu_cache_pud(vma, addr, pud);
}
struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
pud_t *pud, int flags, struct dev_pagemap **pgmap)
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
{
unsigned long pfn = pud_pfn(*pud);
struct mm_struct *mm = vma->vm_mm;
struct page *page;
assert_spin_locked(pud_lockptr(mm, pud));
Revert "mm: replace p??_write with pte_access_permitted in fault + gup paths" This reverts commits 5c9d2d5c269c, c7da82b894e9, and e7fe7b5cae90. We'll probably need to revisit this, but basically we should not complicate the get_user_pages_fast() case, and checking the actual page table protection key bits will require more care anyway, since the protection keys depend on the exact state of the VM in question. Particularly when doing a "remote" page lookup (ie in somebody elses VM, not your own), you need to be much more careful than this was. Dave Hansen says: "So, the underlying bug here is that we now a get_user_pages_remote() and then go ahead and do the p*_access_permitted() checks against the current PKRU. This was introduced recently with the addition of the new p??_access_permitted() calls. We have checks in the VMA path for the "remote" gups and we avoid consulting PKRU for them. This got missed in the pkeys selftests because I did a ptrace read, but not a *write*. I also didn't explicitly test it against something where a COW needed to be done" It's also not entirely clear that it makes sense to check the protection key bits at this level at all. But one possible eventual solution is to make the get_user_pages_fast() case just abort if it sees protection key bits set, which makes us fall back to the regular get_user_pages() case, which then has a vma and can do the check there if we want to. We'll see. Somewhat related to this all: what we _do_ want to do some day is to check the PAGE_USER bit - it should obviously always be set for user pages, but it would be a good check to have back. Because we have no generic way to test for it, we lost it as part of moving over from the architecture-specific x86 GUP implementation to the generic one in commit e585513b76f7 ("x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation"). Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-12-16 10:53:22 +08:00
if (flags & FOLL_WRITE && !pud_write(*pud))
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
return NULL;
mm/gup: track FOLL_PIN pages Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
(FOLL_PIN | FOLL_GET)))
return NULL;
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
if (pud_present(*pud) && pud_devmap(*pud))
/* pass */;
else
return NULL;
if (flags & FOLL_TOUCH)
touch_pud(vma, addr, pud, flags);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
/*
* device mapped pages can only be returned if the
* caller will manage the page reference count.
mm/gup: track FOLL_PIN pages Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
*
* At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
*/
mm/gup: track FOLL_PIN pages Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
if (!(flags & (FOLL_GET | FOLL_PIN)))
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
return ERR_PTR(-EEXIST);
pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
*pgmap = get_dev_pagemap(pfn, *pgmap);
if (!*pgmap)
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
return ERR_PTR(-EFAULT);
page = pfn_to_page(pfn);
mm/gup: track FOLL_PIN pages Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
if (!try_grab_page(page, flags))
page = ERR_PTR(-ENOMEM);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
return page;
}
int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
struct vm_area_struct *vma)
{
spinlock_t *dst_ptl, *src_ptl;
pud_t pud;
int ret;
dst_ptl = pud_lock(dst_mm, dst_pud);
src_ptl = pud_lockptr(src_mm, src_pud);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
ret = -EAGAIN;
pud = *src_pud;
if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
goto out_unlock;
/*
* When page table lock is held, the huge zero pud should not be
* under splitting since we don't split the page itself, only pud to
* a page table.
*/
if (is_huge_zero_pud(pud)) {
/* No huge zero pud yet */
}
/* Please refer to comments in copy_huge_pmd() */
mm: introduce page_needs_cow_for_dma() for deciding whether cow We've got quite a few places (pte, pmd, pud) that explicitly checked against whether we should break the cow right now during fork(). It's easier to provide a helper, especially before we work the same thing on hugetlbfs. Since we'll reference is_cow_mapping() in mm.h, move it there too. Actually it suites mm.h more since internal.h is mm/ only, but mm.h is exported to the whole kernel. With that we should expect another patch to use is_cow_mapping() whenever we can across the kernel since we do use it quite a lot but it's always done with raw code against VM_* flags. Link: https://lkml.kernel.org/r/20210217233547.93892-4-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@ziepe.ca> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: David Airlie <airlied@linux.ie> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Gal Pressman <galpress@amazon.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Roland Scheidegger <sroland@vmware.com> Cc: VMware Graphics <linux-graphics-maintainer@vmware.com> Cc: Wei Zhang <wzam@amazon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-13 13:07:26 +08:00
if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
__split_huge_pud(vma, src_pud, addr);
return -EAGAIN;
}
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
pudp_set_wrprotect(src_mm, addr, src_pud);
pud = pud_mkold(pud_wrprotect(pud));
set_pud_at(dst_mm, addr, dst_pud, pud);
ret = 0;
out_unlock:
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
return ret;
}
void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
pud_t entry;
unsigned long haddr;
bool write = vmf->flags & FAULT_FLAG_WRITE;
vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
if (unlikely(!pud_same(*vmf->pud, orig_pud)))
goto unlock;
entry = pud_mkyoung(orig_pud);
if (write)
entry = pud_mkdirty(entry);
haddr = vmf->address & HPAGE_PUD_MASK;
if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
unlock:
spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
mm: memory: add orig_pmd to struct vm_fault Pach series "mm: thp: use generic THP migration for NUMA hinting fault", v3. When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. It is definitely a maintenance burden to keep two THP migration implementation for different code paths and it is more error prone. Using the generic THP migration implementation allows us remove the duplicate code and some hacks needed by the old ad hoc implementation. A quick grep shows x86_64, PowerPC (book3s), ARM64 ans S390 support both THP and NUMA balancing. The most of them support THP migration except for S390. Zi Yan tried to add THP migration support for S390 before but it was not accepted due to the design of S390 PMD. For the discussion, please see: https://lkml.org/lkml/2018/4/27/953. Per the discussion with Gerald Schaefer in v1 it is acceptible to skip huge PMD for S390 for now. I saw there were some hacks about gup from git history, but I didn't figure out if they have been removed or not since I just found FOLL_NUMA code in the current gup implementation and they seems useful. Patch #1 ~ #2 are preparation patches. Patch #3 is the real meat. Patch #4 ~ #6 keep consistent counters and behaviors with before. Patch #7 skips change huge PMD to prot_none if thp migration is not supported. Test ---- Did some tests to measure the latency of do_huge_pmd_numa_page. The test VM has 80 vcpus and 64G memory. The test would create 2 processes to consume 128G memory together which would incur memory pressure to cause THP splits. And it also creates 80 processes to hog cpu, and the memory consumer processes are bound to different nodes periodically in order to increase NUMA faults. The below test script is used: echo 3 > /proc/sys/vm/drop_caches # Run stress-ng for 24 hours ./stress-ng/stress-ng --vm 2 --vm-bytes 64G --timeout 24h & PID=$! ./stress-ng/stress-ng --cpu $NR_CPUS --timeout 24h & # Wait for vm stressors forked sleep 5 PID_1=`pgrep -P $PID | awk 'NR == 1'` PID_2=`pgrep -P $PID | awk 'NR == 2'` JOB1=`pgrep -P $PID_1` JOB2=`pgrep -P $PID_2` # Bind load jobs to different nodes periodically to force generate # cross node memory access while [ -d "/proc/$PID" ] do taskset -apc 8 $JOB1 taskset -apc 8 $JOB2 sleep 300 taskset -apc 58 $JOB1 taskset -apc 58 $JOB2 sleep 300 done With the above test the histogram of latency of do_huge_pmd_numa_page is as shown below. Since the number of do_huge_pmd_numa_page varies drastically for each run (should be due to scheduler), so I converted the raw number to percentage. patched base @us[stress-ng]: [0] 3.57% 0.16% [1] 55.68% 18.36% [2, 4) 10.46% 40.44% [4, 8) 7.26% 17.82% [8, 16) 21.12% 13.41% [16, 32) 1.06% 4.27% [32, 64) 0.56% 4.07% [64, 128) 0.16% 0.35% [128, 256) < 0.1% < 0.1% [256, 512) < 0.1% < 0.1% [512, 1K) < 0.1% < 0.1% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) < 0.1% < 0.1% [16K, 32K) < 0.1% < 0.1% [32K, 64K) < 0.1% < 0.1% Per the result, patched kernel is even slightly better than the base kernel. I think this is because the lock contention against THP split is less than base kernel due to the refactor. To exclude the affect from THP split, I also did test w/o memory pressure. No obvious regression is spotted. The below is the test result *w/o* memory pressure. patched base @us[stress-ng]: [0] 7.97% 18.4% [1] 69.63% 58.24% [2, 4) 4.18% 2.63% [4, 8) 0.22% 0.17% [8, 16) 1.03% 0.92% [16, 32) 0.14% < 0.1% [32, 64) < 0.1% < 0.1% [64, 128) < 0.1% < 0.1% [128, 256) < 0.1% < 0.1% [256, 512) 0.45% 1.19% [512, 1K) 15.45% 17.27% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) 0.86% 0.88% [16K, 32K) < 0.1% 0.15% [32K, 64K) < 0.1% < 0.1% [64K, 128K) < 0.1% < 0.1% [128K, 256K) < 0.1% < 0.1% The series also survived a series of tests that exercise NUMA balancing migrations by Mel. This patch (of 7): Add orig_pmd to struct vm_fault so the "orig_pmd" parameter used by huge page fault could be removed, just like its PTE counterpart does. Link: https://lkml.kernel.org/r/20210518200801.7413-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20210518200801.7413-2-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:35 +08:00
void huge_pmd_set_accessed(struct vm_fault *vmf)
{
pmd_t entry;
unsigned long haddr;
mm: pmd dirty emulation in page fault handler Andreas reported [1] made a test in jemalloc hang in THP mode in arm64: http://lkml.kernel.org/r/mvmmvfy37g1.fsf@hawking.suse.de The problem is currently page fault handler doesn't supports dirty bit emulation of pmd for non-HW dirty-bit architecture so that application stucks until VM marked the pmd dirty. How the emulation work depends on the architecture. In case of arm64, when it set up pte firstly, it sets pte PTE_RDONLY to get a chance to mark the pte dirty via triggering page fault when store access happens. Once the page fault occurs, VM marks the pmd dirty and arch code for setting pmd will clear PTE_RDONLY for application to proceed. IOW, if VM doesn't mark the pmd dirty, application hangs forever by repeated fault(i.e., store op but the pmd is PTE_RDONLY). This patch enables pmd dirty-bit emulation for those architectures. [1] b8d3c4c3009d, mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called Fixes: b8d3c4c3009d ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/1482506098-6149-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Andreas Schwab <schwab@suse.de> Tested-by: Andreas Schwab <schwab@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jason Evans <je@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: <stable@vger.kernel.org> [4.5+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-11 08:57:51 +08:00
bool write = vmf->flags & FAULT_FLAG_WRITE;
mm: memory: add orig_pmd to struct vm_fault Pach series "mm: thp: use generic THP migration for NUMA hinting fault", v3. When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. It is definitely a maintenance burden to keep two THP migration implementation for different code paths and it is more error prone. Using the generic THP migration implementation allows us remove the duplicate code and some hacks needed by the old ad hoc implementation. A quick grep shows x86_64, PowerPC (book3s), ARM64 ans S390 support both THP and NUMA balancing. The most of them support THP migration except for S390. Zi Yan tried to add THP migration support for S390 before but it was not accepted due to the design of S390 PMD. For the discussion, please see: https://lkml.org/lkml/2018/4/27/953. Per the discussion with Gerald Schaefer in v1 it is acceptible to skip huge PMD for S390 for now. I saw there were some hacks about gup from git history, but I didn't figure out if they have been removed or not since I just found FOLL_NUMA code in the current gup implementation and they seems useful. Patch #1 ~ #2 are preparation patches. Patch #3 is the real meat. Patch #4 ~ #6 keep consistent counters and behaviors with before. Patch #7 skips change huge PMD to prot_none if thp migration is not supported. Test ---- Did some tests to measure the latency of do_huge_pmd_numa_page. The test VM has 80 vcpus and 64G memory. The test would create 2 processes to consume 128G memory together which would incur memory pressure to cause THP splits. And it also creates 80 processes to hog cpu, and the memory consumer processes are bound to different nodes periodically in order to increase NUMA faults. The below test script is used: echo 3 > /proc/sys/vm/drop_caches # Run stress-ng for 24 hours ./stress-ng/stress-ng --vm 2 --vm-bytes 64G --timeout 24h & PID=$! ./stress-ng/stress-ng --cpu $NR_CPUS --timeout 24h & # Wait for vm stressors forked sleep 5 PID_1=`pgrep -P $PID | awk 'NR == 1'` PID_2=`pgrep -P $PID | awk 'NR == 2'` JOB1=`pgrep -P $PID_1` JOB2=`pgrep -P $PID_2` # Bind load jobs to different nodes periodically to force generate # cross node memory access while [ -d "/proc/$PID" ] do taskset -apc 8 $JOB1 taskset -apc 8 $JOB2 sleep 300 taskset -apc 58 $JOB1 taskset -apc 58 $JOB2 sleep 300 done With the above test the histogram of latency of do_huge_pmd_numa_page is as shown below. Since the number of do_huge_pmd_numa_page varies drastically for each run (should be due to scheduler), so I converted the raw number to percentage. patched base @us[stress-ng]: [0] 3.57% 0.16% [1] 55.68% 18.36% [2, 4) 10.46% 40.44% [4, 8) 7.26% 17.82% [8, 16) 21.12% 13.41% [16, 32) 1.06% 4.27% [32, 64) 0.56% 4.07% [64, 128) 0.16% 0.35% [128, 256) < 0.1% < 0.1% [256, 512) < 0.1% < 0.1% [512, 1K) < 0.1% < 0.1% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) < 0.1% < 0.1% [16K, 32K) < 0.1% < 0.1% [32K, 64K) < 0.1% < 0.1% Per the result, patched kernel is even slightly better than the base kernel. I think this is because the lock contention against THP split is less than base kernel due to the refactor. To exclude the affect from THP split, I also did test w/o memory pressure. No obvious regression is spotted. The below is the test result *w/o* memory pressure. patched base @us[stress-ng]: [0] 7.97% 18.4% [1] 69.63% 58.24% [2, 4) 4.18% 2.63% [4, 8) 0.22% 0.17% [8, 16) 1.03% 0.92% [16, 32) 0.14% < 0.1% [32, 64) < 0.1% < 0.1% [64, 128) < 0.1% < 0.1% [128, 256) < 0.1% < 0.1% [256, 512) 0.45% 1.19% [512, 1K) 15.45% 17.27% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) 0.86% 0.88% [16K, 32K) < 0.1% 0.15% [32K, 64K) < 0.1% < 0.1% [64K, 128K) < 0.1% < 0.1% [128K, 256K) < 0.1% < 0.1% The series also survived a series of tests that exercise NUMA balancing migrations by Mel. This patch (of 7): Add orig_pmd to struct vm_fault so the "orig_pmd" parameter used by huge page fault could be removed, just like its PTE counterpart does. Link: https://lkml.kernel.org/r/20210518200801.7413-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20210518200801.7413-2-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:35 +08:00
pmd_t orig_pmd = vmf->orig_pmd;
vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
goto unlock;
entry = pmd_mkyoung(orig_pmd);
mm: pmd dirty emulation in page fault handler Andreas reported [1] made a test in jemalloc hang in THP mode in arm64: http://lkml.kernel.org/r/mvmmvfy37g1.fsf@hawking.suse.de The problem is currently page fault handler doesn't supports dirty bit emulation of pmd for non-HW dirty-bit architecture so that application stucks until VM marked the pmd dirty. How the emulation work depends on the architecture. In case of arm64, when it set up pte firstly, it sets pte PTE_RDONLY to get a chance to mark the pte dirty via triggering page fault when store access happens. Once the page fault occurs, VM marks the pmd dirty and arch code for setting pmd will clear PTE_RDONLY for application to proceed. IOW, if VM doesn't mark the pmd dirty, application hangs forever by repeated fault(i.e., store op but the pmd is PTE_RDONLY). This patch enables pmd dirty-bit emulation for those architectures. [1] b8d3c4c3009d, mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called Fixes: b8d3c4c3009d ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/1482506098-6149-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Andreas Schwab <schwab@suse.de> Tested-by: Andreas Schwab <schwab@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jason Evans <je@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: <stable@vger.kernel.org> [4.5+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-11 08:57:51 +08:00
if (write)
entry = pmd_mkdirty(entry);
haddr = vmf->address & HPAGE_PMD_MASK;
mm: pmd dirty emulation in page fault handler Andreas reported [1] made a test in jemalloc hang in THP mode in arm64: http://lkml.kernel.org/r/mvmmvfy37g1.fsf@hawking.suse.de The problem is currently page fault handler doesn't supports dirty bit emulation of pmd for non-HW dirty-bit architecture so that application stucks until VM marked the pmd dirty. How the emulation work depends on the architecture. In case of arm64, when it set up pte firstly, it sets pte PTE_RDONLY to get a chance to mark the pte dirty via triggering page fault when store access happens. Once the page fault occurs, VM marks the pmd dirty and arch code for setting pmd will clear PTE_RDONLY for application to proceed. IOW, if VM doesn't mark the pmd dirty, application hangs forever by repeated fault(i.e., store op but the pmd is PTE_RDONLY). This patch enables pmd dirty-bit emulation for those architectures. [1] b8d3c4c3009d, mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called Fixes: b8d3c4c3009d ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/1482506098-6149-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Andreas Schwab <schwab@suse.de> Tested-by: Andreas Schwab <schwab@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jason Evans <je@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: <stable@vger.kernel.org> [4.5+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-11 08:57:51 +08:00
if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
unlock:
spin_unlock(vmf->ptl);
}
mm: memory: add orig_pmd to struct vm_fault Pach series "mm: thp: use generic THP migration for NUMA hinting fault", v3. When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. It is definitely a maintenance burden to keep two THP migration implementation for different code paths and it is more error prone. Using the generic THP migration implementation allows us remove the duplicate code and some hacks needed by the old ad hoc implementation. A quick grep shows x86_64, PowerPC (book3s), ARM64 ans S390 support both THP and NUMA balancing. The most of them support THP migration except for S390. Zi Yan tried to add THP migration support for S390 before but it was not accepted due to the design of S390 PMD. For the discussion, please see: https://lkml.org/lkml/2018/4/27/953. Per the discussion with Gerald Schaefer in v1 it is acceptible to skip huge PMD for S390 for now. I saw there were some hacks about gup from git history, but I didn't figure out if they have been removed or not since I just found FOLL_NUMA code in the current gup implementation and they seems useful. Patch #1 ~ #2 are preparation patches. Patch #3 is the real meat. Patch #4 ~ #6 keep consistent counters and behaviors with before. Patch #7 skips change huge PMD to prot_none if thp migration is not supported. Test ---- Did some tests to measure the latency of do_huge_pmd_numa_page. The test VM has 80 vcpus and 64G memory. The test would create 2 processes to consume 128G memory together which would incur memory pressure to cause THP splits. And it also creates 80 processes to hog cpu, and the memory consumer processes are bound to different nodes periodically in order to increase NUMA faults. The below test script is used: echo 3 > /proc/sys/vm/drop_caches # Run stress-ng for 24 hours ./stress-ng/stress-ng --vm 2 --vm-bytes 64G --timeout 24h & PID=$! ./stress-ng/stress-ng --cpu $NR_CPUS --timeout 24h & # Wait for vm stressors forked sleep 5 PID_1=`pgrep -P $PID | awk 'NR == 1'` PID_2=`pgrep -P $PID | awk 'NR == 2'` JOB1=`pgrep -P $PID_1` JOB2=`pgrep -P $PID_2` # Bind load jobs to different nodes periodically to force generate # cross node memory access while [ -d "/proc/$PID" ] do taskset -apc 8 $JOB1 taskset -apc 8 $JOB2 sleep 300 taskset -apc 58 $JOB1 taskset -apc 58 $JOB2 sleep 300 done With the above test the histogram of latency of do_huge_pmd_numa_page is as shown below. Since the number of do_huge_pmd_numa_page varies drastically for each run (should be due to scheduler), so I converted the raw number to percentage. patched base @us[stress-ng]: [0] 3.57% 0.16% [1] 55.68% 18.36% [2, 4) 10.46% 40.44% [4, 8) 7.26% 17.82% [8, 16) 21.12% 13.41% [16, 32) 1.06% 4.27% [32, 64) 0.56% 4.07% [64, 128) 0.16% 0.35% [128, 256) < 0.1% < 0.1% [256, 512) < 0.1% < 0.1% [512, 1K) < 0.1% < 0.1% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) < 0.1% < 0.1% [16K, 32K) < 0.1% < 0.1% [32K, 64K) < 0.1% < 0.1% Per the result, patched kernel is even slightly better than the base kernel. I think this is because the lock contention against THP split is less than base kernel due to the refactor. To exclude the affect from THP split, I also did test w/o memory pressure. No obvious regression is spotted. The below is the test result *w/o* memory pressure. patched base @us[stress-ng]: [0] 7.97% 18.4% [1] 69.63% 58.24% [2, 4) 4.18% 2.63% [4, 8) 0.22% 0.17% [8, 16) 1.03% 0.92% [16, 32) 0.14% < 0.1% [32, 64) < 0.1% < 0.1% [64, 128) < 0.1% < 0.1% [128, 256) < 0.1% < 0.1% [256, 512) 0.45% 1.19% [512, 1K) 15.45% 17.27% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) 0.86% 0.88% [16K, 32K) < 0.1% 0.15% [32K, 64K) < 0.1% < 0.1% [64K, 128K) < 0.1% < 0.1% [128K, 256K) < 0.1% < 0.1% The series also survived a series of tests that exercise NUMA balancing migrations by Mel. This patch (of 7): Add orig_pmd to struct vm_fault so the "orig_pmd" parameter used by huge page fault could be removed, just like its PTE counterpart does. Link: https://lkml.kernel.org/r/20210518200801.7413-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20210518200801.7413-2-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:35 +08:00
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
struct vm_area_struct *vma = vmf->vma;
struct page *page;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
mm: memory: add orig_pmd to struct vm_fault Pach series "mm: thp: use generic THP migration for NUMA hinting fault", v3. When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. It is definitely a maintenance burden to keep two THP migration implementation for different code paths and it is more error prone. Using the generic THP migration implementation allows us remove the duplicate code and some hacks needed by the old ad hoc implementation. A quick grep shows x86_64, PowerPC (book3s), ARM64 ans S390 support both THP and NUMA balancing. The most of them support THP migration except for S390. Zi Yan tried to add THP migration support for S390 before but it was not accepted due to the design of S390 PMD. For the discussion, please see: https://lkml.org/lkml/2018/4/27/953. Per the discussion with Gerald Schaefer in v1 it is acceptible to skip huge PMD for S390 for now. I saw there were some hacks about gup from git history, but I didn't figure out if they have been removed or not since I just found FOLL_NUMA code in the current gup implementation and they seems useful. Patch #1 ~ #2 are preparation patches. Patch #3 is the real meat. Patch #4 ~ #6 keep consistent counters and behaviors with before. Patch #7 skips change huge PMD to prot_none if thp migration is not supported. Test ---- Did some tests to measure the latency of do_huge_pmd_numa_page. The test VM has 80 vcpus and 64G memory. The test would create 2 processes to consume 128G memory together which would incur memory pressure to cause THP splits. And it also creates 80 processes to hog cpu, and the memory consumer processes are bound to different nodes periodically in order to increase NUMA faults. The below test script is used: echo 3 > /proc/sys/vm/drop_caches # Run stress-ng for 24 hours ./stress-ng/stress-ng --vm 2 --vm-bytes 64G --timeout 24h & PID=$! ./stress-ng/stress-ng --cpu $NR_CPUS --timeout 24h & # Wait for vm stressors forked sleep 5 PID_1=`pgrep -P $PID | awk 'NR == 1'` PID_2=`pgrep -P $PID | awk 'NR == 2'` JOB1=`pgrep -P $PID_1` JOB2=`pgrep -P $PID_2` # Bind load jobs to different nodes periodically to force generate # cross node memory access while [ -d "/proc/$PID" ] do taskset -apc 8 $JOB1 taskset -apc 8 $JOB2 sleep 300 taskset -apc 58 $JOB1 taskset -apc 58 $JOB2 sleep 300 done With the above test the histogram of latency of do_huge_pmd_numa_page is as shown below. Since the number of do_huge_pmd_numa_page varies drastically for each run (should be due to scheduler), so I converted the raw number to percentage. patched base @us[stress-ng]: [0] 3.57% 0.16% [1] 55.68% 18.36% [2, 4) 10.46% 40.44% [4, 8) 7.26% 17.82% [8, 16) 21.12% 13.41% [16, 32) 1.06% 4.27% [32, 64) 0.56% 4.07% [64, 128) 0.16% 0.35% [128, 256) < 0.1% < 0.1% [256, 512) < 0.1% < 0.1% [512, 1K) < 0.1% < 0.1% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) < 0.1% < 0.1% [16K, 32K) < 0.1% < 0.1% [32K, 64K) < 0.1% < 0.1% Per the result, patched kernel is even slightly better than the base kernel. I think this is because the lock contention against THP split is less than base kernel due to the refactor. To exclude the affect from THP split, I also did test w/o memory pressure. No obvious regression is spotted. The below is the test result *w/o* memory pressure. patched base @us[stress-ng]: [0] 7.97% 18.4% [1] 69.63% 58.24% [2, 4) 4.18% 2.63% [4, 8) 0.22% 0.17% [8, 16) 1.03% 0.92% [16, 32) 0.14% < 0.1% [32, 64) < 0.1% < 0.1% [64, 128) < 0.1% < 0.1% [128, 256) < 0.1% < 0.1% [256, 512) 0.45% 1.19% [512, 1K) 15.45% 17.27% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) 0.86% 0.88% [16K, 32K) < 0.1% 0.15% [32K, 64K) < 0.1% < 0.1% [64K, 128K) < 0.1% < 0.1% [128K, 256K) < 0.1% < 0.1% The series also survived a series of tests that exercise NUMA balancing migrations by Mel. This patch (of 7): Add orig_pmd to struct vm_fault so the "orig_pmd" parameter used by huge page fault could be removed, just like its PTE counterpart does. Link: https://lkml.kernel.org/r/20210518200801.7413-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20210518200801.7413-2-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:35 +08:00
pmd_t orig_pmd = vmf->orig_pmd;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
VM_BUG_ON_VMA(!vma->anon_vma, vma);
if (is_huge_zero_pmd(orig_pmd))
goto fallback;
spin_lock(vmf->ptl);
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
spin_unlock(vmf->ptl);
return 0;
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
page = pmd_page(orig_pmd);
VM_BUG_ON_PAGE(!PageHead(page), page);
/* Lock page for reuse_swap_page() */
if (!trylock_page(page)) {
get_page(page);
spin_unlock(vmf->ptl);
lock_page(page);
spin_lock(vmf->ptl);
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
spin_unlock(vmf->ptl);
unlock_page(page);
put_page(page);
return 0;
}
put_page(page);
}
/*
* We can only reuse the page if nobody else maps the huge page or it's
* part.
*/
if (reuse_swap_page(page, NULL)) {
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
pmd_t entry;
entry = pmd_mkyoung(orig_pmd);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
unlock_page(page);
spin_unlock(vmf->ptl);
return VM_FAULT_WRITE;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
unlock_page(page);
spin_unlock(vmf->ptl);
fallback:
__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
return VM_FAULT_FALLBACK;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thp In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-25 07:17:48 +08:00
/*
* FOLL_FORCE can write to even unwritable pmd's, but only
* after we've gone through a COW cycle and they are dirty.
mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thp In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-25 07:17:48 +08:00
*/
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
return pmd_write(pmd) ||
((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thp In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-25 07:17:48 +08:00
}
mm, thp: fix mapped pages avoiding unevictable list on mlock When a transparent hugepage is mapped and it is included in an mlock() range, follow_page() incorrectly avoids setting the page's mlock bit and moving it to the unevictable lru. This is evident if you try to mlock(), munlock(), and then mlock() a range again. Currently: #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep -E "Unevictable|Inactive\(anon" /proc/meminfo Inactive(anon): 6304 kB Unevictable: 4213924 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4186252 kB Unevictable: 19652 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4198556 kB Unevictable: 21684 kB Notice that less than 2MB was added to the unevictable list; this is because these pages in the range are not transparent hugepages since the 4GB range was allocated with mmap() and has no specific alignment. If posix_memalign() were used instead, unevictable would not have grown at all on the second mlock(). The fix is to call mlock_vma_page() so that the mlock bit is set and the page is added to the unevictable list. With this patch: mlock(ptr, MAP_SIZE); Inactive(anon): 4056 kB Unevictable: 4213940 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4198268 kB Unevictable: 19636 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4008 kB Unevictable: 4213940 kB Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:34:03 +08:00
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
unsigned long addr,
pmd_t *pmd,
unsigned int flags)
{
mm, thp: fix mapped pages avoiding unevictable list on mlock When a transparent hugepage is mapped and it is included in an mlock() range, follow_page() incorrectly avoids setting the page's mlock bit and moving it to the unevictable lru. This is evident if you try to mlock(), munlock(), and then mlock() a range again. Currently: #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep -E "Unevictable|Inactive\(anon" /proc/meminfo Inactive(anon): 6304 kB Unevictable: 4213924 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4186252 kB Unevictable: 19652 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4198556 kB Unevictable: 21684 kB Notice that less than 2MB was added to the unevictable list; this is because these pages in the range are not transparent hugepages since the 4GB range was allocated with mmap() and has no specific alignment. If posix_memalign() were used instead, unevictable would not have grown at all on the second mlock(). The fix is to call mlock_vma_page() so that the mlock bit is set and the page is added to the unevictable list. With this patch: mlock(ptr, MAP_SIZE); Inactive(anon): 4056 kB Unevictable: 4213940 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4198268 kB Unevictable: 19636 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4008 kB Unevictable: 4213940 kB Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:34:03 +08:00
struct mm_struct *mm = vma->vm_mm;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
struct page *page = NULL;
assert_spin_locked(pmd_lockptr(mm, pmd));
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thp In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-25 07:17:48 +08:00
if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
goto out;
/* Avoid dumping huge zero page */
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
return ERR_PTR(-EFAULT);
/* Full NUMA hinting faults to serialise migration in fault paths */
if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
goto out;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
page = pmd_page(*pmd);
VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
mm/gup: track FOLL_PIN pages Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
if (!try_grab_page(page, flags))
return ERR_PTR(-ENOMEM);
if (flags & FOLL_TOUCH)
touch_pmd(vma, addr, pmd, flags);
mm/gup: track FOLL_PIN pages Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 12:05:29 +08:00
mm: introduce VM_LOCKONFAULT The cost of faulting in all memory to be locked can be very high when working with large mappings. If only portions of the mapping will be used this can incur a high penalty for locking. For the example of a large file, this is the usage pattern for a large statical language model (probably applies to other statical or graphical models as well). For the security example, any application transacting in data that cannot be swapped out (credit card data, medical records, etc). This patch introduces the ability to request that pages are not pre-faulted, but are placed on the unevictable LRU when they are finally faulted in. The VM_LOCKONFAULT flag will be used together with VM_LOCKED and has no effect when set without VM_LOCKED. Setting the VM_LOCKONFAULT flag for a VMA will cause pages faulted into that VMA to be added to the unevictable LRU when they are faulted or if they are already present, but will not cause any missing pages to be faulted in. Exposing this new lock state means that we cannot overload the meaning of the FOLL_POPULATE flag any longer. Prior to this patch it was used to mean that the VMA for a fault was locked. This means we need the new FOLL_MLOCK flag to communicate the locked state of a VMA. FOLL_POPULATE will now only control if the VMA should be populated and in the case of VM_LOCKONFAULT, it will not be set. Signed-off-by: Eric B Munson <emunson@akamai.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 10:51:36 +08:00
if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
/*
* We don't mlock() pte-mapped THPs. This way we can avoid
* leaking mlocked pages into non-VM_LOCKED VMAs.
*
* For anon THP:
*
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
* In most cases the pmd is the only mapping of the page as we
* break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
* writable private mappings in populate_vma_page_range().
*
* The only scenario when we have the page shared here is if we
* mlocking read-only mapping shared over fork(). We skip
* mlocking such pages.
*
* For file THP:
*
* We can expect PageDoubleMap() to be stable under page lock:
* for file pages we set it in page_add_file_rmap(), which
* requires page to be locked.
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
*/
if (PageAnon(page) && compound_mapcount(page) != 1)
goto skip_mlock;
if (PageDoubleMap(page) || !page->mapping)
goto skip_mlock;
if (!trylock_page(page))
goto skip_mlock;
if (page->mapping && !PageDoubleMap(page))
mlock_vma_page(page);
unlock_page(page);
mm, thp: fix mapped pages avoiding unevictable list on mlock When a transparent hugepage is mapped and it is included in an mlock() range, follow_page() incorrectly avoids setting the page's mlock bit and moving it to the unevictable lru. This is evident if you try to mlock(), munlock(), and then mlock() a range again. Currently: #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep -E "Unevictable|Inactive\(anon" /proc/meminfo Inactive(anon): 6304 kB Unevictable: 4213924 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4186252 kB Unevictable: 19652 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4198556 kB Unevictable: 21684 kB Notice that less than 2MB was added to the unevictable list; this is because these pages in the range are not transparent hugepages since the 4GB range was allocated with mmap() and has no specific alignment. If posix_memalign() were used instead, unevictable would not have grown at all on the second mlock(). The fix is to call mlock_vma_page() so that the mlock bit is set and the page is added to the unevictable list. With this patch: mlock(ptr, MAP_SIZE); Inactive(anon): 4056 kB Unevictable: 4213940 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4198268 kB Unevictable: 19636 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4008 kB Unevictable: 4213940 kB Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:34:03 +08:00
}
skip_mlock:
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
out:
return page;
}
/* NUMA hinting page fault entry point for trans huge pmds */
mm: memory: add orig_pmd to struct vm_fault Pach series "mm: thp: use generic THP migration for NUMA hinting fault", v3. When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. It is definitely a maintenance burden to keep two THP migration implementation for different code paths and it is more error prone. Using the generic THP migration implementation allows us remove the duplicate code and some hacks needed by the old ad hoc implementation. A quick grep shows x86_64, PowerPC (book3s), ARM64 ans S390 support both THP and NUMA balancing. The most of them support THP migration except for S390. Zi Yan tried to add THP migration support for S390 before but it was not accepted due to the design of S390 PMD. For the discussion, please see: https://lkml.org/lkml/2018/4/27/953. Per the discussion with Gerald Schaefer in v1 it is acceptible to skip huge PMD for S390 for now. I saw there were some hacks about gup from git history, but I didn't figure out if they have been removed or not since I just found FOLL_NUMA code in the current gup implementation and they seems useful. Patch #1 ~ #2 are preparation patches. Patch #3 is the real meat. Patch #4 ~ #6 keep consistent counters and behaviors with before. Patch #7 skips change huge PMD to prot_none if thp migration is not supported. Test ---- Did some tests to measure the latency of do_huge_pmd_numa_page. The test VM has 80 vcpus and 64G memory. The test would create 2 processes to consume 128G memory together which would incur memory pressure to cause THP splits. And it also creates 80 processes to hog cpu, and the memory consumer processes are bound to different nodes periodically in order to increase NUMA faults. The below test script is used: echo 3 > /proc/sys/vm/drop_caches # Run stress-ng for 24 hours ./stress-ng/stress-ng --vm 2 --vm-bytes 64G --timeout 24h & PID=$! ./stress-ng/stress-ng --cpu $NR_CPUS --timeout 24h & # Wait for vm stressors forked sleep 5 PID_1=`pgrep -P $PID | awk 'NR == 1'` PID_2=`pgrep -P $PID | awk 'NR == 2'` JOB1=`pgrep -P $PID_1` JOB2=`pgrep -P $PID_2` # Bind load jobs to different nodes periodically to force generate # cross node memory access while [ -d "/proc/$PID" ] do taskset -apc 8 $JOB1 taskset -apc 8 $JOB2 sleep 300 taskset -apc 58 $JOB1 taskset -apc 58 $JOB2 sleep 300 done With the above test the histogram of latency of do_huge_pmd_numa_page is as shown below. Since the number of do_huge_pmd_numa_page varies drastically for each run (should be due to scheduler), so I converted the raw number to percentage. patched base @us[stress-ng]: [0] 3.57% 0.16% [1] 55.68% 18.36% [2, 4) 10.46% 40.44% [4, 8) 7.26% 17.82% [8, 16) 21.12% 13.41% [16, 32) 1.06% 4.27% [32, 64) 0.56% 4.07% [64, 128) 0.16% 0.35% [128, 256) < 0.1% < 0.1% [256, 512) < 0.1% < 0.1% [512, 1K) < 0.1% < 0.1% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) < 0.1% < 0.1% [16K, 32K) < 0.1% < 0.1% [32K, 64K) < 0.1% < 0.1% Per the result, patched kernel is even slightly better than the base kernel. I think this is because the lock contention against THP split is less than base kernel due to the refactor. To exclude the affect from THP split, I also did test w/o memory pressure. No obvious regression is spotted. The below is the test result *w/o* memory pressure. patched base @us[stress-ng]: [0] 7.97% 18.4% [1] 69.63% 58.24% [2, 4) 4.18% 2.63% [4, 8) 0.22% 0.17% [8, 16) 1.03% 0.92% [16, 32) 0.14% < 0.1% [32, 64) < 0.1% < 0.1% [64, 128) < 0.1% < 0.1% [128, 256) < 0.1% < 0.1% [256, 512) 0.45% 1.19% [512, 1K) 15.45% 17.27% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) 0.86% 0.88% [16K, 32K) < 0.1% 0.15% [32K, 64K) < 0.1% < 0.1% [64K, 128K) < 0.1% < 0.1% [128K, 256K) < 0.1% < 0.1% The series also survived a series of tests that exercise NUMA balancing migrations by Mel. This patch (of 7): Add orig_pmd to struct vm_fault so the "orig_pmd" parameter used by huge page fault could be removed, just like its PTE counterpart does. Link: https://lkml.kernel.org/r/20210518200801.7413-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20210518200801.7413-2-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:35 +08:00
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:42 +08:00
pmd_t oldpmd = vmf->orig_pmd;
pmd_t pmd;
struct page *page;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:42 +08:00
int page_nid = NUMA_NO_NODE;
int target_nid, last_cpupid = -1;
bool migrated = false;
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:42 +08:00
bool was_writable = pmd_savedwrite(oldpmd);
int flags = 0;
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:42 +08:00
if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
spin_unlock(vmf->ptl);
goto out;
}
mm, locking: Rework {set,clear,mm}_tlb_flush_pending() Commit: af2c1401e6f9 ("mm: numa: guarantee that tlb_flush_pending updates are visible before page table updates") added smp_mb__before_spinlock() to set_tlb_flush_pending(). I think we can solve the same problem without this barrier. If instead we mandate that mm_tlb_flush_pending() is used while holding the PTL we're guaranteed to observe prior set_tlb_flush_pending() instances. For this to work we need to rework migrate_misplaced_transhuge_page() a little and move the test up into do_huge_pmd_numa_page(). NOTE: this relies on flush_tlb_range() to guarantee: (1) it ensures that prior page table updates are visible to the page table walker and (2) it ensures that subsequent memory accesses are only made visible after the invalidation has completed This is required for architectures that implement TRANSPARENT_HUGEPAGE (arc, arm, arm64, mips, powerpc, s390, sparc, x86) or otherwise use mm_tlb_flush_pending() in their page-table operations (arm, arm64, x86). This appears true for: - arm (DSB ISB before and after), - arm64 (DSB ISHST before, and DSB ISH after), - powerpc (PTESYNC before and after), - s390 and x86 TLB invalidate are serializing instructions But I failed to understand the situation for: - arc, mips, sparc Now SPARC64 is a wee bit special in that flush_tlb_range() is a no-op and it flushes the TLBs using arch_{enter,leave}_lazy_mmu_mode() inside the PTL. It still needs to guarantee the PTL unlock happens _after_ the invalidate completes. Vineet, Ralf and Dave could you guys please have a look? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 00:05:07 +08:00
/*
* Since we took the NUMA fault, we must have observed the !accessible
* bit. Make sure all other CPUs agree with that, to avoid them
* modifying the page we're about to migrate.
*
* Must be done under PTL such that we'll observe the relevant
* inc_tlb_flush_pending().
*
* We are not sure a pending tlb flush here is for a huge page
* mapping or not. Hence use the tlb range variant
mm, locking: Rework {set,clear,mm}_tlb_flush_pending() Commit: af2c1401e6f9 ("mm: numa: guarantee that tlb_flush_pending updates are visible before page table updates") added smp_mb__before_spinlock() to set_tlb_flush_pending(). I think we can solve the same problem without this barrier. If instead we mandate that mm_tlb_flush_pending() is used while holding the PTL we're guaranteed to observe prior set_tlb_flush_pending() instances. For this to work we need to rework migrate_misplaced_transhuge_page() a little and move the test up into do_huge_pmd_numa_page(). NOTE: this relies on flush_tlb_range() to guarantee: (1) it ensures that prior page table updates are visible to the page table walker and (2) it ensures that subsequent memory accesses are only made visible after the invalidation has completed This is required for architectures that implement TRANSPARENT_HUGEPAGE (arc, arm, arm64, mips, powerpc, s390, sparc, x86) or otherwise use mm_tlb_flush_pending() in their page-table operations (arm, arm64, x86). This appears true for: - arm (DSB ISB before and after), - arm64 (DSB ISHST before, and DSB ISH after), - powerpc (PTESYNC before and after), - s390 and x86 TLB invalidate are serializing instructions But I failed to understand the situation for: - arc, mips, sparc Now SPARC64 is a wee bit special in that flush_tlb_range() is a no-op and it flushes the TLBs using arch_{enter,leave}_lazy_mmu_mode() inside the PTL. It still needs to guarantee the PTL unlock happens _after_ the invalidate completes. Vineet, Ralf and Dave could you guys please have a look? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 00:05:07 +08:00
*/
mm: thp: fix mmu_notifier in migrate_misplaced_transhuge_page() change_huge_pmd() after arming the numa/protnone pmd doesn't flush the TLB right away. do_huge_pmd_numa_page() flushes the TLB before calling migrate_misplaced_transhuge_page(). By the time do_huge_pmd_numa_page() runs some CPU could still access the page through the TLB. change_huge_pmd() before arming the numa/protnone transhuge pmd calls mmu_notifier_invalidate_range_start(). So there's no need of mmu_notifier_invalidate_range_start()/mmu_notifier_invalidate_range_only_end() sequence in migrate_misplaced_transhuge_page() too, because by the time migrate_misplaced_transhuge_page() runs, the pmd mapping has already been invalidated in the secondary MMUs. It has to or if a secondary MMU can still write to the page, the migrate_page_copy() would lose data. However an explicit mmu_notifier_invalidate_range() is needed before migrate_misplaced_transhuge_page() starts copying the data of the transhuge page or the below can happen for MMU notifier users sharing the primary MMU pagetables and only implementing ->invalidate_range: CPU0 CPU1 GPU sharing linux pagetables using only ->invalidate_range ----------- ------------ --------- GPU secondary MMU writes to the page mapped by the transhuge pmd change_pmd_range() mmu..._range_start() ->invalidate_range_start() noop change_huge_pmd() set_pmd_at(numa/protnone) pmd_unlock() do_huge_pmd_numa_page() CPU TLB flush globally (1) CPU cannot write to page migrate_misplaced_transhuge_page() GPU writes to the page... migrate_page_copy() ...GPU stops writing to the page CPU TLB flush (2) mmu..._range_end() (3) ->invalidate_range_stop() noop ->invalidate_range() GPU secondary MMU is invalidated and cannot write to the page anymore (too late) Just like we need a CPU TLB flush (1) because the TLB flush (2) arrives too late, we also need a mmu_notifier_invalidate_range() before calling migrate_misplaced_transhuge_page(), because the ->invalidate_range() in (3) also arrives too late. This requirement is the result of the lazy optimization in change_huge_pmd() that releases the pmd_lock without first flushing the TLB and without first calling mmu_notifier_invalidate_range(). Even converting the removed mmu_notifier_invalidate_range_only_end() into a mmu_notifier_invalidate_range_end() would not have been enough to fix this, because it run after migrate_page_copy(). After the hugepage data copy is done migrate_misplaced_transhuge_page() can proceed and call set_pmd_at without having to flush the TLB nor any secondary MMUs because the secondary MMU invalidate, just like the CPU TLB flush, has to happen before the migrate_page_copy() is called or it would be a bug in the first place (and it was for drivers using ->invalidate_range()). KVM is unaffected because it doesn't implement ->invalidate_range(). The standard PAGE_SIZEd migrate_misplaced_page is less accelerated and uses the generic migrate_pages which transitions the pte from numa/protnone to a migration entry in try_to_unmap_one() and flushes TLBs and all mmu notifiers there before copying the page. Link: http://lkml.kernel.org/r/20181013002430.698-3-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Aaron Tomlin <atomlin@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:10:40 +08:00
if (mm_tlb_flush_pending(vma->vm_mm)) {
flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
mm: thp: fix mmu_notifier in migrate_misplaced_transhuge_page() change_huge_pmd() after arming the numa/protnone pmd doesn't flush the TLB right away. do_huge_pmd_numa_page() flushes the TLB before calling migrate_misplaced_transhuge_page(). By the time do_huge_pmd_numa_page() runs some CPU could still access the page through the TLB. change_huge_pmd() before arming the numa/protnone transhuge pmd calls mmu_notifier_invalidate_range_start(). So there's no need of mmu_notifier_invalidate_range_start()/mmu_notifier_invalidate_range_only_end() sequence in migrate_misplaced_transhuge_page() too, because by the time migrate_misplaced_transhuge_page() runs, the pmd mapping has already been invalidated in the secondary MMUs. It has to or if a secondary MMU can still write to the page, the migrate_page_copy() would lose data. However an explicit mmu_notifier_invalidate_range() is needed before migrate_misplaced_transhuge_page() starts copying the data of the transhuge page or the below can happen for MMU notifier users sharing the primary MMU pagetables and only implementing ->invalidate_range: CPU0 CPU1 GPU sharing linux pagetables using only ->invalidate_range ----------- ------------ --------- GPU secondary MMU writes to the page mapped by the transhuge pmd change_pmd_range() mmu..._range_start() ->invalidate_range_start() noop change_huge_pmd() set_pmd_at(numa/protnone) pmd_unlock() do_huge_pmd_numa_page() CPU TLB flush globally (1) CPU cannot write to page migrate_misplaced_transhuge_page() GPU writes to the page... migrate_page_copy() ...GPU stops writing to the page CPU TLB flush (2) mmu..._range_end() (3) ->invalidate_range_stop() noop ->invalidate_range() GPU secondary MMU is invalidated and cannot write to the page anymore (too late) Just like we need a CPU TLB flush (1) because the TLB flush (2) arrives too late, we also need a mmu_notifier_invalidate_range() before calling migrate_misplaced_transhuge_page(), because the ->invalidate_range() in (3) also arrives too late. This requirement is the result of the lazy optimization in change_huge_pmd() that releases the pmd_lock without first flushing the TLB and without first calling mmu_notifier_invalidate_range(). Even converting the removed mmu_notifier_invalidate_range_only_end() into a mmu_notifier_invalidate_range_end() would not have been enough to fix this, because it run after migrate_page_copy(). After the hugepage data copy is done migrate_misplaced_transhuge_page() can proceed and call set_pmd_at without having to flush the TLB nor any secondary MMUs because the secondary MMU invalidate, just like the CPU TLB flush, has to happen before the migrate_page_copy() is called or it would be a bug in the first place (and it was for drivers using ->invalidate_range()). KVM is unaffected because it doesn't implement ->invalidate_range(). The standard PAGE_SIZEd migrate_misplaced_page is less accelerated and uses the generic migrate_pages which transitions the pte from numa/protnone to a migration entry in try_to_unmap_one() and flushes TLBs and all mmu notifiers there before copying the page. Link: http://lkml.kernel.org/r/20181013002430.698-3-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Aaron Tomlin <atomlin@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:10:40 +08:00
/*
* change_huge_pmd() released the pmd lock before
* invalidating the secondary MMUs sharing the primary
* MMU pagetables (with ->invalidate_range()). The
* mmu_notifier_invalidate_range_end() (which
* internally calls ->invalidate_range()) in
* change_pmd_range() will run after us, so we can't
* rely on it here and we need an explicit invalidate.
*/
mmu_notifier_invalidate_range(vma->vm_mm, haddr,
haddr + HPAGE_PMD_SIZE);
}
mm, locking: Rework {set,clear,mm}_tlb_flush_pending() Commit: af2c1401e6f9 ("mm: numa: guarantee that tlb_flush_pending updates are visible before page table updates") added smp_mb__before_spinlock() to set_tlb_flush_pending(). I think we can solve the same problem without this barrier. If instead we mandate that mm_tlb_flush_pending() is used while holding the PTL we're guaranteed to observe prior set_tlb_flush_pending() instances. For this to work we need to rework migrate_misplaced_transhuge_page() a little and move the test up into do_huge_pmd_numa_page(). NOTE: this relies on flush_tlb_range() to guarantee: (1) it ensures that prior page table updates are visible to the page table walker and (2) it ensures that subsequent memory accesses are only made visible after the invalidation has completed This is required for architectures that implement TRANSPARENT_HUGEPAGE (arc, arm, arm64, mips, powerpc, s390, sparc, x86) or otherwise use mm_tlb_flush_pending() in their page-table operations (arm, arm64, x86). This appears true for: - arm (DSB ISB before and after), - arm64 (DSB ISHST before, and DSB ISH after), - powerpc (PTESYNC before and after), - s390 and x86 TLB invalidate are serializing instructions But I failed to understand the situation for: - arc, mips, sparc Now SPARC64 is a wee bit special in that flush_tlb_range() is a no-op and it flushes the TLBs using arch_{enter,leave}_lazy_mmu_mode() inside the PTL. It still needs to guarantee the PTL unlock happens _after_ the invalidate completes. Vineet, Ralf and Dave could you guys please have a look? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 00:05:07 +08:00
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:42 +08:00
pmd = pmd_modify(oldpmd, vma->vm_page_prot);
page = vm_normal_page_pmd(vma, haddr, pmd);
if (!page)
goto out_map;
/* See similar comment in do_numa_page for explanation */
if (!was_writable)
flags |= TNF_NO_GROUP;
page_nid = page_to_nid(page);
last_cpupid = page_cpupid_last(page);
target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
&flags);
if (target_nid == NUMA_NO_NODE) {
put_page(page);
goto out_map;
}
spin_unlock(vmf->ptl);
mm, locking: Rework {set,clear,mm}_tlb_flush_pending() Commit: af2c1401e6f9 ("mm: numa: guarantee that tlb_flush_pending updates are visible before page table updates") added smp_mb__before_spinlock() to set_tlb_flush_pending(). I think we can solve the same problem without this barrier. If instead we mandate that mm_tlb_flush_pending() is used while holding the PTL we're guaranteed to observe prior set_tlb_flush_pending() instances. For this to work we need to rework migrate_misplaced_transhuge_page() a little and move the test up into do_huge_pmd_numa_page(). NOTE: this relies on flush_tlb_range() to guarantee: (1) it ensures that prior page table updates are visible to the page table walker and (2) it ensures that subsequent memory accesses are only made visible after the invalidation has completed This is required for architectures that implement TRANSPARENT_HUGEPAGE (arc, arm, arm64, mips, powerpc, s390, sparc, x86) or otherwise use mm_tlb_flush_pending() in their page-table operations (arm, arm64, x86). This appears true for: - arm (DSB ISB before and after), - arm64 (DSB ISHST before, and DSB ISH after), - powerpc (PTESYNC before and after), - s390 and x86 TLB invalidate are serializing instructions But I failed to understand the situation for: - arc, mips, sparc Now SPARC64 is a wee bit special in that flush_tlb_range() is a no-op and it flushes the TLBs using arch_{enter,leave}_lazy_mmu_mode() inside the PTL. It still needs to guarantee the PTL unlock happens _after_ the invalidate completes. Vineet, Ralf and Dave could you guys please have a look? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-08 00:05:07 +08:00
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:42 +08:00
migrated = migrate_misplaced_page(page, vma, target_nid);
if (migrated) {
flags |= TNF_MIGRATED;
page_nid = target_nid;
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:42 +08:00
} else {
mm: numa: slow PTE scan rate if migration failures occur Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226 Across the board the 4.0-rc1 numbers are much slower, and the degradation is far worse when using the large memory footprint configs. Perf points straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config: - 56.07% 56.07% [kernel] [k] default_send_IPI_mask_sequence_phys - default_send_IPI_mask_sequence_phys - 99.99% physflat_send_IPI_mask - 99.37% native_send_call_func_ipi smp_call_function_many - native_flush_tlb_others - 99.85% flush_tlb_page ptep_clear_flush try_to_unmap_one rmap_walk try_to_unmap migrate_pages migrate_misplaced_page - handle_mm_fault - 99.73% __do_page_fault trace_do_page_fault do_async_page_fault + async_page_fault 0.63% native_send_call_func_single_ipi generic_exec_single smp_call_function_single This is showing excessive migration activity even though excessive migrations are meant to get throttled. Normally, the scan rate is tuned on a per-task basis depending on the locality of faults. However, if migrations fail for any reason then the PTE scanner may scan faster if the faults continue to be remote. This means there is higher system CPU overhead and fault trapping at exactly the time we know that migrations cannot happen. This patch tracks when migration failures occur and slows the PTE scanner. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Dave Chinner <david@fromorbit.com> Tested-by: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-26 06:55:42 +08:00
flags |= TNF_MIGRATE_FAIL;
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:42 +08:00
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
spin_unlock(vmf->ptl);
goto out;
}
goto out_map;
}
out:
mm: replace all open encodings for NUMA_NO_NODE Patch series "Replace all open encodings for NUMA_NO_NODE", v3. All these places for replacement were found by running the following grep patterns on the entire kernel code. Please let me know if this might have missed some instances. This might also have replaced some false positives. I will appreciate suggestions, inputs and review. 1. git grep "nid == -1" 2. git grep "node == -1" 3. git grep "nid = -1" 4. git grep "node = -1" This patch (of 2): At present there are multiple places where invalid node number is encoded as -1. Even though implicitly understood it is always better to have macros in there. Replace these open encodings for an invalid node number with the global macro NUMA_NO_NODE. This helps remove NUMA related assumptions like 'invalid node' from various places redirecting them to a common definition. Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe] Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx] Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband] Cc: Joseph Qi <jiangqi903@gmail.com> Cc: Hans Verkuil <hverkuil@xs4all.nl> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 07:42:58 +08:00
if (page_nid != NUMA_NO_NODE)
task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
flags);
return 0;
mm: thp: refactor NUMA fault handling When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:51:42 +08:00
out_map:
/* Restore the PMD */
pmd = pmd_modify(oldpmd, vma->vm_page_prot);
pmd = pmd_mkyoung(pmd);
if (was_writable)
pmd = pmd_mkwrite(pmd);
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
spin_unlock(vmf->ptl);
goto out;
}
/*
* Return true if we do MADV_FREE successfully on entire pmd page.
* Otherwise, return false.
*/
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
pmd_t *pmd, unsigned long addr, unsigned long next)
{
spinlock_t *ptl;
pmd_t orig_pmd;
struct page *page;
struct mm_struct *mm = tlb->mm;
bool ret = false;
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
ptl = pmd_trans_huge_lock(pmd, vma);
if (!ptl)
goto out_unlocked;
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
orig_pmd = *pmd;
if (is_huge_zero_pmd(orig_pmd))
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
goto out;
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
if (unlikely(!pmd_present(orig_pmd))) {
VM_BUG_ON(thp_migration_supported() &&
!is_pmd_migration_entry(orig_pmd));
goto out;
}
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
page = pmd_page(orig_pmd);
/*
* If other processes are mapping this page, we couldn't discard
* the page unless they all do MADV_FREE so let's skip the page.
*/
if (total_mapcount(page) != 1)
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
goto out;
if (!trylock_page(page))
goto out;
/*
* If user want to discard part-pages of THP, split it so MADV_FREE
* will deactivate only them.
*/
if (next - addr != HPAGE_PMD_SIZE) {
get_page(page);
spin_unlock(ptl);
split_huge_page(page);
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
unlock_page(page);
thp, mm: fix crash due race in MADV_FREE handling Reinette reported the following crash: BUG: Bad page state in process log2exe pfn:57600 page:ffffea00015d8000 count:0 mapcount:0 mapping: (null) index:0x20200 flags: 0x4000000000040019(locked|uptodate|dirty|swapbacked) raw: 4000000000040019 0000000000000000 0000000000020200 00000000ffffffff raw: ffffea00015d8020 ffffea00015d8020 0000000000000000 0000000000000000 page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: 0x1(locked) Modules linked in: rfcomm 8021q bnep intel_rapl x86_pkg_temp_thermal coretemp efivars btusb btrtl btbcm pwm_lpss_pci snd_hda_codec_hdmi btintel pwm_lpss snd_hda_codec_realtek snd_soc_skl snd_hda_codec_generic snd_soc_skl_ipc spi_pxa2xx_platform snd_soc_sst_ipc snd_soc_sst_dsp i2c_designware_platform i2c_designware_core snd_hda_ext_core snd_soc_sst_match snd_hda_intel snd_hda_codec mei_me snd_hda_core mei snd_soc_rt286 snd_soc_rl6347a snd_soc_core efivarfs CPU: 1 PID: 354 Comm: log2exe Not tainted 4.12.0-rc7-test-test #19 Hardware name: Intel corporation NUC6CAYS/NUC6CAYB, BIOS AYAPLCEL.86A.0027.2016.1108.1529 11/08/2016 Call Trace: bad_page+0x16a/0x1f0 free_pages_check_bad+0x117/0x190 free_hot_cold_page+0x7b1/0xad0 __put_page+0x70/0xa0 madvise_free_huge_pmd+0x627/0x7b0 madvise_free_pte_range+0x6f8/0x1150 __walk_page_range+0x6b5/0xe30 walk_page_range+0x13b/0x310 madvise_free_page_range.isra.16+0xad/0xd0 madvise_free_single_vma+0x2e4/0x470 SyS_madvise+0x8ce/0x1450 If somebody frees the page under us and we hold the last reference to it, put_page() would attempt to free the page before unlocking it. The fix is trivial reorder of operations. Dave said: "I came up with the exact same patch. For posterity, here's the test case, generated by syzkaller and trimmed down by Reinette: https://www.sr71.net/~dave/intel/log2.c And the config that helps detect this: https://www.sr71.net/~dave/intel/config-log2" Fixes: b8d3c4c3009d ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/20170628101249.17879-1-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Reinette Chatre <reinette.chatre@intel.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Huang Ying <ying.huang@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:35:28 +08:00
put_page(page);
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
goto out_unlocked;
}
if (PageDirty(page))
ClearPageDirty(page);
unlock_page(page);
if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
pmdp_invalidate(vma, addr, pmd);
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
orig_pmd = pmd_mkold(orig_pmd);
orig_pmd = pmd_mkclean(orig_pmd);
set_pmd_at(mm, addr, pmd, orig_pmd);
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
}
mark_page_lazyfree(page);
ret = true;
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
out:
spin_unlock(ptl);
out_unlocked:
return ret;
}
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
pgtable_t pgtable;
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pte_free(mm, pgtable);
mm_dec_nr_ptes(mm);
}
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr)
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
{
pmd_t orig_pmd;
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
spinlock_t *ptl;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
ptl = __pmd_trans_huge_lock(pmd, vma);
if (!ptl)
return 0;
/*
* For architectures like ppc64 we look at deposited pgtable
* when calling pmdp_huge_get_and_clear. So do the
* pgtable_trans_huge_withdraw after finishing pmdp related
* operations.
*/
orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
tlb->fullmm);
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
if (vma_is_special_huge(vma)) {
if (arch_needs_pgtable_deposit())
zap_deposited_table(tlb->mm, pmd);
spin_unlock(ptl);
} else if (is_huge_zero_pmd(orig_pmd)) {
zap_deposited_table(tlb->mm, pmd);
spin_unlock(ptl);
} else {
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
struct page *page = NULL;
int flush_needed = 1;
if (pmd_present(orig_pmd)) {
page = pmd_page(orig_pmd);
page_remove_rmap(page, true);
VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
VM_BUG_ON_PAGE(!PageHead(page), page);
} else if (thp_migration_supported()) {
swp_entry_t entry;
VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
entry = pmd_to_swp_entry(orig_pmd);
mm: remove special swap entry functions Patch series "Add support for SVM atomics in Nouveau", v11. Introduction ============ Some devices have features such as atomic PTE bits that can be used to implement atomic access to system memory. To support atomic operations to a shared virtual memory page such a device needs access to that page which is exclusive of the CPU. This series introduces a mechanism to temporarily unmap pages granting exclusive access to a device. These changes are required to support OpenCL atomic operations in Nouveau to shared virtual memory (SVM) regions allocated with the CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the OpenCL SVM feature is available at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/ OpenCL_API.html#_shared_virtual_memory . Implementation ============== Exclusive device access is implemented by adding a new swap entry type (SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main difference is that on fault the original entry is immediately restored by the fault handler instead of waiting. Restoring the entry triggers calls to MMU notifers which allows a device driver to revoke the atomic access permission from the GPU prior to the CPU finalising the entry. Patches ======= Patches 1 & 2 refactor existing migration and device private entry functions. Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated functionality into separate functions - try_to_migrate_one() and try_to_munlock_one(). Patch 5 renames some existing code but does not introduce functionality. Patch 6 is a small clean-up to swap entry handling in copy_pte_range(). Patch 7 contains the bulk of the implementation for device exclusive memory. Patch 8 contains some additions to the HMM selftests to ensure everything works as expected. Patch 9 is a cleanup for the Nouveau SVM implementation. Patch 10 contains the implementation of atomic access for the Nouveau driver. Testing ======= This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program which checks that GPU atomic accesses to system memory are atomic. Without this series the test fails as there is no way of write-protecting the page mapping which results in the device clobbering CPU writes. For reference the test is available at https://ozlabs.org/~apopple/opencl_svm_atomics/ Further testing has been performed by adding support for testing exclusive access to the hmm-tests kselftests. This patch (of 10): Remove multiple similar inline functions for dealing with different types of special swap entries. Both migration and device private swap entries use the swap offset to store a pfn. Instead of multiple inline functions to obtain a struct page for each swap entry type use a common function pfn_swap_entry_to_page(). Also open-code the various entry_to_pfn() functions as this results is shorter code that is easier to understand. Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:54:06 +08:00
page = pfn_swap_entry_to_page(entry);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
flush_needed = 0;
} else
WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
if (PageAnon(page)) {
zap_deposited_table(tlb->mm, pmd);
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
} else {
if (arch_needs_pgtable_deposit())
zap_deposited_table(tlb->mm, pmd);
add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
}
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
spin_unlock(ptl);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
if (flush_needed)
tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
}
return 1;
thp: transparent hugepage core Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
}
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
spinlock_t *old_pmd_ptl,
struct vm_area_struct *vma)
{
/*
* With split pmd lock we also need to move preallocated
* PTE page table if new_pmd is on different PMD page table.
*
* We also don't deposit and withdraw tables for file pages.
*/
return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
if (unlikely(is_pmd_migration_entry(pmd)))
pmd = pmd_swp_mksoft_dirty(pmd);
else if (pmd_present(pmd))
pmd = pmd_mksoft_dirty(pmd);
#endif
return pmd;
}
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
mm/mremap: it is sure to have enough space when extent meets requirement Patch series "mm/mremap: cleanup move_page_tables() a little", v5. move_page_tables() tries to move page table by PMD or PTE. The root reason is if it tries to move PMD, both old and new range should be PMD aligned. But current code calculate old range and new range separately. This leads to some redundant check and calculation. This cleanup tries to consolidate the range check in one place to reduce some extra range handling. This patch (of 3): old_end is passed to these two functions to check whether there is enough space to do the move, while this check is done before invoking these functions. These two functions only would be invoked when extent meets the requirement and there is one check before invoking these functions: if (extent > old_end - old_addr) extent = old_end - old_addr; This implies (old_end - old_addr) won't fail the check in these two functions. Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Dmitry Osipenko <digetx@gmail.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Thomas Hellstrom (VMware) <thomas_os@shipmail.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Peter Xu <peterx@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Thomas Hellstrom <thellstrom@vmware.com> Link: http://lkml.kernel.org/r/20200710092835.56368-1-richard.weiyang@linux.alibaba.com Link: http://lkml.kernel.org/r/20200710092835.56368-2-richard.weiyang@linux.alibaba.com Link: http://lkml.kernel.org/r/20200708095028.41706-1-richard.weiyang@linux.alibaba.com Link: http://lkml.kernel.org/r/20200708095028.41706-2-richard.weiyang@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:23:40 +08:00
unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
{
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
spinlock_t *old_ptl, *new_ptl;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
pmd_t pmd;
struct mm_struct *mm = vma->vm_mm;
mremap: fix race between mremap() and page cleanning Prior to 3.15, there was a race between zap_pte_range() and page_mkclean() where writes to a page could be lost. Dave Hansen discovered by inspection that there is a similar race between move_ptes() and page_mkclean(). We've been able to reproduce the issue by enlarging the race window with a msleep(), but have not been able to hit it without modifying the code. So, we think it's a real issue, but is difficult or impossible to hit in practice. The zap_pte_range() issue is fixed by commit 1cf35d47712d("mm: split 'tlb_flush_mmu()' into tlb flushing and memory freeing parts"). And this patch is to fix the race between page_mkclean() and mremap(). Here is one possible way to hit the race: suppose a process mmapped a file with READ | WRITE and SHARED, it has two threads and they are bound to 2 different CPUs, e.g. CPU1 and CPU2. mmap returned X, then thread 1 did a write to addr X so that CPU1 now has a writable TLB for addr X on it. Thread 2 starts mremaping from addr X to Y while thread 1 cleaned the page and then did another write to the old addr X again. The 2nd write from thread 1 could succeed but the value will get lost. thread 1 thread 2 (bound to CPU1) (bound to CPU2) 1: write 1 to addr X to get a writeable TLB on this CPU 2: mremap starts 3: move_ptes emptied PTE for addr X and setup new PTE for addr Y and then dropped PTL for X and Y 4: page laundering for N by doing fadvise FADV_DONTNEED. When done, pageframe N is deemed clean. 5: *write 2 to addr X 6: tlb flush for addr X 7: munmap (Y, pagesize) to make the page unmapped 8: fadvise with FADV_DONTNEED again to kick the page off the pagecache 9: pread the page from file to verify the value. If 1 is there, it means we have lost the written 2. *the write may or may not cause segmentation fault, it depends on if the TLB is still on the CPU. Please note that this is only one specific way of how the race could occur, it didn't mean that the race could only occur in exact the above config, e.g. more than 2 threads could be involved and fadvise() could be done in another thread, etc. For anonymous pages, they could race between mremap() and page reclaim: THP: a huge PMD is moved by mremap to a new huge PMD, then the new huge PMD gets unmapped/splitted/pagedout before the flush tlb happened for the old huge PMD in move_page_tables() and we could still write data to it. The normal anonymous page has similar situation. To fix this, check for any dirty PTE in move_ptes()/move_huge_pmd() and if any, did the flush before dropping the PTL. If we did the flush for every move_ptes()/move_huge_pmd() call then we do not need to do the flush in move_pages_tables() for the whole range. But if we didn't, we still need to do the whole range flush. Alternatively, we can track which part of the range is flushed in move_ptes()/move_huge_pmd() and which didn't to avoid flushing the whole range in move_page_tables(). But that would require multiple tlb flushes for the different sub-ranges and should be less efficient than the single whole range flush. KBuild test on my Sandybridge desktop doesn't show any noticeable change. v4.9-rc4: real 5m14.048s user 32m19.800s sys 4m50.320s With this commit: real 5m13.888s user 32m19.330s sys 4m51.200s Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-10 17:16:33 +08:00
bool force_flush = false;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
/*
* The destination pmd shouldn't be established, free_pgtables()
* should have release it.
*/
if (WARN_ON(!pmd_none(*new_pmd))) {
VM_BUG_ON(pmd_trans_huge(*new_pmd));
return false;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
}
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
*/
old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
if (old_ptl) {
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
new_ptl = pmd_lockptr(mm, new_pmd);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
if (pmd_present(pmd))
force_flush = true;
VM_BUG_ON(!pmd_none(*new_pmd));
if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
pgtable_t pgtable;
pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
}
pmd = move_soft_dirty_pmd(pmd);
set_pmd_at(mm, new_addr, new_pmd, pmd);
mremap: fix race between mremap() and page cleanning Prior to 3.15, there was a race between zap_pte_range() and page_mkclean() where writes to a page could be lost. Dave Hansen discovered by inspection that there is a similar race between move_ptes() and page_mkclean(). We've been able to reproduce the issue by enlarging the race window with a msleep(), but have not been able to hit it without modifying the code. So, we think it's a real issue, but is difficult or impossible to hit in practice. The zap_pte_range() issue is fixed by commit 1cf35d47712d("mm: split 'tlb_flush_mmu()' into tlb flushing and memory freeing parts"). And this patch is to fix the race between page_mkclean() and mremap(). Here is one possible way to hit the race: suppose a process mmapped a file with READ | WRITE and SHARED, it has two threads and they are bound to 2 different CPUs, e.g. CPU1 and CPU2. mmap returned X, then thread 1 did a write to addr X so that CPU1 now has a writable TLB for addr X on it. Thread 2 starts mremaping from addr X to Y while thread 1 cleaned the page and then did another write to the old addr X again. The 2nd write from thread 1 could succeed but the value will get lost. thread 1 thread 2 (bound to CPU1) (bound to CPU2) 1: write 1 to addr X to get a writeable TLB on this CPU 2: mremap starts 3: move_ptes emptied PTE for addr X and setup new PTE for addr Y and then dropped PTL for X and Y 4: page laundering for N by doing fadvise FADV_DONTNEED. When done, pageframe N is deemed clean. 5: *write 2 to addr X 6: tlb flush for addr X 7: munmap (Y, pagesize) to make the page unmapped 8: fadvise with FADV_DONTNEED again to kick the page off the pagecache 9: pread the page from file to verify the value. If 1 is there, it means we have lost the written 2. *the write may or may not cause segmentation fault, it depends on if the TLB is still on the CPU. Please note that this is only one specific way of how the race could occur, it didn't mean that the race could only occur in exact the above config, e.g. more than 2 threads could be involved and fadvise() could be done in another thread, etc. For anonymous pages, they could race between mremap() and page reclaim: THP: a huge PMD is moved by mremap to a new huge PMD, then the new huge PMD gets unmapped/splitted/pagedout before the flush tlb happened for the old huge PMD in move_page_tables() and we could still write data to it. The normal anonymous page has similar situation. To fix this, check for any dirty PTE in move_ptes()/move_huge_pmd() and if any, did the flush before dropping the PTL. If we did the flush for every move_ptes()/move_huge_pmd() call then we do not need to do the flush in move_pages_tables() for the whole range. But if we didn't, we still need to do the whole range flush. Alternatively, we can track which part of the range is flushed in move_ptes()/move_huge_pmd() and which didn't to avoid flushing the whole range in move_page_tables(). But that would require multiple tlb flushes for the different sub-ranges and should be less efficient than the single whole range flush. KBuild test on my Sandybridge desktop doesn't show any noticeable change. v4.9-rc4: real 5m14.048s user 32m19.800s sys 4m50.320s With this commit: real 5m13.888s user 32m19.330s sys 4m51.200s Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-10 17:16:33 +08:00
if (force_flush)
flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
spin_unlock(old_ptl);
return true;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
}
return false;
thp: mremap support and TLB optimization This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01 08:08:30 +08:00
}
/*
* Returns
* - 0 if PMD could not be locked
* - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
* or if prot_numa but THP migration is not supported
* - HPAGE_PMD_NR if protections changed and TLB flush necessary
*/
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
mm: merge parameters for change_protection() change_protection() was used by either the NUMA or mprotect() code, there's one parameter for each of the callers (dirty_accountable and prot_numa). Further, these parameters are passed along the calls: - change_protection_range() - change_p4d_range() - change_pud_range() - change_pmd_range() - ... Now we introduce a flag for change_protect() and all these helpers to replace these parameters. Then we can avoid passing multiple parameters multiple times along the way. More importantly, it'll greatly simplify the work if we want to introduce any new parameters to change_protection(). In the follow up patches, a new parameter for userfaultfd write protection will be introduced. No functional change at all. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-7-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:05:45 +08:00
unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
{
struct mm_struct *mm = vma->vm_mm;
mm, thp: change pmd_trans_huge_lock() to return taken lock With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 06:30:54 +08:00
spinlock_t *ptl;
pmd_t entry;
bool preserve_write;
int ret;
mm: merge parameters for change_protection() change_protection() was used by either the NUMA or mprotect() code, there's one parameter for each of the callers (dirty_accountable and prot_numa). Further, these parameters are passed along the calls: - change_protection_range() - change_p4d_range() - change_pud_range() - change_pmd_range() - ... Now we introduce a flag for change_protect() and all these helpers to replace these parameters. Then we can avoid passing multiple parameters multiple times along the way. More importantly, it'll greatly simplify the work if we want to introduce any new parameters to change_protection(). In the follow up patches, a new parameter for userfaultfd write protection will be introduced. No functional change at all. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-7-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:05:45 +08:00
bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
userfaultfd: wp: apply _PAGE_UFFD_WP bit Firstly, introduce two new flags MM_CP_UFFD_WP[_RESOLVE] for change_protection() when used with uffd-wp and make sure the two new flags are exclusively used. Then, - For MM_CP_UFFD_WP: apply the _PAGE_UFFD_WP bit and remove _PAGE_RW when a range of memory is write protected by uffd - For MM_CP_UFFD_WP_RESOLVE: remove the _PAGE_UFFD_WP bit and recover _PAGE_RW when write protection is resolved from userspace And use this new interface in mwriteprotect_range() to replace the old MM_CP_DIRTY_ACCT. Do this change for both PTEs and huge PMDs. Then we can start to identify which PTE/PMD is write protected by general (e.g., COW or soft dirty tracking), and which is for userfaultfd-wp. Since we should keep the _PAGE_UFFD_WP when doing pte_modify(), add it into _PAGE_CHG_MASK as well. Meanwhile, since we have this new bit, we can be even more strict when detecting uffd-wp page faults in either do_wp_page() or wp_huge_pmd(). After we're with _PAGE_UFFD_WP, a special case is when a page is both protected by the general COW logic and also userfault-wp. Here the userfault-wp will have higher priority and will be handled first. Only after the uffd-wp bit is cleared on the PTE/PMD will we continue to handle the general COW. These are the steps on what will happen with such a page: 1. CPU accesses write protected shared page (so both protected by general COW and uffd-wp), blocked by uffd-wp first because in do_wp_page we'll handle uffd-wp first, so it has higher priority than general COW. 2. Uffd service thread receives the request, do UFFDIO_WRITEPROTECT to remove the uffd-wp bit upon the PTE/PMD. However here we still keep the write bit cleared. Notify the blocked CPU. 3. The blocked CPU resumes the page fault process with a fault retry, during retry it'll notice it was not with the uffd-wp bit this time but it is still write protected by general COW, then it'll go though the COW path in the fault handler, copy the page, apply write bit where necessary, and retry again. 4. The CPU will be able to access this page with write bit set. Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Martin Cracauer <cracauer@cons.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-8-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:05:49 +08:00
bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
if (prot_numa && !thp_migration_supported())
return 1;
ptl = __pmd_trans_huge_lock(pmd, vma);
if (!ptl)
return 0;
preserve_write = prot_numa && pmd_write(*pmd);
ret = 1;
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
if (is_swap_pmd(*pmd)) {
swp_entry_t entry = pmd_to_swp_entry(*pmd);
VM_BUG_ON(!is_pmd_migration_entry(*pmd));
if (is_writable_migration_entry(entry)) {
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
pmd_t newpmd;
/*
* A protection check is difficult so
* just be safe and disable write
*/
entry = make_readable_migration_entry(
swp_offset(entry));
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
newpmd = swp_entry_to_pmd(entry);
if (pmd_swp_soft_dirty(*pmd))
newpmd = pmd_swp_mksoft_dirty(newpmd);
mm/userfaultfd: fix uffd-wp special cases for fork() We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:49:02 +08:00
if (pmd_swp_uffd_wp(*pmd))
newpmd = pmd_swp_mkuffd_wp(newpmd);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
set_pmd_at(mm, addr, pmd, newpmd);
}
goto unlock;
}
#endif
/*
* Avoid trapping faults against the zero page. The read-only
* data is likely to be read-cached on the local CPU and
* local/remote hits to the zero page are not interesting.
*/
if (prot_numa && is_huge_zero_pmd(*pmd))
goto unlock;
if (prot_numa && pmd_protnone(*pmd))
goto unlock;
/*
* In case prot_numa, we are under mmap_read_lock(mm). It's critical
* to not clear pmd intermittently to avoid race with MADV_DONTNEED
* which is also under mmap_read_lock(mm):
*
* CPU0: CPU1:
* change_huge_pmd(prot_numa=1)
* pmdp_huge_get_and_clear_notify()
* madvise_dontneed()
* zap_pmd_range()
* pmd_trans_huge(*pmd) == 0 (without ptl)
* // skip the pmd
* set_pmd_at();
* // pmd is re-established
*
* The race makes MADV_DONTNEED miss the huge pmd and don't clear it
* which may break userspace.
*
* pmdp_invalidate() is required to make sure we don't miss
* dirty/young flags set by hardware.
*/
entry = pmdp_invalidate(vma, addr, pmd);
entry = pmd_modify(entry, newprot);
if (preserve_write)
entry = pmd_mk_savedwrite(entry);
userfaultfd: wp: apply _PAGE_UFFD_WP bit Firstly, introduce two new flags MM_CP_UFFD_WP[_RESOLVE] for change_protection() when used with uffd-wp and make sure the two new flags are exclusively used. Then, - For MM_CP_UFFD_WP: apply the _PAGE_UFFD_WP bit and remove _PAGE_RW when a range of memory is write protected by uffd - For MM_CP_UFFD_WP_RESOLVE: remove the _PAGE_UFFD_WP bit and recover _PAGE_RW when write protection is resolved from userspace And use this new interface in mwriteprotect_range() to replace the old MM_CP_DIRTY_ACCT. Do this change for both PTEs and huge PMDs. Then we can start to identify which PTE/PMD is write protected by general (e.g., COW or soft dirty tracking), and which is for userfaultfd-wp. Since we should keep the _PAGE_UFFD_WP when doing pte_modify(), add it into _PAGE_CHG_MASK as well. Meanwhile, since we have this new bit, we can be even more strict when detecting uffd-wp page faults in either do_wp_page() or wp_huge_pmd(). After we're with _PAGE_UFFD_WP, a special case is when a page is both protected by the general COW logic and also userfault-wp. Here the userfault-wp will have higher priority and will be handled first. Only after the uffd-wp bit is cleared on the PTE/PMD will we continue to handle the general COW. These are the steps on what will happen with such a page: 1. CPU accesses write protected shared page (so both protected by general COW and uffd-wp), blocked by uffd-wp first because in do_wp_page we'll handle uffd-wp first, so it has higher priority than general COW. 2. Uffd service thread receives the request, do UFFDIO_WRITEPROTECT to remove the uffd-wp bit upon the PTE/PMD. However here we still keep the write bit cleared. Notify the blocked CPU. 3. The blocked CPU resumes the page fault process with a fault retry, during retry it'll notice it was not with the uffd-wp bit this time but it is still write protected by general COW, then it'll go though the COW path in the fault handler, copy the page, apply write bit where necessary, and retry again. 4. The CPU will be able to access this page with write bit set. Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Martin Cracauer <cracauer@cons.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-8-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:05:49 +08:00
if (uffd_wp) {
entry = pmd_wrprotect(entry);
entry = pmd_mkuffd_wp(entry);
} else if (uffd_wp_resolve) {
/*
* Leave the write bit to be handled by PF interrupt
* handler, then things like COW could be properly
* handled.
*/
entry = pmd_clear_uffd_wp(entry);
}
ret = HPAGE_PMD_NR;
set_pmd_at(mm, addr, pmd, entry);
BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
spin_unlock(ptl);
return ret;
}
/*
* Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
*
* Note that if it returns page table lock pointer, this routine returns without
* unlocking page table lock. So callers must unlock it.
*/
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
{
spinlock_t *ptl;
ptl = pmd_lock(vma->vm_mm, pmd);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
pmd_devmap(*pmd)))
return ptl;
spin_unlock(ptl);
return NULL;
}
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
/*
* Returns true if a given pud maps a thp, false otherwise.
*
* Note that if it returns true, this routine returns without unlocking page
* table lock. So callers must unlock it.
*/
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
spinlock_t *ptl;
ptl = pud_lock(vma->vm_mm, pud);
if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
return ptl;
spin_unlock(ptl);
return NULL;
}
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
pud_t *pud, unsigned long addr)
{
spinlock_t *ptl;
ptl = __pud_trans_huge_lock(pud, vma);
if (!ptl)
return 0;
/*
* For architectures like ppc64 we look at deposited pgtable
* when calling pudp_huge_get_and_clear. So do the
* pgtable_trans_huge_withdraw after finishing pudp related
* operations.
*/
pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
tlb_remove_pud_tlb_entry(tlb, pud, addr);
if (vma_is_special_huge(vma)) {
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
spin_unlock(ptl);
/* No zero page support yet */
} else {
/* No support for anonymous PUD pages yet */
BUG();
}
return 1;
}
static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
unsigned long haddr)
{
VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
count_vm_event(THP_SPLIT_PUD);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
pudp_huge_clear_flush_notify(vma, haddr, pud);
}
void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
unsigned long address)
{
spinlock_t *ptl;
struct mmu_notifier_range range;
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
mm/mmu_notifier: contextual information for event triggering invalidation CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). Users of mmu notifier API track changes to the CPU page table and take specific action for them. While current API only provide range of virtual address affected by the change, not why the changes is happening. This patchset do the initial mechanical convertion of all the places that calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP event as well as the vma if it is know (most invalidation happens against a given vma). Passing down the vma allows the users of mmu notifier to inspect the new vma page protection. The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier should assume that every for the range is going away when that event happens. A latter patch do convert mm call path to use a more appropriate events for each call. This is done as 2 patches so that no call site is forgotten especialy as it uses this following coccinelle patch: %<---------------------------------------------------------------------- @@ identifier I1, I2, I3, I4; @@ static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1, +enum mmu_notifier_event event, +unsigned flags, +struct vm_area_struct *vma, struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... } @@ @@ -#define mmu_notifier_range_init(range, mm, start, end) +#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end) @@ expression E1, E3, E4; identifier I1; @@ <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, I1, I1->vm_mm, E3, E4) ...> @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(..., struct vm_area_struct *VMA, ...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(...) { struct vm_area_struct *VMA; <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN; @@ FN(...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, NULL, E2, E3, E4) ...> } ---------------------------------------------------------------------->% Applied with: spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place spatch --sp-file mmu-notifier.spatch --dir mm --in-place Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:20:49 +08:00
address & HPAGE_PUD_MASK,
(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
mmu_notifier_invalidate_range_start(&range);
ptl = pud_lock(vma->vm_mm, pud);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
goto out;
__split_huge_pud_locked(vma, pud, range.start);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
out:
spin_unlock(ptl);
mm/mmu_notifier: avoid call to invalidate_range() in range_end() This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:11 +08:00
/*
* No need to double call mmu_notifier->invalidate_range() callback as
* the above pudp_huge_clear_flush_notify() did already call it.
*/
mmu_notifier_invalidate_range_only_end(&range);
mm, x86: add support for PUD-sized transparent hugepages The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:57:02 +08:00
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
unsigned long haddr, pmd_t *pmd)
{
struct mm_struct *mm = vma->vm_mm;
pgtable_t pgtable;
pmd_t _pmd;
int i;
mm/mmu_notifier: avoid double notification when it is useless This patch only affects users of mmu_notifier->invalidate_range callback which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ... and it is an optimization for those users. Everyone else is unaffected by it. When clearing a pte/pmd we are given a choice to notify the event under the page table lock (notify version of *_clear_flush helpers do call the mmu_notifier_invalidate_range). But that notification is not necessary in all cases. This patch removes almost all cases where it is useless to have a call to mmu_notifier_invalidate_range before mmu_notifier_invalidate_range_end. It also adds documentation in all those cases explaining why. Below is a more in depth analysis of why this is fine to do this: For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when device use thing like ATS/PASID to get the IOMMU to walk the CPU page table to access a process virtual address space). There is only 2 cases when you need to notify those secondary TLB while holding page table lock when clearing a pte/pmd: A) page backing address is free before mmu_notifier_invalidate_range_end B) a page table entry is updated to point to a new page (COW, write fault on zero page, __replace_page(), ...) Case A is obvious you do not want to take the risk for the device to write to a page that might now be used by something completely different. Case B is more subtle. For correctness it requires the following sequence to happen: - take page table lock - clear page table entry and notify (pmd/pte_huge_clear_flush_notify()) - set page table entry to point to new page If clearing the page table entry is not followed by a notify before setting the new pte/pmd value then you can break memory model like C11 or C++11 for the device. Consider the following scenario (device use a feature similar to ATS/ PASID): Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we assume they are write protected for COW (other case of B apply too). [Time N] ----------------------------------------------------------------- CPU-thread-0 {try to write to addrA} CPU-thread-1 {try to write to addrB} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA and populate device TLB} DEV-thread-2 {read addrB and populate device TLB} [Time N+1] --------------------------------------------------------------- CPU-thread-0 {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}} CPU-thread-1 {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+2] --------------------------------------------------------------- CPU-thread-0 {COW_step1: {update page table point to new page for addrA}} CPU-thread-1 {COW_step1: {update page table point to new page for addrB}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {write to addrA which is a write to new page} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {} CPU-thread-3 {write to addrB which is a write to new page} DEV-thread-0 {} DEV-thread-2 {} [Time N+4] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+5] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA from old page} DEV-thread-2 {read addrB from new page} So here because at time N+2 the clear page table entry was not pair with a notification to invalidate the secondary TLB, the device see the new value for addrB before seing the new value for addrA. This break total memory ordering for the device. When changing a pte to write protect or to point to a new write protected page with same content (KSM) it is ok to delay invalidate_range callback to mmu_notifier_invalidate_range_end() outside the page table lock. This is true even if the thread doing page table update is preempted right after releasing page table lock before calling mmu_notifier_invalidate_range_end Thanks to Andrea for thinking of a problematic scenario for COW. [jglisse@redhat.com: v2] Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:07 +08:00
/*
* Leave pmd empty until pte is filled note that it is fine to delay
* notification until mmu_notifier_invalidate_range_end() as we are
* replacing a zero pmd write protected page with a zero pte write
* protected page.
*
* See Documentation/vm/mmu_notifier.rst
mm/mmu_notifier: avoid double notification when it is useless This patch only affects users of mmu_notifier->invalidate_range callback which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ... and it is an optimization for those users. Everyone else is unaffected by it. When clearing a pte/pmd we are given a choice to notify the event under the page table lock (notify version of *_clear_flush helpers do call the mmu_notifier_invalidate_range). But that notification is not necessary in all cases. This patch removes almost all cases where it is useless to have a call to mmu_notifier_invalidate_range before mmu_notifier_invalidate_range_end. It also adds documentation in all those cases explaining why. Below is a more in depth analysis of why this is fine to do this: For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when device use thing like ATS/PASID to get the IOMMU to walk the CPU page table to access a process virtual address space). There is only 2 cases when you need to notify those secondary TLB while holding page table lock when clearing a pte/pmd: A) page backing address is free before mmu_notifier_invalidate_range_end B) a page table entry is updated to point to a new page (COW, write fault on zero page, __replace_page(), ...) Case A is obvious you do not want to take the risk for the device to write to a page that might now be used by something completely different. Case B is more subtle. For correctness it requires the following sequence to happen: - take page table lock - clear page table entry and notify (pmd/pte_huge_clear_flush_notify()) - set page table entry to point to new page If clearing the page table entry is not followed by a notify before setting the new pte/pmd value then you can break memory model like C11 or C++11 for the device. Consider the following scenario (device use a feature similar to ATS/ PASID): Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we assume they are write protected for COW (other case of B apply too). [Time N] ----------------------------------------------------------------- CPU-thread-0 {try to write to addrA} CPU-thread-1 {try to write to addrB} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA and populate device TLB} DEV-thread-2 {read addrB and populate device TLB} [Time N+1] --------------------------------------------------------------- CPU-thread-0 {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}} CPU-thread-1 {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+2] --------------------------------------------------------------- CPU-thread-0 {COW_step1: {update page table point to new page for addrA}} CPU-thread-1 {COW_step1: {update page table point to new page for addrB}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {write to addrA which is a write to new page} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {} CPU-thread-3 {write to addrB which is a write to new page} DEV-thread-0 {} DEV-thread-2 {} [Time N+4] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+5] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA from old page} DEV-thread-2 {read addrB from new page} So here because at time N+2 the clear page table entry was not pair with a notification to invalidate the secondary TLB, the device see the new value for addrB before seing the new value for addrA. This break total memory ordering for the device. When changing a pte to write protect or to point to a new write protected page with same content (KSM) it is ok to delay invalidate_range callback to mmu_notifier_invalidate_range_end() outside the page table lock. This is true even if the thread doing page table update is preempted right after releasing page table lock before calling mmu_notifier_invalidate_range_end Thanks to Andrea for thinking of a problematic scenario for COW. [jglisse@redhat.com: v2] Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:07 +08:00
*/
pmdp_huge_clear_flush(vma, haddr, pmd);
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
pte_t *pte, entry;
entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
entry = pte_mkspecial(entry);
pte = pte_offset_map(&_pmd, haddr);
VM_BUG_ON(!pte_none(*pte));
set_pte_at(mm, haddr, pte, entry);
pte_unmap(pte);
}
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
}
static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long haddr, bool freeze)
{
struct mm_struct *mm = vma->vm_mm;
struct page *page;
pgtable_t pgtable;
pmd_t old_pmd, _pmd;
userfaultfd: wp: apply _PAGE_UFFD_WP bit Firstly, introduce two new flags MM_CP_UFFD_WP[_RESOLVE] for change_protection() when used with uffd-wp and make sure the two new flags are exclusively used. Then, - For MM_CP_UFFD_WP: apply the _PAGE_UFFD_WP bit and remove _PAGE_RW when a range of memory is write protected by uffd - For MM_CP_UFFD_WP_RESOLVE: remove the _PAGE_UFFD_WP bit and recover _PAGE_RW when write protection is resolved from userspace And use this new interface in mwriteprotect_range() to replace the old MM_CP_DIRTY_ACCT. Do this change for both PTEs and huge PMDs. Then we can start to identify which PTE/PMD is write protected by general (e.g., COW or soft dirty tracking), and which is for userfaultfd-wp. Since we should keep the _PAGE_UFFD_WP when doing pte_modify(), add it into _PAGE_CHG_MASK as well. Meanwhile, since we have this new bit, we can be even more strict when detecting uffd-wp page faults in either do_wp_page() or wp_huge_pmd(). After we're with _PAGE_UFFD_WP, a special case is when a page is both protected by the general COW logic and also userfault-wp. Here the userfault-wp will have higher priority and will be handled first. Only after the uffd-wp bit is cleared on the PTE/PMD will we continue to handle the general COW. These are the steps on what will happen with such a page: 1. CPU accesses write protected shared page (so both protected by general COW and uffd-wp), blocked by uffd-wp first because in do_wp_page we'll handle uffd-wp first, so it has higher priority than general COW. 2. Uffd service thread receives the request, do UFFDIO_WRITEPROTECT to remove the uffd-wp bit upon the PTE/PMD. However here we still keep the write bit cleared. Notify the blocked CPU. 3. The blocked CPU resumes the page fault process with a fault retry, during retry it'll notice it was not with the uffd-wp bit this time but it is still write protected by general COW, then it'll go though the COW path in the fault handler, copy the page, apply write bit where necessary, and retry again. 4. The CPU will be able to access this page with write bit set. Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Martin Cracauer <cracauer@cons.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-8-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:05:49 +08:00
bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
unsigned long addr;
int i;
VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
&& !pmd_devmap(*pmd));
count_vm_event(THP_SPLIT_PMD);
if (!vma_is_anonymous(vma)) {
mm/thp: fix __split_huge_pmd_locked() on shmem migration entry Patch series "mm/thp: fix THP splitting unmap BUGs and related", v10. Here is v2 batch of long-standing THP bug fixes that I had not got around to sending before, but prompted now by Wang Yugui's report https://lore.kernel.org/linux-mm/20210412180659.B9E3.409509F4@e16-tech.com/ Wang Yugui has tested a rollup of these fixes applied to 5.10.39, and they have done no harm, but have *not* fixed that issue: something more is needed and I have no idea of what. This patch (of 7): Stressing huge tmpfs page migration racing hole punch often crashed on the VM_BUG_ON(!pmd_present) in pmdp_huge_clear_flush(), with DEBUG_VM=y kernel; or shortly afterwards, on a bad dereference in __split_huge_pmd_locked() when DEBUG_VM=n. They forgot to allow for pmd migration entries in the non-anonymous case. Full disclosure: those particular experiments were on a kernel with more relaxed mmap_lock and i_mmap_rwsem locking, and were not repeated on the vanilla kernel: it is conceivable that stricter locking happens to avoid those cases, or makes them less likely; but __split_huge_pmd_locked() already allowed for pmd migration entries when handling anonymous THPs, so this commit brings the shmem and file THP handling into line. And while there: use old_pmd rather than _pmd, as in the following blocks; and make it clearer to the eye that the !vma_is_anonymous() block is self-contained, making an early return after accounting for unmapping. Link: https://lkml.kernel.org/r/af88612-1473-2eaa-903-8d1a448b26@google.com Link: https://lkml.kernel.org/r/dd221a99-efb3-cd1d-6256-7e646af29314@google.com Fixes: e71769ae5260 ("mm: enable thp migration for shmem thp") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jue Wang <juew@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Shakeel Butt <shakeelb@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:23:45 +08:00
old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
/*
* We are going to unmap this huge page. So
* just go ahead and zap it
*/
if (arch_needs_pgtable_deposit())
zap_deposited_table(mm, pmd);
if (vma_is_special_huge(vma))
return;
mm/thp: fix __split_huge_pmd_locked() on shmem migration entry Patch series "mm/thp: fix THP splitting unmap BUGs and related", v10. Here is v2 batch of long-standing THP bug fixes that I had not got around to sending before, but prompted now by Wang Yugui's report https://lore.kernel.org/linux-mm/20210412180659.B9E3.409509F4@e16-tech.com/ Wang Yugui has tested a rollup of these fixes applied to 5.10.39, and they have done no harm, but have *not* fixed that issue: something more is needed and I have no idea of what. This patch (of 7): Stressing huge tmpfs page migration racing hole punch often crashed on the VM_BUG_ON(!pmd_present) in pmdp_huge_clear_flush(), with DEBUG_VM=y kernel; or shortly afterwards, on a bad dereference in __split_huge_pmd_locked() when DEBUG_VM=n. They forgot to allow for pmd migration entries in the non-anonymous case. Full disclosure: those particular experiments were on a kernel with more relaxed mmap_lock and i_mmap_rwsem locking, and were not repeated on the vanilla kernel: it is conceivable that stricter locking happens to avoid those cases, or makes them less likely; but __split_huge_pmd_locked() already allowed for pmd migration entries when handling anonymous THPs, so this commit brings the shmem and file THP handling into line. And while there: use old_pmd rather than _pmd, as in the following blocks; and make it clearer to the eye that the !vma_is_anonymous() block is self-contained, making an early return after accounting for unmapping. Link: https://lkml.kernel.org/r/af88612-1473-2eaa-903-8d1a448b26@google.com Link: https://lkml.kernel.org/r/dd221a99-efb3-cd1d-6256-7e646af29314@google.com Fixes: e71769ae5260 ("mm: enable thp migration for shmem thp") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jue Wang <juew@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Shakeel Butt <shakeelb@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:23:45 +08:00
if (unlikely(is_pmd_migration_entry(old_pmd))) {
swp_entry_t entry;
entry = pmd_to_swp_entry(old_pmd);
mm: remove special swap entry functions Patch series "Add support for SVM atomics in Nouveau", v11. Introduction ============ Some devices have features such as atomic PTE bits that can be used to implement atomic access to system memory. To support atomic operations to a shared virtual memory page such a device needs access to that page which is exclusive of the CPU. This series introduces a mechanism to temporarily unmap pages granting exclusive access to a device. These changes are required to support OpenCL atomic operations in Nouveau to shared virtual memory (SVM) regions allocated with the CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the OpenCL SVM feature is available at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/ OpenCL_API.html#_shared_virtual_memory . Implementation ============== Exclusive device access is implemented by adding a new swap entry type (SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main difference is that on fault the original entry is immediately restored by the fault handler instead of waiting. Restoring the entry triggers calls to MMU notifers which allows a device driver to revoke the atomic access permission from the GPU prior to the CPU finalising the entry. Patches ======= Patches 1 & 2 refactor existing migration and device private entry functions. Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated functionality into separate functions - try_to_migrate_one() and try_to_munlock_one(). Patch 5 renames some existing code but does not introduce functionality. Patch 6 is a small clean-up to swap entry handling in copy_pte_range(). Patch 7 contains the bulk of the implementation for device exclusive memory. Patch 8 contains some additions to the HMM selftests to ensure everything works as expected. Patch 9 is a cleanup for the Nouveau SVM implementation. Patch 10 contains the implementation of atomic access for the Nouveau driver. Testing ======= This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program which checks that GPU atomic accesses to system memory are atomic. Without this series the test fails as there is no way of write-protecting the page mapping which results in the device clobbering CPU writes. For reference the test is available at https://ozlabs.org/~apopple/opencl_svm_atomics/ Further testing has been performed by adding support for testing exclusive access to the hmm-tests kselftests. This patch (of 10): Remove multiple similar inline functions for dealing with different types of special swap entries. Both migration and device private swap entries use the swap offset to store a pfn. Instead of multiple inline functions to obtain a struct page for each swap entry type use a common function pfn_swap_entry_to_page(). Also open-code the various entry_to_pfn() functions as this results is shorter code that is easier to understand. Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:54:06 +08:00
page = pfn_swap_entry_to_page(entry);
mm/thp: fix __split_huge_pmd_locked() on shmem migration entry Patch series "mm/thp: fix THP splitting unmap BUGs and related", v10. Here is v2 batch of long-standing THP bug fixes that I had not got around to sending before, but prompted now by Wang Yugui's report https://lore.kernel.org/linux-mm/20210412180659.B9E3.409509F4@e16-tech.com/ Wang Yugui has tested a rollup of these fixes applied to 5.10.39, and they have done no harm, but have *not* fixed that issue: something more is needed and I have no idea of what. This patch (of 7): Stressing huge tmpfs page migration racing hole punch often crashed on the VM_BUG_ON(!pmd_present) in pmdp_huge_clear_flush(), with DEBUG_VM=y kernel; or shortly afterwards, on a bad dereference in __split_huge_pmd_locked() when DEBUG_VM=n. They forgot to allow for pmd migration entries in the non-anonymous case. Full disclosure: those particular experiments were on a kernel with more relaxed mmap_lock and i_mmap_rwsem locking, and were not repeated on the vanilla kernel: it is conceivable that stricter locking happens to avoid those cases, or makes them less likely; but __split_huge_pmd_locked() already allowed for pmd migration entries when handling anonymous THPs, so this commit brings the shmem and file THP handling into line. And while there: use old_pmd rather than _pmd, as in the following blocks; and make it clearer to the eye that the !vma_is_anonymous() block is self-contained, making an early return after accounting for unmapping. Link: https://lkml.kernel.org/r/af88612-1473-2eaa-903-8d1a448b26@google.com Link: https://lkml.kernel.org/r/dd221a99-efb3-cd1d-6256-7e646af29314@google.com Fixes: e71769ae5260 ("mm: enable thp migration for shmem thp") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jue Wang <juew@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Shakeel Butt <shakeelb@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:23:45 +08:00
} else {
page = pmd_page(old_pmd);
if (!PageDirty(page) && pmd_dirty(old_pmd))
set_page_dirty(page);
if (!PageReferenced(page) && pmd_young(old_pmd))
SetPageReferenced(page);
page_remove_rmap(page, true);
put_page(page);
}
add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
return;
mm/thp: fix __split_huge_pmd_locked() on shmem migration entry Patch series "mm/thp: fix THP splitting unmap BUGs and related", v10. Here is v2 batch of long-standing THP bug fixes that I had not got around to sending before, but prompted now by Wang Yugui's report https://lore.kernel.org/linux-mm/20210412180659.B9E3.409509F4@e16-tech.com/ Wang Yugui has tested a rollup of these fixes applied to 5.10.39, and they have done no harm, but have *not* fixed that issue: something more is needed and I have no idea of what. This patch (of 7): Stressing huge tmpfs page migration racing hole punch often crashed on the VM_BUG_ON(!pmd_present) in pmdp_huge_clear_flush(), with DEBUG_VM=y kernel; or shortly afterwards, on a bad dereference in __split_huge_pmd_locked() when DEBUG_VM=n. They forgot to allow for pmd migration entries in the non-anonymous case. Full disclosure: those particular experiments were on a kernel with more relaxed mmap_lock and i_mmap_rwsem locking, and were not repeated on the vanilla kernel: it is conceivable that stricter locking happens to avoid those cases, or makes them less likely; but __split_huge_pmd_locked() already allowed for pmd migration entries when handling anonymous THPs, so this commit brings the shmem and file THP handling into line. And while there: use old_pmd rather than _pmd, as in the following blocks; and make it clearer to the eye that the !vma_is_anonymous() block is self-contained, making an early return after accounting for unmapping. Link: https://lkml.kernel.org/r/af88612-1473-2eaa-903-8d1a448b26@google.com Link: https://lkml.kernel.org/r/dd221a99-efb3-cd1d-6256-7e646af29314@google.com Fixes: e71769ae5260 ("mm: enable thp migration for shmem thp") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jue Wang <juew@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Shakeel Butt <shakeelb@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:23:45 +08:00
}
mm/thp: make is_huge_zero_pmd() safe and quicker Most callers of is_huge_zero_pmd() supply a pmd already verified present; but a few (notably zap_huge_pmd()) do not - it might be a pmd migration entry, in which the pfn is encoded differently from a present pmd: which might pass the is_huge_zero_pmd() test (though not on x86, since L1TF forced us to protect against that); or perhaps even crash in pmd_page() applied to a swap-like entry. Make it safe by adding pmd_present() check into is_huge_zero_pmd() itself; and make it quicker by saving huge_zero_pfn, so that is_huge_zero_pmd() will not need to do that pmd_page() lookup each time. __split_huge_pmd_locked() checked pmd_trans_huge() before: that worked, but is unnecessary now that is_huge_zero_pmd() checks present. Link: https://lkml.kernel.org/r/21ea9ca-a1f5-8b90-5e88-95fb1c49bbfa@google.com Fixes: e71769ae5260 ("mm: enable thp migration for shmem thp") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:23:49 +08:00
if (is_huge_zero_pmd(*pmd)) {
mm/mmu_notifier: avoid call to invalidate_range() in range_end() This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:11 +08:00
/*
* FIXME: Do we want to invalidate secondary mmu by calling
* mmu_notifier_invalidate_range() see comments below inside
* __split_huge_pmd() ?
*
* We are going from a zero huge page write protected to zero
* small page also write protected so it does not seems useful
* to invalidate secondary mmu at this time.
*/
return __split_huge_zero_page_pmd(vma, haddr, pmd);
}
/*
* Up to this point the pmd is present and huge and userland has the
* whole access to the hugepage during the split (which happens in
* place). If we overwrite the pmd with the not-huge version pointing
* to the pte here (which of course we could if all CPUs were bug
* free), userland could trigger a small page size TLB miss on the
* small sized TLB while the hugepage TLB entry is still established in
* the huge TLB. Some CPU doesn't like that.
* See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
* 383 on page 105. Intel should be safe but is also warns that it's
* only safe if the permission and cache attributes of the two entries
* loaded in the two TLB is identical (which should be the case here).
* But it is generally safer to never allow small and huge TLB entries
* for the same virtual address to be loaded simultaneously. So instead
* of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
* current pmd notpresent (atomically because here the pmd_trans_huge
* must remain set at all times on the pmd until the split is complete
* for this pmd), then we flush the SMP TLB and finally we write the
* non-huge version of the pmd entry with pmd_populate.
*/
old_pmd = pmdp_invalidate(vma, haddr, pmd);
pmd_migration = is_pmd_migration_entry(old_pmd);
mm: thp: fix flags for pmd migration when split When splitting a huge migrating PMD, we'll transfer all the existing PMD bits and apply them again onto the small PTEs. However we are fetching the bits unconditionally via pmd_soft_dirty(), pmd_write() or pmd_yound() while actually they don't make sense at all when it's a migration entry. Fix them up. Since at it, drop the ifdef together as not needed. Note that if my understanding is correct about the problem then if without the patch there is chance to lose some of the dirty bits in the migrating pmd pages (on x86_64 we're fetching bit 11 which is part of swap offset instead of bit 2) and it could potentially corrupt the memory of an userspace program which depends on the dirty bit. Link: http://lkml.kernel.org/r/20181213051510.20306-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-22 06:30:50 +08:00
if (unlikely(pmd_migration)) {
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
swp_entry_t entry;
entry = pmd_to_swp_entry(old_pmd);
mm: remove special swap entry functions Patch series "Add support for SVM atomics in Nouveau", v11. Introduction ============ Some devices have features such as atomic PTE bits that can be used to implement atomic access to system memory. To support atomic operations to a shared virtual memory page such a device needs access to that page which is exclusive of the CPU. This series introduces a mechanism to temporarily unmap pages granting exclusive access to a device. These changes are required to support OpenCL atomic operations in Nouveau to shared virtual memory (SVM) regions allocated with the CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the OpenCL SVM feature is available at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/ OpenCL_API.html#_shared_virtual_memory . Implementation ============== Exclusive device access is implemented by adding a new swap entry type (SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main difference is that on fault the original entry is immediately restored by the fault handler instead of waiting. Restoring the entry triggers calls to MMU notifers which allows a device driver to revoke the atomic access permission from the GPU prior to the CPU finalising the entry. Patches ======= Patches 1 & 2 refactor existing migration and device private entry functions. Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated functionality into separate functions - try_to_migrate_one() and try_to_munlock_one(). Patch 5 renames some existing code but does not introduce functionality. Patch 6 is a small clean-up to swap entry handling in copy_pte_range(). Patch 7 contains the bulk of the implementation for device exclusive memory. Patch 8 contains some additions to the HMM selftests to ensure everything works as expected. Patch 9 is a cleanup for the Nouveau SVM implementation. Patch 10 contains the implementation of atomic access for the Nouveau driver. Testing ======= This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program which checks that GPU atomic accesses to system memory are atomic. Without this series the test fails as there is no way of write-protecting the page mapping which results in the device clobbering CPU writes. For reference the test is available at https://ozlabs.org/~apopple/opencl_svm_atomics/ Further testing has been performed by adding support for testing exclusive access to the hmm-tests kselftests. This patch (of 10): Remove multiple similar inline functions for dealing with different types of special swap entries. Both migration and device private swap entries use the swap offset to store a pfn. Instead of multiple inline functions to obtain a struct page for each swap entry type use a common function pfn_swap_entry_to_page(). Also open-code the various entry_to_pfn() functions as this results is shorter code that is easier to understand. Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:54:06 +08:00
page = pfn_swap_entry_to_page(entry);
write = is_writable_migration_entry(entry);
mm: thp: fix flags for pmd migration when split When splitting a huge migrating PMD, we'll transfer all the existing PMD bits and apply them again onto the small PTEs. However we are fetching the bits unconditionally via pmd_soft_dirty(), pmd_write() or pmd_yound() while actually they don't make sense at all when it's a migration entry. Fix them up. Since at it, drop the ifdef together as not needed. Note that if my understanding is correct about the problem then if without the patch there is chance to lose some of the dirty bits in the migrating pmd pages (on x86_64 we're fetching bit 11 which is part of swap offset instead of bit 2) and it could potentially corrupt the memory of an userspace program which depends on the dirty bit. Link: http://lkml.kernel.org/r/20181213051510.20306-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-22 06:30:50 +08:00
young = false;
soft_dirty = pmd_swp_soft_dirty(old_pmd);
userfaultfd: wp: support swap and page migration For either swap and page migration, we all use the bit 2 of the entry to identify whether this entry is uffd write-protected. It plays a similar role as the existing soft dirty bit in swap entries but only for keeping the uffd-wp tracking for a specific PTE/PMD. Something special here is that when we want to recover the uffd-wp bit from a swap/migration entry to the PTE bit we'll also need to take care of the _PAGE_RW bit and make sure it's cleared, otherwise even with the _PAGE_UFFD_WP bit we can't trap it at all. In change_pte_range() we do nothing for uffd if the PTE is a swap entry. That can lead to data mismatch if the page that we are going to write protect is swapped out when sending the UFFDIO_WRITEPROTECT. This patch also applies/removes the uffd-wp bit even for the swap entries. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-11-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:06:01 +08:00
uffd_wp = pmd_swp_uffd_wp(old_pmd);
mm: thp: fix flags for pmd migration when split When splitting a huge migrating PMD, we'll transfer all the existing PMD bits and apply them again onto the small PTEs. However we are fetching the bits unconditionally via pmd_soft_dirty(), pmd_write() or pmd_yound() while actually they don't make sense at all when it's a migration entry. Fix them up. Since at it, drop the ifdef together as not needed. Note that if my understanding is correct about the problem then if without the patch there is chance to lose some of the dirty bits in the migrating pmd pages (on x86_64 we're fetching bit 11 which is part of swap offset instead of bit 2) and it could potentially corrupt the memory of an userspace program which depends on the dirty bit. Link: http://lkml.kernel.org/r/20181213051510.20306-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-22 06:30:50 +08:00
} else {
page = pmd_page(old_pmd);
mm: thp: fix flags for pmd migration when split When splitting a huge migrating PMD, we'll transfer all the existing PMD bits and apply them again onto the small PTEs. However we are fetching the bits unconditionally via pmd_soft_dirty(), pmd_write() or pmd_yound() while actually they don't make sense at all when it's a migration entry. Fix them up. Since at it, drop the ifdef together as not needed. Note that if my understanding is correct about the problem then if without the patch there is chance to lose some of the dirty bits in the migrating pmd pages (on x86_64 we're fetching bit 11 which is part of swap offset instead of bit 2) and it could potentially corrupt the memory of an userspace program which depends on the dirty bit. Link: http://lkml.kernel.org/r/20181213051510.20306-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-22 06:30:50 +08:00
if (pmd_dirty(old_pmd))
SetPageDirty(page);
write = pmd_write(old_pmd);
young = pmd_young(old_pmd);
soft_dirty = pmd_soft_dirty(old_pmd);
userfaultfd: wp: apply _PAGE_UFFD_WP bit Firstly, introduce two new flags MM_CP_UFFD_WP[_RESOLVE] for change_protection() when used with uffd-wp and make sure the two new flags are exclusively used. Then, - For MM_CP_UFFD_WP: apply the _PAGE_UFFD_WP bit and remove _PAGE_RW when a range of memory is write protected by uffd - For MM_CP_UFFD_WP_RESOLVE: remove the _PAGE_UFFD_WP bit and recover _PAGE_RW when write protection is resolved from userspace And use this new interface in mwriteprotect_range() to replace the old MM_CP_DIRTY_ACCT. Do this change for both PTEs and huge PMDs. Then we can start to identify which PTE/PMD is write protected by general (e.g., COW or soft dirty tracking), and which is for userfaultfd-wp. Since we should keep the _PAGE_UFFD_WP when doing pte_modify(), add it into _PAGE_CHG_MASK as well. Meanwhile, since we have this new bit, we can be even more strict when detecting uffd-wp page faults in either do_wp_page() or wp_huge_pmd(). After we're with _PAGE_UFFD_WP, a special case is when a page is both protected by the general COW logic and also userfault-wp. Here the userfault-wp will have higher priority and will be handled first. Only after the uffd-wp bit is cleared on the PTE/PMD will we continue to handle the general COW. These are the steps on what will happen with such a page: 1. CPU accesses write protected shared page (so both protected by general COW and uffd-wp), blocked by uffd-wp first because in do_wp_page we'll handle uffd-wp first, so it has higher priority than general COW. 2. Uffd service thread receives the request, do UFFDIO_WRITEPROTECT to remove the uffd-wp bit upon the PTE/PMD. However here we still keep the write bit cleared. Notify the blocked CPU. 3. The blocked CPU resumes the page fault process with a fault retry, during retry it'll notice it was not with the uffd-wp bit this time but it is still write protected by general COW, then it'll go though the COW path in the fault handler, copy the page, apply write bit where necessary, and retry again. 4. The CPU will be able to access this page with write bit set. Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Martin Cracauer <cracauer@cons.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-8-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:05:49 +08:00
uffd_wp = pmd_uffd_wp(old_pmd);
mm: thp: fix flags for pmd migration when split When splitting a huge migrating PMD, we'll transfer all the existing PMD bits and apply them again onto the small PTEs. However we are fetching the bits unconditionally via pmd_soft_dirty(), pmd_write() or pmd_yound() while actually they don't make sense at all when it's a migration entry. Fix them up. Since at it, drop the ifdef together as not needed. Note that if my understanding is correct about the problem then if without the patch there is chance to lose some of the dirty bits in the migrating pmd pages (on x86_64 we're fetching bit 11 which is part of swap offset instead of bit 2) and it could potentially corrupt the memory of an userspace program which depends on the dirty bit. Link: http://lkml.kernel.org/r/20181213051510.20306-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-22 06:30:50 +08:00
}
VM_BUG_ON_PAGE(!page_count(page), page);
2016-03-18 05:19:26 +08:00
page_ref_add(page, HPAGE_PMD_NR - 1);
/*
* Withdraw the table only after we mark the pmd entry invalid.
* This's critical for some architectures (Power).
*/
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
pte_t entry, *pte;
/*
* Note that NUMA hinting access restrictions are not
* transferred to avoid any possibility of altering
* permissions across VMAs.
*/
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
if (freeze || pmd_migration) {
swp_entry_t swp_entry;
if (write)
swp_entry = make_writable_migration_entry(
page_to_pfn(page + i));
else
swp_entry = make_readable_migration_entry(
page_to_pfn(page + i));
entry = swp_entry_to_pte(swp_entry);
soft_dirty: fix soft_dirty during THP split While adding proper userfaultfd_wp support with bits in pagetable and swap entry to avoid false positives WP userfaults through swap/fork/ KSM/etc, I've been adding a framework that mostly mirrors soft dirty. So I noticed in one place I had to add uffd_wp support to the pagetables that wasn't covered by soft_dirty and I think it should have. Example: in the THP migration code migrate_misplaced_transhuge_page() pmd_mkdirty is called unconditionally after mk_huge_pmd. entry = mk_huge_pmd(new_page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); That sets soft dirty too (it's a false positive for soft dirty, the soft dirty bit could be more finegrained and transfer the bit like uffd_wp will do.. pmd/pte_uffd_wp() enforces the invariant that when it's set pmd/pte_write is not set). However in the THP split there's no unconditional pmd_mkdirty after mk_huge_pmd and pte_swp_mksoft_dirty isn't called after the migration entry is created. The code sets the dirty bit in the struct page instead of setting it in the pagetable (which is fully equivalent as far as the real dirty bit is concerned, as the whole point of pagetable bits is to be eventually flushed out of to the page, but that is not equivalent for the soft-dirty bit that gets lost in translation). This was found by code review only and totally untested as I'm working to actually replace soft dirty and I don't have time to test potential soft dirty bugfixes as well :). Transfer the soft_dirty from pmd to pte during THP splits. This fix avoids losing the soft_dirty bit and avoids userland memory corruption in the checkpoint. Fixes: eef1b3ba053aa6 ("thp: implement split_huge_pmd()") Link: http://lkml.kernel.org/r/1471610515-30229-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-26 06:16:57 +08:00
if (soft_dirty)
entry = pte_swp_mksoft_dirty(entry);
userfaultfd: wp: support swap and page migration For either swap and page migration, we all use the bit 2 of the entry to identify whether this entry is uffd write-protected. It plays a similar role as the existing soft dirty bit in swap entries but only for keeping the uffd-wp tracking for a specific PTE/PMD. Something special here is that when we want to recover the uffd-wp bit from a swap/migration entry to the PTE bit we'll also need to take care of the _PAGE_RW bit and make sure it's cleared, otherwise even with the _PAGE_UFFD_WP bit we can't trap it at all. In change_pte_range() we do nothing for uffd if the PTE is a swap entry. That can lead to data mismatch if the page that we are going to write protect is swapped out when sending the UFFDIO_WRITEPROTECT. This patch also applies/removes the uffd-wp bit even for the swap entries. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-11-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:06:01 +08:00
if (uffd_wp)
entry = pte_swp_mkuffd_wp(entry);
} else {
entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
entry = maybe_mkwrite(entry, vma);
if (!write)
entry = pte_wrprotect(entry);
if (!young)
entry = pte_mkold(entry);
soft_dirty: fix soft_dirty during THP split While adding proper userfaultfd_wp support with bits in pagetable and swap entry to avoid false positives WP userfaults through swap/fork/ KSM/etc, I've been adding a framework that mostly mirrors soft dirty. So I noticed in one place I had to add uffd_wp support to the pagetables that wasn't covered by soft_dirty and I think it should have. Example: in the THP migration code migrate_misplaced_transhuge_page() pmd_mkdirty is called unconditionally after mk_huge_pmd. entry = mk_huge_pmd(new_page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); That sets soft dirty too (it's a false positive for soft dirty, the soft dirty bit could be more finegrained and transfer the bit like uffd_wp will do.. pmd/pte_uffd_wp() enforces the invariant that when it's set pmd/pte_write is not set). However in the THP split there's no unconditional pmd_mkdirty after mk_huge_pmd and pte_swp_mksoft_dirty isn't called after the migration entry is created. The code sets the dirty bit in the struct page instead of setting it in the pagetable (which is fully equivalent as far as the real dirty bit is concerned, as the whole point of pagetable bits is to be eventually flushed out of to the page, but that is not equivalent for the soft-dirty bit that gets lost in translation). This was found by code review only and totally untested as I'm working to actually replace soft dirty and I don't have time to test potential soft dirty bugfixes as well :). Transfer the soft_dirty from pmd to pte during THP splits. This fix avoids losing the soft_dirty bit and avoids userland memory corruption in the checkpoint. Fixes: eef1b3ba053aa6 ("thp: implement split_huge_pmd()") Link: http://lkml.kernel.org/r/1471610515-30229-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-26 06:16:57 +08:00
if (soft_dirty)
entry = pte_mksoft_dirty(entry);
userfaultfd: wp: apply _PAGE_UFFD_WP bit Firstly, introduce two new flags MM_CP_UFFD_WP[_RESOLVE] for change_protection() when used with uffd-wp and make sure the two new flags are exclusively used. Then, - For MM_CP_UFFD_WP: apply the _PAGE_UFFD_WP bit and remove _PAGE_RW when a range of memory is write protected by uffd - For MM_CP_UFFD_WP_RESOLVE: remove the _PAGE_UFFD_WP bit and recover _PAGE_RW when write protection is resolved from userspace And use this new interface in mwriteprotect_range() to replace the old MM_CP_DIRTY_ACCT. Do this change for both PTEs and huge PMDs. Then we can start to identify which PTE/PMD is write protected by general (e.g., COW or soft dirty tracking), and which is for userfaultfd-wp. Since we should keep the _PAGE_UFFD_WP when doing pte_modify(), add it into _PAGE_CHG_MASK as well. Meanwhile, since we have this new bit, we can be even more strict when detecting uffd-wp page faults in either do_wp_page() or wp_huge_pmd(). After we're with _PAGE_UFFD_WP, a special case is when a page is both protected by the general COW logic and also userfault-wp. Here the userfault-wp will have higher priority and will be handled first. Only after the uffd-wp bit is cleared on the PTE/PMD will we continue to handle the general COW. These are the steps on what will happen with such a page: 1. CPU accesses write protected shared page (so both protected by general COW and uffd-wp), blocked by uffd-wp first because in do_wp_page we'll handle uffd-wp first, so it has higher priority than general COW. 2. Uffd service thread receives the request, do UFFDIO_WRITEPROTECT to remove the uffd-wp bit upon the PTE/PMD. However here we still keep the write bit cleared. Notify the blocked CPU. 3. The blocked CPU resumes the page fault process with a fault retry, during retry it'll notice it was not with the uffd-wp bit this time but it is still write protected by general COW, then it'll go though the COW path in the fault handler, copy the page, apply write bit where necessary, and retry again. 4. The CPU will be able to access this page with write bit set. Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Martin Cracauer <cracauer@cons.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-8-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:05:49 +08:00
if (uffd_wp)
entry = pte_mkuffd_wp(entry);
}
pte = pte_offset_map(&_pmd, addr);
BUG_ON(!pte_none(*pte));
set_pte_at(mm, addr, pte, entry);
mm/thp: fix __split_huge_pmd_locked() for migration PMD A migrating transparent huge page has to already be unmapped. Otherwise, the page could be modified while it is being copied to a new page and data could be lost. The function __split_huge_pmd() checks for a PMD migration entry before calling __split_huge_pmd_locked() leading one to think that __split_huge_pmd_locked() can handle splitting a migrating PMD. However, the code always increments the page->_mapcount and adjusts the memory control group accounting assuming the page is mapped. Also, if the PMD entry is a migration PMD entry, the call to is_huge_zero_pmd(*pmd) is incorrect because it calls pmd_pfn(pmd) instead of migration_entry_to_pfn(pmd_to_swp_entry(pmd)). Fix these problems by checking for a PMD migration entry. Fixes: 84c3fc4e9c56 ("mm: thp: check pmd migration entry in common path") Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Cc: <stable@vger.kernel.org> [4.14+] Link: https://lkml.kernel.org/r/20200903183140.19055-1-rcampbell@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-19 12:20:24 +08:00
if (!pmd_migration)
atomic_inc(&page[i]._mapcount);
mm/thp: fix __split_huge_pmd_locked() for migration PMD A migrating transparent huge page has to already be unmapped. Otherwise, the page could be modified while it is being copied to a new page and data could be lost. The function __split_huge_pmd() checks for a PMD migration entry before calling __split_huge_pmd_locked() leading one to think that __split_huge_pmd_locked() can handle splitting a migrating PMD. However, the code always increments the page->_mapcount and adjusts the memory control group accounting assuming the page is mapped. Also, if the PMD entry is a migration PMD entry, the call to is_huge_zero_pmd(*pmd) is incorrect because it calls pmd_pfn(pmd) instead of migration_entry_to_pfn(pmd_to_swp_entry(pmd)). Fix these problems by checking for a PMD migration entry. Fixes: 84c3fc4e9c56 ("mm: thp: check pmd migration entry in common path") Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Cc: <stable@vger.kernel.org> [4.14+] Link: https://lkml.kernel.org/r/20200903183140.19055-1-rcampbell@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-19 12:20:24 +08:00
pte_unmap(pte);
}
mm/thp: fix __split_huge_pmd_locked() for migration PMD A migrating transparent huge page has to already be unmapped. Otherwise, the page could be modified while it is being copied to a new page and data could be lost. The function __split_huge_pmd() checks for a PMD migration entry before calling __split_huge_pmd_locked() leading one to think that __split_huge_pmd_locked() can handle splitting a migrating PMD. However, the code always increments the page->_mapcount and adjusts the memory control group accounting assuming the page is mapped. Also, if the PMD entry is a migration PMD entry, the call to is_huge_zero_pmd(*pmd) is incorrect because it calls pmd_pfn(pmd) instead of migration_entry_to_pfn(pmd_to_swp_entry(pmd)). Fix these problems by checking for a PMD migration entry. Fixes: 84c3fc4e9c56 ("mm: thp: check pmd migration entry in common path") Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Cc: <stable@vger.kernel.org> [4.14+] Link: https://lkml.kernel.org/r/20200903183140.19055-1-rcampbell@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-19 12:20:24 +08:00
if (!pmd_migration) {
/*
* Set PG_double_map before dropping compound_mapcount to avoid
* false-negative page_mapped().
*/
if (compound_mapcount(page) > 1 &&
!TestSetPageDoubleMap(page)) {
for (i = 0; i < HPAGE_PMD_NR; i++)
mm/thp: fix __split_huge_pmd_locked() for migration PMD A migrating transparent huge page has to already be unmapped. Otherwise, the page could be modified while it is being copied to a new page and data could be lost. The function __split_huge_pmd() checks for a PMD migration entry before calling __split_huge_pmd_locked() leading one to think that __split_huge_pmd_locked() can handle splitting a migrating PMD. However, the code always increments the page->_mapcount and adjusts the memory control group accounting assuming the page is mapped. Also, if the PMD entry is a migration PMD entry, the call to is_huge_zero_pmd(*pmd) is incorrect because it calls pmd_pfn(pmd) instead of migration_entry_to_pfn(pmd_to_swp_entry(pmd)). Fix these problems by checking for a PMD migration entry. Fixes: 84c3fc4e9c56 ("mm: thp: check pmd migration entry in common path") Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Cc: <stable@vger.kernel.org> [4.14+] Link: https://lkml.kernel.org/r/20200903183140.19055-1-rcampbell@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-19 12:20:24 +08:00
atomic_inc(&page[i]._mapcount);
}
lock_page_memcg(page);
if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
/* Last compound_mapcount is gone. */
mm: memcontrol: convert NR_ANON_THPS account to pages Currently we use struct per_cpu_nodestat to cache the vmstat counters, which leads to inaccurate statistics especially THP vmstat counters. In the systems with hundreds of processors it can be GBs of memory. For example, for a 96 CPUs system, the threshold is the maximum number of 125. And the per cpu counters can cache 23.4375 GB in total. The THP page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like sensible. Although every THP stats update overflows the per-cpu counter, resorting to atomic global updates. But it can make the statistics more accuracy for the THP vmstat counters. So we convert the NR_ANON_THPS account to pages. This patch is consistent with 8f182270dfec ("mm/swap.c: flush lru pvecs on compound page arrival"). Doing this also can make the unit of vmstat counters more unified. Finally, the unit of the vmstat counters are pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes or kB. The rest which is without suffix are pages. Link: https://lkml.kernel.org/r/20201228164110.2838-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Feng Tang <feng.tang@intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:03:23 +08:00
__mod_lruvec_page_state(page, NR_ANON_THPS,
-HPAGE_PMD_NR);
mm/thp: fix __split_huge_pmd_locked() for migration PMD A migrating transparent huge page has to already be unmapped. Otherwise, the page could be modified while it is being copied to a new page and data could be lost. The function __split_huge_pmd() checks for a PMD migration entry before calling __split_huge_pmd_locked() leading one to think that __split_huge_pmd_locked() can handle splitting a migrating PMD. However, the code always increments the page->_mapcount and adjusts the memory control group accounting assuming the page is mapped. Also, if the PMD entry is a migration PMD entry, the call to is_huge_zero_pmd(*pmd) is incorrect because it calls pmd_pfn(pmd) instead of migration_entry_to_pfn(pmd_to_swp_entry(pmd)). Fix these problems by checking for a PMD migration entry. Fixes: 84c3fc4e9c56 ("mm: thp: check pmd migration entry in common path") Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Cc: <stable@vger.kernel.org> [4.14+] Link: https://lkml.kernel.org/r/20200903183140.19055-1-rcampbell@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-19 12:20:24 +08:00
if (TestClearPageDoubleMap(page)) {
/* No need in mapcount reference anymore */
for (i = 0; i < HPAGE_PMD_NR; i++)
atomic_dec(&page[i]._mapcount);
}
}
mm/thp: fix __split_huge_pmd_locked() for migration PMD A migrating transparent huge page has to already be unmapped. Otherwise, the page could be modified while it is being copied to a new page and data could be lost. The function __split_huge_pmd() checks for a PMD migration entry before calling __split_huge_pmd_locked() leading one to think that __split_huge_pmd_locked() can handle splitting a migrating PMD. However, the code always increments the page->_mapcount and adjusts the memory control group accounting assuming the page is mapped. Also, if the PMD entry is a migration PMD entry, the call to is_huge_zero_pmd(*pmd) is incorrect because it calls pmd_pfn(pmd) instead of migration_entry_to_pfn(pmd_to_swp_entry(pmd)). Fix these problems by checking for a PMD migration entry. Fixes: 84c3fc4e9c56 ("mm: thp: check pmd migration entry in common path") Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Cc: <stable@vger.kernel.org> [4.14+] Link: https://lkml.kernel.org/r/20200903183140.19055-1-rcampbell@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-19 12:20:24 +08:00
unlock_page_memcg(page);
}
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
if (freeze) {
for (i = 0; i < HPAGE_PMD_NR; i++) {
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
page_remove_rmap(page + i, false);
put_page(page + i);
}
}
}
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
mm: thp: move pmd check inside ptl for freeze_page() I found a race condition triggering VM_BUG_ON() in freeze_page(), when running a testcase with 3 processes: - process 1: keep writing thp, - process 2: keep clearing soft-dirty bits from virtual address of process 1 - process 3: call migratepages for process 1, The kernel message is like this: kernel BUG at /src/linux-dev/mm/huge_memory.c:3096! invalid opcode: 0000 [#1] SMP Modules linked in: cfg80211 rfkill crc32c_intel ppdev serio_raw pcspkr virtio_balloon virtio_console parport_pc parport pvpanic acpi_cpufreq tpm_tis tpm i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy virtio_pci virtio_ring virtio CPU: 0 PID: 28863 Comm: migratepages Not tainted 4.6.0-v4.6-160602-0827-+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880037320000 ti: ffff88007cdd0000 task.ti: ffff88007cdd0000 RIP: 0010:[<ffffffff811f8e06>] [<ffffffff811f8e06>] split_huge_page_to_list+0x496/0x590 RSP: 0018:ffff88007cdd3b70 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88007c7b88c0 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000700000200 RDI: ffffea0003188000 RBP: ffff88007cdd3bb8 R08: 0000000000000001 R09: 00003ffffffff000 R10: ffff880000000000 R11: ffffc000001fffff R12: ffffea0003188000 R13: ffffea0003188000 R14: 0000000000000000 R15: 0400000000000080 FS: 00007f8ec241d740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8ec1f3ed20 CR3: 000000003707b000 CR4: 00000000000006f0 Call Trace: ? list_del+0xd/0x30 queue_pages_pte_range+0x4d1/0x590 __walk_page_range+0x204/0x4e0 walk_page_range+0x71/0xf0 queue_pages_range+0x75/0x90 ? queue_pages_hugetlb+0x190/0x190 ? new_node_page+0xc0/0xc0 ? change_prot_numa+0x40/0x40 migrate_to_node+0x71/0xd0 do_migrate_pages+0x1c3/0x210 SyS_migrate_pages+0x261/0x290 entry_SYSCALL_64_fastpath+0x1a/0xa4 Code: e8 b0 87 fb ff 0f 0b 48 c7 c6 30 32 9f 81 e8 a2 87 fb ff 0f 0b 48 c7 c6 b8 46 9f 81 e8 94 87 fb ff 0f 0b 85 c0 0f 84 3e fd ff ff <0f> 0b 85 c0 0f 85 a6 00 00 00 48 8b 75 c0 4c 89 f7 41 be f0 ff RIP split_huge_page_to_list+0x496/0x590 I'm not sure of the full scenario of the reproduction, but my debug showed that split_huge_pmd_address(freeze=true) returned without running main code of pmd splitting because pmd_present(*pmd) in precheck somehow returned 0. If this happens, the subsequent try_to_unmap() fails and returns non-zero (because page_mapcount() still > 0), and finally VM_BUG_ON() fires. This patch tries to fix it by prechecking pmd state inside ptl. Link: http://lkml.kernel.org/r/1466990929-7452-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 03:07:32 +08:00
unsigned long address, bool freeze, struct page *page)
{
spinlock_t *ptl;
struct mmu_notifier_range range;
mm: thp: fix MADV_REMOVE deadlock on shmem THP Sergey reported deadlock between kswapd correctly doing its usual lock_page(page) followed by down_read(page->mapping->i_mmap_rwsem), and madvise(MADV_REMOVE) on an madvise(MADV_HUGEPAGE) area doing down_write(page->mapping->i_mmap_rwsem) followed by lock_page(page). This happened when shmem_fallocate(punch hole)'s unmap_mapping_range() reaches zap_pmd_range()'s call to __split_huge_pmd(). The same deadlock could occur when partially truncating a mapped huge tmpfs file, or using fallocate(FALLOC_FL_PUNCH_HOLE) on it. __split_huge_pmd()'s page lock was added in 5.8, to make sure that any concurrent use of reuse_swap_page() (holding page lock) could not catch the anon THP's mapcounts and swapcounts while they were being split. Fortunately, reuse_swap_page() is never applied to a shmem or file THP (not even by khugepaged, which checks PageSwapCache before calling), and anonymous THPs are never created in shmem or file areas: so that __split_huge_pmd()'s page lock can only be necessary for anonymous THPs, on which there is no risk of deadlock with i_mmap_rwsem. Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2101161409470.2022@eggly.anvils Fixes: c444eb564fb1 ("mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-05 10:32:31 +08:00
bool do_unlock_page = false;
mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked() Write protect anon page faults require an accurate mapcount to decide if to break the COW or not. This is implemented in the THP path with reuse_swap_page() -> page_trans_huge_map_swapcount()/page_trans_huge_mapcount(). If the COW triggers while the other processes sharing the page are under a huge pmd split, to do an accurate reading, we must ensure the mapcount isn't computed while it's being transferred from the head page to the tail pages. reuse_swap_cache() already runs serialized by the page lock, so it's enough to add the page lock around __split_huge_pmd_locked too, in order to add the missing serialization. Note: the commit in "Fixes" is just to facilitate the backporting, because the code before such commit didn't try to do an accurate THP mapcount calculation and it instead used the page_count() to decide if to COW or not. Both the page_count and the pin_count are THP-wide refcounts, so they're inaccurate if used in reuse_swap_page(). Reverting such commit (besides the unrelated fix to the local anon_vma assignment) would have also opened the window for memory corruption side effects to certain workloads as documented in such commit header. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Suggested-by: Jann Horn <jannh@google.com> Reported-by: Jann Horn <jannh@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Fixes: 6d0a07edd17c ("mm: thp: calculate the mapcount correctly for THP pages during WP faults") Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-28 07:06:24 +08:00
pmd_t _pmd;
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
mm/mmu_notifier: contextual information for event triggering invalidation CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). Users of mmu notifier API track changes to the CPU page table and take specific action for them. While current API only provide range of virtual address affected by the change, not why the changes is happening. This patchset do the initial mechanical convertion of all the places that calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP event as well as the vma if it is know (most invalidation happens against a given vma). Passing down the vma allows the users of mmu notifier to inspect the new vma page protection. The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier should assume that every for the range is going away when that event happens. A latter patch do convert mm call path to use a more appropriate events for each call. This is done as 2 patches so that no call site is forgotten especialy as it uses this following coccinelle patch: %<---------------------------------------------------------------------- @@ identifier I1, I2, I3, I4; @@ static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1, +enum mmu_notifier_event event, +unsigned flags, +struct vm_area_struct *vma, struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... } @@ @@ -#define mmu_notifier_range_init(range, mm, start, end) +#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end) @@ expression E1, E3, E4; identifier I1; @@ <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, I1, I1->vm_mm, E3, E4) ...> @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(..., struct vm_area_struct *VMA, ...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(...) { struct vm_area_struct *VMA; <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN; @@ FN(...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, NULL, E2, E3, E4) ...> } ---------------------------------------------------------------------->% Applied with: spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place spatch --sp-file mmu-notifier.spatch --dir mm --in-place Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 08:20:49 +08:00
address & HPAGE_PMD_MASK,
(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
mmu_notifier_invalidate_range_start(&range);
ptl = pmd_lock(vma->vm_mm, pmd);
mm: thp: move pmd check inside ptl for freeze_page() I found a race condition triggering VM_BUG_ON() in freeze_page(), when running a testcase with 3 processes: - process 1: keep writing thp, - process 2: keep clearing soft-dirty bits from virtual address of process 1 - process 3: call migratepages for process 1, The kernel message is like this: kernel BUG at /src/linux-dev/mm/huge_memory.c:3096! invalid opcode: 0000 [#1] SMP Modules linked in: cfg80211 rfkill crc32c_intel ppdev serio_raw pcspkr virtio_balloon virtio_console parport_pc parport pvpanic acpi_cpufreq tpm_tis tpm i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy virtio_pci virtio_ring virtio CPU: 0 PID: 28863 Comm: migratepages Not tainted 4.6.0-v4.6-160602-0827-+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880037320000 ti: ffff88007cdd0000 task.ti: ffff88007cdd0000 RIP: 0010:[<ffffffff811f8e06>] [<ffffffff811f8e06>] split_huge_page_to_list+0x496/0x590 RSP: 0018:ffff88007cdd3b70 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88007c7b88c0 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000700000200 RDI: ffffea0003188000 RBP: ffff88007cdd3bb8 R08: 0000000000000001 R09: 00003ffffffff000 R10: ffff880000000000 R11: ffffc000001fffff R12: ffffea0003188000 R13: ffffea0003188000 R14: 0000000000000000 R15: 0400000000000080 FS: 00007f8ec241d740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8ec1f3ed20 CR3: 000000003707b000 CR4: 00000000000006f0 Call Trace: ? list_del+0xd/0x30 queue_pages_pte_range+0x4d1/0x590 __walk_page_range+0x204/0x4e0 walk_page_range+0x71/0xf0 queue_pages_range+0x75/0x90 ? queue_pages_hugetlb+0x190/0x190 ? new_node_page+0xc0/0xc0 ? change_prot_numa+0x40/0x40 migrate_to_node+0x71/0xd0 do_migrate_pages+0x1c3/0x210 SyS_migrate_pages+0x261/0x290 entry_SYSCALL_64_fastpath+0x1a/0xa4 Code: e8 b0 87 fb ff 0f 0b 48 c7 c6 30 32 9f 81 e8 a2 87 fb ff 0f 0b 48 c7 c6 b8 46 9f 81 e8 94 87 fb ff 0f 0b 85 c0 0f 84 3e fd ff ff <0f> 0b 85 c0 0f 85 a6 00 00 00 48 8b 75 c0 4c 89 f7 41 be f0 ff RIP split_huge_page_to_list+0x496/0x590 I'm not sure of the full scenario of the reproduction, but my debug showed that split_huge_pmd_address(freeze=true) returned without running main code of pmd splitting because pmd_present(*pmd) in precheck somehow returned 0. If this happens, the subsequent try_to_unmap() fails and returns non-zero (because page_mapcount() still > 0), and finally VM_BUG_ON() fires. This patch tries to fix it by prechecking pmd state inside ptl. Link: http://lkml.kernel.org/r/1466990929-7452-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 03:07:32 +08:00
/*
* If caller asks to setup a migration entries, we need a page to check
* pmd against. Otherwise we can end up replacing wrong page.
*/
VM_BUG_ON(freeze && !page);
mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked() Write protect anon page faults require an accurate mapcount to decide if to break the COW or not. This is implemented in the THP path with reuse_swap_page() -> page_trans_huge_map_swapcount()/page_trans_huge_mapcount(). If the COW triggers while the other processes sharing the page are under a huge pmd split, to do an accurate reading, we must ensure the mapcount isn't computed while it's being transferred from the head page to the tail pages. reuse_swap_cache() already runs serialized by the page lock, so it's enough to add the page lock around __split_huge_pmd_locked too, in order to add the missing serialization. Note: the commit in "Fixes" is just to facilitate the backporting, because the code before such commit didn't try to do an accurate THP mapcount calculation and it instead used the page_count() to decide if to COW or not. Both the page_count and the pin_count are THP-wide refcounts, so they're inaccurate if used in reuse_swap_page(). Reverting such commit (besides the unrelated fix to the local anon_vma assignment) would have also opened the window for memory corruption side effects to certain workloads as documented in such commit header. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Suggested-by: Jann Horn <jannh@google.com> Reported-by: Jann Horn <jannh@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Fixes: 6d0a07edd17c ("mm: thp: calculate the mapcount correctly for THP pages during WP faults") Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-28 07:06:24 +08:00
if (page) {
VM_WARN_ON_ONCE(!PageLocked(page));
if (page != pmd_page(*pmd))
goto out;
}
mm: thp: move pmd check inside ptl for freeze_page() I found a race condition triggering VM_BUG_ON() in freeze_page(), when running a testcase with 3 processes: - process 1: keep writing thp, - process 2: keep clearing soft-dirty bits from virtual address of process 1 - process 3: call migratepages for process 1, The kernel message is like this: kernel BUG at /src/linux-dev/mm/huge_memory.c:3096! invalid opcode: 0000 [#1] SMP Modules linked in: cfg80211 rfkill crc32c_intel ppdev serio_raw pcspkr virtio_balloon virtio_console parport_pc parport pvpanic acpi_cpufreq tpm_tis tpm i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy virtio_pci virtio_ring virtio CPU: 0 PID: 28863 Comm: migratepages Not tainted 4.6.0-v4.6-160602-0827-+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880037320000 ti: ffff88007cdd0000 task.ti: ffff88007cdd0000 RIP: 0010:[<ffffffff811f8e06>] [<ffffffff811f8e06>] split_huge_page_to_list+0x496/0x590 RSP: 0018:ffff88007cdd3b70 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88007c7b88c0 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000700000200 RDI: ffffea0003188000 RBP: ffff88007cdd3bb8 R08: 0000000000000001 R09: 00003ffffffff000 R10: ffff880000000000 R11: ffffc000001fffff R12: ffffea0003188000 R13: ffffea0003188000 R14: 0000000000000000 R15: 0400000000000080 FS: 00007f8ec241d740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8ec1f3ed20 CR3: 000000003707b000 CR4: 00000000000006f0 Call Trace: ? list_del+0xd/0x30 queue_pages_pte_range+0x4d1/0x590 __walk_page_range+0x204/0x4e0 walk_page_range+0x71/0xf0 queue_pages_range+0x75/0x90 ? queue_pages_hugetlb+0x190/0x190 ? new_node_page+0xc0/0xc0 ? change_prot_numa+0x40/0x40 migrate_to_node+0x71/0xd0 do_migrate_pages+0x1c3/0x210 SyS_migrate_pages+0x261/0x290 entry_SYSCALL_64_fastpath+0x1a/0xa4 Code: e8 b0 87 fb ff 0f 0b 48 c7 c6 30 32 9f 81 e8 a2 87 fb ff 0f 0b 48 c7 c6 b8 46 9f 81 e8 94 87 fb ff 0f 0b 85 c0 0f 84 3e fd ff ff <0f> 0b 85 c0 0f 85 a6 00 00 00 48 8b 75 c0 4c 89 f7 41 be f0 ff RIP split_huge_page_to_list+0x496/0x590 I'm not sure of the full scenario of the reproduction, but my debug showed that split_huge_pmd_address(freeze=true) returned without running main code of pmd splitting because pmd_present(*pmd) in precheck somehow returned 0. If this happens, the subsequent try_to_unmap() fails and returns non-zero (because page_mapcount() still > 0), and finally VM_BUG_ON() fires. This patch tries to fix it by prechecking pmd state inside ptl. Link: http://lkml.kernel.org/r/1466990929-7452-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 03:07:32 +08:00
mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked() Write protect anon page faults require an accurate mapcount to decide if to break the COW or not. This is implemented in the THP path with reuse_swap_page() -> page_trans_huge_map_swapcount()/page_trans_huge_mapcount(). If the COW triggers while the other processes sharing the page are under a huge pmd split, to do an accurate reading, we must ensure the mapcount isn't computed while it's being transferred from the head page to the tail pages. reuse_swap_cache() already runs serialized by the page lock, so it's enough to add the page lock around __split_huge_pmd_locked too, in order to add the missing serialization. Note: the commit in "Fixes" is just to facilitate the backporting, because the code before such commit didn't try to do an accurate THP mapcount calculation and it instead used the page_count() to decide if to COW or not. Both the page_count and the pin_count are THP-wide refcounts, so they're inaccurate if used in reuse_swap_page(). Reverting such commit (besides the unrelated fix to the local anon_vma assignment) would have also opened the window for memory corruption side effects to certain workloads as documented in such commit header. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Suggested-by: Jann Horn <jannh@google.com> Reported-by: Jann Horn <jannh@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Fixes: 6d0a07edd17c ("mm: thp: calculate the mapcount correctly for THP pages during WP faults") Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-28 07:06:24 +08:00
repeat:
if (pmd_trans_huge(*pmd)) {
mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked() Write protect anon page faults require an accurate mapcount to decide if to break the COW or not. This is implemented in the THP path with reuse_swap_page() -> page_trans_huge_map_swapcount()/page_trans_huge_mapcount(). If the COW triggers while the other processes sharing the page are under a huge pmd split, to do an accurate reading, we must ensure the mapcount isn't computed while it's being transferred from the head page to the tail pages. reuse_swap_cache() already runs serialized by the page lock, so it's enough to add the page lock around __split_huge_pmd_locked too, in order to add the missing serialization. Note: the commit in "Fixes" is just to facilitate the backporting, because the code before such commit didn't try to do an accurate THP mapcount calculation and it instead used the page_count() to decide if to COW or not. Both the page_count and the pin_count are THP-wide refcounts, so they're inaccurate if used in reuse_swap_page(). Reverting such commit (besides the unrelated fix to the local anon_vma assignment) would have also opened the window for memory corruption side effects to certain workloads as documented in such commit header. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Suggested-by: Jann Horn <jannh@google.com> Reported-by: Jann Horn <jannh@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Fixes: 6d0a07edd17c ("mm: thp: calculate the mapcount correctly for THP pages during WP faults") Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-28 07:06:24 +08:00
if (!page) {
page = pmd_page(*pmd);
mm: thp: fix MADV_REMOVE deadlock on shmem THP Sergey reported deadlock between kswapd correctly doing its usual lock_page(page) followed by down_read(page->mapping->i_mmap_rwsem), and madvise(MADV_REMOVE) on an madvise(MADV_HUGEPAGE) area doing down_write(page->mapping->i_mmap_rwsem) followed by lock_page(page). This happened when shmem_fallocate(punch hole)'s unmap_mapping_range() reaches zap_pmd_range()'s call to __split_huge_pmd(). The same deadlock could occur when partially truncating a mapped huge tmpfs file, or using fallocate(FALLOC_FL_PUNCH_HOLE) on it. __split_huge_pmd()'s page lock was added in 5.8, to make sure that any concurrent use of reuse_swap_page() (holding page lock) could not catch the anon THP's mapcounts and swapcounts while they were being split. Fortunately, reuse_swap_page() is never applied to a shmem or file THP (not even by khugepaged, which checks PageSwapCache before calling), and anonymous THPs are never created in shmem or file areas: so that __split_huge_pmd()'s page lock can only be necessary for anonymous THPs, on which there is no risk of deadlock with i_mmap_rwsem. Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2101161409470.2022@eggly.anvils Fixes: c444eb564fb1 ("mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-05 10:32:31 +08:00
/*
* An anonymous page must be locked, to ensure that a
* concurrent reuse_swap_page() sees stable mapcount;
* but reuse_swap_page() is not used on shmem or file,
* and page lock must not be taken when zap_pmd_range()
* calls __split_huge_pmd() while i_mmap_lock is held.
*/
if (PageAnon(page)) {
if (unlikely(!trylock_page(page))) {
get_page(page);
_pmd = *pmd;
spin_unlock(ptl);
lock_page(page);
spin_lock(ptl);
if (unlikely(!pmd_same(*pmd, _pmd))) {
unlock_page(page);
put_page(page);
page = NULL;
goto repeat;
}
mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked() Write protect anon page faults require an accurate mapcount to decide if to break the COW or not. This is implemented in the THP path with reuse_swap_page() -> page_trans_huge_map_swapcount()/page_trans_huge_mapcount(). If the COW triggers while the other processes sharing the page are under a huge pmd split, to do an accurate reading, we must ensure the mapcount isn't computed while it's being transferred from the head page to the tail pages. reuse_swap_cache() already runs serialized by the page lock, so it's enough to add the page lock around __split_huge_pmd_locked too, in order to add the missing serialization. Note: the commit in "Fixes" is just to facilitate the backporting, because the code before such commit didn't try to do an accurate THP mapcount calculation and it instead used the page_count() to decide if to COW or not. Both the page_count and the pin_count are THP-wide refcounts, so they're inaccurate if used in reuse_swap_page(). Reverting such commit (besides the unrelated fix to the local anon_vma assignment) would have also opened the window for memory corruption side effects to certain workloads as documented in such commit header. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Suggested-by: Jann Horn <jannh@google.com> Reported-by: Jann Horn <jannh@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Fixes: 6d0a07edd17c ("mm: thp: calculate the mapcount correctly for THP pages during WP faults") Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-28 07:06:24 +08:00
put_page(page);
}
mm: thp: fix MADV_REMOVE deadlock on shmem THP Sergey reported deadlock between kswapd correctly doing its usual lock_page(page) followed by down_read(page->mapping->i_mmap_rwsem), and madvise(MADV_REMOVE) on an madvise(MADV_HUGEPAGE) area doing down_write(page->mapping->i_mmap_rwsem) followed by lock_page(page). This happened when shmem_fallocate(punch hole)'s unmap_mapping_range() reaches zap_pmd_range()'s call to __split_huge_pmd(). The same deadlock could occur when partially truncating a mapped huge tmpfs file, or using fallocate(FALLOC_FL_PUNCH_HOLE) on it. __split_huge_pmd()'s page lock was added in 5.8, to make sure that any concurrent use of reuse_swap_page() (holding page lock) could not catch the anon THP's mapcounts and swapcounts while they were being split. Fortunately, reuse_swap_page() is never applied to a shmem or file THP (not even by khugepaged, which checks PageSwapCache before calling), and anonymous THPs are never created in shmem or file areas: so that __split_huge_pmd()'s page lock can only be necessary for anonymous THPs, on which there is no risk of deadlock with i_mmap_rwsem. Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2101161409470.2022@eggly.anvils Fixes: c444eb564fb1 ("mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-05 10:32:31 +08:00
do_unlock_page = true;
mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked() Write protect anon page faults require an accurate mapcount to decide if to break the COW or not. This is implemented in the THP path with reuse_swap_page() -> page_trans_huge_map_swapcount()/page_trans_huge_mapcount(). If the COW triggers while the other processes sharing the page are under a huge pmd split, to do an accurate reading, we must ensure the mapcount isn't computed while it's being transferred from the head page to the tail pages. reuse_swap_cache() already runs serialized by the page lock, so it's enough to add the page lock around __split_huge_pmd_locked too, in order to add the missing serialization. Note: the commit in "Fixes" is just to facilitate the backporting, because the code before such commit didn't try to do an accurate THP mapcount calculation and it instead used the page_count() to decide if to COW or not. Both the page_count and the pin_count are THP-wide refcounts, so they're inaccurate if used in reuse_swap_page(). Reverting such commit (besides the unrelated fix to the local anon_vma assignment) would have also opened the window for memory corruption side effects to certain workloads as documented in such commit header. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Suggested-by: Jann Horn <jannh@google.com> Reported-by: Jann Horn <jannh@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Fixes: 6d0a07edd17c ("mm: thp: calculate the mapcount correctly for THP pages during WP faults") Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-28 07:06:24 +08:00
}
}
if (PageMlocked(page))
thp: fix deadlock in split_huge_pmd() split_huge_pmd() tries to munlock page with munlock_vma_page(). That requires the page to locked. If the is locked by caller, we would get a deadlock: Unable to find swap-space signature INFO: task trinity-c85:1907 blocked for more than 120 seconds. Not tainted 4.4.0-00032-gf19d0bdced41-dirty #1606 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. trinity-c85 D ffff88084d997608 0 1907 309 0x00000000 Call Trace: schedule+0x9f/0x1c0 schedule_timeout+0x48e/0x600 io_schedule_timeout+0x1c3/0x390 bit_wait_io+0x29/0xd0 __wait_on_bit_lock+0x94/0x140 __lock_page+0x1d4/0x280 __split_huge_pmd+0x5a8/0x10f0 split_huge_pmd_address+0x1d9/0x230 try_to_unmap_one+0x540/0xc70 rmap_walk_anon+0x284/0x810 rmap_walk_locked+0x11e/0x190 try_to_unmap+0x1b1/0x4b0 split_huge_page_to_list+0x49d/0x18a0 follow_page_mask+0xa36/0xea0 SyS_move_pages+0xaf3/0x1570 entry_SYSCALL_64_fastpath+0x12/0x6b 2 locks held by trinity-c85/1907: #0: (&mm->mmap_sem){++++++}, at: SyS_move_pages+0x933/0x1570 #1: (&anon_vma->rwsem){++++..}, at: split_huge_page_to_list+0x402/0x18a0 I don't think the deadlock is triggerable without split_huge_page() simplifilcation patchset. But munlock_vma_page() here is wrong: we want to munlock the page unconditionally, no need in rmap lookup, that munlock_vma_page() does. Let's use clear_page_mlock() instead. It can be called under ptl. Fixes: e90309c9f772 ("thp: allow mlocked THP again") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 05:20:13 +08:00
clear_page_mlock(page);
mm: thp: check pmd migration entry in common path When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:11:01 +08:00
} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
goto out;
__split_huge_pmd_locked(vma, pmd, range.start, freeze);
thp: allow mlocked THP again Before THP refcounting rework, THP was not allowed to cross VMA boundary. So, if we have THP and we split it, PG_mlocked can be safely transferred to small pages. With new THP refcounting and naive approach to mlocking we can end up with this scenario: 1. we have a mlocked THP, which belong to one VM_LOCKED VMA. 2. the process does munlock() on the *part* of the THP: - the VMA is split into two, one of them VM_LOCKED; - huge PMD split into PTE table; - THP is still mlocked; 3. split_huge_page(): - it transfers PG_mlocked to *all* small pages regrardless if it blong to any VM_LOCKED VMA. We probably could munlock() all small pages on split_huge_page(), but I think we have accounting issue already on step two. Instead of forbidding mlocked pages altogether, we just avoid mlocking PTE-mapped THPs and munlock THPs on split_huge_pmd(). This means PTE-mapped THPs will be on normal lru lists and will be split under memory pressure by vmscan. After the split vmscan will detect unevictable small pages and mlock them. With this approach we shouldn't hit situation like described above. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:33 +08:00
out:
spin_unlock(ptl);
mm: thp: fix MADV_REMOVE deadlock on shmem THP Sergey reported deadlock between kswapd correctly doing its usual lock_page(page) followed by down_read(page->mapping->i_mmap_rwsem), and madvise(MADV_REMOVE) on an madvise(MADV_HUGEPAGE) area doing down_write(page->mapping->i_mmap_rwsem) followed by lock_page(page). This happened when shmem_fallocate(punch hole)'s unmap_mapping_range() reaches zap_pmd_range()'s call to __split_huge_pmd(). The same deadlock could occur when partially truncating a mapped huge tmpfs file, or using fallocate(FALLOC_FL_PUNCH_HOLE) on it. __split_huge_pmd()'s page lock was added in 5.8, to make sure that any concurrent use of reuse_swap_page() (holding page lock) could not catch the anon THP's mapcounts and swapcounts while they were being split. Fortunately, reuse_swap_page() is never applied to a shmem or file THP (not even by khugepaged, which checks PageSwapCache before calling), and anonymous THPs are never created in shmem or file areas: so that __split_huge_pmd()'s page lock can only be necessary for anonymous THPs, on which there is no risk of deadlock with i_mmap_rwsem. Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2101161409470.2022@eggly.anvils Fixes: c444eb564fb1 ("mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked()") Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-05 10:32:31 +08:00
if (do_unlock_page)
mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked() Write protect anon page faults require an accurate mapcount to decide if to break the COW or not. This is implemented in the THP path with reuse_swap_page() -> page_trans_huge_map_swapcount()/page_trans_huge_mapcount(). If the COW triggers while the other processes sharing the page are under a huge pmd split, to do an accurate reading, we must ensure the mapcount isn't computed while it's being transferred from the head page to the tail pages. reuse_swap_cache() already runs serialized by the page lock, so it's enough to add the page lock around __split_huge_pmd_locked too, in order to add the missing serialization. Note: the commit in "Fixes" is just to facilitate the backporting, because the code before such commit didn't try to do an accurate THP mapcount calculation and it instead used the page_count() to decide if to COW or not. Both the page_count and the pin_count are THP-wide refcounts, so they're inaccurate if used in reuse_swap_page(). Reverting such commit (besides the unrelated fix to the local anon_vma assignment) would have also opened the window for memory corruption side effects to certain workloads as documented in such commit header. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Suggested-by: Jann Horn <jannh@google.com> Reported-by: Jann Horn <jannh@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Fixes: 6d0a07edd17c ("mm: thp: calculate the mapcount correctly for THP pages during WP faults") Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-28 07:06:24 +08:00
unlock_page(page);
mm/mmu_notifier: avoid call to invalidate_range() in range_end() This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:34:11 +08:00
/*
* No need to double call mmu_notifier->invalidate_range() callback.
* They are 3 cases to consider inside __split_huge_pmd_locked():
* 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
* 2) __split_huge_zero_page_pmd() read only zero page and any write
* fault will trigger a flush_notify before pointing to a new page
* (it is fine if the secondary mmu keeps pointing to the old zero
* page in the meantime)
* 3) Split a huge pmd into pte pointing to the same page. No need
* to invalidate secondary tlb entry they are all still valid.
* any further changes to individual pte will notify. So no need
* to call mmu_notifier->invalidate_range()
*/
mmu_notifier_invalidate_range_only_end(&range);
}
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
bool freeze, struct page *page)
{
mm: let mm_find_pmd fix buggy race with THP fault Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
pgd_t *pgd;
p4d_t *p4d;
mm: let mm_find_pmd fix buggy race with THP fault Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
pud_t *pud;
pmd_t *pmd;
pgd = pgd_offset(vma->vm_mm, address);
mm: let mm_find_pmd fix buggy race with THP fault Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
if (!pgd_present(*pgd))
return;
p4d = p4d_offset(pgd, address);
if (!p4d_present(*p4d))
return;
pud = pud_offset(p4d, address);
mm: let mm_find_pmd fix buggy race with THP fault Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
if (!pud_present(*pud))
return;
pmd = pmd_offset(pud, address);
mm: thp: move pmd check inside ptl for freeze_page() I found a race condition triggering VM_BUG_ON() in freeze_page(), when running a testcase with 3 processes: - process 1: keep writing thp, - process 2: keep clearing soft-dirty bits from virtual address of process 1 - process 3: call migratepages for process 1, The kernel message is like this: kernel BUG at /src/linux-dev/mm/huge_memory.c:3096! invalid opcode: 0000 [#1] SMP Modules linked in: cfg80211 rfkill crc32c_intel ppdev serio_raw pcspkr virtio_balloon virtio_console parport_pc parport pvpanic acpi_cpufreq tpm_tis tpm i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy virtio_pci virtio_ring virtio CPU: 0 PID: 28863 Comm: migratepages Not tainted 4.6.0-v4.6-160602-0827-+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880037320000 ti: ffff88007cdd0000 task.ti: ffff88007cdd0000 RIP: 0010:[<ffffffff811f8e06>] [<ffffffff811f8e06>] split_huge_page_to_list+0x496/0x590 RSP: 0018:ffff88007cdd3b70 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88007c7b88c0 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000700000200 RDI: ffffea0003188000 RBP: ffff88007cdd3bb8 R08: 0000000000000001 R09: 00003ffffffff000 R10: ffff880000000000 R11: ffffc000001fffff R12: ffffea0003188000 R13: ffffea0003188000 R14: 0000000000000000 R15: 0400000000000080 FS: 00007f8ec241d740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8ec1f3ed20 CR3: 000000003707b000 CR4: 00000000000006f0 Call Trace: ? list_del+0xd/0x30 queue_pages_pte_range+0x4d1/0x590 __walk_page_range+0x204/0x4e0 walk_page_range+0x71/0xf0 queue_pages_range+0x75/0x90 ? queue_pages_hugetlb+0x190/0x190 ? new_node_page+0xc0/0xc0 ? change_prot_numa+0x40/0x40 migrate_to_node+0x71/0xd0 do_migrate_pages+0x1c3/0x210 SyS_migrate_pages+0x261/0x290 entry_SYSCALL_64_fastpath+0x1a/0xa4 Code: e8 b0 87 fb ff 0f 0b 48 c7 c6 30 32 9f 81 e8 a2 87 fb ff 0f 0b 48 c7 c6 b8 46 9f 81 e8 94 87 fb ff 0f 0b 85 c0 0f 84 3e fd ff ff <0f> 0b 85 c0 0f 85 a6 00 00 00 48 8b 75 c0 4c 89 f7 41 be f0 ff RIP split_huge_page_to_list+0x496/0x590 I'm not sure of the full scenario of the reproduction, but my debug showed that split_huge_pmd_address(freeze=true) returned without running main code of pmd splitting because pmd_present(*pmd) in precheck somehow returned 0. If this happens, the subsequent try_to_unmap() fails and returns non-zero (because page_mapcount() still > 0), and finally VM_BUG_ON() fires. This patch tries to fix it by prechecking pmd state inside ptl. Link: http://lkml.kernel.org/r/1466990929-7452-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 03:07:32 +08:00
__split_huge_pmd(vma, pmd, address, freeze, page);
}
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
{
/*
* If the new address isn't hpage aligned and it could previously
* contain an hugepage: check if we need to split an huge pmd.
*/
if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
ALIGN(address, HPAGE_PMD_SIZE)))
split_huge_pmd_address(vma, address, false, NULL);
}
void vma_adjust_trans_huge(struct vm_area_struct *vma,
unsigned long start,
unsigned long end,
long adjust_next)
{
/* Check if we need to split start first. */
split_huge_pmd_if_needed(vma, start);
/* Check if we need to split end next. */
split_huge_pmd_if_needed(vma, end);
/*
* If we're also updating the vma->vm_next->vm_start,
* check if we need to split it.
*/
if (adjust_next > 0) {
struct vm_area_struct *next = vma->vm_next;
unsigned long nstart = next->vm_start;
nstart += adjust_next;
split_huge_pmd_if_needed(next, nstart);
}
}
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
static void unmap_page(struct page *page)
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
{
mm/rmap: split migration into its own function Migration is currently implemented as a mode of operation for try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE. However it does not have much in common with the rest of the unmap functionality of try_to_unmap_one() and thus splitting it into a separate function reduces the complexity of try_to_unmap_one() making it more readable. Several simplifications can also be made in try_to_migrate_one() based on the following observations: - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK. - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON. - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH. TTU_SPLIT_FREEZE is a special case of migration used when splitting an anonymous page. This is most easily dealt with by calling the correct function from unmap_page() in mm/huge_memory.c - either try_to_migrate() for PageAnon or try_to_unmap(). Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:54:16 +08:00
enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
TTU_SYNC;
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
VM_BUG_ON_PAGE(!PageHead(page), page);
mm/rmap: split migration into its own function Migration is currently implemented as a mode of operation for try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE. However it does not have much in common with the rest of the unmap functionality of try_to_unmap_one() and thus splitting it into a separate function reduces the complexity of try_to_unmap_one() making it more readable. Several simplifications can also be made in try_to_migrate_one() based on the following observations: - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK. - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON. - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH. TTU_SPLIT_FREEZE is a special case of migration used when splitting an anonymous page. This is most easily dealt with by calling the correct function from unmap_page() in mm/huge_memory.c - either try_to_migrate() for PageAnon or try_to_unmap(). Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:54:16 +08:00
/*
* Anon pages need migration entries to preserve them, but file
* pages can simply be left unmapped, then faulted back on demand.
* If that is ever changed (perhaps for mlock), update remap_page().
*/
if (PageAnon(page))
mm/rmap: split migration into its own function Migration is currently implemented as a mode of operation for try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE. However it does not have much in common with the rest of the unmap functionality of try_to_unmap_one() and thus splitting it into a separate function reduces the complexity of try_to_unmap_one() making it more readable. Several simplifications can also be made in try_to_migrate_one() based on the following observations: - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK. - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON. - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH. TTU_SPLIT_FREEZE is a special case of migration used when splitting an anonymous page. This is most easily dealt with by calling the correct function from unmap_page() in mm/huge_memory.c - either try_to_migrate() for PageAnon or try_to_unmap(). Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:54:16 +08:00
try_to_migrate(page, ttu_flags);
else
try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK);
VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
}
static void remap_page(struct page *page, unsigned int nr)
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
{
int i;
/* If unmap_page() uses try_to_migrate() on file, remove this check */
if (!PageAnon(page))
return;
if (PageTransHuge(page)) {
remove_migration_ptes(page, page, true);
} else {
for (i = 0; i < nr; i++)
remove_migration_ptes(page + i, page + i, true);
}
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
}
mm/thp: use head for head page in lru_add_page_tail() Since the first parameter is only used by head page, it's better to make it explicit. Link: https://lkml.kernel.org/r/1604566549-62481-3-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:24 +08:00
static void lru_add_page_tail(struct page *head, struct page *tail,
mm/thp: move lru_add_page_tail() to huge_memory.c Patch series "per memcg lru lock", v21. This patchset includes 3 parts: 1) some code cleanup and minimum optimization as preparation 2) use TestCleanPageLRU as page isolation's precondition 3) replace per node lru_lock with per memcg per node lru_lock Current lru_lock is one for each of node, pgdat->lru_lock, that guard for lru lists, but now we had moved the lru lists into memcg for long time. Still using per node lru_lock is clearly unscalable, pages on each of memcgs have to compete each others for a whole lru_lock. This patchset try to use per lruvec/memcg lru_lock to repleace per node lru lock to guard lru lists, make it scalable for memcgs and get performance gain. Currently lru_lock still guards both lru list and page's lru bit, that's ok. but if we want to use specific lruvec lock on the page, we need to pin down the page's lruvec/memcg during locking. Just taking lruvec lock first may be undermined by the page's memcg charge/migration. To fix this problem, we could take out the page's lru bit clear and use it as pin down action to block the memcg changes. That's the reason for new atomic func TestClearPageLRU. So now isolating a page need both actions: TestClearPageLRU and hold the lru_lock. The typical usage of this is isolate_migratepages_block() in compaction.c we have to take lru bit before lru lock, that serialized the page isolation in memcg page charge/migration which will change page's lruvec and new lru_lock in it. The above solution suggested by Johannes Weiner, and based on his new memcg charge path, then have this patchset. (Hugh Dickins tested and contributed much code from compaction fix to general code polish, thanks a lot!). Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box on v18, which has no much different with this v20. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Thanks to Hugh Dickins and Konstantin Khlebnikov, they both brought this idea 8 years ago, and others who gave comments as well: Daniel Jordan, Mel Gorman, Shakeel Butt, Matthew Wilcox, Alexander Duyck etc. Thanks for Testing support from Intel 0day and Rong Chen, Fengguang Wu, and Yun Wang. Hugh Dickins also shared his kbuild-swap case. This patch (of 19): lru_add_page_tail() is only used in huge_memory.c, defining it in other file with a CONFIG_TRANSPARENT_HUGEPAGE macro restrict just looks weird. Let's move it THP. And make it static as Hugh Dickins suggested. Link: https://lkml.kernel.org/r/1604566549-62481-1-git-send-email-alex.shi@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-2-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:20 +08:00
struct lruvec *lruvec, struct list_head *list)
{
mm/thp: use head for head page in lru_add_page_tail() Since the first parameter is only used by head page, it's better to make it explicit. Link: https://lkml.kernel.org/r/1604566549-62481-3-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:24 +08:00
VM_BUG_ON_PAGE(!PageHead(head), head);
VM_BUG_ON_PAGE(PageCompound(tail), head);
VM_BUG_ON_PAGE(PageLRU(tail), head);
mm/lru: replace pgdat lru_lock with lruvec lock This patch moves per node lru_lock into lruvec, thus bring a lru_lock for each of memcg per node. So on a large machine, each of memcg don't have to suffer from per node pgdat->lru_lock competition. They could go fast with their self lru_lock. After move memcg charge before lru inserting, page isolation could serialize page's memcg, then per memcg lruvec lock is stable and could replace per node lru lock. In isolate_migratepages_block(), compact_unlock_should_abort and lock_page_lruvec_irqsave are open coded to work with compact_control. Also add a debug func in locking which may give some clues if there are sth out of hands. Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Hugh Dickins helped on the patch polish, thanks! [alex.shi@linux.alibaba.com: fix comment typo] Link: https://lkml.kernel.org/r/5b085715-292a-4b43-50b3-d73dc90d1de5@linux.alibaba.com [alex.shi@linux.alibaba.com: use page_memcg()] Link: https://lkml.kernel.org/r/5a4c2b72-7ee8-2478-fc0e-85eb83aafec4@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-18-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rong Chen <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:34:29 +08:00
lockdep_assert_held(&lruvec->lru_lock);
mm/thp: move lru_add_page_tail() to huge_memory.c Patch series "per memcg lru lock", v21. This patchset includes 3 parts: 1) some code cleanup and minimum optimization as preparation 2) use TestCleanPageLRU as page isolation's precondition 3) replace per node lru_lock with per memcg per node lru_lock Current lru_lock is one for each of node, pgdat->lru_lock, that guard for lru lists, but now we had moved the lru lists into memcg for long time. Still using per node lru_lock is clearly unscalable, pages on each of memcgs have to compete each others for a whole lru_lock. This patchset try to use per lruvec/memcg lru_lock to repleace per node lru lock to guard lru lists, make it scalable for memcgs and get performance gain. Currently lru_lock still guards both lru list and page's lru bit, that's ok. but if we want to use specific lruvec lock on the page, we need to pin down the page's lruvec/memcg during locking. Just taking lruvec lock first may be undermined by the page's memcg charge/migration. To fix this problem, we could take out the page's lru bit clear and use it as pin down action to block the memcg changes. That's the reason for new atomic func TestClearPageLRU. So now isolating a page need both actions: TestClearPageLRU and hold the lru_lock. The typical usage of this is isolate_migratepages_block() in compaction.c we have to take lru bit before lru lock, that serialized the page isolation in memcg page charge/migration which will change page's lruvec and new lru_lock in it. The above solution suggested by Johannes Weiner, and based on his new memcg charge path, then have this patchset. (Hugh Dickins tested and contributed much code from compaction fix to general code polish, thanks a lot!). Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box on v18, which has no much different with this v20. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Thanks to Hugh Dickins and Konstantin Khlebnikov, they both brought this idea 8 years ago, and others who gave comments as well: Daniel Jordan, Mel Gorman, Shakeel Butt, Matthew Wilcox, Alexander Duyck etc. Thanks for Testing support from Intel 0day and Rong Chen, Fengguang Wu, and Yun Wang. Hugh Dickins also shared his kbuild-swap case. This patch (of 19): lru_add_page_tail() is only used in huge_memory.c, defining it in other file with a CONFIG_TRANSPARENT_HUGEPAGE macro restrict just looks weird. Let's move it THP. And make it static as Hugh Dickins suggested. Link: https://lkml.kernel.org/r/1604566549-62481-1-git-send-email-alex.shi@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-2-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:20 +08:00
mm/thp: simplify lru_add_page_tail() Simplify lru_add_page_tail(), there are actually only two cases possible: split_huge_page_to_list(), with list supplied and head isolated from lru by its caller; or split_huge_page(), with NULL list and head on lru - because when head is racily isolated from lru, the isolator's reference will stop the split from getting any further than its page_ref_freeze(). So decide between the two cases by "list", but add VM_WARN_ON()s to verify that they match our lru expectations. [Hugh Dickins: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-4-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:29 +08:00
if (list) {
mm/thp: move lru_add_page_tail() to huge_memory.c Patch series "per memcg lru lock", v21. This patchset includes 3 parts: 1) some code cleanup and minimum optimization as preparation 2) use TestCleanPageLRU as page isolation's precondition 3) replace per node lru_lock with per memcg per node lru_lock Current lru_lock is one for each of node, pgdat->lru_lock, that guard for lru lists, but now we had moved the lru lists into memcg for long time. Still using per node lru_lock is clearly unscalable, pages on each of memcgs have to compete each others for a whole lru_lock. This patchset try to use per lruvec/memcg lru_lock to repleace per node lru lock to guard lru lists, make it scalable for memcgs and get performance gain. Currently lru_lock still guards both lru list and page's lru bit, that's ok. but if we want to use specific lruvec lock on the page, we need to pin down the page's lruvec/memcg during locking. Just taking lruvec lock first may be undermined by the page's memcg charge/migration. To fix this problem, we could take out the page's lru bit clear and use it as pin down action to block the memcg changes. That's the reason for new atomic func TestClearPageLRU. So now isolating a page need both actions: TestClearPageLRU and hold the lru_lock. The typical usage of this is isolate_migratepages_block() in compaction.c we have to take lru bit before lru lock, that serialized the page isolation in memcg page charge/migration which will change page's lruvec and new lru_lock in it. The above solution suggested by Johannes Weiner, and based on his new memcg charge path, then have this patchset. (Hugh Dickins tested and contributed much code from compaction fix to general code polish, thanks a lot!). Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box on v18, which has no much different with this v20. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Thanks to Hugh Dickins and Konstantin Khlebnikov, they both brought this idea 8 years ago, and others who gave comments as well: Daniel Jordan, Mel Gorman, Shakeel Butt, Matthew Wilcox, Alexander Duyck etc. Thanks for Testing support from Intel 0day and Rong Chen, Fengguang Wu, and Yun Wang. Hugh Dickins also shared his kbuild-swap case. This patch (of 19): lru_add_page_tail() is only used in huge_memory.c, defining it in other file with a CONFIG_TRANSPARENT_HUGEPAGE macro restrict just looks weird. Let's move it THP. And make it static as Hugh Dickins suggested. Link: https://lkml.kernel.org/r/1604566549-62481-1-git-send-email-alex.shi@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-2-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:20 +08:00
/* page reclaim is reclaiming a huge page */
mm/thp: simplify lru_add_page_tail() Simplify lru_add_page_tail(), there are actually only two cases possible: split_huge_page_to_list(), with list supplied and head isolated from lru by its caller; or split_huge_page(), with NULL list and head on lru - because when head is racily isolated from lru, the isolator's reference will stop the split from getting any further than its page_ref_freeze(). So decide between the two cases by "list", but add VM_WARN_ON()s to verify that they match our lru expectations. [Hugh Dickins: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-4-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:29 +08:00
VM_WARN_ON(PageLRU(head));
mm/thp: use head for head page in lru_add_page_tail() Since the first parameter is only used by head page, it's better to make it explicit. Link: https://lkml.kernel.org/r/1604566549-62481-3-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:24 +08:00
get_page(tail);
list_add_tail(&tail->lru, list);
mm/thp: move lru_add_page_tail() to huge_memory.c Patch series "per memcg lru lock", v21. This patchset includes 3 parts: 1) some code cleanup and minimum optimization as preparation 2) use TestCleanPageLRU as page isolation's precondition 3) replace per node lru_lock with per memcg per node lru_lock Current lru_lock is one for each of node, pgdat->lru_lock, that guard for lru lists, but now we had moved the lru lists into memcg for long time. Still using per node lru_lock is clearly unscalable, pages on each of memcgs have to compete each others for a whole lru_lock. This patchset try to use per lruvec/memcg lru_lock to repleace per node lru lock to guard lru lists, make it scalable for memcgs and get performance gain. Currently lru_lock still guards both lru list and page's lru bit, that's ok. but if we want to use specific lruvec lock on the page, we need to pin down the page's lruvec/memcg during locking. Just taking lruvec lock first may be undermined by the page's memcg charge/migration. To fix this problem, we could take out the page's lru bit clear and use it as pin down action to block the memcg changes. That's the reason for new atomic func TestClearPageLRU. So now isolating a page need both actions: TestClearPageLRU and hold the lru_lock. The typical usage of this is isolate_migratepages_block() in compaction.c we have to take lru bit before lru lock, that serialized the page isolation in memcg page charge/migration which will change page's lruvec and new lru_lock in it. The above solution suggested by Johannes Weiner, and based on his new memcg charge path, then have this patchset. (Hugh Dickins tested and contributed much code from compaction fix to general code polish, thanks a lot!). Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box on v18, which has no much different with this v20. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Thanks to Hugh Dickins and Konstantin Khlebnikov, they both brought this idea 8 years ago, and others who gave comments as well: Daniel Jordan, Mel Gorman, Shakeel Butt, Matthew Wilcox, Alexander Duyck etc. Thanks for Testing support from Intel 0day and Rong Chen, Fengguang Wu, and Yun Wang. Hugh Dickins also shared his kbuild-swap case. This patch (of 19): lru_add_page_tail() is only used in huge_memory.c, defining it in other file with a CONFIG_TRANSPARENT_HUGEPAGE macro restrict just looks weird. Let's move it THP. And make it static as Hugh Dickins suggested. Link: https://lkml.kernel.org/r/1604566549-62481-1-git-send-email-alex.shi@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-2-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:20 +08:00
} else {
mm/thp: simplify lru_add_page_tail() Simplify lru_add_page_tail(), there are actually only two cases possible: split_huge_page_to_list(), with list supplied and head isolated from lru by its caller; or split_huge_page(), with NULL list and head on lru - because when head is racily isolated from lru, the isolator's reference will stop the split from getting any further than its page_ref_freeze(). So decide between the two cases by "list", but add VM_WARN_ON()s to verify that they match our lru expectations. [Hugh Dickins: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-4-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:29 +08:00
/* head is still on lru (and we have it frozen) */
VM_WARN_ON(!PageLRU(head));
SetPageLRU(tail);
list_add_tail(&tail->lru, &head->lru);
mm/thp: move lru_add_page_tail() to huge_memory.c Patch series "per memcg lru lock", v21. This patchset includes 3 parts: 1) some code cleanup and minimum optimization as preparation 2) use TestCleanPageLRU as page isolation's precondition 3) replace per node lru_lock with per memcg per node lru_lock Current lru_lock is one for each of node, pgdat->lru_lock, that guard for lru lists, but now we had moved the lru lists into memcg for long time. Still using per node lru_lock is clearly unscalable, pages on each of memcgs have to compete each others for a whole lru_lock. This patchset try to use per lruvec/memcg lru_lock to repleace per node lru lock to guard lru lists, make it scalable for memcgs and get performance gain. Currently lru_lock still guards both lru list and page's lru bit, that's ok. but if we want to use specific lruvec lock on the page, we need to pin down the page's lruvec/memcg during locking. Just taking lruvec lock first may be undermined by the page's memcg charge/migration. To fix this problem, we could take out the page's lru bit clear and use it as pin down action to block the memcg changes. That's the reason for new atomic func TestClearPageLRU. So now isolating a page need both actions: TestClearPageLRU and hold the lru_lock. The typical usage of this is isolate_migratepages_block() in compaction.c we have to take lru bit before lru lock, that serialized the page isolation in memcg page charge/migration which will change page's lruvec and new lru_lock in it. The above solution suggested by Johannes Weiner, and based on his new memcg charge path, then have this patchset. (Hugh Dickins tested and contributed much code from compaction fix to general code polish, thanks a lot!). Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box on v18, which has no much different with this v20. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Thanks to Hugh Dickins and Konstantin Khlebnikov, they both brought this idea 8 years ago, and others who gave comments as well: Daniel Jordan, Mel Gorman, Shakeel Butt, Matthew Wilcox, Alexander Duyck etc. Thanks for Testing support from Intel 0day and Rong Chen, Fengguang Wu, and Yun Wang. Hugh Dickins also shared his kbuild-swap case. This patch (of 19): lru_add_page_tail() is only used in huge_memory.c, defining it in other file with a CONFIG_TRANSPARENT_HUGEPAGE macro restrict just looks weird. Let's move it THP. And make it static as Hugh Dickins suggested. Link: https://lkml.kernel.org/r/1604566549-62481-1-git-send-email-alex.shi@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-2-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:20 +08:00
}
}
static void __split_huge_page_tail(struct page *head, int tail,
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
struct lruvec *lruvec, struct list_head *list)
{
struct page *page_tail = head + tail;
VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
/*
* Clone page flags before unfreezing refcount.
*
* After successful get_page_unless_zero() might follow flags change,
* for example lock_page() which set PG_waiters.
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
*/
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
page_tail->flags |= (head->flags &
((1L << PG_referenced) |
(1L << PG_swapbacked) |
mm, THP, swap: delay splitting THP during swap out Patch series "THP swap: Delay splitting THP during swapping out", v11. This patchset is to optimize the performance of Transparent Huge Page (THP) swap. Recently, the performance of the storage devices improved so fast that we cannot saturate the disk bandwidth with single logical CPU when do page swap out even on a high-end server machine. Because the performance of the storage device improved faster than that of single logical CPU. And it seems that the trend will not change in the near future. On the other hand, the THP becomes more and more popular because of increased memory size. So it becomes necessary to optimize THP swap performance. The advantages of the THP swap support include: - Batch the swap operations for the THP to reduce lock acquiring/releasing, including allocating/freeing the swap space, adding/deleting to/from the swap cache, and writing/reading the swap space, etc. This will help improve the performance of the THP swap. - The THP swap space read/write will be 2M sequential IO. It is particularly helpful for the swap read, which are usually 4k random IO. This will improve the performance of the THP swap too. - It will help the memory fragmentation, especially when the THP is heavily used by the applications. The 2M continuous pages will be free up after THP swapping out. - It will improve the THP utilization on the system with the swap turned on. Because the speed for khugepaged to collapse the normal pages into the THP is quite slow. After the THP is split during the swapping out, it will take quite long time for the normal pages to collapse back into the THP after being swapped in. The high THP utilization helps the efficiency of the page based memory management too. There are some concerns regarding THP swap in, mainly because possible enlarged read/write IO size (for swap in/out) may put more overhead on the storage device. To deal with that, the THP swap in should be turned on only when necessary. For example, it can be selected via "always/never/madvise" logic, to be turned on globally, turned off globally, or turned on only for VMA with MADV_HUGEPAGE, etc. This patchset is the first step for the THP swap support. The plan is to delay splitting THP step by step, finally avoid splitting THP during the THP swapping out and swap out/in the THP as a whole. As the first step, in this patchset, the splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP and adding the THP into the swap cache. This will reduce lock acquiring/releasing for the locks used for the swap cache management. With the patchset, the swap out throughput improves 15.5% (from about 3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. This patch (of 5): In this patch, splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP (Transparent Huge Page) and adding the THP into the swap cache. This will batch the corresponding operation, thus improve THP swap out throughput. This is the first step for the THP swap optimization. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. In this patch, one swap cluster is used to hold the contents of each THP swapped out. So, the size of the swap cluster is changed to that of the THP (Transparent Huge Page) on x86_64 architecture (512). For other architectures which want such THP swap optimization, ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for the architecture. In effect, this will enlarge swap cluster size by 2 times on x86_64. Which may make it harder to find a free cluster when the swap space becomes fragmented. So that, this may reduce the continuous swap space allocation and sequential write in theory. The performance test in 0day shows no regressions caused by this. In the future of THP swap optimization, some information of the swapped out THP (such as compound map count) will be recorded in the swap_cluster_info data structure. The mem cgroup swap accounting functions are enhanced to support charge or uncharge a swap cluster backing a THP as a whole. The swap cluster allocate/free functions are added to allocate/free a swap cluster for a THP. A fair simple algorithm is used for swap cluster allocation, that is, only the first swap device in priority list will be tried to allocate the swap cluster. The function will fail if the trying is not successful, and the caller will fallback to allocate a single swap slot instead. This works good enough for normal cases. If the difference of the number of the free swap clusters among multiple swap devices is significant, it is possible that some THPs are split earlier than necessary. For example, this could be caused by big size difference among multiple swap devices. The swap cache functions is enhanced to support add/delete THP to/from the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be enhanced in the future with multi-order radix tree. But because we will split the THP soon during swapping out, that optimization doesn't make much sense for this first step. The THP splitting functions are enhanced to support to split THP in swap cache during swapping out. The page lock will be held during allocating the swap cluster, adding the THP into the swap cache and splitting the THP. So in the code path other than swapping out, if the THP need to be split, the PageSwapCache(THP) will be always false. The swap cluster is only available for SSD, so the THP swap optimization in this patchset has no effect for HDD. [ying.huang@intel.com: fix two issues in THP optimize patch] Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com [hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size] Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option] Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:18 +08:00
(1L << PG_swapcache) |
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
(1L << PG_mlocked) |
(1L << PG_uptodate) |
(1L << PG_active) |
mm: workingset: tell cache transitions from workingset thrashing Refaults happen during transitions between workingsets as well as in-place thrashing. Knowing the difference between the two has a range of applications, including measuring the impact of memory shortage on the system performance, as well as the ability to smarter balance pressure between the filesystem cache and the swap-backed workingset. During workingset transitions, inactive cache refaults and pushes out established active cache. When that active cache isn't stale, however, and also ends up refaulting, that's bonafide thrashing. Introduce a new page flag that tells on eviction whether the page has been active or not in its lifetime. This bit is then stored in the shadow entry, to classify refaults as transitioning or thrashing. How many page->flags does this leave us with on 32-bit? 20 bits are always page flags 21 if you have an MMU 23 with the zone bits for DMA, Normal, HighMem, Movable 29 with the sparsemem section bits 30 if PAE is enabled 31 with this patch. So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes. If that's not enough, the system can switch to discontigmem and re-gain the 6 or 7 sparsemem section bits. Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:06:04 +08:00
(1L << PG_workingset) |
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
(1L << PG_locked) |
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
(1L << PG_unevictable) |
#ifdef CONFIG_64BIT
(1L << PG_arch_2) |
#endif
mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called We don't need to split THP page when MADV_FREE syscall is called if [start, len] is aligned with THP size. The split could be done when VM decide to free it in reclaim path if memory pressure is heavy. With that, we could avoid unnecessary THP split. For the feature, this patch changes pte dirtness marking logic of THP. Now, it marks every ptes of pages dirty unconditionally in splitting, which makes MADV_FREE void. So, instead, this patch propagates pmd dirtiness to all pages via PG_dirty and restores pte dirtiness from PG_dirty. With this, if pmd is clean(ie, MADV_FREEed) when split happens(e,g, shrink_page_list), all of pages are clean too so we could discard them. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:42 +08:00
(1L << PG_dirty)));
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
/* ->mapping in first tail page is compound_mapcount */
VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
page_tail);
page_tail->mapping = head->mapping;
page_tail->index = head->index + tail;
/* Page flags must be visible before we make the page non-compound. */
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
smp_wmb();
/*
* Clear PageTail before unfreezing page refcount.
*
* After successful get_page_unless_zero() might follow put_page()
* which needs correct compound_head().
*/
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
clear_compound_head(page_tail);
/* Finally unfreeze refcount. Additional reference from page cache. */
page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
PageSwapCache(head)));
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
if (page_is_young(head))
set_page_young(page_tail);
if (page_is_idle(head))
set_page_idle(page_tail);
page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
mm: unclutter THP migration THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 07:30:07 +08:00
/*
* always add to the tail because some iterators expect new
* pages to show after the currently processed elements - e.g.
* migrate_pages
*/
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
lru_add_page_tail(head, page_tail, lruvec, list);
}
static void __split_huge_page(struct page *page, struct list_head *list,
mm/thp: narrow lru locking lru_lock and page cache xa_lock have no obvious reason to be taken one way round or the other: until now, lru_lock has been taken before page cache xa_lock, when splitting a THP; but nothing else takes them together. Reverse that ordering: let's narrow the lru locking - but leave local_irq_disable to block interrupts throughout, like before. Hugh Dickins point: split_huge_page_to_list() was already silly, to be using the _irqsave variant: it's just been taking sleeping locks, so would already be broken if entered with interrupts enabled. So we can save passing flags argument down to __split_huge_page(). Why change the lock ordering here? That was hard to decide. One reason: when this series reaches per-memcg lru locking, it relies on the THP's memcg to be stable when taking the lru_lock: that is now done after the THP's refcount has been frozen, which ensures page memcg cannot change. Another reason: previously, lock_page_memcg()'s move_lock was presumed to nest inside lru_lock; but now lru_lock must nest inside (page cache lock inside) move_lock, so it becomes possible to use lock_page_memcg() to stabilize page memcg before taking its lru_lock. That is not the mechanism used in this series, but it is an option we want to keep open. [hughd@google.com: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-5-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:33 +08:00
pgoff_t end)
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
{
struct page *head = compound_head(page);
struct lruvec *lruvec;
struct address_space *swap_cache = NULL;
unsigned long offset = 0;
unsigned int nr = thp_nr_pages(head);
int i;
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
/* complete memcg works before add pages to LRU */
split_page_memcg(head, nr);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
if (PageAnon(head) && PageSwapCache(head)) {
swp_entry_t entry = { .val = page_private(head) };
offset = swp_offset(entry);
swap_cache = swap_address_space(entry);
xa_lock(&swap_cache->i_pages);
}
/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
mm/lru: replace pgdat lru_lock with lruvec lock This patch moves per node lru_lock into lruvec, thus bring a lru_lock for each of memcg per node. So on a large machine, each of memcg don't have to suffer from per node pgdat->lru_lock competition. They could go fast with their self lru_lock. After move memcg charge before lru inserting, page isolation could serialize page's memcg, then per memcg lruvec lock is stable and could replace per node lru lock. In isolate_migratepages_block(), compact_unlock_should_abort and lock_page_lruvec_irqsave are open coded to work with compact_control. Also add a debug func in locking which may give some clues if there are sth out of hands. Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Hugh Dickins helped on the patch polish, thanks! [alex.shi@linux.alibaba.com: fix comment typo] Link: https://lkml.kernel.org/r/5b085715-292a-4b43-50b3-d73dc90d1de5@linux.alibaba.com [alex.shi@linux.alibaba.com: use page_memcg()] Link: https://lkml.kernel.org/r/5a4c2b72-7ee8-2478-fc0e-85eb83aafec4@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-18-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rong Chen <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:34:29 +08:00
lruvec = lock_page_lruvec(head);
mm/thp: narrow lru locking lru_lock and page cache xa_lock have no obvious reason to be taken one way round or the other: until now, lru_lock has been taken before page cache xa_lock, when splitting a THP; but nothing else takes them together. Reverse that ordering: let's narrow the lru locking - but leave local_irq_disable to block interrupts throughout, like before. Hugh Dickins point: split_huge_page_to_list() was already silly, to be using the _irqsave variant: it's just been taking sleeping locks, so would already be broken if entered with interrupts enabled. So we can save passing flags argument down to __split_huge_page(). Why change the lock ordering here? That was hard to decide. One reason: when this series reaches per-memcg lru locking, it relies on the THP's memcg to be stable when taking the lru_lock: that is now done after the THP's refcount has been frozen, which ensures page memcg cannot change. Another reason: previously, lock_page_memcg()'s move_lock was presumed to nest inside lru_lock; but now lru_lock must nest inside (page cache lock inside) move_lock, so it becomes possible to use lock_page_memcg() to stabilize page memcg before taking its lru_lock. That is not the mechanism used in this series, but it is an option we want to keep open. [hughd@google.com: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-5-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:33 +08:00
for (i = nr - 1; i >= 1; i--) {
__split_huge_page_tail(head, i, lruvec, list);
/* Some pages can be beyond i_size: drop them from page cache */
if (head[i].index >= end) {
mm/huge_memory.c: __split_huge_page() use atomic ClearPageDirty() Swapping load on huge=always tmpfs (with khugepaged tuned up to be very eager, but I'm not sure that is relevant) soon hung uninterruptibly, waiting for page lock in shmem_getpage_gfp()'s find_lock_entry(), most often when "cp -a" was trying to write to a smallish file. Debug showed that the page in question was not locked, and page->mapping NULL by now, but page->index consistent with having been in a huge page before. Reproduced in minutes on a 4.15 kernel, even with 4.17's 605ca5ede764 ("mm/huge_memory.c: reorder operations in __split_huge_page_tail()") added in; but took hours to reproduce on a 4.17 kernel (no idea why). The culprit proved to be the __ClearPageDirty() on tails beyond i_size in __split_huge_page(): the non-atomic __bitoperation may have been safe when 4.8's baa355fd3314 ("thp: file pages support for split_huge_page()") introduced it, but liable to erase PageWaiters after 4.10's 62906027091f ("mm: add PageWaiters indicating tasks are waiting for a page bit"). Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1805291841070.3197@eggly.anvils Fixes: 62906027091f ("mm: add PageWaiters indicating tasks are waiting for a page bit") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-02 07:50:45 +08:00
ClearPageDirty(head + i);
__delete_from_page_cache(head + i, NULL);
if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
shmem_uncharge(head->mapping->host, 1);
put_page(head + i);
} else if (!PageAnon(page)) {
__xa_store(&head->mapping->i_pages, head[i].index,
head + i, 0);
} else if (swap_cache) {
__xa_store(&swap_cache->i_pages, offset + i,
head + i, 0);
}
}
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
ClearPageCompound(head);
mm/lru: replace pgdat lru_lock with lruvec lock This patch moves per node lru_lock into lruvec, thus bring a lru_lock for each of memcg per node. So on a large machine, each of memcg don't have to suffer from per node pgdat->lru_lock competition. They could go fast with their self lru_lock. After move memcg charge before lru inserting, page isolation could serialize page's memcg, then per memcg lruvec lock is stable and could replace per node lru lock. In isolate_migratepages_block(), compact_unlock_should_abort and lock_page_lruvec_irqsave are open coded to work with compact_control. Also add a debug func in locking which may give some clues if there are sth out of hands. Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Hugh Dickins helped on the patch polish, thanks! [alex.shi@linux.alibaba.com: fix comment typo] Link: https://lkml.kernel.org/r/5b085715-292a-4b43-50b3-d73dc90d1de5@linux.alibaba.com [alex.shi@linux.alibaba.com: use page_memcg()] Link: https://lkml.kernel.org/r/5a4c2b72-7ee8-2478-fc0e-85eb83aafec4@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-18-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rong Chen <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:34:29 +08:00
unlock_page_lruvec(lruvec);
mm/thp: narrow lru locking lru_lock and page cache xa_lock have no obvious reason to be taken one way round or the other: until now, lru_lock has been taken before page cache xa_lock, when splitting a THP; but nothing else takes them together. Reverse that ordering: let's narrow the lru locking - but leave local_irq_disable to block interrupts throughout, like before. Hugh Dickins point: split_huge_page_to_list() was already silly, to be using the _irqsave variant: it's just been taking sleeping locks, so would already be broken if entered with interrupts enabled. So we can save passing flags argument down to __split_huge_page(). Why change the lock ordering here? That was hard to decide. One reason: when this series reaches per-memcg lru locking, it relies on the THP's memcg to be stable when taking the lru_lock: that is now done after the THP's refcount has been frozen, which ensures page memcg cannot change. Another reason: previously, lock_page_memcg()'s move_lock was presumed to nest inside lru_lock; but now lru_lock must nest inside (page cache lock inside) move_lock, so it becomes possible to use lock_page_memcg() to stabilize page memcg before taking its lru_lock. That is not the mechanism used in this series, but it is an option we want to keep open. [hughd@google.com: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-5-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:33 +08:00
/* Caller disabled irqs, so they are still disabled here */
split_page_owner(head, nr);
/* See comment in __split_huge_page_tail() */
if (PageAnon(head)) {
/* Additional pin to swap cache */
if (PageSwapCache(head)) {
mm, THP, swap: delay splitting THP during swap out Patch series "THP swap: Delay splitting THP during swapping out", v11. This patchset is to optimize the performance of Transparent Huge Page (THP) swap. Recently, the performance of the storage devices improved so fast that we cannot saturate the disk bandwidth with single logical CPU when do page swap out even on a high-end server machine. Because the performance of the storage device improved faster than that of single logical CPU. And it seems that the trend will not change in the near future. On the other hand, the THP becomes more and more popular because of increased memory size. So it becomes necessary to optimize THP swap performance. The advantages of the THP swap support include: - Batch the swap operations for the THP to reduce lock acquiring/releasing, including allocating/freeing the swap space, adding/deleting to/from the swap cache, and writing/reading the swap space, etc. This will help improve the performance of the THP swap. - The THP swap space read/write will be 2M sequential IO. It is particularly helpful for the swap read, which are usually 4k random IO. This will improve the performance of the THP swap too. - It will help the memory fragmentation, especially when the THP is heavily used by the applications. The 2M continuous pages will be free up after THP swapping out. - It will improve the THP utilization on the system with the swap turned on. Because the speed for khugepaged to collapse the normal pages into the THP is quite slow. After the THP is split during the swapping out, it will take quite long time for the normal pages to collapse back into the THP after being swapped in. The high THP utilization helps the efficiency of the page based memory management too. There are some concerns regarding THP swap in, mainly because possible enlarged read/write IO size (for swap in/out) may put more overhead on the storage device. To deal with that, the THP swap in should be turned on only when necessary. For example, it can be selected via "always/never/madvise" logic, to be turned on globally, turned off globally, or turned on only for VMA with MADV_HUGEPAGE, etc. This patchset is the first step for the THP swap support. The plan is to delay splitting THP step by step, finally avoid splitting THP during the THP swapping out and swap out/in the THP as a whole. As the first step, in this patchset, the splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP and adding the THP into the swap cache. This will reduce lock acquiring/releasing for the locks used for the swap cache management. With the patchset, the swap out throughput improves 15.5% (from about 3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. This patch (of 5): In this patch, splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP (Transparent Huge Page) and adding the THP into the swap cache. This will batch the corresponding operation, thus improve THP swap out throughput. This is the first step for the THP swap optimization. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. In this patch, one swap cluster is used to hold the contents of each THP swapped out. So, the size of the swap cluster is changed to that of the THP (Transparent Huge Page) on x86_64 architecture (512). For other architectures which want such THP swap optimization, ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for the architecture. In effect, this will enlarge swap cluster size by 2 times on x86_64. Which may make it harder to find a free cluster when the swap space becomes fragmented. So that, this may reduce the continuous swap space allocation and sequential write in theory. The performance test in 0day shows no regressions caused by this. In the future of THP swap optimization, some information of the swapped out THP (such as compound map count) will be recorded in the swap_cluster_info data structure. The mem cgroup swap accounting functions are enhanced to support charge or uncharge a swap cluster backing a THP as a whole. The swap cluster allocate/free functions are added to allocate/free a swap cluster for a THP. A fair simple algorithm is used for swap cluster allocation, that is, only the first swap device in priority list will be tried to allocate the swap cluster. The function will fail if the trying is not successful, and the caller will fallback to allocate a single swap slot instead. This works good enough for normal cases. If the difference of the number of the free swap clusters among multiple swap devices is significant, it is possible that some THPs are split earlier than necessary. For example, this could be caused by big size difference among multiple swap devices. The swap cache functions is enhanced to support add/delete THP to/from the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be enhanced in the future with multi-order radix tree. But because we will split the THP soon during swapping out, that optimization doesn't make much sense for this first step. The THP splitting functions are enhanced to support to split THP in swap cache during swapping out. The page lock will be held during allocating the swap cluster, adding the THP into the swap cache and splitting the THP. So in the code path other than swapping out, if the THP need to be split, the PageSwapCache(THP) will be always false. The swap cluster is only available for SSD, so the THP swap optimization in this patchset has no effect for HDD. [ying.huang@intel.com: fix two issues in THP optimize patch] Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com [hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size] Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option] Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:18 +08:00
page_ref_add(head, 2);
xa_unlock(&swap_cache->i_pages);
} else {
mm, THP, swap: delay splitting THP during swap out Patch series "THP swap: Delay splitting THP during swapping out", v11. This patchset is to optimize the performance of Transparent Huge Page (THP) swap. Recently, the performance of the storage devices improved so fast that we cannot saturate the disk bandwidth with single logical CPU when do page swap out even on a high-end server machine. Because the performance of the storage device improved faster than that of single logical CPU. And it seems that the trend will not change in the near future. On the other hand, the THP becomes more and more popular because of increased memory size. So it becomes necessary to optimize THP swap performance. The advantages of the THP swap support include: - Batch the swap operations for the THP to reduce lock acquiring/releasing, including allocating/freeing the swap space, adding/deleting to/from the swap cache, and writing/reading the swap space, etc. This will help improve the performance of the THP swap. - The THP swap space read/write will be 2M sequential IO. It is particularly helpful for the swap read, which are usually 4k random IO. This will improve the performance of the THP swap too. - It will help the memory fragmentation, especially when the THP is heavily used by the applications. The 2M continuous pages will be free up after THP swapping out. - It will improve the THP utilization on the system with the swap turned on. Because the speed for khugepaged to collapse the normal pages into the THP is quite slow. After the THP is split during the swapping out, it will take quite long time for the normal pages to collapse back into the THP after being swapped in. The high THP utilization helps the efficiency of the page based memory management too. There are some concerns regarding THP swap in, mainly because possible enlarged read/write IO size (for swap in/out) may put more overhead on the storage device. To deal with that, the THP swap in should be turned on only when necessary. For example, it can be selected via "always/never/madvise" logic, to be turned on globally, turned off globally, or turned on only for VMA with MADV_HUGEPAGE, etc. This patchset is the first step for the THP swap support. The plan is to delay splitting THP step by step, finally avoid splitting THP during the THP swapping out and swap out/in the THP as a whole. As the first step, in this patchset, the splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP and adding the THP into the swap cache. This will reduce lock acquiring/releasing for the locks used for the swap cache management. With the patchset, the swap out throughput improves 15.5% (from about 3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. This patch (of 5): In this patch, splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP (Transparent Huge Page) and adding the THP into the swap cache. This will batch the corresponding operation, thus improve THP swap out throughput. This is the first step for the THP swap optimization. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. In this patch, one swap cluster is used to hold the contents of each THP swapped out. So, the size of the swap cluster is changed to that of the THP (Transparent Huge Page) on x86_64 architecture (512). For other architectures which want such THP swap optimization, ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for the architecture. In effect, this will enlarge swap cluster size by 2 times on x86_64. Which may make it harder to find a free cluster when the swap space becomes fragmented. So that, this may reduce the continuous swap space allocation and sequential write in theory. The performance test in 0day shows no regressions caused by this. In the future of THP swap optimization, some information of the swapped out THP (such as compound map count) will be recorded in the swap_cluster_info data structure. The mem cgroup swap accounting functions are enhanced to support charge or uncharge a swap cluster backing a THP as a whole. The swap cluster allocate/free functions are added to allocate/free a swap cluster for a THP. A fair simple algorithm is used for swap cluster allocation, that is, only the first swap device in priority list will be tried to allocate the swap cluster. The function will fail if the trying is not successful, and the caller will fallback to allocate a single swap slot instead. This works good enough for normal cases. If the difference of the number of the free swap clusters among multiple swap devices is significant, it is possible that some THPs are split earlier than necessary. For example, this could be caused by big size difference among multiple swap devices. The swap cache functions is enhanced to support add/delete THP to/from the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be enhanced in the future with multi-order radix tree. But because we will split the THP soon during swapping out, that optimization doesn't make much sense for this first step. The THP splitting functions are enhanced to support to split THP in swap cache during swapping out. The page lock will be held during allocating the swap cluster, adding the THP into the swap cache and splitting the THP. So in the code path other than swapping out, if the THP need to be split, the PageSwapCache(THP) will be always false. The swap cluster is only available for SSD, so the THP swap optimization in this patchset has no effect for HDD. [ying.huang@intel.com: fix two issues in THP optimize patch] Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com [hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size] Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option] Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:18 +08:00
page_ref_inc(head);
}
} else {
/* Additional pin to page cache */
page_ref_add(head, 2);
xa_unlock(&head->mapping->i_pages);
}
mm/thp: narrow lru locking lru_lock and page cache xa_lock have no obvious reason to be taken one way round or the other: until now, lru_lock has been taken before page cache xa_lock, when splitting a THP; but nothing else takes them together. Reverse that ordering: let's narrow the lru locking - but leave local_irq_disable to block interrupts throughout, like before. Hugh Dickins point: split_huge_page_to_list() was already silly, to be using the _irqsave variant: it's just been taking sleeping locks, so would already be broken if entered with interrupts enabled. So we can save passing flags argument down to __split_huge_page(). Why change the lock ordering here? That was hard to decide. One reason: when this series reaches per-memcg lru locking, it relies on the THP's memcg to be stable when taking the lru_lock: that is now done after the THP's refcount has been frozen, which ensures page memcg cannot change. Another reason: previously, lock_page_memcg()'s move_lock was presumed to nest inside lru_lock; but now lru_lock must nest inside (page cache lock inside) move_lock, so it becomes possible to use lock_page_memcg() to stabilize page memcg before taking its lru_lock. That is not the mechanism used in this series, but it is an option we want to keep open. [hughd@google.com: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-5-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:33 +08:00
local_irq_enable();
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
remap_page(head, nr);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
mm: fix a race during THP splitting It is reported that the following bug is triggered if the HDD is used as swap device, [ 5758.157556] BUG: kernel NULL pointer dereference, address: 0000000000000007 [ 5758.165331] #PF: supervisor write access in kernel mode [ 5758.171161] #PF: error_code(0x0002) - not-present page [ 5758.176894] PGD 0 P4D 0 [ 5758.179721] Oops: 0002 [#1] SMP PTI [ 5758.183614] CPU: 10 PID: 316 Comm: kswapd1 Kdump: loaded Tainted: G S --------- --- 5.9.0-0.rc3.1.tst.el8.x86_64 #1 [ 5758.196717] Hardware name: Intel Corporation S2600CP/S2600CP, BIOS SE5C600.86B.02.01.0002.082220131453 08/22/2013 [ 5758.208176] RIP: 0010:split_swap_cluster+0x47/0x60 [ 5758.213522] Code: c1 e3 06 48 c1 eb 0f 48 8d 1c d8 48 89 df e8 d0 20 6a 00 80 63 07 fb 48 85 db 74 16 48 89 df c6 07 00 66 66 66 90 31 c0 5b c3 <80> 24 25 07 00 00 00 fb 31 c0 5b c3 b8 f0 ff ff ff 5b c3 66 0f 1f [ 5758.234478] RSP: 0018:ffffb147442d7af0 EFLAGS: 00010246 [ 5758.240309] RAX: 0000000000000000 RBX: 000000000014b217 RCX: ffffb14779fd9000 [ 5758.248281] RDX: 000000000014b217 RSI: ffff9c52f2ab1400 RDI: 000000000014b217 [ 5758.256246] RBP: ffffe00c51168080 R08: ffffe00c5116fe08 R09: ffff9c52fffd3000 [ 5758.264208] R10: ffffe00c511537c8 R11: ffff9c52fffd3c90 R12: 0000000000000000 [ 5758.272172] R13: ffffe00c51170000 R14: ffffe00c51170000 R15: ffffe00c51168040 [ 5758.280134] FS: 0000000000000000(0000) GS:ffff9c52f2a80000(0000) knlGS:0000000000000000 [ 5758.289163] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5758.295575] CR2: 0000000000000007 CR3: 0000000022a0e003 CR4: 00000000000606e0 [ 5758.303538] Call Trace: [ 5758.306273] split_huge_page_to_list+0x88b/0x950 [ 5758.311433] deferred_split_scan+0x1ca/0x310 [ 5758.316202] do_shrink_slab+0x12c/0x2a0 [ 5758.320491] shrink_slab+0x20f/0x2c0 [ 5758.324482] shrink_node+0x240/0x6c0 [ 5758.328469] balance_pgdat+0x2d1/0x550 [ 5758.332652] kswapd+0x201/0x3c0 [ 5758.336157] ? finish_wait+0x80/0x80 [ 5758.340147] ? balance_pgdat+0x550/0x550 [ 5758.344525] kthread+0x114/0x130 [ 5758.348126] ? kthread_park+0x80/0x80 [ 5758.352214] ret_from_fork+0x22/0x30 [ 5758.356203] Modules linked in: fuse zram rfkill sunrpc intel_rapl_msr intel_rapl_common sb_edac x86_pkg_temp_thermal intel_powerclamp coretemp mgag200 iTCO_wdt crct10dif_pclmul iTCO_vendor_support drm_kms_helper crc32_pclmul ghash_clmulni_intel syscopyarea sysfillrect sysimgblt fb_sys_fops cec rapl joydev intel_cstate ipmi_si ipmi_devintf drm intel_uncore i2c_i801 ipmi_msghandler pcspkr lpc_ich mei_me i2c_smbus mei ioatdma ip_tables xfs libcrc32c sr_mod sd_mod cdrom t10_pi sg igb ahci libahci i2c_algo_bit crc32c_intel libata dca wmi dm_mirror dm_region_hash dm_log dm_mod [ 5758.412673] CR2: 0000000000000007 [ 0.000000] Linux version 5.9.0-0.rc3.1.tst.el8.x86_64 (mockbuild@x86-vm-15.build.eng.bos.redhat.com) (gcc (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5), GNU ld version 2.30-79.el8) #1 SMP Wed Sep 9 16:03:34 EDT 2020 After further digging it's found that the following race condition exists in the original implementation, CPU1 CPU2 ---- ---- deferred_split_scan() split_huge_page(page) /* page isn't compound head */ split_huge_page_to_list(page, NULL) __split_huge_page(page, ) ClearPageCompound(head) /* unlock all subpages except page (not head) */ add_to_swap(head) /* not THP */ get_swap_page(head) add_to_swap_cache(head, ) SetPageSwapCache(head) if PageSwapCache(head) split_swap_cluster(/* swap entry of head */) /* Deref sis->cluster_info: NULL accessing! */ So, in split_huge_page_to_list(), PageSwapCache() is called for the already split and unlocked "head", which may be added to swap cache in another CPU. So split_swap_cluster() may be called wrongly. To fix the race, the call to split_swap_cluster() is moved to __split_huge_page() before all subpages are unlocked. So that the PageSwapCache() is stable. Fixes: 59807685a7e77 ("mm, THP, swap: support splitting THP for THP swap out") Reported-by: Rafael Aquini <aquini@redhat.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Rafael Aquini <aquini@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Link: https://lkml.kernel.org/r/20201009073647.1531083-1-ying.huang@intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:06:07 +08:00
if (PageSwapCache(head)) {
swp_entry_t entry = { .val = page_private(head) };
split_swap_cluster(entry);
}
for (i = 0; i < nr; i++) {
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
struct page *subpage = head + i;
if (subpage == page)
continue;
unlock_page(subpage);
/*
* Subpages may be freed if there wasn't any mapping
* like if add_to_swap() is running on a lru page that
* had its mapping zapped. And freeing these pages
* requires taking the lru_lock so we do the put_page
* of the tail pages after the split is complete.
*/
put_page(subpage);
}
}
int total_mapcount(struct page *page)
{
int i, compound, nr, ret;
VM_BUG_ON_PAGE(PageTail(page), page);
if (likely(!PageCompound(page)))
return atomic_read(&page->_mapcount) + 1;
compound = compound_mapcount(page);
nr = compound_nr(page);
if (PageHuge(page))
return compound;
ret = compound;
for (i = 0; i < nr; i++)
ret += atomic_read(&page[i]._mapcount) + 1;
/* File pages has compound_mapcount included in _mapcount */
if (!PageAnon(page))
return ret - compound * nr;
if (PageDoubleMap(page))
ret -= nr;
return ret;
}
mm: thp: calculate the mapcount correctly for THP pages during WP faults This will provide fully accuracy to the mapcount calculation in the write protect faults, so page pinning will not get broken by false positive copy-on-writes. total_mapcount() isn't the right calculation needed in reuse_swap_page(), so this introduces a page_trans_huge_mapcount() that is effectively the full accurate return value for page_mapcount() if dealing with Transparent Hugepages, however we only use the page_trans_huge_mapcount() during COW faults where it strictly needed, due to its higher runtime cost. This also provide at practical zero cost the total_mapcount information which is needed to know if we can still relocate the page anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we can reuse the page no matter if it's a pte or a pmd_trans_huge triggering the fault, but we can only relocate the page anon_vma to the local vma->anon_vma if we're sure it's only this "vma" mapping the whole THP physical range. Kirill A. Shutemov discovered the problem with moving the page anon_vma to the local vma->anon_vma in a previous version of this patch and another problem in the way page_move_anon_rmap() was called. Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a previous version, because reuse_swap_page must be a macro to call page_trans_huge_mapcount from swap.h, so this uses a macro again instead of an inline function. With this change at least it's a less dangerous usage than it was before, because "page" is used only once now, while with the previous code reuse_swap_page(page++) would have called page_mapcount on page+1 and it would have increased page twice instead of just once. Dean Luick noticed an uninitialized variable that could result in a rmap inefficiency for the non-THP case in a previous version. Mike Marciniszyn said: : Our RDMA tests are seeing an issue with memory locking that bisects to : commit 61f5d698cc97 ("mm: re-enable THP") : : The test program registers two rather large MRs (512M) and RDMA : writes data to a passive peer using the first and RDMA reads it back : into the second MR and compares that data. The sizes are chosen randomly : between 0 and 1024 bytes. : : The test will get through a few (<= 4 iterations) and then gets a : compare error. : : Tracing indicates the kernel logical addresses associated with the individual : pages at registration ARE correct , the data in the "RDMA read response only" : packets ARE correct. : : The "corruption" occurs when the packet crosse two pages that are not physically : contiguous. The second page reads back as zero in the program. : : It looks like the user VA at the point of the compare error no longer points to : the same physical address as was registered. : : This patch totally resolves the issue! Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name> Reviewed-by: Dean Luick <dean.luick@intel.com> Tested-by: Alex Williamson <alex.williamson@redhat.com> Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Tested-by: Josh Collier <josh.d.collier@intel.com> Cc: Marc Haber <mh+linux-kernel@zugschlus.de> Cc: <stable@vger.kernel.org> [4.5] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-13 06:42:25 +08:00
/*
* This calculates accurately how many mappings a transparent hugepage
* has (unlike page_mapcount() which isn't fully accurate). This full
* accuracy is primarily needed to know if copy-on-write faults can
* reuse the page and change the mapping to read-write instead of
* copying them. At the same time this returns the total_mapcount too.
*
* The function returns the highest mapcount any one of the subpages
* has. If the return value is one, even if different processes are
* mapping different subpages of the transparent hugepage, they can
* all reuse it, because each process is reusing a different subpage.
*
* The total_mapcount is instead counting all virtual mappings of the
* subpages. If the total_mapcount is equal to "one", it tells the
* caller all mappings belong to the same "mm" and in turn the
* anon_vma of the transparent hugepage can become the vma->anon_vma
* local one as no other process may be mapping any of the subpages.
*
* It would be more accurate to replace page_mapcount() with
* page_trans_huge_mapcount(), however we only use
* page_trans_huge_mapcount() in the copy-on-write faults where we
* need full accuracy to avoid breaking page pinning, because
* page_trans_huge_mapcount() is slower than page_mapcount().
*/
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
int i, ret, _total_mapcount, mapcount;
/* hugetlbfs shouldn't call it */
VM_BUG_ON_PAGE(PageHuge(page), page);
if (likely(!PageTransCompound(page))) {
mapcount = atomic_read(&page->_mapcount) + 1;
if (total_mapcount)
*total_mapcount = mapcount;
return mapcount;
}
page = compound_head(page);
_total_mapcount = ret = 0;
for (i = 0; i < thp_nr_pages(page); i++) {
mm: thp: calculate the mapcount correctly for THP pages during WP faults This will provide fully accuracy to the mapcount calculation in the write protect faults, so page pinning will not get broken by false positive copy-on-writes. total_mapcount() isn't the right calculation needed in reuse_swap_page(), so this introduces a page_trans_huge_mapcount() that is effectively the full accurate return value for page_mapcount() if dealing with Transparent Hugepages, however we only use the page_trans_huge_mapcount() during COW faults where it strictly needed, due to its higher runtime cost. This also provide at practical zero cost the total_mapcount information which is needed to know if we can still relocate the page anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we can reuse the page no matter if it's a pte or a pmd_trans_huge triggering the fault, but we can only relocate the page anon_vma to the local vma->anon_vma if we're sure it's only this "vma" mapping the whole THP physical range. Kirill A. Shutemov discovered the problem with moving the page anon_vma to the local vma->anon_vma in a previous version of this patch and another problem in the way page_move_anon_rmap() was called. Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a previous version, because reuse_swap_page must be a macro to call page_trans_huge_mapcount from swap.h, so this uses a macro again instead of an inline function. With this change at least it's a less dangerous usage than it was before, because "page" is used only once now, while with the previous code reuse_swap_page(page++) would have called page_mapcount on page+1 and it would have increased page twice instead of just once. Dean Luick noticed an uninitialized variable that could result in a rmap inefficiency for the non-THP case in a previous version. Mike Marciniszyn said: : Our RDMA tests are seeing an issue with memory locking that bisects to : commit 61f5d698cc97 ("mm: re-enable THP") : : The test program registers two rather large MRs (512M) and RDMA : writes data to a passive peer using the first and RDMA reads it back : into the second MR and compares that data. The sizes are chosen randomly : between 0 and 1024 bytes. : : The test will get through a few (<= 4 iterations) and then gets a : compare error. : : Tracing indicates the kernel logical addresses associated with the individual : pages at registration ARE correct , the data in the "RDMA read response only" : packets ARE correct. : : The "corruption" occurs when the packet crosse two pages that are not physically : contiguous. The second page reads back as zero in the program. : : It looks like the user VA at the point of the compare error no longer points to : the same physical address as was registered. : : This patch totally resolves the issue! Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name> Reviewed-by: Dean Luick <dean.luick@intel.com> Tested-by: Alex Williamson <alex.williamson@redhat.com> Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Tested-by: Josh Collier <josh.d.collier@intel.com> Cc: Marc Haber <mh+linux-kernel@zugschlus.de> Cc: <stable@vger.kernel.org> [4.5] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-13 06:42:25 +08:00
mapcount = atomic_read(&page[i]._mapcount) + 1;
ret = max(ret, mapcount);
_total_mapcount += mapcount;
}
if (PageDoubleMap(page)) {
ret -= 1;
_total_mapcount -= thp_nr_pages(page);
mm: thp: calculate the mapcount correctly for THP pages during WP faults This will provide fully accuracy to the mapcount calculation in the write protect faults, so page pinning will not get broken by false positive copy-on-writes. total_mapcount() isn't the right calculation needed in reuse_swap_page(), so this introduces a page_trans_huge_mapcount() that is effectively the full accurate return value for page_mapcount() if dealing with Transparent Hugepages, however we only use the page_trans_huge_mapcount() during COW faults where it strictly needed, due to its higher runtime cost. This also provide at practical zero cost the total_mapcount information which is needed to know if we can still relocate the page anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we can reuse the page no matter if it's a pte or a pmd_trans_huge triggering the fault, but we can only relocate the page anon_vma to the local vma->anon_vma if we're sure it's only this "vma" mapping the whole THP physical range. Kirill A. Shutemov discovered the problem with moving the page anon_vma to the local vma->anon_vma in a previous version of this patch and another problem in the way page_move_anon_rmap() was called. Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a previous version, because reuse_swap_page must be a macro to call page_trans_huge_mapcount from swap.h, so this uses a macro again instead of an inline function. With this change at least it's a less dangerous usage than it was before, because "page" is used only once now, while with the previous code reuse_swap_page(page++) would have called page_mapcount on page+1 and it would have increased page twice instead of just once. Dean Luick noticed an uninitialized variable that could result in a rmap inefficiency for the non-THP case in a previous version. Mike Marciniszyn said: : Our RDMA tests are seeing an issue with memory locking that bisects to : commit 61f5d698cc97 ("mm: re-enable THP") : : The test program registers two rather large MRs (512M) and RDMA : writes data to a passive peer using the first and RDMA reads it back : into the second MR and compares that data. The sizes are chosen randomly : between 0 and 1024 bytes. : : The test will get through a few (<= 4 iterations) and then gets a : compare error. : : Tracing indicates the kernel logical addresses associated with the individual : pages at registration ARE correct , the data in the "RDMA read response only" : packets ARE correct. : : The "corruption" occurs when the packet crosse two pages that are not physically : contiguous. The second page reads back as zero in the program. : : It looks like the user VA at the point of the compare error no longer points to : the same physical address as was registered. : : This patch totally resolves the issue! Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name> Reviewed-by: Dean Luick <dean.luick@intel.com> Tested-by: Alex Williamson <alex.williamson@redhat.com> Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Tested-by: Josh Collier <josh.d.collier@intel.com> Cc: Marc Haber <mh+linux-kernel@zugschlus.de> Cc: <stable@vger.kernel.org> [4.5] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-13 06:42:25 +08:00
}
mapcount = compound_mapcount(page);
ret += mapcount;
_total_mapcount += mapcount;
if (total_mapcount)
*total_mapcount = _total_mapcount;
return ret;
}
mm, THP, swap: check whether THP can be split firstly To swap out THP (Transparent Huage Page), before splitting the THP, the swap cluster will be allocated and the THP will be added into the swap cache. But it is possible that the THP cannot be split, so that we must delete the THP from the swap cache and free the swap cluster. To avoid that, in this patch, whether the THP can be split is checked firstly. The check can only be done racy, but it is good enough for most cases. With the patch, the swap out throughput improves 3.6% (from about 4.16GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. Link: http://lkml.kernel.org/r/20170515112522.32457-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for can_split_huge_page()] Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:28 +08:00
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
int extra_pins;
/* Additional pins from page cache */
mm, THP, swap: check whether THP can be split firstly To swap out THP (Transparent Huage Page), before splitting the THP, the swap cluster will be allocated and the THP will be added into the swap cache. But it is possible that the THP cannot be split, so that we must delete the THP from the swap cache and free the swap cluster. To avoid that, in this patch, whether the THP can be split is checked firstly. The check can only be done racy, but it is good enough for most cases. With the patch, the swap out throughput improves 3.6% (from about 4.16GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. Link: http://lkml.kernel.org/r/20170515112522.32457-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for can_split_huge_page()] Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:28 +08:00
if (PageAnon(page))
extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
mm, THP, swap: check whether THP can be split firstly To swap out THP (Transparent Huage Page), before splitting the THP, the swap cluster will be allocated and the THP will be added into the swap cache. But it is possible that the THP cannot be split, so that we must delete the THP from the swap cache and free the swap cluster. To avoid that, in this patch, whether the THP can be split is checked firstly. The check can only be done racy, but it is good enough for most cases. With the patch, the swap out throughput improves 3.6% (from about 4.16GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. Link: http://lkml.kernel.org/r/20170515112522.32457-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for can_split_huge_page()] Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:28 +08:00
else
extra_pins = thp_nr_pages(page);
mm, THP, swap: check whether THP can be split firstly To swap out THP (Transparent Huage Page), before splitting the THP, the swap cluster will be allocated and the THP will be added into the swap cache. But it is possible that the THP cannot be split, so that we must delete the THP from the swap cache and free the swap cluster. To avoid that, in this patch, whether the THP can be split is checked firstly. The check can only be done racy, but it is good enough for most cases. With the patch, the swap out throughput improves 3.6% (from about 4.16GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. Link: http://lkml.kernel.org/r/20170515112522.32457-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for can_split_huge_page()] Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:28 +08:00
if (pextra_pins)
*pextra_pins = extra_pins;
return total_mapcount(page) == page_count(page) - extra_pins - 1;
}
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
/*
* This function splits huge page into normal pages. @page can point to any
* subpage of huge page to split. Split doesn't change the position of @page.
*
* Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
* The huge page must be locked.
*
* If @list is null, tail pages will be added to LRU list, otherwise, to @list.
*
* Both head page and tail pages will inherit mapping, flags, and so on from
* the hugepage.
*
* GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
* they are not mapped.
*
* Returns 0 if the hugepage is split successfully.
* Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
* us.
*/
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
struct page *head = compound_head(page);
struct deferred_split *ds_queue = get_deferred_split_queue(head);
struct anon_vma *anon_vma = NULL;
struct address_space *mapping = NULL;
int extra_pins, ret;
pgoff_t end;
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
VM_BUG_ON_PAGE(!PageLocked(head), head);
VM_BUG_ON_PAGE(!PageCompound(head), head);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
if (PageWriteback(head))
return -EBUSY;
if (PageAnon(head)) {
/*
* The caller does not necessarily hold an mmap_lock that would
* prevent the anon_vma disappearing so we first we take a
* reference to it and then lock the anon_vma for write. This
* is similar to page_lock_anon_vma_read except the write lock
* is taken to serialise against parallel split or collapse
* operations.
*/
anon_vma = page_get_anon_vma(head);
if (!anon_vma) {
ret = -EBUSY;
goto out;
}
end = -1;
mapping = NULL;
anon_vma_lock_write(anon_vma);
} else {
mapping = head->mapping;
/* Truncated ? */
if (!mapping) {
ret = -EBUSY;
goto out;
}
anon_vma = NULL;
i_mmap_lock_read(mapping);
/*
*__split_huge_page() may need to trim off pages beyond EOF:
* but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
* which cannot be nested inside the page tree lock. So note
* end now: i_size itself may be changed at any moment, but
* head page lock is good enough to serialize the trimming.
*/
end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
}
/*
* Racy check if we can split the page, before unmap_page() will
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
* split PMDs
*/
mm, THP, swap: check whether THP can be split firstly To swap out THP (Transparent Huage Page), before splitting the THP, the swap cluster will be allocated and the THP will be added into the swap cache. But it is possible that the THP cannot be split, so that we must delete the THP from the swap cache and free the swap cluster. To avoid that, in this patch, whether the THP can be split is checked firstly. The check can only be done racy, but it is good enough for most cases. With the patch, the swap out throughput improves 3.6% (from about 4.16GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. Link: http://lkml.kernel.org/r/20170515112522.32457-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for can_split_huge_page()] Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:28 +08:00
if (!can_split_huge_page(head, &extra_pins)) {
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
ret = -EBUSY;
goto out_unlock;
}
unmap_page(head);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
mm/thp: narrow lru locking lru_lock and page cache xa_lock have no obvious reason to be taken one way round or the other: until now, lru_lock has been taken before page cache xa_lock, when splitting a THP; but nothing else takes them together. Reverse that ordering: let's narrow the lru locking - but leave local_irq_disable to block interrupts throughout, like before. Hugh Dickins point: split_huge_page_to_list() was already silly, to be using the _irqsave variant: it's just been taking sleeping locks, so would already be broken if entered with interrupts enabled. So we can save passing flags argument down to __split_huge_page(). Why change the lock ordering here? That was hard to decide. One reason: when this series reaches per-memcg lru locking, it relies on the THP's memcg to be stable when taking the lru_lock: that is now done after the THP's refcount has been frozen, which ensures page memcg cannot change. Another reason: previously, lock_page_memcg()'s move_lock was presumed to nest inside lru_lock; but now lru_lock must nest inside (page cache lock inside) move_lock, so it becomes possible to use lock_page_memcg() to stabilize page memcg before taking its lru_lock. That is not the mechanism used in this series, but it is an option we want to keep open. [hughd@google.com: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-5-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:33 +08:00
/* block interrupt reentry in xa_lock and spinlock */
local_irq_disable();
if (mapping) {
XA_STATE(xas, &mapping->i_pages, page_index(head));
/*
* Check if the head page is present in page cache.
* We assume all tail are present too, if head is there.
*/
xa_lock(&mapping->i_pages);
if (xas_load(&xas) != head)
goto fail;
}
/* Prevent deferred_split_scan() touching ->_refcount */
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
spin_lock(&ds_queue->split_queue_lock);
if (page_ref_freeze(head, 1 + extra_pins)) {
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
if (!list_empty(page_deferred_list(head))) {
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
ds_queue->split_queue_len--;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
list_del(page_deferred_list(head));
}
spin_unlock(&ds_queue->split_queue_lock);
if (mapping) {
mm: memcontrol: convert NR_FILE_THPS account to pages Currently we use struct per_cpu_nodestat to cache the vmstat counters, which leads to inaccurate statistics especially THP vmstat counters. In the systems with if hundreds of processors it can be GBs of memory. For example, for a 96 CPUs system, the threshold is the maximum number of 125. And the per cpu counters can cache 23.4375 GB in total. The THP page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like sensible. Although every THP stats update overflows the per-cpu counter, resorting to atomic global updates. But it can make the statistics more accuracy for the THP vmstat counters. So we convert the NR_FILE_THPS account to pages. This patch is consistent with 8f182270dfec ("mm/swap.c: flush lru pvecs on compound page arrival"). Doing this also can make the unit of vmstat counters more unified. Finally, the unit of the vmstat counters are pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes or kB. The rest which is without suffix are pages. Link: https://lkml.kernel.org/r/20201228164110.2838-4-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:03:27 +08:00
int nr = thp_nr_pages(head);
if (PageSwapBacked(head))
mm: memcontrol: convert NR_SHMEM_THPS account to pages Currently we use struct per_cpu_nodestat to cache the vmstat counters, which leads to inaccurate statistics especially THP vmstat counters. In the systems with hundreds of processors it can be GBs of memory. For example, for a 96 CPUs system, the threshold is the maximum number of 125. And the per cpu counters can cache 23.4375 GB in total. The THP page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like sensible. Although every THP stats update overflows the per-cpu counter, resorting to atomic global updates. But it can make the statistics more accuracy for the THP vmstat counters. So we convert the NR_SHMEM_THPS account to pages. This patch is consistent with 8f182270dfec ("mm/swap.c: flush lru pvecs on compound page arrival"). Doing this also can make the unit of vmstat counters more unified. Finally, the unit of the vmstat counters are pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes or kB. The rest which is without suffix are pages. Link: https://lkml.kernel.org/r/20201228164110.2838-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:03:31 +08:00
__mod_lruvec_page_state(head, NR_SHMEM_THPS,
-nr);
else
mm: memcontrol: convert NR_FILE_THPS account to pages Currently we use struct per_cpu_nodestat to cache the vmstat counters, which leads to inaccurate statistics especially THP vmstat counters. In the systems with if hundreds of processors it can be GBs of memory. For example, for a 96 CPUs system, the threshold is the maximum number of 125. And the per cpu counters can cache 23.4375 GB in total. The THP page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like sensible. Although every THP stats update overflows the per-cpu counter, resorting to atomic global updates. But it can make the statistics more accuracy for the THP vmstat counters. So we convert the NR_FILE_THPS account to pages. This patch is consistent with 8f182270dfec ("mm/swap.c: flush lru pvecs on compound page arrival"). Doing this also can make the unit of vmstat counters more unified. Finally, the unit of the vmstat counters are pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes or kB. The rest which is without suffix are pages. Link: https://lkml.kernel.org/r/20201228164110.2838-4-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:03:27 +08:00
__mod_lruvec_page_state(head, NR_FILE_THPS,
-nr);
}
mm/thp: narrow lru locking lru_lock and page cache xa_lock have no obvious reason to be taken one way round or the other: until now, lru_lock has been taken before page cache xa_lock, when splitting a THP; but nothing else takes them together. Reverse that ordering: let's narrow the lru locking - but leave local_irq_disable to block interrupts throughout, like before. Hugh Dickins point: split_huge_page_to_list() was already silly, to be using the _irqsave variant: it's just been taking sleeping locks, so would already be broken if entered with interrupts enabled. So we can save passing flags argument down to __split_huge_page(). Why change the lock ordering here? That was hard to decide. One reason: when this series reaches per-memcg lru locking, it relies on the THP's memcg to be stable when taking the lru_lock: that is now done after the THP's refcount has been frozen, which ensures page memcg cannot change. Another reason: previously, lock_page_memcg()'s move_lock was presumed to nest inside lru_lock; but now lru_lock must nest inside (page cache lock inside) move_lock, so it becomes possible to use lock_page_memcg() to stabilize page memcg before taking its lru_lock. That is not the mechanism used in this series, but it is an option we want to keep open. [hughd@google.com: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-5-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:33 +08:00
__split_huge_page(page, list, end);
mm: fix a race during THP splitting It is reported that the following bug is triggered if the HDD is used as swap device, [ 5758.157556] BUG: kernel NULL pointer dereference, address: 0000000000000007 [ 5758.165331] #PF: supervisor write access in kernel mode [ 5758.171161] #PF: error_code(0x0002) - not-present page [ 5758.176894] PGD 0 P4D 0 [ 5758.179721] Oops: 0002 [#1] SMP PTI [ 5758.183614] CPU: 10 PID: 316 Comm: kswapd1 Kdump: loaded Tainted: G S --------- --- 5.9.0-0.rc3.1.tst.el8.x86_64 #1 [ 5758.196717] Hardware name: Intel Corporation S2600CP/S2600CP, BIOS SE5C600.86B.02.01.0002.082220131453 08/22/2013 [ 5758.208176] RIP: 0010:split_swap_cluster+0x47/0x60 [ 5758.213522] Code: c1 e3 06 48 c1 eb 0f 48 8d 1c d8 48 89 df e8 d0 20 6a 00 80 63 07 fb 48 85 db 74 16 48 89 df c6 07 00 66 66 66 90 31 c0 5b c3 <80> 24 25 07 00 00 00 fb 31 c0 5b c3 b8 f0 ff ff ff 5b c3 66 0f 1f [ 5758.234478] RSP: 0018:ffffb147442d7af0 EFLAGS: 00010246 [ 5758.240309] RAX: 0000000000000000 RBX: 000000000014b217 RCX: ffffb14779fd9000 [ 5758.248281] RDX: 000000000014b217 RSI: ffff9c52f2ab1400 RDI: 000000000014b217 [ 5758.256246] RBP: ffffe00c51168080 R08: ffffe00c5116fe08 R09: ffff9c52fffd3000 [ 5758.264208] R10: ffffe00c511537c8 R11: ffff9c52fffd3c90 R12: 0000000000000000 [ 5758.272172] R13: ffffe00c51170000 R14: ffffe00c51170000 R15: ffffe00c51168040 [ 5758.280134] FS: 0000000000000000(0000) GS:ffff9c52f2a80000(0000) knlGS:0000000000000000 [ 5758.289163] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5758.295575] CR2: 0000000000000007 CR3: 0000000022a0e003 CR4: 00000000000606e0 [ 5758.303538] Call Trace: [ 5758.306273] split_huge_page_to_list+0x88b/0x950 [ 5758.311433] deferred_split_scan+0x1ca/0x310 [ 5758.316202] do_shrink_slab+0x12c/0x2a0 [ 5758.320491] shrink_slab+0x20f/0x2c0 [ 5758.324482] shrink_node+0x240/0x6c0 [ 5758.328469] balance_pgdat+0x2d1/0x550 [ 5758.332652] kswapd+0x201/0x3c0 [ 5758.336157] ? finish_wait+0x80/0x80 [ 5758.340147] ? balance_pgdat+0x550/0x550 [ 5758.344525] kthread+0x114/0x130 [ 5758.348126] ? kthread_park+0x80/0x80 [ 5758.352214] ret_from_fork+0x22/0x30 [ 5758.356203] Modules linked in: fuse zram rfkill sunrpc intel_rapl_msr intel_rapl_common sb_edac x86_pkg_temp_thermal intel_powerclamp coretemp mgag200 iTCO_wdt crct10dif_pclmul iTCO_vendor_support drm_kms_helper crc32_pclmul ghash_clmulni_intel syscopyarea sysfillrect sysimgblt fb_sys_fops cec rapl joydev intel_cstate ipmi_si ipmi_devintf drm intel_uncore i2c_i801 ipmi_msghandler pcspkr lpc_ich mei_me i2c_smbus mei ioatdma ip_tables xfs libcrc32c sr_mod sd_mod cdrom t10_pi sg igb ahci libahci i2c_algo_bit crc32c_intel libata dca wmi dm_mirror dm_region_hash dm_log dm_mod [ 5758.412673] CR2: 0000000000000007 [ 0.000000] Linux version 5.9.0-0.rc3.1.tst.el8.x86_64 (mockbuild@x86-vm-15.build.eng.bos.redhat.com) (gcc (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5), GNU ld version 2.30-79.el8) #1 SMP Wed Sep 9 16:03:34 EDT 2020 After further digging it's found that the following race condition exists in the original implementation, CPU1 CPU2 ---- ---- deferred_split_scan() split_huge_page(page) /* page isn't compound head */ split_huge_page_to_list(page, NULL) __split_huge_page(page, ) ClearPageCompound(head) /* unlock all subpages except page (not head) */ add_to_swap(head) /* not THP */ get_swap_page(head) add_to_swap_cache(head, ) SetPageSwapCache(head) if PageSwapCache(head) split_swap_cluster(/* swap entry of head */) /* Deref sis->cluster_info: NULL accessing! */ So, in split_huge_page_to_list(), PageSwapCache() is called for the already split and unlocked "head", which may be added to swap cache in another CPU. So split_swap_cluster() may be called wrongly. To fix the race, the call to split_swap_cluster() is moved to __split_huge_page() before all subpages are unlocked. So that the PageSwapCache() is stable. Fixes: 59807685a7e77 ("mm, THP, swap: support splitting THP for THP swap out") Reported-by: Rafael Aquini <aquini@redhat.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Rafael Aquini <aquini@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Link: https://lkml.kernel.org/r/20201009073647.1531083-1-ying.huang@intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:06:07 +08:00
ret = 0;
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
} else {
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
spin_unlock(&ds_queue->split_queue_lock);
fail:
if (mapping)
xa_unlock(&mapping->i_pages);
mm/thp: narrow lru locking lru_lock and page cache xa_lock have no obvious reason to be taken one way round or the other: until now, lru_lock has been taken before page cache xa_lock, when splitting a THP; but nothing else takes them together. Reverse that ordering: let's narrow the lru locking - but leave local_irq_disable to block interrupts throughout, like before. Hugh Dickins point: split_huge_page_to_list() was already silly, to be using the _irqsave variant: it's just been taking sleeping locks, so would already be broken if entered with interrupts enabled. So we can save passing flags argument down to __split_huge_page(). Why change the lock ordering here? That was hard to decide. One reason: when this series reaches per-memcg lru locking, it relies on the THP's memcg to be stable when taking the lru_lock: that is now done after the THP's refcount has been frozen, which ensures page memcg cannot change. Another reason: previously, lock_page_memcg()'s move_lock was presumed to nest inside lru_lock; but now lru_lock must nest inside (page cache lock inside) move_lock, so it becomes possible to use lock_page_memcg() to stabilize page memcg before taking its lru_lock. That is not the mechanism used in this series, but it is an option we want to keep open. [hughd@google.com: rewrite commit log] Link: https://lkml.kernel.org/r/1604566549-62481-5-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-16 04:33:33 +08:00
local_irq_enable();
remap_page(head, thp_nr_pages(head));
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
ret = -EBUSY;
}
out_unlock:
if (anon_vma) {
anon_vma_unlock_write(anon_vma);
put_anon_vma(anon_vma);
}
if (mapping)
i_mmap_unlock_read(mapping);
thp: reintroduce split_huge_page() This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:10 +08:00
out:
count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
return ret;
}
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
void free_transhuge_page(struct page *page)
{
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
struct deferred_split *ds_queue = get_deferred_split_queue(page);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
unsigned long flags;
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
if (!list_empty(page_deferred_list(page))) {
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
ds_queue->split_queue_len--;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
list_del(page_deferred_list(page));
}
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
free_compound_page(page);
}
void deferred_split_huge_page(struct page *page)
{
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
mm: memcontrol: Use helpers to read page's memcg data Patch series "mm: allow mapping accounted kernel pages to userspace", v6. Currently a non-slab kernel page which has been charged to a memory cgroup can't be mapped to userspace. The underlying reason is simple: PageKmemcg flag is defined as a page type (like buddy, offline, etc), so it takes a bit from a page->mapped counter. Pages with a type set can't be mapped to userspace. But in general the kmemcg flag has nothing to do with mapping to userspace. It only means that the page has been accounted by the page allocator, so it has to be properly uncharged on release. Some bpf maps are mapping the vmalloc-based memory to userspace, and their memory can't be accounted because of this implementation detail. This patchset removes this limitation by moving the PageKmemcg flag into one of the free bits of the page->mem_cgroup pointer. Also it formalizes accesses to the page->mem_cgroup and page->obj_cgroups using new helpers, adds several checks and removes a couple of obsolete functions. As the result the code became more robust with fewer open-coded bit tricks. This patch (of 4): Currently there are many open-coded reads of the page->mem_cgroup pointer, as well as a couple of read helpers, which are barely used. It creates an obstacle on a way to reuse some bits of the pointer for storing additional bits of information. In fact, we already do this for slab pages, where the last bit indicates that a pointer has an attached vector of objcg pointers instead of a regular memcg pointer. This commits uses 2 existing helpers and introduces a new helper to converts all read sides to calls of these helpers: struct mem_cgroup *page_memcg(struct page *page); struct mem_cgroup *page_memcg_rcu(struct page *page); struct mem_cgroup *page_memcg_check(struct page *page); page_memcg_check() is intended to be used in cases when the page can be a slab page and have a memcg pointer pointing at objcg vector. It does check the lowest bit, and if set, returns NULL. page_memcg() contains a VM_BUG_ON_PAGE() check for the page not being a slab page. To make sure nobody uses a direct access, struct page's mem_cgroup/obj_cgroups is converted to unsigned long memcg_data. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
2020-12-02 05:58:27 +08:00
struct mem_cgroup *memcg = page_memcg(compound_head(page));
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
#endif
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
unsigned long flags;
VM_BUG_ON_PAGE(!PageTransHuge(page), page);
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
/*
* The try_to_unmap() in page reclaim path might reach here too,
* this may cause a race condition to corrupt deferred split queue.
* And, if page reclaim is already handling the same page, it is
* unnecessary to handle it again in shrinker.
*
* Check PageSwapCache to determine if the page is being
* handled by page reclaim since THP swap would add the page into
* swap cache before calling try_to_unmap().
*/
if (PageSwapCache(page))
return;
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
if (list_empty(page_deferred_list(page))) {
count_vm_event(THP_DEFERRED_SPLIT_PAGE);
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
ds_queue->split_queue_len++;
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
#ifdef CONFIG_MEMCG
if (memcg)
set_shrinker_bit(memcg, page_to_nid(page),
deferred_split_shrinker.id);
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
#endif
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
static unsigned long deferred_split_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct pglist_data *pgdata = NODE_DATA(sc->nid);
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
#ifdef CONFIG_MEMCG
if (sc->memcg)
ds_queue = &sc->memcg->deferred_split_queue;
#endif
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
return READ_ONCE(ds_queue->split_queue_len);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
static unsigned long deferred_split_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct pglist_data *pgdata = NODE_DATA(sc->nid);
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
unsigned long flags;
LIST_HEAD(list), *pos, *next;
struct page *page;
int split = 0;
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
#ifdef CONFIG_MEMCG
if (sc->memcg)
ds_queue = &sc->memcg->deferred_split_queue;
#endif
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
/* Take pin on all head pages to avoid freeing them under us */
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
list_for_each_safe(pos, next, &ds_queue->split_queue) {
page = list_entry((void *)pos, struct page, deferred_list);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
page = compound_head(page);
if (get_page_unless_zero(page)) {
list_move(page_deferred_list(page), &list);
} else {
/* We lost race with put_compound_page() */
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
list_del_init(page_deferred_list(page));
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
ds_queue->split_queue_len--;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
if (!--sc->nr_to_scan)
break;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
list_for_each_safe(pos, next, &list) {
page = list_entry((void *)pos, struct page, deferred_list);
if (!trylock_page(page))
goto next;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
/* split_huge_page() removes page from list on success */
if (!split_huge_page(page))
split++;
unlock_page(page);
next:
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
put_page(page);
}
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
list_splice_tail(&list, &ds_queue->split_queue);
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
/*
* Stop shrinker if we didn't split any page, but the queue is empty.
* This can happen if pages were freed under us.
*/
mm: thp: extract split_queue_* into a struct Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:06 +08:00
if (!split && list_empty(&ds_queue->split_queue))
return SHRINK_STOP;
return split;
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
}
static struct shrinker deferred_split_shrinker = {
.count_objects = deferred_split_count,
.scan_objects = deferred_split_scan,
.seeks = DEFAULT_SEEKS,
mm: thp: make deferred split shrinker memcg aware Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 06:38:15 +08:00
.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
SHRINKER_NONSLAB,
thp: introduce deferred_split_huge_page() Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:54:17 +08:00
};
#ifdef CONFIG_DEBUG_FS
static void split_huge_pages_all(void)
{
struct zone *zone;
struct page *page;
unsigned long pfn, max_zone_pfn;
unsigned long total = 0, split = 0;
pr_debug("Split all THPs\n");
for_each_populated_zone(zone) {
max_zone_pfn = zone_end_pfn(zone);
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
if (!get_page_unless_zero(page))
continue;
if (zone != page_zone(page))
goto next;
if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
goto next;
total++;
lock_page(page);
if (!split_huge_page(page))
split++;
unlock_page(page);
next:
put_page(page);
cond_resched();
}
}
pr_debug("%lu of %lu THP split\n", split, total);
}
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
{
return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
is_vm_hugetlb_page(vma);
}
static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
unsigned long vaddr_end)
{
int ret = 0;
struct task_struct *task;
struct mm_struct *mm;
unsigned long total = 0, split = 0;
unsigned long addr;
vaddr_start &= PAGE_MASK;
vaddr_end &= PAGE_MASK;
/* Find the task_struct from pid */
rcu_read_lock();
task = find_task_by_vpid(pid);
if (!task) {
rcu_read_unlock();
ret = -ESRCH;
goto out;
}
get_task_struct(task);
rcu_read_unlock();
/* Find the mm_struct */
mm = get_task_mm(task);
put_task_struct(task);
if (!mm) {
ret = -EINVAL;
goto out;
}
pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
pid, vaddr_start, vaddr_end);
mmap_read_lock(mm);
/*
* always increase addr by PAGE_SIZE, since we could have a PTE page
* table filled with PTE-mapped THPs, each of which is distinct.
*/
for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
struct vm_area_struct *vma = find_vma(mm, addr);
unsigned int follflags;
struct page *page;
if (!vma || addr < vma->vm_start)
break;
/* skip special VMA and hugetlb VMA */
if (vma_not_suitable_for_thp_split(vma)) {
addr = vma->vm_end;
continue;
}
/* FOLL_DUMP to ignore special (like zero) pages */
follflags = FOLL_GET | FOLL_DUMP;
page = follow_page(vma, addr, follflags);
if (IS_ERR(page))
continue;
if (!page)
continue;
if (!is_transparent_hugepage(page))
goto next;
total++;
if (!can_split_huge_page(compound_head(page), NULL))
goto next;
if (!trylock_page(page))
goto next;
if (!split_huge_page(page))
split++;
unlock_page(page);
next:
put_page(page);
cond_resched();
}
mmap_read_unlock(mm);
mmput(mm);
pr_debug("%lu of %lu THP split\n", split, total);
out:
return ret;
}
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
pgoff_t off_end)
{
struct filename *file;
struct file *candidate;
struct address_space *mapping;
int ret = -EINVAL;
pgoff_t index;
int nr_pages = 1;
unsigned long total = 0, split = 0;
file = getname_kernel(file_path);
if (IS_ERR(file))
return ret;
candidate = file_open_name(file, O_RDONLY, 0);
if (IS_ERR(candidate))
goto out;
pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
file_path, off_start, off_end);
mapping = candidate->f_mapping;
for (index = off_start; index < off_end; index += nr_pages) {
struct page *fpage = pagecache_get_page(mapping, index,
FGP_ENTRY | FGP_HEAD, 0);
nr_pages = 1;
if (xa_is_value(fpage) || !fpage)
continue;
if (!is_transparent_hugepage(fpage))
goto next;
total++;
nr_pages = thp_nr_pages(fpage);
if (!trylock_page(fpage))
goto next;
if (!split_huge_page(fpage))
split++;
unlock_page(fpage);
next:
put_page(fpage);
cond_resched();
}
filp_close(candidate, NULL);
ret = 0;
pr_debug("%lu of %lu file-backed THP split\n", split, total);
out:
putname(file);
return ret;
}
#define MAX_INPUT_BUF_SZ 255
static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppops)
{
static DEFINE_MUTEX(split_debug_mutex);
ssize_t ret;
/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
char input_buf[MAX_INPUT_BUF_SZ];
int pid;
unsigned long vaddr_start, vaddr_end;
ret = mutex_lock_interruptible(&split_debug_mutex);
if (ret)
return ret;
ret = -EFAULT;
memset(input_buf, 0, MAX_INPUT_BUF_SZ);
if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
goto out;
input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
if (input_buf[0] == '/') {
char *tok;
char *buf = input_buf;
char file_path[MAX_INPUT_BUF_SZ];
pgoff_t off_start = 0, off_end = 0;
size_t input_len = strlen(input_buf);
tok = strsep(&buf, ",");
if (tok) {
strcpy(file_path, tok);
} else {
ret = -EINVAL;
goto out;
}
ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
if (ret != 2) {
ret = -EINVAL;
goto out;
}
ret = split_huge_pages_in_file(file_path, off_start, off_end);
if (!ret)
ret = input_len;
goto out;
}
ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
if (ret == 1 && pid == 1) {
split_huge_pages_all();
ret = strlen(input_buf);
goto out;
} else if (ret != 3) {
ret = -EINVAL;
goto out;
}
ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
if (!ret)
ret = strlen(input_buf);
out:
mutex_unlock(&split_debug_mutex);
return ret;
}
static const struct file_operations split_huge_pages_fops = {
.owner = THIS_MODULE,
.write = split_huge_pages_write,
.llseek = no_llseek,
};
static int __init split_huge_pages_debugfs(void)
{
debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
&split_huge_pages_fops);
return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
struct page *page)
{
struct vm_area_struct *vma = pvmw->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long address = pvmw->address;
pmd_t pmdval;
swp_entry_t entry;
pmd_t pmdswp;
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
if (!(pvmw->pmd && !pvmw->pte))
return;
flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
mm: fix possible PMD dirty bit lost in set_pmd_migration_entry() In set_pmd_migration_entry(), pmdp_invalidate() is used to change PMD atomically. But the PMD is read before that with an ordinary memory reading. If the THP (transparent huge page) is written between the PMD reading and pmdp_invalidate(), the PMD dirty bit may be lost, and cause data corruption. The race window is quite small, but still possible in theory, so need to be fixed. The race is fixed via using the return value of pmdp_invalidate() to get the original content of PMD, which is a read/modify/write atomic operation. So no THP writing can occur in between. The race has been introduced when the THP migration support is added in the commit 616b8371539a ("mm: thp: enable thp migration in generic path"). But this fix depends on the commit d52605d7cb30 ("mm: do not lose dirty and accessed bits in pmdp_invalidate()"). So it's easy to be backported after v4.16. But the race window is really small, so it may be fine not to backport the fix at all. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: <stable@vger.kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Link: http://lkml.kernel.org/r/20200220075220.2327056-1-ying.huang@intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-06 14:28:29 +08:00
pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
if (pmd_dirty(pmdval))
set_page_dirty(page);
if (pmd_write(pmdval))
entry = make_writable_migration_entry(page_to_pfn(page));
else
entry = make_readable_migration_entry(page_to_pfn(page));
pmdswp = swp_entry_to_pmd(entry);
if (pmd_soft_dirty(pmdval))
pmdswp = pmd_swp_mksoft_dirty(pmdswp);
set_pmd_at(mm, address, pvmw->pmd, pmdswp);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
page_remove_rmap(page, true);
put_page(page);
}
void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
struct vm_area_struct *vma = pvmw->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long address = pvmw->address;
unsigned long mmun_start = address & HPAGE_PMD_MASK;
pmd_t pmde;
swp_entry_t entry;
if (!(pvmw->pmd && !pvmw->pte))
return;
entry = pmd_to_swp_entry(*pvmw->pmd);
get_page(new);
pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
if (pmd_swp_soft_dirty(*pvmw->pmd))
pmde = pmd_mksoft_dirty(pmde);
if (is_writable_migration_entry(entry))
pmde = maybe_pmd_mkwrite(pmde, vma);
mm/userfaultfd: fix uffd-wp special cases for fork() We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 09:49:02 +08:00
if (pmd_swp_uffd_wp(*pvmw->pmd))
pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2018-04-21 05:55:45 +08:00
if (PageAnon(new))
page_add_anon_rmap(new, vma, mmun_start, true);
else
page_add_file_rmap(new, true);
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
mm, thp: fix mlocking THP page with migration enabled A transparent huge page is represented by a single entry on an LRU list. Therefore, we can only make unevictable an entire compound page, not individual subpages. If a user tries to mlock() part of a huge page, we want the rest of the page to be reclaimable. We handle this by keeping PTE-mapped huge pages on normal LRU lists: the PMD on border of VM_LOCKED VMA will be split into PTE table. Introduction of THP migration breaks[1] the rules around mlocking THP pages. If we had a single PMD mapping of the page in mlocked VMA, the page will get mlocked, regardless of PTE mappings of the page. For tmpfs/shmem it's easy to fix by checking PageDoubleMap() in remove_migration_pmd(). Anon THP pages can only be shared between processes via fork(). Mlocked page can only be shared if parent mlocked it before forking, otherwise CoW will be triggered on mlock(). For Anon-THP, we can fix the issue by munlocking the page on removing PTE migration entry for the page. PTEs for the page will always come after mlocked PMD: rmap walks VMAs from oldest to newest. Test-case: #include <unistd.h> #include <sys/mman.h> #include <sys/wait.h> #include <linux/mempolicy.h> #include <numaif.h> int main(void) { unsigned long nodemask = 4; void *addr; addr = mmap((void *)0x20000000UL, 2UL << 20, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_LOCKED, -1, 0); if (fork()) { wait(NULL); return 0; } mlock(addr, 4UL << 10); mbind(addr, 2UL << 20, MPOL_PREFERRED | MPOL_F_RELATIVE_NODES, &nodemask, 4, MPOL_MF_MOVE); return 0; } [1] https://lkml.kernel.org/r/CAOMGZ=G52R-30rZvhGxEbkTw7rLLwBGadVYeo--iizcD3upL3A@mail.gmail.com Link: http://lkml.kernel.org/r/20180917133816.43995-1-kirill.shutemov@linux.intel.com Fixes: 616b8371539a ("mm: thp: enable thp migration in generic path") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Vegard Nossum <vegard.nossum@oracle.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-06 06:51:41 +08:00
if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
mm: thp: enable thp migration in generic path Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-09 07:10:57 +08:00
mlock_vma_page(new);
update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif