License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2006-01-08 17:01:45 +08:00
|
|
|
/*
|
|
|
|
* SLOB Allocator: Simple List Of Blocks
|
|
|
|
*
|
|
|
|
* Matt Mackall <mpm@selenic.com> 12/30/03
|
|
|
|
*
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
* NUMA support by Paul Mundt, 2007.
|
|
|
|
*
|
2006-01-08 17:01:45 +08:00
|
|
|
* How SLOB works:
|
|
|
|
*
|
|
|
|
* The core of SLOB is a traditional K&R style heap allocator, with
|
|
|
|
* support for returning aligned objects. The granularity of this
|
2007-07-16 14:38:09 +08:00
|
|
|
* allocator is as little as 2 bytes, however typically most architectures
|
|
|
|
* will require 4 bytes on 32-bit and 8 bytes on 64-bit.
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
*
|
2008-02-05 14:29:37 +08:00
|
|
|
* The slob heap is a set of linked list of pages from alloc_pages(),
|
|
|
|
* and within each page, there is a singly-linked list of free blocks
|
|
|
|
* (slob_t). The heap is grown on demand. To reduce fragmentation,
|
|
|
|
* heap pages are segregated into three lists, with objects less than
|
|
|
|
* 256 bytes, objects less than 1024 bytes, and all other objects.
|
|
|
|
*
|
|
|
|
* Allocation from heap involves first searching for a page with
|
|
|
|
* sufficient free blocks (using a next-fit-like approach) followed by
|
|
|
|
* a first-fit scan of the page. Deallocation inserts objects back
|
|
|
|
* into the free list in address order, so this is effectively an
|
|
|
|
* address-ordered first fit.
|
2006-01-08 17:01:45 +08:00
|
|
|
*
|
|
|
|
* Above this is an implementation of kmalloc/kfree. Blocks returned
|
2007-07-16 14:38:09 +08:00
|
|
|
* from kmalloc are prepended with a 4-byte header with the kmalloc size.
|
2006-01-08 17:01:45 +08:00
|
|
|
* If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
* alloc_pages() directly, allocating compound pages so the page order
|
2012-10-19 20:33:10 +08:00
|
|
|
* does not have to be separately tracked.
|
|
|
|
* These objects are detected in kfree() because PageSlab()
|
2007-07-16 14:38:08 +08:00
|
|
|
* is false for them.
|
2006-01-08 17:01:45 +08:00
|
|
|
*
|
|
|
|
* SLAB is emulated on top of SLOB by simply calling constructors and
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
* destructors for every SLAB allocation. Objects are returned with the
|
|
|
|
* 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
|
|
|
|
* case the low-level allocator will fragment blocks to create the proper
|
|
|
|
* alignment. Again, objects of page-size or greater are allocated by
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
* calling alloc_pages(). As SLAB objects know their size, no separate
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
* size bookkeeping is necessary and there is essentially no allocation
|
2007-07-16 14:38:08 +08:00
|
|
|
* space overhead, and compound pages aren't needed for multi-page
|
|
|
|
* allocations.
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
*
|
|
|
|
* NUMA support in SLOB is fairly simplistic, pushing most of the real
|
|
|
|
* logic down to the page allocator, and simply doing the node accounting
|
|
|
|
* on the upper levels. In the event that a node id is explicitly
|
mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit 6484eb3e2a81 ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE. Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise. In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.
The misleading name has lead to mistakes in the past, see for example
commits 5265047ac301 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f8e ("mm, mempolicy:
migrate_to_node should only migrate to node").
Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.
To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage. Both functions get described in comments.
It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly. The number of users would be small
anyway.
Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead. This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.
Both differences will be rectified by the next patch.
To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers. Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-09 06:03:50 +08:00
|
|
|
* provided, __alloc_pages_node() with the specified node id is used
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
* instead. The common case (or when the node id isn't explicitly provided)
|
|
|
|
* will default to the current node, as per numa_node_id().
|
|
|
|
*
|
|
|
|
* Node aware pages are still inserted in to the global freelist, and
|
|
|
|
* these are scanned for by matching against the node id encoded in the
|
|
|
|
* page flags. As a result, block allocations that can be satisfied from
|
|
|
|
* the freelist will only be done so on pages residing on the same node,
|
|
|
|
* in order to prevent random node placement.
|
2006-01-08 17:01:45 +08:00
|
|
|
*/
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
#include <linux/kernel.h>
|
2006-01-08 17:01:45 +08:00
|
|
|
#include <linux/slab.h>
|
2012-07-07 04:25:11 +08:00
|
|
|
|
2006-01-08 17:01:45 +08:00
|
|
|
#include <linux/mm.h>
|
2009-05-05 17:13:45 +08:00
|
|
|
#include <linux/swap.h> /* struct reclaim_state */
|
2006-01-08 17:01:45 +08:00
|
|
|
#include <linux/cache.h>
|
|
|
|
#include <linux/init.h>
|
2011-10-16 14:01:52 +08:00
|
|
|
#include <linux/export.h>
|
2007-05-17 13:10:49 +08:00
|
|
|
#include <linux/rcupdate.h>
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
#include <linux/list.h>
|
2009-06-11 20:23:17 +08:00
|
|
|
#include <linux/kmemleak.h>
|
2010-05-26 17:22:17 +08:00
|
|
|
|
|
|
|
#include <trace/events/kmem.h>
|
|
|
|
|
2011-07-27 07:09:06 +08:00
|
|
|
#include <linux/atomic.h>
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
|
2012-12-19 06:22:46 +08:00
|
|
|
#include "slab.h"
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
/*
|
|
|
|
* slob_block has a field 'units', which indicates size of block if +ve,
|
|
|
|
* or offset of next block if -ve (in SLOB_UNITs).
|
|
|
|
*
|
|
|
|
* Free blocks of size 1 unit simply contain the offset of the next block.
|
|
|
|
* Those with larger size contain their size in the first SLOB_UNIT of
|
|
|
|
* memory, and the offset of the next free block in the second SLOB_UNIT.
|
|
|
|
*/
|
2007-07-16 14:38:09 +08:00
|
|
|
#if PAGE_SIZE <= (32767 * 2)
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
typedef s16 slobidx_t;
|
|
|
|
#else
|
|
|
|
typedef s32 slobidx_t;
|
|
|
|
#endif
|
|
|
|
|
2006-01-08 17:01:45 +08:00
|
|
|
struct slob_block {
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
slobidx_t units;
|
2007-07-16 14:38:09 +08:00
|
|
|
};
|
2006-01-08 17:01:45 +08:00
|
|
|
typedef struct slob_block slob_t;
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
/*
|
2008-02-05 14:29:37 +08:00
|
|
|
* All partially free slob pages go on these lists.
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
*/
|
2008-02-05 14:29:37 +08:00
|
|
|
#define SLOB_BREAK1 256
|
|
|
|
#define SLOB_BREAK2 1024
|
|
|
|
static LIST_HEAD(free_slob_small);
|
|
|
|
static LIST_HEAD(free_slob_medium);
|
|
|
|
static LIST_HEAD(free_slob_large);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* slob_page_free: true for pages on free_slob_pages list.
|
|
|
|
*/
|
2012-06-13 23:24:52 +08:00
|
|
|
static inline int slob_page_free(struct page *sp)
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
{
|
2012-06-13 23:24:52 +08:00
|
|
|
return PageSlobFree(sp);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
}
|
|
|
|
|
2012-06-13 23:24:52 +08:00
|
|
|
static void set_slob_page_free(struct page *sp, struct list_head *list)
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
{
|
2019-05-14 08:16:06 +08:00
|
|
|
list_add(&sp->slab_list, list);
|
2012-06-13 23:24:52 +08:00
|
|
|
__SetPageSlobFree(sp);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
}
|
|
|
|
|
2012-06-13 23:24:52 +08:00
|
|
|
static inline void clear_slob_page_free(struct page *sp)
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
{
|
2019-05-14 08:16:06 +08:00
|
|
|
list_del(&sp->slab_list);
|
2012-06-13 23:24:52 +08:00
|
|
|
__ClearPageSlobFree(sp);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
}
|
|
|
|
|
2006-01-08 17:01:45 +08:00
|
|
|
#define SLOB_UNIT sizeof(slob_t)
|
2012-12-21 03:11:39 +08:00
|
|
|
#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2007-05-17 13:10:49 +08:00
|
|
|
/*
|
|
|
|
* struct slob_rcu is inserted at the tail of allocated slob blocks, which
|
2017-01-18 18:53:44 +08:00
|
|
|
* were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
|
2007-05-17 13:10:49 +08:00
|
|
|
* the block using call_rcu.
|
|
|
|
*/
|
|
|
|
struct slob_rcu {
|
|
|
|
struct rcu_head head;
|
|
|
|
int size;
|
|
|
|
};
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
/*
|
|
|
|
* slob_lock protects all slob allocator structures.
|
|
|
|
*/
|
2006-01-08 17:01:45 +08:00
|
|
|
static DEFINE_SPINLOCK(slob_lock);
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
/*
|
|
|
|
* Encode the given size and next info into a free slob block s.
|
|
|
|
*/
|
|
|
|
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
|
|
|
|
{
|
|
|
|
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
|
|
|
|
slobidx_t offset = next - base;
|
2006-12-30 08:48:28 +08:00
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
if (size > 1) {
|
|
|
|
s[0].units = size;
|
|
|
|
s[1].units = offset;
|
|
|
|
} else
|
|
|
|
s[0].units = -offset;
|
|
|
|
}
|
2006-01-08 17:01:45 +08:00
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
/*
|
|
|
|
* Return the size of a slob block.
|
|
|
|
*/
|
|
|
|
static slobidx_t slob_units(slob_t *s)
|
|
|
|
{
|
|
|
|
if (s->units > 0)
|
|
|
|
return s->units;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the next free slob block pointer after this one.
|
|
|
|
*/
|
|
|
|
static slob_t *slob_next(slob_t *s)
|
|
|
|
{
|
|
|
|
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
|
|
|
|
slobidx_t next;
|
|
|
|
|
|
|
|
if (s[0].units < 0)
|
|
|
|
next = -s[0].units;
|
|
|
|
else
|
|
|
|
next = s[1].units;
|
|
|
|
return base+next;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns true if s is the last free block in its page.
|
|
|
|
*/
|
|
|
|
static int slob_last(slob_t *s)
|
|
|
|
{
|
|
|
|
return !((unsigned long)slob_next(s) & ~PAGE_MASK);
|
|
|
|
}
|
|
|
|
|
2009-01-19 02:00:38 +08:00
|
|
|
static void *slob_new_pages(gfp_t gfp, int order, int node)
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
{
|
mm, sl[ou]b: improve memory accounting
Patch series "guarantee natural alignment for kmalloc()", v2.
This patch (of 2):
SLOB currently doesn't account its pages at all, so in /proc/meminfo the
Slab field shows zero. Modifying a counter on page allocation and
freeing should be acceptable even for the small system scenarios SLOB is
intended for. Since reclaimable caches are not separated in SLOB,
account everything as unreclaimable.
SLUB currently doesn't account kmalloc() and kmalloc_node() allocations
larger than order-1 page, that are passed directly to the page
allocator. As they also don't appear in /proc/slabinfo, it might look
like a memory leak. For consistency, account them as well. (SLAB
doesn't actually use page allocator directly, so no change there).
Ideally SLOB and SLUB would be handled in separate patches, but due to
the shared kmalloc_order() function and different kfree()
implementations, it's easier to patch both at once to prevent
inconsistencies.
Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:42 +08:00
|
|
|
struct page *page;
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
2012-09-09 04:47:51 +08:00
|
|
|
if (node != NUMA_NO_NODE)
|
mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit 6484eb3e2a81 ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE. Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise. In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.
The misleading name has lead to mistakes in the past, see for example
commits 5265047ac301 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f8e ("mm, mempolicy:
migrate_to_node should only migrate to node").
Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.
To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage. Both functions get described in comments.
It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly. The number of users would be small
anyway.
Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead. This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.
Both differences will be rectified by the next patch.
To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers. Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-09 06:03:50 +08:00
|
|
|
page = __alloc_pages_node(node, gfp, order);
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
else
|
|
|
|
#endif
|
|
|
|
page = alloc_pages(gfp, order);
|
|
|
|
|
|
|
|
if (!page)
|
|
|
|
return NULL;
|
|
|
|
|
2020-08-07 14:20:39 +08:00
|
|
|
mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
|
|
|
|
PAGE_SIZE << order);
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
return page_address(page);
|
|
|
|
}
|
|
|
|
|
2009-01-19 02:00:38 +08:00
|
|
|
static void slob_free_pages(void *b, int order)
|
|
|
|
{
|
mm, sl[ou]b: improve memory accounting
Patch series "guarantee natural alignment for kmalloc()", v2.
This patch (of 2):
SLOB currently doesn't account its pages at all, so in /proc/meminfo the
Slab field shows zero. Modifying a counter on page allocation and
freeing should be acceptable even for the small system scenarios SLOB is
intended for. Since reclaimable caches are not separated in SLOB,
account everything as unreclaimable.
SLUB currently doesn't account kmalloc() and kmalloc_node() allocations
larger than order-1 page, that are passed directly to the page
allocator. As they also don't appear in /proc/slabinfo, it might look
like a memory leak. For consistency, account them as well. (SLAB
doesn't actually use page allocator directly, so no change there).
Ideally SLOB and SLUB would be handled in separate patches, but due to
the shared kmalloc_order() function and different kfree()
implementations, it's easier to patch both at once to prevent
inconsistencies.
Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:42 +08:00
|
|
|
struct page *sp = virt_to_page(b);
|
|
|
|
|
2009-05-05 17:13:45 +08:00
|
|
|
if (current->reclaim_state)
|
|
|
|
current->reclaim_state->reclaimed_slab += 1 << order;
|
mm, sl[ou]b: improve memory accounting
Patch series "guarantee natural alignment for kmalloc()", v2.
This patch (of 2):
SLOB currently doesn't account its pages at all, so in /proc/meminfo the
Slab field shows zero. Modifying a counter on page allocation and
freeing should be acceptable even for the small system scenarios SLOB is
intended for. Since reclaimable caches are not separated in SLOB,
account everything as unreclaimable.
SLUB currently doesn't account kmalloc() and kmalloc_node() allocations
larger than order-1 page, that are passed directly to the page
allocator. As they also don't appear in /proc/slabinfo, it might look
like a memory leak. For consistency, account them as well. (SLAB
doesn't actually use page allocator directly, so no change there).
Ideally SLOB and SLUB would be handled in separate patches, but due to
the shared kmalloc_order() function and different kfree()
implementations, it's easier to patch both at once to prevent
inconsistencies.
Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:42 +08:00
|
|
|
|
2020-08-07 14:20:39 +08:00
|
|
|
mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
|
|
|
|
-(PAGE_SIZE << order));
|
mm, sl[ou]b: improve memory accounting
Patch series "guarantee natural alignment for kmalloc()", v2.
This patch (of 2):
SLOB currently doesn't account its pages at all, so in /proc/meminfo the
Slab field shows zero. Modifying a counter on page allocation and
freeing should be acceptable even for the small system scenarios SLOB is
intended for. Since reclaimable caches are not separated in SLOB,
account everything as unreclaimable.
SLUB currently doesn't account kmalloc() and kmalloc_node() allocations
larger than order-1 page, that are passed directly to the page
allocator. As they also don't appear in /proc/slabinfo, it might look
like a memory leak. For consistency, account them as well. (SLAB
doesn't actually use page allocator directly, so no change there).
Ideally SLOB and SLUB would be handled in separate patches, but due to
the shared kmalloc_order() function and different kfree()
implementations, it's easier to patch both at once to prevent
inconsistencies.
Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:42 +08:00
|
|
|
__free_pages(sp, order);
|
2009-01-19 02:00:38 +08:00
|
|
|
}
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
/*
|
2019-05-14 08:16:03 +08:00
|
|
|
* slob_page_alloc() - Allocate a slob block within a given slob_page sp.
|
|
|
|
* @sp: Page to look in.
|
|
|
|
* @size: Size of the allocation.
|
|
|
|
* @align: Allocation alignment.
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
* @align_offset: Offset in the allocated block that will be aligned.
|
2019-05-14 08:16:03 +08:00
|
|
|
* @page_removed_from_list: Return parameter.
|
|
|
|
*
|
|
|
|
* Tries to find a chunk of memory at least @size bytes big within @page.
|
|
|
|
*
|
|
|
|
* Return: Pointer to memory if allocated, %NULL otherwise. If the
|
|
|
|
* allocation fills up @page then the page is removed from the
|
|
|
|
* freelist, in this case @page_removed_from_list will be set to
|
|
|
|
* true (set to false otherwise).
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
*/
|
2019-05-14 08:16:03 +08:00
|
|
|
static void *slob_page_alloc(struct page *sp, size_t size, int align,
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
int align_offset, bool *page_removed_from_list)
|
2006-01-08 17:01:45 +08:00
|
|
|
{
|
2009-01-19 02:00:38 +08:00
|
|
|
slob_t *prev, *cur, *aligned = NULL;
|
2006-01-08 17:01:45 +08:00
|
|
|
int delta = 0, units = SLOB_UNITS(size);
|
|
|
|
|
2019-05-14 08:16:03 +08:00
|
|
|
*page_removed_from_list = false;
|
2012-06-13 23:24:52 +08:00
|
|
|
for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
slobidx_t avail = slob_units(cur);
|
|
|
|
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
/*
|
|
|
|
* 'aligned' will hold the address of the slob block so that the
|
|
|
|
* address 'aligned'+'align_offset' is aligned according to the
|
|
|
|
* 'align' parameter. This is for kmalloc() which prepends the
|
|
|
|
* allocated block with its size, so that the block itself is
|
|
|
|
* aligned when needed.
|
|
|
|
*/
|
2006-01-08 17:01:45 +08:00
|
|
|
if (align) {
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
aligned = (slob_t *)
|
|
|
|
(ALIGN((unsigned long)cur + align_offset, align)
|
|
|
|
- align_offset);
|
2006-01-08 17:01:45 +08:00
|
|
|
delta = aligned - cur;
|
|
|
|
}
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
if (avail >= units + delta) { /* room enough? */
|
|
|
|
slob_t *next;
|
|
|
|
|
2006-01-08 17:01:45 +08:00
|
|
|
if (delta) { /* need to fragment head to align? */
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
next = slob_next(cur);
|
|
|
|
set_slob(aligned, avail - delta, next);
|
|
|
|
set_slob(cur, delta, aligned);
|
2006-01-08 17:01:45 +08:00
|
|
|
prev = cur;
|
|
|
|
cur = aligned;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
avail = slob_units(cur);
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
next = slob_next(cur);
|
|
|
|
if (avail == units) { /* exact fit? unlink. */
|
|
|
|
if (prev)
|
|
|
|
set_slob(prev, slob_units(prev), next);
|
|
|
|
else
|
2012-06-13 23:24:52 +08:00
|
|
|
sp->freelist = next;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
} else { /* fragment */
|
|
|
|
if (prev)
|
|
|
|
set_slob(prev, slob_units(prev), cur + units);
|
|
|
|
else
|
2012-06-13 23:24:52 +08:00
|
|
|
sp->freelist = cur + units;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
set_slob(cur + units, avail - units, next);
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
sp->units -= units;
|
2019-05-14 08:16:03 +08:00
|
|
|
if (!sp->units) {
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
clear_slob_page_free(sp);
|
2019-05-14 08:16:03 +08:00
|
|
|
*page_removed_from_list = true;
|
|
|
|
}
|
2006-01-08 17:01:45 +08:00
|
|
|
return cur;
|
|
|
|
}
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
if (slob_last(cur))
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
2006-01-08 17:01:45 +08:00
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
/*
|
|
|
|
* slob_alloc: entry point into the slob allocator.
|
|
|
|
*/
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
|
|
|
|
int align_offset)
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
{
|
2012-06-13 23:24:52 +08:00
|
|
|
struct page *sp;
|
2008-02-05 14:29:37 +08:00
|
|
|
struct list_head *slob_list;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
slob_t *b = NULL;
|
|
|
|
unsigned long flags;
|
2019-05-14 08:16:03 +08:00
|
|
|
bool _unused;
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2008-02-05 14:29:37 +08:00
|
|
|
if (size < SLOB_BREAK1)
|
|
|
|
slob_list = &free_slob_small;
|
|
|
|
else if (size < SLOB_BREAK2)
|
|
|
|
slob_list = &free_slob_medium;
|
|
|
|
else
|
|
|
|
slob_list = &free_slob_large;
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
spin_lock_irqsave(&slob_lock, flags);
|
|
|
|
/* Iterate through each partially free page, try to find room */
|
2019-05-14 08:16:06 +08:00
|
|
|
list_for_each_entry(sp, slob_list, slab_list) {
|
2019-05-14 08:16:03 +08:00
|
|
|
bool page_removed_from_list = false;
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/*
|
|
|
|
* If there's a node specification, search for a partial
|
|
|
|
* page with a matching node id in the freelist.
|
|
|
|
*/
|
2012-09-09 04:47:51 +08:00
|
|
|
if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
continue;
|
|
|
|
#endif
|
2007-07-21 19:37:40 +08:00
|
|
|
/* Enough room on this page? */
|
|
|
|
if (sp->units < SLOB_UNITS(size))
|
|
|
|
continue;
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
b = slob_page_alloc(sp, size, align, align_offset, &page_removed_from_list);
|
2007-07-21 19:37:40 +08:00
|
|
|
if (!b)
|
|
|
|
continue;
|
|
|
|
|
2019-05-14 08:16:03 +08:00
|
|
|
/*
|
|
|
|
* If slob_page_alloc() removed sp from the list then we
|
|
|
|
* cannot call list functions on sp. If so allocation
|
|
|
|
* did not fragment the page anyway so optimisation is
|
|
|
|
* unnecessary.
|
|
|
|
*/
|
|
|
|
if (!page_removed_from_list) {
|
|
|
|
/*
|
|
|
|
* Improve fragment distribution and reduce our average
|
|
|
|
* search time by starting our next search here. (see
|
|
|
|
* Knuth vol 1, sec 2.5, pg 449)
|
|
|
|
*/
|
2019-05-14 08:16:06 +08:00
|
|
|
if (!list_is_first(&sp->slab_list, slob_list))
|
|
|
|
list_rotate_to_front(&sp->slab_list, slob_list);
|
2019-05-14 08:16:03 +08:00
|
|
|
}
|
2007-07-21 19:37:40 +08:00
|
|
|
break;
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
spin_unlock_irqrestore(&slob_lock, flags);
|
|
|
|
|
|
|
|
/* Not enough space: must allocate a new page */
|
|
|
|
if (!b) {
|
2009-01-19 02:00:38 +08:00
|
|
|
b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
if (!b)
|
2009-01-19 02:00:38 +08:00
|
|
|
return NULL;
|
2012-06-13 23:24:54 +08:00
|
|
|
sp = virt_to_page(b);
|
|
|
|
__SetPageSlab(sp);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
|
|
|
|
spin_lock_irqsave(&slob_lock, flags);
|
|
|
|
sp->units = SLOB_UNITS(PAGE_SIZE);
|
2012-06-13 23:24:52 +08:00
|
|
|
sp->freelist = b;
|
2019-05-14 08:16:06 +08:00
|
|
|
INIT_LIST_HEAD(&sp->slab_list);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
|
2008-02-05 14:29:37 +08:00
|
|
|
set_slob_page_free(sp, slob_list);
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
b = slob_page_alloc(sp, size, align, align_offset, &_unused);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
BUG_ON(!b);
|
|
|
|
spin_unlock_irqrestore(&slob_lock, flags);
|
|
|
|
}
|
2017-11-16 09:32:10 +08:00
|
|
|
if (unlikely(gfp & __GFP_ZERO))
|
2007-07-17 19:03:23 +08:00
|
|
|
memset(b, 0, size);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
return b;
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
/*
|
|
|
|
* slob_free: entry point into the slob allocator.
|
|
|
|
*/
|
2006-01-08 17:01:45 +08:00
|
|
|
static void slob_free(void *block, int size)
|
|
|
|
{
|
2012-06-13 23:24:52 +08:00
|
|
|
struct page *sp;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
slob_t *prev, *next, *b = (slob_t *)block;
|
|
|
|
slobidx_t units;
|
2006-01-08 17:01:45 +08:00
|
|
|
unsigned long flags;
|
2010-07-10 18:05:33 +08:00
|
|
|
struct list_head *slob_list;
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2007-10-16 16:24:44 +08:00
|
|
|
if (unlikely(ZERO_OR_NULL_PTR(block)))
|
2006-01-08 17:01:45 +08:00
|
|
|
return;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
BUG_ON(!size);
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2012-06-13 23:24:54 +08:00
|
|
|
sp = virt_to_page(block);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
units = SLOB_UNITS(size);
|
2006-01-08 17:01:45 +08:00
|
|
|
|
|
|
|
spin_lock_irqsave(&slob_lock, flags);
|
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
|
|
|
|
/* Go directly to page allocator. Do not pass slob allocator */
|
|
|
|
if (slob_page_free(sp))
|
|
|
|
clear_slob_page_free(sp);
|
2009-03-16 18:00:28 +08:00
|
|
|
spin_unlock_irqrestore(&slob_lock, flags);
|
2012-06-13 23:24:54 +08:00
|
|
|
__ClearPageSlab(sp);
|
2013-02-23 08:34:59 +08:00
|
|
|
page_mapcount_reset(sp);
|
2009-05-05 17:13:45 +08:00
|
|
|
slob_free_pages(b, 0);
|
2009-03-16 18:00:28 +08:00
|
|
|
return;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
}
|
2006-01-08 17:01:45 +08:00
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
if (!slob_page_free(sp)) {
|
|
|
|
/* This slob page is about to become partially free. Easy! */
|
|
|
|
sp->units = units;
|
2012-06-13 23:24:52 +08:00
|
|
|
sp->freelist = b;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
set_slob(b, units,
|
|
|
|
(void *)((unsigned long)(b +
|
|
|
|
SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
|
2010-07-10 18:05:33 +08:00
|
|
|
if (size < SLOB_BREAK1)
|
|
|
|
slob_list = &free_slob_small;
|
|
|
|
else if (size < SLOB_BREAK2)
|
|
|
|
slob_list = &free_slob_medium;
|
|
|
|
else
|
|
|
|
slob_list = &free_slob_large;
|
|
|
|
set_slob_page_free(sp, slob_list);
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Otherwise the page is already partially free, so find reinsertion
|
|
|
|
* point.
|
|
|
|
*/
|
|
|
|
sp->units += units;
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2012-06-13 23:24:52 +08:00
|
|
|
if (b < (slob_t *)sp->freelist) {
|
|
|
|
if (b + units == sp->freelist) {
|
|
|
|
units += slob_units(sp->freelist);
|
|
|
|
sp->freelist = slob_next(sp->freelist);
|
2008-02-05 14:29:37 +08:00
|
|
|
}
|
2012-06-13 23:24:52 +08:00
|
|
|
set_slob(b, units, sp->freelist);
|
|
|
|
sp->freelist = b;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
} else {
|
2012-06-13 23:24:52 +08:00
|
|
|
prev = sp->freelist;
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
next = slob_next(prev);
|
|
|
|
while (b > next) {
|
|
|
|
prev = next;
|
|
|
|
next = slob_next(prev);
|
|
|
|
}
|
2006-01-08 17:01:45 +08:00
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
if (!slob_last(prev) && b + units == next) {
|
|
|
|
units += slob_units(next);
|
|
|
|
set_slob(b, units, slob_next(next));
|
|
|
|
} else
|
|
|
|
set_slob(b, units, next);
|
|
|
|
|
|
|
|
if (prev + slob_units(prev) == b) {
|
|
|
|
units = slob_units(b) + slob_units(prev);
|
|
|
|
set_slob(prev, units, slob_next(b));
|
|
|
|
} else
|
|
|
|
set_slob(prev, slob_units(prev), b);
|
|
|
|
}
|
|
|
|
out:
|
2006-01-08 17:01:45 +08:00
|
|
|
spin_unlock_irqrestore(&slob_lock, flags);
|
|
|
|
}
|
|
|
|
|
2021-01-08 05:46:11 +08:00
|
|
|
#ifdef CONFIG_PRINTK
|
mm: Add mem_dump_obj() to print source of memory block
There are kernel facilities such as per-CPU reference counts that give
error messages in generic handlers or callbacks, whose messages are
unenlightening. In the case of per-CPU reference-count underflow, this
is not a problem when creating a new use of this facility because in that
case the bug is almost certainly in the code implementing that new use.
However, trouble arises when deploying across many systems, which might
exercise corner cases that were not seen during development and testing.
Here, it would be really nice to get some kind of hint as to which of
several uses the underflow was caused by.
This commit therefore exposes a mem_dump_obj() function that takes
a pointer to memory (which must still be allocated if it has been
dynamically allocated) and prints available information on where that
memory came from. This pointer can reference the middle of the block as
well as the beginning of the block, as needed by things like RCU callback
functions and timer handlers that might not know where the beginning of
the memory block is. These functions and handlers can use mem_dump_obj()
to print out better hints as to where the problem might lie.
The information printed can depend on kernel configuration. For example,
the allocation return address can be printed only for slab and slub,
and even then only when the necessary debug has been enabled. For slab,
build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space
to the next power of two or use the SLAB_STORE_USER when creating the
kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and
boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create()
if more focused use is desired. Also for slub, use CONFIG_STACKTRACE
to enable printing of the allocation-time stack trace.
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Reported-by: Andrii Nakryiko <andrii@kernel.org>
[ paulmck: Convert to printing and change names per Joonsoo Kim. ]
[ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ]
[ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ]
[ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ]
[ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ]
[ paulmck: Explicitly check for small pointers per Naresh Kamboju. ]
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
|
|
|
void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
|
|
|
|
{
|
|
|
|
kpp->kp_ptr = object;
|
|
|
|
kpp->kp_page = page;
|
|
|
|
}
|
2021-01-08 05:46:11 +08:00
|
|
|
#endif
|
mm: Add mem_dump_obj() to print source of memory block
There are kernel facilities such as per-CPU reference counts that give
error messages in generic handlers or callbacks, whose messages are
unenlightening. In the case of per-CPU reference-count underflow, this
is not a problem when creating a new use of this facility because in that
case the bug is almost certainly in the code implementing that new use.
However, trouble arises when deploying across many systems, which might
exercise corner cases that were not seen during development and testing.
Here, it would be really nice to get some kind of hint as to which of
several uses the underflow was caused by.
This commit therefore exposes a mem_dump_obj() function that takes
a pointer to memory (which must still be allocated if it has been
dynamically allocated) and prints available information on where that
memory came from. This pointer can reference the middle of the block as
well as the beginning of the block, as needed by things like RCU callback
functions and timer handlers that might not know where the beginning of
the memory block is. These functions and handlers can use mem_dump_obj()
to print out better hints as to where the problem might lie.
The information printed can depend on kernel configuration. For example,
the allocation return address can be printed only for slab and slub,
and even then only when the necessary debug has been enabled. For slab,
build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space
to the next power of two or use the SLAB_STORE_USER when creating the
kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and
boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create()
if more focused use is desired. Also for slub, use CONFIG_STACKTRACE
to enable printing of the allocation-time stack trace.
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Reported-by: Andrii Nakryiko <andrii@kernel.org>
[ paulmck: Convert to printing and change names per Joonsoo Kim. ]
[ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ]
[ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ]
[ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ]
[ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ]
[ paulmck: Explicitly check for small pointers per Naresh Kamboju. ]
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
|
|
|
|
slob: rework freelist handling
Improve slob by turning the freelist into a list of pages using struct page
fields, then each page has a singly linked freelist of slob blocks via a
pointer in the struct page.
- The first benefit is that the slob freelists can be indexed by a smaller
type (2 bytes, if the PAGE_SIZE is reasonable).
- Next is that freeing is much quicker because it does not have to traverse
the entire freelist. Allocation can be slightly faster too, because we can
skip almost-full freelist pages completely.
- Slob pages are then freed immediately when they become empty, rather than
having a periodic timer try to free them. This gives efficiency and memory
consumption improvement.
Then, we don't encode seperate size and next fields into each slob block,
rather we use the sign bit to distinguish between "size" or "next". Then
size 1 blocks contain a "next" offset, and others contain the "size" in
the first unit and "next" in the second unit.
- This allows minimum slob allocation alignment to go from 8 bytes to 2
bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is
best to align them to word size, however some architectures (eg. cris)
could gain space savings from turning off this extra alignment.
Then, make kmalloc use its own slob_block at the front of the allocation
in order to encode allocation size, rather than rely on not overwriting
slob's existing header block.
- This reduces kmalloc allocation overhead similarly to alignment reductions.
- Decouples kmalloc layer from the slob allocator.
Then, add a page flag specific to slob pages.
- This means kfree of a page aligned slob block doesn't have to traverse
the bigblock list.
I would get benchmarks, but my test box's network doesn't come up with
slob before this patch. I think something is timing out. Anyway, things
are faster after the patch.
Code size goes up about 1K, however dynamic memory usage _should_ be
lower even on relatively small memory systems.
Future todo item is to restore the cyclic free list search, rather than
to always begin at the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:07 +08:00
|
|
|
/*
|
|
|
|
* End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
|
|
|
|
*/
|
|
|
|
|
2012-09-09 04:47:53 +08:00
|
|
|
static __always_inline void *
|
|
|
|
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
|
2006-01-08 17:01:45 +08:00
|
|
|
{
|
2007-07-17 19:03:22 +08:00
|
|
|
unsigned int *m;
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
int minalign = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
|
2008-08-11 01:14:07 +08:00
|
|
|
void *ret;
|
2007-07-16 14:38:09 +08:00
|
|
|
|
2011-06-07 19:18:45 +08:00
|
|
|
gfp &= gfp_allowed_mask;
|
|
|
|
|
2020-12-15 11:08:34 +08:00
|
|
|
might_alloc(gfp);
|
lockdep: annotate reclaim context (__GFP_NOFS)
Here is another version, with the incremental patch rolled up, and
added reclaim context annotation to kswapd, and allocation tracing
to slab allocators (which may only ever reach the page allocator
in rare cases, so it is good to put annotations here too).
Haven't tested this version as such, but it should be getting closer
to merge worthy ;)
--
After noticing some code in mm/filemap.c accidentally perform a __GFP_FS
allocation when it should not have been, I thought it might be a good idea to
try to catch this kind of thing with lockdep.
I coded up a little idea that seems to work. Unfortunately the system has to
actually be in __GFP_FS page reclaim, then take the lock, before it will mark
it. But at least that might still be some orders of magnitude more common
(and more debuggable) than an actual deadlock condition, so we have some
improvement I hope (the concept is no less complete than discovery of a lock's
interrupt contexts).
I guess we could even do the same thing with __GFP_IO (normal reclaim), and
even GFP_NOIO locks too... but filesystems will have the most locks and fiddly
code paths, so let's start there and see how it goes.
It *seems* to work. I did a quick test.
=================================
[ INFO: inconsistent lock state ]
2.6.28-rc6-00007-ged31348-dirty #26
---------------------------------
inconsistent {in-reclaim-W} -> {ov-reclaim-W} usage.
modprobe/8526 [HC0[0]:SC0[0]:HE1:SE1] takes:
(testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]
{in-reclaim-W} state was registered at:
[<ffffffff80267bdb>] __lock_acquire+0x75b/0x1a60
[<ffffffff80268f71>] lock_acquire+0x91/0xc0
[<ffffffff8070f0e1>] mutex_lock_nested+0xb1/0x310
[<ffffffffa002002b>] brd_init+0x2b/0x216 [brd]
[<ffffffff8020903b>] _stext+0x3b/0x170
[<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
[<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
irq event stamp: 3929
hardirqs last enabled at (3929): [<ffffffff8070f2b5>] mutex_lock_nested+0x285/0x310
hardirqs last disabled at (3928): [<ffffffff8070f089>] mutex_lock_nested+0x59/0x310
softirqs last enabled at (3732): [<ffffffff8061f623>] sk_filter+0x83/0xe0
softirqs last disabled at (3730): [<ffffffff8061f5b6>] sk_filter+0x16/0xe0
other info that might help us debug this:
1 lock held by modprobe/8526:
#0: (testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]
stack backtrace:
Pid: 8526, comm: modprobe Not tainted 2.6.28-rc6-00007-ged31348-dirty #26
Call Trace:
[<ffffffff80265483>] print_usage_bug+0x193/0x1d0
[<ffffffff80266530>] mark_lock+0xaf0/0xca0
[<ffffffff80266735>] mark_held_locks+0x55/0xc0
[<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
[<ffffffff802667ca>] trace_reclaim_fs+0x2a/0x60
[<ffffffff80285005>] __alloc_pages_internal+0x475/0x580
[<ffffffff8070f29e>] ? mutex_lock_nested+0x26e/0x310
[<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
[<ffffffffa002006a>] brd_init+0x6a/0x216 [brd]
[<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
[<ffffffff8020903b>] _stext+0x3b/0x170
[<ffffffff8070f8b9>] ? mutex_unlock+0x9/0x10
[<ffffffff8070f83d>] ? __mutex_unlock_slowpath+0x10d/0x180
[<ffffffff802669ec>] ? trace_hardirqs_on_caller+0x12c/0x190
[<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
[<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-21 15:12:39 +08:00
|
|
|
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
if (size < PAGE_SIZE - minalign) {
|
|
|
|
int align = minalign;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For power of two sizes, guarantee natural alignment for
|
|
|
|
* kmalloc()'d objects.
|
|
|
|
*/
|
|
|
|
if (is_power_of_2(size))
|
|
|
|
align = max(minalign, (int) size);
|
|
|
|
|
2007-07-17 19:03:22 +08:00
|
|
|
if (!size)
|
|
|
|
return ZERO_SIZE_PTR;
|
|
|
|
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
m = slob_alloc(size + minalign, gfp, align, node, minalign);
|
2008-08-11 01:14:07 +08:00
|
|
|
|
2008-05-19 21:12:08 +08:00
|
|
|
if (!m)
|
|
|
|
return NULL;
|
|
|
|
*m = size;
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
ret = (void *)m + minalign;
|
2008-08-11 01:14:07 +08:00
|
|
|
|
2012-09-09 04:47:53 +08:00
|
|
|
trace_kmalloc_node(caller, ret,
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
size, size + minalign, gfp, node);
|
2007-07-16 14:38:08 +08:00
|
|
|
} else {
|
2008-08-11 01:14:07 +08:00
|
|
|
unsigned int order = get_order(size);
|
2007-07-16 14:38:08 +08:00
|
|
|
|
2010-08-23 07:16:06 +08:00
|
|
|
if (likely(order))
|
|
|
|
gfp |= __GFP_COMP;
|
|
|
|
ret = slob_new_pages(gfp, order, node);
|
2008-08-11 01:14:07 +08:00
|
|
|
|
2012-09-09 04:47:53 +08:00
|
|
|
trace_kmalloc_node(caller, ret,
|
2009-03-23 21:12:24 +08:00
|
|
|
size, PAGE_SIZE << order, gfp, node);
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
2008-08-11 01:14:07 +08:00
|
|
|
|
2009-06-11 20:23:17 +08:00
|
|
|
kmemleak_alloc(ret, size, 1, gfp);
|
2008-08-11 01:14:07 +08:00
|
|
|
return ret;
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
2012-09-09 04:47:53 +08:00
|
|
|
|
2013-09-05 00:35:34 +08:00
|
|
|
void *__kmalloc(size_t size, gfp_t gfp)
|
2012-09-09 04:47:53 +08:00
|
|
|
{
|
2013-09-05 00:35:34 +08:00
|
|
|
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
|
2012-09-09 04:47:53 +08:00
|
|
|
}
|
2013-09-05 00:35:34 +08:00
|
|
|
EXPORT_SYMBOL(__kmalloc);
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2012-09-09 04:47:53 +08:00
|
|
|
void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
|
|
|
|
{
|
|
|
|
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
|
|
|
|
}
|
2020-03-23 22:49:00 +08:00
|
|
|
EXPORT_SYMBOL(__kmalloc_track_caller);
|
2012-09-09 04:47:53 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
mm, slob: fix build breakage in __kmalloc_node_track_caller
On Sat, 8 Sep 2012, Ezequiel Garcia wrote:
> @@ -454,15 +455,35 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node)
> gfp |= __GFP_COMP;
> ret = slob_new_pages(gfp, order, node);
>
> - trace_kmalloc_node(_RET_IP_, ret,
> + trace_kmalloc_node(caller, ret,
> size, PAGE_SIZE << order, gfp, node);
> }
>
> kmemleak_alloc(ret, size, 1, gfp);
> return ret;
> }
> +
> +void *__kmalloc_node(size_t size, gfp_t gfp, int node)
> +{
> + return __do_kmalloc_node(size, gfp, node, _RET_IP_);
> +}
> EXPORT_SYMBOL(__kmalloc_node);
>
> +#ifdef CONFIG_TRACING
> +void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
> +{
> + return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
> +}
> +
> +#ifdef CONFIG_NUMA
> +void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
> + int node, unsigned long caller)
> +{
> + return __do_kmalloc_node(size, gfp, node, caller);
> +}
> +#endif
This breaks Pekka's slab/next tree with this:
mm/slob.c: In function '__kmalloc_node_track_caller':
mm/slob.c:488: error: 'gfp' undeclared (first use in this function)
mm/slob.c:488: error: (Each undeclared identifier is reported only once
mm/slob.c:488: error: for each function it appears in.)
mm, slob: fix build breakage in __kmalloc_node_track_caller
"mm, slob: Add support for kmalloc_track_caller()" breaks the build
because gfp is undeclared. Fix it.
Acked-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-09-26 03:53:51 +08:00
|
|
|
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
|
2012-09-09 04:47:53 +08:00
|
|
|
int node, unsigned long caller)
|
|
|
|
{
|
|
|
|
return __do_kmalloc_node(size, gfp, node, caller);
|
|
|
|
}
|
2020-03-23 22:49:00 +08:00
|
|
|
EXPORT_SYMBOL(__kmalloc_node_track_caller);
|
2012-09-09 04:47:53 +08:00
|
|
|
#endif
|
|
|
|
|
2006-01-08 17:01:45 +08:00
|
|
|
void kfree(const void *block)
|
|
|
|
{
|
2012-06-13 23:24:52 +08:00
|
|
|
struct page *sp;
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2009-03-25 17:05:57 +08:00
|
|
|
trace_kfree(_RET_IP_, block);
|
|
|
|
|
2007-10-16 16:24:44 +08:00
|
|
|
if (unlikely(ZERO_OR_NULL_PTR(block)))
|
2006-01-08 17:01:45 +08:00
|
|
|
return;
|
2009-06-11 20:23:17 +08:00
|
|
|
kmemleak_free(block);
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2012-06-13 23:24:54 +08:00
|
|
|
sp = virt_to_page(block);
|
|
|
|
if (PageSlab(sp)) {
|
2012-10-05 22:55:20 +08:00
|
|
|
int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
|
2007-07-16 14:38:09 +08:00
|
|
|
unsigned int *m = (unsigned int *)(block - align);
|
|
|
|
slob_free(m, *m + align);
|
mm, sl[ou]b: improve memory accounting
Patch series "guarantee natural alignment for kmalloc()", v2.
This patch (of 2):
SLOB currently doesn't account its pages at all, so in /proc/meminfo the
Slab field shows zero. Modifying a counter on page allocation and
freeing should be acceptable even for the small system scenarios SLOB is
intended for. Since reclaimable caches are not separated in SLOB,
account everything as unreclaimable.
SLUB currently doesn't account kmalloc() and kmalloc_node() allocations
larger than order-1 page, that are passed directly to the page
allocator. As they also don't appear in /proc/slabinfo, it might look
like a memory leak. For consistency, account them as well. (SLAB
doesn't actually use page allocator directly, so no change there).
Ideally SLOB and SLUB would be handled in separate patches, but due to
the shared kmalloc_order() function and different kfree()
implementations, it's easier to patch both at once to prevent
inconsistencies.
Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:42 +08:00
|
|
|
} else {
|
|
|
|
unsigned int order = compound_order(sp);
|
2020-08-07 14:20:39 +08:00
|
|
|
mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
|
|
|
|
-(PAGE_SIZE << order));
|
mm, sl[ou]b: improve memory accounting
Patch series "guarantee natural alignment for kmalloc()", v2.
This patch (of 2):
SLOB currently doesn't account its pages at all, so in /proc/meminfo the
Slab field shows zero. Modifying a counter on page allocation and
freeing should be acceptable even for the small system scenarios SLOB is
intended for. Since reclaimable caches are not separated in SLOB,
account everything as unreclaimable.
SLUB currently doesn't account kmalloc() and kmalloc_node() allocations
larger than order-1 page, that are passed directly to the page
allocator. As they also don't appear in /proc/slabinfo, it might look
like a memory leak. For consistency, account them as well. (SLAB
doesn't actually use page allocator directly, so no change there).
Ideally SLOB and SLUB would be handled in separate patches, but due to
the shared kmalloc_order() function and different kfree()
implementations, it's easier to patch both at once to prevent
inconsistencies.
Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:42 +08:00
|
|
|
__free_pages(sp, order);
|
|
|
|
|
|
|
|
}
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kfree);
|
|
|
|
|
2007-07-16 14:38:08 +08:00
|
|
|
/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
|
2019-07-12 11:54:14 +08:00
|
|
|
size_t __ksize(const void *block)
|
2006-01-08 17:01:45 +08:00
|
|
|
{
|
2012-06-13 23:24:52 +08:00
|
|
|
struct page *sp;
|
2012-10-19 20:33:10 +08:00
|
|
|
int align;
|
|
|
|
unsigned int *m;
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2007-10-16 16:24:46 +08:00
|
|
|
BUG_ON(!block);
|
|
|
|
if (unlikely(block == ZERO_SIZE_PTR))
|
2006-01-08 17:01:45 +08:00
|
|
|
return 0;
|
|
|
|
|
2012-06-13 23:24:54 +08:00
|
|
|
sp = virt_to_page(block);
|
2012-10-19 20:33:10 +08:00
|
|
|
if (unlikely(!PageSlab(sp)))
|
2019-09-24 06:34:25 +08:00
|
|
|
return page_size(sp);
|
2012-10-19 20:33:10 +08:00
|
|
|
|
2012-10-05 22:55:20 +08:00
|
|
|
align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
|
2012-10-19 20:33:10 +08:00
|
|
|
m = (unsigned int *)(block - align);
|
|
|
|
return SLOB_UNITS(*m) * SLOB_UNIT;
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
2019-07-12 11:54:14 +08:00
|
|
|
EXPORT_SYMBOL(__ksize);
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2017-11-16 09:32:18 +08:00
|
|
|
int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
|
2006-01-08 17:01:45 +08:00
|
|
|
{
|
2017-01-18 18:53:44 +08:00
|
|
|
if (flags & SLAB_TYPESAFE_BY_RCU) {
|
2012-09-05 08:20:34 +08:00
|
|
|
/* leave room for rcu footer at the end of object */
|
|
|
|
c->size += sizeof(struct slob_rcu);
|
2012-07-07 04:25:10 +08:00
|
|
|
}
|
2012-09-05 08:20:34 +08:00
|
|
|
c->flags = flags;
|
|
|
|
return 0;
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
|
|
|
|
2015-04-15 06:44:34 +08:00
|
|
|
static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
|
2006-01-08 17:01:45 +08:00
|
|
|
{
|
|
|
|
void *b;
|
|
|
|
|
2011-06-07 19:18:45 +08:00
|
|
|
flags &= gfp_allowed_mask;
|
|
|
|
|
2020-12-15 11:08:34 +08:00
|
|
|
might_alloc(flags);
|
2011-06-07 19:18:45 +08:00
|
|
|
|
2008-08-11 01:14:07 +08:00
|
|
|
if (c->size < PAGE_SIZE) {
|
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
|
|
|
b = slob_alloc(c->size, flags, c->align, node, 0);
|
2012-10-19 20:33:11 +08:00
|
|
|
trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
|
2009-03-23 21:12:24 +08:00
|
|
|
SLOB_UNITS(c->size) * SLOB_UNIT,
|
|
|
|
flags, node);
|
2008-08-11 01:14:07 +08:00
|
|
|
} else {
|
2009-01-19 02:00:38 +08:00
|
|
|
b = slob_new_pages(flags, get_order(c->size), node);
|
2012-10-19 20:33:11 +08:00
|
|
|
trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
|
2009-03-23 21:12:24 +08:00
|
|
|
PAGE_SIZE << get_order(c->size),
|
|
|
|
flags, node);
|
2008-08-11 01:14:07 +08:00
|
|
|
}
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2018-06-08 08:05:13 +08:00
|
|
|
if (b && c->ctor) {
|
|
|
|
WARN_ON_ONCE(flags & __GFP_ZERO);
|
2008-07-26 10:45:34 +08:00
|
|
|
c->ctor(b);
|
2018-06-08 08:05:13 +08:00
|
|
|
}
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2009-06-11 20:23:17 +08:00
|
|
|
kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
|
2006-01-08 17:01:45 +08:00
|
|
|
return b;
|
|
|
|
}
|
2013-09-05 00:35:34 +08:00
|
|
|
|
|
|
|
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
|
|
|
|
{
|
|
|
|
return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_alloc);
|
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
|
|
|
|
{
|
|
|
|
return __do_kmalloc_node(size, gfp, node, _RET_IP_);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__kmalloc_node);
|
|
|
|
|
|
|
|
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
|
|
|
|
{
|
|
|
|
return slob_alloc_node(cachep, gfp, node);
|
|
|
|
}
|
slob: initial NUMA support
This adds preliminary NUMA support to SLOB, primarily aimed at systems with
small nodes (tested all the way down to a 128kB SRAM block), whether
asymmetric or otherwise.
We follow the same conventions as SLAB/SLUB, preferring current node
placement for new pages, or with explicit placement, if a node has been
specified. Presently on UP NUMA this has the side-effect of preferring
node#0 allocations (since numa_node_id() == 0, though this could be
reworked if we could hand off a pfn to determine node placement), so
single-CPU NUMA systems will want to place smaller nodes further out in
terms of node id. Once a page has been bound to a node (via explicit node
id typing), we only do block allocations from partial free pages that have
a matching node id in the page flags.
The current implementation does have some scalability problems, in that all
partial free pages are tracked in the global freelist (with contention due
to the single spinlock). However, these are things that are being reworked
for SMP scalability first, while things like per-node freelists can easily
be built on top of this sort of functionality once it's been added.
More background can be found in:
http://marc.info/?l=linux-mm&m=118117916022379&w=2
http://marc.info/?l=linux-mm&m=118170446306199&w=2
http://marc.info/?l=linux-mm&m=118187859420048&w=2
and subsequent threads.
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:38:22 +08:00
|
|
|
EXPORT_SYMBOL(kmem_cache_alloc_node);
|
2013-09-05 00:35:34 +08:00
|
|
|
#endif
|
2006-01-08 17:01:45 +08:00
|
|
|
|
2007-05-17 13:10:49 +08:00
|
|
|
static void __kmem_cache_free(void *b, int size)
|
2006-01-08 17:01:45 +08:00
|
|
|
{
|
2007-05-17 13:10:49 +08:00
|
|
|
if (size < PAGE_SIZE)
|
|
|
|
slob_free(b, size);
|
2006-01-08 17:01:45 +08:00
|
|
|
else
|
2009-01-19 02:00:38 +08:00
|
|
|
slob_free_pages(b, get_order(size));
|
2007-05-17 13:10:49 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void kmem_rcu_free(struct rcu_head *head)
|
|
|
|
{
|
|
|
|
struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
|
|
|
|
void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
|
|
|
|
|
|
|
|
__kmem_cache_free(b, slob_rcu->size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void kmem_cache_free(struct kmem_cache *c, void *b)
|
|
|
|
{
|
2009-06-11 20:23:17 +08:00
|
|
|
kmemleak_free_recursive(b, c->flags);
|
2021-11-20 08:43:25 +08:00
|
|
|
trace_kmem_cache_free(_RET_IP_, b, c->name);
|
2017-01-18 18:53:44 +08:00
|
|
|
if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
|
2007-05-17 13:10:49 +08:00
|
|
|
struct slob_rcu *slob_rcu;
|
|
|
|
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
|
|
|
|
slob_rcu->size = c->size;
|
|
|
|
call_rcu(&slob_rcu->head, kmem_rcu_free);
|
|
|
|
} else {
|
|
|
|
__kmem_cache_free(b, c->size);
|
|
|
|
}
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_free);
|
|
|
|
|
2015-09-05 06:45:34 +08:00
|
|
|
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
|
|
|
|
{
|
|
|
|
__kmem_cache_free_bulk(s, size, p);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_free_bulk);
|
|
|
|
|
2015-11-21 07:57:58 +08:00
|
|
|
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
|
2015-09-05 06:45:34 +08:00
|
|
|
void **p)
|
|
|
|
{
|
|
|
|
return __kmem_cache_alloc_bulk(s, flags, size, p);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_alloc_bulk);
|
|
|
|
|
2012-09-05 07:18:33 +08:00
|
|
|
int __kmem_cache_shutdown(struct kmem_cache *c)
|
|
|
|
{
|
|
|
|
/* No way to check for remaining objects */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-02-18 05:11:37 +08:00
|
|
|
void __kmem_cache_release(struct kmem_cache *c)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2016-12-13 08:41:32 +08:00
|
|
|
int __kmem_cache_shrink(struct kmem_cache *d)
|
2006-12-13 16:34:23 +08:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-09-05 08:20:33 +08:00
|
|
|
struct kmem_cache kmem_cache_boot = {
|
|
|
|
.name = "kmem_cache",
|
|
|
|
.size = sizeof(struct kmem_cache),
|
|
|
|
.flags = SLAB_PANIC,
|
|
|
|
.align = ARCH_KMALLOC_MINALIGN,
|
|
|
|
};
|
|
|
|
|
2006-12-30 08:48:28 +08:00
|
|
|
void __init kmem_cache_init(void)
|
|
|
|
{
|
2012-09-05 08:20:33 +08:00
|
|
|
kmem_cache = &kmem_cache_boot;
|
2012-07-07 04:25:11 +08:00
|
|
|
slab_state = UP;
|
2006-01-08 17:01:45 +08:00
|
|
|
}
|
2009-08-06 16:36:25 +08:00
|
|
|
|
|
|
|
void __init kmem_cache_init_late(void)
|
|
|
|
{
|
2012-07-07 04:25:11 +08:00
|
|
|
slab_state = FULL;
|
2009-08-06 16:36:25 +08:00
|
|
|
}
|