linux/net/xdp/xsk.c

1795 lines
39 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* XDP sockets
*
* AF_XDP sockets allows a channel between XDP programs and userspace
* applications.
* Copyright(c) 2018 Intel Corporation.
*
* Author(s): Björn Töpel <bjorn.topel@intel.com>
* Magnus Karlsson <magnus.karlsson@intel.com>
*/
#define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
#include <linux/if_xdp.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/socket.h>
#include <linux/file.h>
#include <linux/uaccess.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/rculist.h>
xsk: add linux/vmalloc.h to xsk.c Fix the failure of the compilation under the sh4. Because we introduced remap_vmalloc_range() earlier, this has caused the compilation failure on the sh4 platform. So this introduction of the header file of linux/vmalloc.h. config: sh-allmodconfig (https://download.01.org/0day-ci/archive/20230221/202302210041.kpPQLlNQ-lkp@intel.com/config) compiler: sh4-linux-gcc (GCC) 12.1.0 reproduce (this is a W=1 build): wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross chmod +x ~/bin/make.cross # https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=9f78bf330a66cd400b3e00f370f597e9fa939207 git remote add net-next https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git git fetch --no-tags net-next master git checkout 9f78bf330a66cd400b3e00f370f597e9fa939207 # save the config file mkdir build_dir && cp config build_dir/.config COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-12.1.0 make.cross W=1 O=build_dir ARCH=sh olddefconfig COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-12.1.0 make.cross W=1 O=build_dir ARCH=sh SHELL=/bin/bash net/ Fixes: 9f78bf330a66 ("xsk: support use vaddr as ring") Signed-off-by: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202302210041.kpPQLlNQ-lkp@intel.com/ Link: https://lore.kernel.org/r/20230221075140.46988-1-xuanzhuo@linux.alibaba.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-21 15:51:40 +08:00
#include <linux/vmalloc.h>
#include <net/xdp_sock_drv.h>
#include <net/busy_poll.h>
#include <net/netdev_rx_queue.h>
#include <net/xdp.h>
#include "xsk_queue.h"
#include "xdp_umem.h"
#include "xsk.h"
#define TX_BATCH_SIZE 32
#define MAX_PER_SOCKET_BUDGET (TX_BATCH_SIZE)
void xsk_set_rx_need_wakeup(struct xsk_buff_pool *pool)
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
{
if (pool->cached_need_wakeup & XDP_WAKEUP_RX)
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
return;
pool->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
pool->cached_need_wakeup |= XDP_WAKEUP_RX;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
}
EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
void xsk_set_tx_need_wakeup(struct xsk_buff_pool *pool)
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
{
struct xdp_sock *xs;
if (pool->cached_need_wakeup & XDP_WAKEUP_TX)
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
return;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
}
rcu_read_unlock();
pool->cached_need_wakeup |= XDP_WAKEUP_TX;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
}
EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
void xsk_clear_rx_need_wakeup(struct xsk_buff_pool *pool)
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
{
if (!(pool->cached_need_wakeup & XDP_WAKEUP_RX))
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
return;
pool->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
pool->cached_need_wakeup &= ~XDP_WAKEUP_RX;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
}
EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
void xsk_clear_tx_need_wakeup(struct xsk_buff_pool *pool)
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
{
struct xdp_sock *xs;
if (!(pool->cached_need_wakeup & XDP_WAKEUP_TX))
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
return;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
}
rcu_read_unlock();
pool->cached_need_wakeup &= ~XDP_WAKEUP_TX;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
}
EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
bool xsk_uses_need_wakeup(struct xsk_buff_pool *pool)
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
{
return pool->uses_need_wakeup;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
}
EXPORT_SYMBOL(xsk_uses_need_wakeup);
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
struct xsk_buff_pool *xsk_get_pool_from_qid(struct net_device *dev,
u16 queue_id)
{
if (queue_id < dev->real_num_rx_queues)
return dev->_rx[queue_id].pool;
if (queue_id < dev->real_num_tx_queues)
return dev->_tx[queue_id].pool;
return NULL;
}
EXPORT_SYMBOL(xsk_get_pool_from_qid);
void xsk_clear_pool_at_qid(struct net_device *dev, u16 queue_id)
{
if (queue_id < dev->num_rx_queues)
dev->_rx[queue_id].pool = NULL;
if (queue_id < dev->num_tx_queues)
dev->_tx[queue_id].pool = NULL;
}
/* The buffer pool is stored both in the _rx struct and the _tx struct as we do
* not know if the device has more tx queues than rx, or the opposite.
* This might also change during run time.
*/
int xsk_reg_pool_at_qid(struct net_device *dev, struct xsk_buff_pool *pool,
u16 queue_id)
{
if (queue_id >= max_t(unsigned int,
dev->real_num_rx_queues,
dev->real_num_tx_queues))
return -EINVAL;
if (queue_id < dev->real_num_rx_queues)
dev->_rx[queue_id].pool = pool;
if (queue_id < dev->real_num_tx_queues)
dev->_tx[queue_id].pool = pool;
return 0;
}
static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff_xsk *xskb, u32 len,
u32 flags)
{
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
u64 addr;
int err;
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
addr = xp_get_handle(xskb);
err = xskq_prod_reserve_desc(xs->rx, addr, len, flags);
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
if (err) {
xs->rx_queue_full++;
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
return err;
}
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
xp_release(xskb);
return 0;
}
static int xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
{
struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp);
u32 frags = xdp_buff_has_frags(xdp);
struct xdp_buff_xsk *pos, *tmp;
struct list_head *xskb_list;
u32 contd = 0;
int err;
if (frags)
contd = XDP_PKT_CONTD;
err = __xsk_rcv_zc(xs, xskb, len, contd);
if (err)
goto err;
if (likely(!frags))
return 0;
xskb_list = &xskb->pool->xskb_list;
list_for_each_entry_safe(pos, tmp, xskb_list, xskb_list_node) {
if (list_is_singular(xskb_list))
contd = 0;
len = pos->xdp.data_end - pos->xdp.data;
err = __xsk_rcv_zc(xs, pos, len, contd);
if (err)
goto err;
list_del(&pos->xskb_list_node);
}
return 0;
err:
xsk_buff_free(xdp);
return err;
}
xsk: add support for AF_XDP multi-buffer on Rx path Add multi-buffer support for AF_XDP by extending the XDP multi-buffer support to be reflected in user-space when a packet is redirected to an AF_XDP socket. In the XDP implementation, the NIC driver builds the xdp_buff from the first frag of the packet and adds any subsequent frags in the skb_shinfo area of the xdp_buff. In AF_XDP core, XDP buffers are allocated from xdp_sock's pool and data is copied from the driver's xdp_buff and frags. Once an allocated XDP buffer is full and there is still data to be copied, the 'XDP_PKT_CONTD' flag in'options' field of the corresponding xdp ring descriptor is set and passed to the application. When application sees the aforementioned flag set it knows there is pending data for this packet that will be carried in the following descriptors. If there is no more data to be copied, the flag in 'options' field is cleared for that descriptor signalling EOP to the application. If application reads a batch of descriptors using for example the libxdp interfaces, it is not guaranteed that the batch will end with a full packet. It might end in the middle of a packet and the rest of the frames of that packet will arrive at the beginning of the next batch. AF_XDP ensures that only a complete packet (along with all its frags) is sent to application. Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Link: https://lore.kernel.org/r/20230719132421.584801-6-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 21:24:02 +08:00
static void *xsk_copy_xdp_start(struct xdp_buff *from)
{
if (unlikely(xdp_data_meta_unsupported(from)))
return from->data;
else
return from->data_meta;
}
xsk: add support for AF_XDP multi-buffer on Rx path Add multi-buffer support for AF_XDP by extending the XDP multi-buffer support to be reflected in user-space when a packet is redirected to an AF_XDP socket. In the XDP implementation, the NIC driver builds the xdp_buff from the first frag of the packet and adds any subsequent frags in the skb_shinfo area of the xdp_buff. In AF_XDP core, XDP buffers are allocated from xdp_sock's pool and data is copied from the driver's xdp_buff and frags. Once an allocated XDP buffer is full and there is still data to be copied, the 'XDP_PKT_CONTD' flag in'options' field of the corresponding xdp ring descriptor is set and passed to the application. When application sees the aforementioned flag set it knows there is pending data for this packet that will be carried in the following descriptors. If there is no more data to be copied, the flag in 'options' field is cleared for that descriptor signalling EOP to the application. If application reads a batch of descriptors using for example the libxdp interfaces, it is not guaranteed that the batch will end with a full packet. It might end in the middle of a packet and the rest of the frames of that packet will arrive at the beginning of the next batch. AF_XDP ensures that only a complete packet (along with all its frags) is sent to application. Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Link: https://lore.kernel.org/r/20230719132421.584801-6-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 21:24:02 +08:00
static u32 xsk_copy_xdp(void *to, void **from, u32 to_len,
u32 *from_len, skb_frag_t **frag, u32 rem)
{
u32 copied = 0;
while (1) {
u32 copy_len = min_t(u32, *from_len, to_len);
memcpy(to, *from, copy_len);
copied += copy_len;
if (rem == copied)
return copied;
if (*from_len == copy_len) {
*from = skb_frag_address(*frag);
*from_len = skb_frag_size((*frag)++);
} else {
*from += copy_len;
*from_len -= copy_len;
}
if (to_len == copy_len)
return copied;
to_len -= copy_len;
to += copy_len;
}
}
static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
{
xsk: add support for AF_XDP multi-buffer on Rx path Add multi-buffer support for AF_XDP by extending the XDP multi-buffer support to be reflected in user-space when a packet is redirected to an AF_XDP socket. In the XDP implementation, the NIC driver builds the xdp_buff from the first frag of the packet and adds any subsequent frags in the skb_shinfo area of the xdp_buff. In AF_XDP core, XDP buffers are allocated from xdp_sock's pool and data is copied from the driver's xdp_buff and frags. Once an allocated XDP buffer is full and there is still data to be copied, the 'XDP_PKT_CONTD' flag in'options' field of the corresponding xdp ring descriptor is set and passed to the application. When application sees the aforementioned flag set it knows there is pending data for this packet that will be carried in the following descriptors. If there is no more data to be copied, the flag in 'options' field is cleared for that descriptor signalling EOP to the application. If application reads a batch of descriptors using for example the libxdp interfaces, it is not guaranteed that the batch will end with a full packet. It might end in the middle of a packet and the rest of the frames of that packet will arrive at the beginning of the next batch. AF_XDP ensures that only a complete packet (along with all its frags) is sent to application. Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Link: https://lore.kernel.org/r/20230719132421.584801-6-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 21:24:02 +08:00
u32 frame_size = xsk_pool_get_rx_frame_size(xs->pool);
void *copy_from = xsk_copy_xdp_start(xdp), *copy_to;
u32 from_len, meta_len, rem, num_desc;
struct xdp_buff_xsk *xskb;
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
struct xdp_buff *xsk_xdp;
xsk: add support for AF_XDP multi-buffer on Rx path Add multi-buffer support for AF_XDP by extending the XDP multi-buffer support to be reflected in user-space when a packet is redirected to an AF_XDP socket. In the XDP implementation, the NIC driver builds the xdp_buff from the first frag of the packet and adds any subsequent frags in the skb_shinfo area of the xdp_buff. In AF_XDP core, XDP buffers are allocated from xdp_sock's pool and data is copied from the driver's xdp_buff and frags. Once an allocated XDP buffer is full and there is still data to be copied, the 'XDP_PKT_CONTD' flag in'options' field of the corresponding xdp ring descriptor is set and passed to the application. When application sees the aforementioned flag set it knows there is pending data for this packet that will be carried in the following descriptors. If there is no more data to be copied, the flag in 'options' field is cleared for that descriptor signalling EOP to the application. If application reads a batch of descriptors using for example the libxdp interfaces, it is not guaranteed that the batch will end with a full packet. It might end in the middle of a packet and the rest of the frames of that packet will arrive at the beginning of the next batch. AF_XDP ensures that only a complete packet (along with all its frags) is sent to application. Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Link: https://lore.kernel.org/r/20230719132421.584801-6-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 21:24:02 +08:00
skb_frag_t *frag;
from_len = xdp->data_end - copy_from;
meta_len = xdp->data - copy_from;
rem = len + meta_len;
if (len <= frame_size && !xdp_buff_has_frags(xdp)) {
int err;
xsk_xdp = xsk_buff_alloc(xs->pool);
if (!xsk_xdp) {
xs->rx_dropped++;
return -ENOMEM;
}
memcpy(xsk_xdp->data - meta_len, copy_from, rem);
xskb = container_of(xsk_xdp, struct xdp_buff_xsk, xdp);
err = __xsk_rcv_zc(xs, xskb, len, 0);
if (err) {
xsk_buff_free(xsk_xdp);
return err;
}
return 0;
}
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
xsk: add support for AF_XDP multi-buffer on Rx path Add multi-buffer support for AF_XDP by extending the XDP multi-buffer support to be reflected in user-space when a packet is redirected to an AF_XDP socket. In the XDP implementation, the NIC driver builds the xdp_buff from the first frag of the packet and adds any subsequent frags in the skb_shinfo area of the xdp_buff. In AF_XDP core, XDP buffers are allocated from xdp_sock's pool and data is copied from the driver's xdp_buff and frags. Once an allocated XDP buffer is full and there is still data to be copied, the 'XDP_PKT_CONTD' flag in'options' field of the corresponding xdp ring descriptor is set and passed to the application. When application sees the aforementioned flag set it knows there is pending data for this packet that will be carried in the following descriptors. If there is no more data to be copied, the flag in 'options' field is cleared for that descriptor signalling EOP to the application. If application reads a batch of descriptors using for example the libxdp interfaces, it is not guaranteed that the batch will end with a full packet. It might end in the middle of a packet and the rest of the frames of that packet will arrive at the beginning of the next batch. AF_XDP ensures that only a complete packet (along with all its frags) is sent to application. Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Link: https://lore.kernel.org/r/20230719132421.584801-6-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 21:24:02 +08:00
num_desc = (len - 1) / frame_size + 1;
if (!xsk_buff_can_alloc(xs->pool, num_desc)) {
xs->rx_dropped++;
return -ENOMEM;
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
}
xsk: add support for AF_XDP multi-buffer on Rx path Add multi-buffer support for AF_XDP by extending the XDP multi-buffer support to be reflected in user-space when a packet is redirected to an AF_XDP socket. In the XDP implementation, the NIC driver builds the xdp_buff from the first frag of the packet and adds any subsequent frags in the skb_shinfo area of the xdp_buff. In AF_XDP core, XDP buffers are allocated from xdp_sock's pool and data is copied from the driver's xdp_buff and frags. Once an allocated XDP buffer is full and there is still data to be copied, the 'XDP_PKT_CONTD' flag in'options' field of the corresponding xdp ring descriptor is set and passed to the application. When application sees the aforementioned flag set it knows there is pending data for this packet that will be carried in the following descriptors. If there is no more data to be copied, the flag in 'options' field is cleared for that descriptor signalling EOP to the application. If application reads a batch of descriptors using for example the libxdp interfaces, it is not guaranteed that the batch will end with a full packet. It might end in the middle of a packet and the rest of the frames of that packet will arrive at the beginning of the next batch. AF_XDP ensures that only a complete packet (along with all its frags) is sent to application. Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Link: https://lore.kernel.org/r/20230719132421.584801-6-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 21:24:02 +08:00
if (xskq_prod_nb_free(xs->rx, num_desc) < num_desc) {
xs->rx_queue_full++;
return -ENOBUFS;
}
xsk: add support for AF_XDP multi-buffer on Rx path Add multi-buffer support for AF_XDP by extending the XDP multi-buffer support to be reflected in user-space when a packet is redirected to an AF_XDP socket. In the XDP implementation, the NIC driver builds the xdp_buff from the first frag of the packet and adds any subsequent frags in the skb_shinfo area of the xdp_buff. In AF_XDP core, XDP buffers are allocated from xdp_sock's pool and data is copied from the driver's xdp_buff and frags. Once an allocated XDP buffer is full and there is still data to be copied, the 'XDP_PKT_CONTD' flag in'options' field of the corresponding xdp ring descriptor is set and passed to the application. When application sees the aforementioned flag set it knows there is pending data for this packet that will be carried in the following descriptors. If there is no more data to be copied, the flag in 'options' field is cleared for that descriptor signalling EOP to the application. If application reads a batch of descriptors using for example the libxdp interfaces, it is not guaranteed that the batch will end with a full packet. It might end in the middle of a packet and the rest of the frames of that packet will arrive at the beginning of the next batch. AF_XDP ensures that only a complete packet (along with all its frags) is sent to application. Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Link: https://lore.kernel.org/r/20230719132421.584801-6-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 21:24:02 +08:00
if (xdp_buff_has_frags(xdp)) {
struct skb_shared_info *sinfo;
sinfo = xdp_get_shared_info_from_buff(xdp);
frag = &sinfo->frags[0];
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
}
xsk: add support for AF_XDP multi-buffer on Rx path Add multi-buffer support for AF_XDP by extending the XDP multi-buffer support to be reflected in user-space when a packet is redirected to an AF_XDP socket. In the XDP implementation, the NIC driver builds the xdp_buff from the first frag of the packet and adds any subsequent frags in the skb_shinfo area of the xdp_buff. In AF_XDP core, XDP buffers are allocated from xdp_sock's pool and data is copied from the driver's xdp_buff and frags. Once an allocated XDP buffer is full and there is still data to be copied, the 'XDP_PKT_CONTD' flag in'options' field of the corresponding xdp ring descriptor is set and passed to the application. When application sees the aforementioned flag set it knows there is pending data for this packet that will be carried in the following descriptors. If there is no more data to be copied, the flag in 'options' field is cleared for that descriptor signalling EOP to the application. If application reads a batch of descriptors using for example the libxdp interfaces, it is not guaranteed that the batch will end with a full packet. It might end in the middle of a packet and the rest of the frames of that packet will arrive at the beginning of the next batch. AF_XDP ensures that only a complete packet (along with all its frags) is sent to application. Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Link: https://lore.kernel.org/r/20230719132421.584801-6-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 21:24:02 +08:00
do {
u32 to_len = frame_size + meta_len;
u32 copied;
xsk_xdp = xsk_buff_alloc(xs->pool);
copy_to = xsk_xdp->data - meta_len;
copied = xsk_copy_xdp(copy_to, &copy_from, to_len, &from_len, &frag, rem);
rem -= copied;
xskb = container_of(xsk_xdp, struct xdp_buff_xsk, xdp);
__xsk_rcv_zc(xs, xskb, copied - meta_len, rem ? XDP_PKT_CONTD : 0);
meta_len = 0;
} while (rem);
xsk: Introduce AF_XDP buffer allocation API In order to simplify AF_XDP zero-copy enablement for NIC driver developers, a new AF_XDP buffer allocation API is added. The implementation is based on a single core (single producer/consumer) buffer pool for the AF_XDP UMEM. A buffer is allocated using the xsk_buff_alloc() function, and returned using xsk_buff_free(). If a buffer is disassociated with the pool, e.g. when a buffer is passed to an AF_XDP socket, a buffer is said to be released. Currently, the release function is only used by the AF_XDP internals and not visible to the driver. Drivers using this API should register the XDP memory model with the new MEM_TYPE_XSK_BUFF_POOL type. The API is defined in net/xdp_sock_drv.h. The buffer type is struct xdp_buff, and follows the lifetime of regular xdp_buffs, i.e. the lifetime of an xdp_buff is restricted to a NAPI context. In other words, the API is not replacing xdp_frames. In addition to introducing the API and implementations, the AF_XDP core is migrated to use the new APIs. rfc->v1: Fixed build errors/warnings for m68k and riscv. (kbuild test robot) Added headroom/chunk size getter. (Maxim/Björn) v1->v2: Swapped SoBs. (Maxim) v2->v3: Initialize struct xdp_buff member frame_sz. (Björn) Add API to query the DMA address of a frame. (Maxim) Do DMA sync for CPU till the end of the frame to handle possible growth (frame_sz). (Maxim) Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200520192103.355233-6-bjorn.topel@gmail.com
2020-05-21 03:20:53 +08:00
return 0;
}
static bool xsk_tx_writeable(struct xdp_sock *xs)
{
if (xskq_cons_present_entries(xs->tx) > xs->tx->nentries / 2)
return false;
return true;
}
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
static bool xsk_is_bound(struct xdp_sock *xs)
{
if (READ_ONCE(xs->state) == XSK_BOUND) {
/* Matches smp_wmb() in bind(). */
smp_rmb();
return true;
}
return false;
}
static int xsk_rcv_check(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
{
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
if (!xsk_is_bound(xs))
return -ENXIO;
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
return -EINVAL;
xsk: add support for AF_XDP multi-buffer on Rx path Add multi-buffer support for AF_XDP by extending the XDP multi-buffer support to be reflected in user-space when a packet is redirected to an AF_XDP socket. In the XDP implementation, the NIC driver builds the xdp_buff from the first frag of the packet and adds any subsequent frags in the skb_shinfo area of the xdp_buff. In AF_XDP core, XDP buffers are allocated from xdp_sock's pool and data is copied from the driver's xdp_buff and frags. Once an allocated XDP buffer is full and there is still data to be copied, the 'XDP_PKT_CONTD' flag in'options' field of the corresponding xdp ring descriptor is set and passed to the application. When application sees the aforementioned flag set it knows there is pending data for this packet that will be carried in the following descriptors. If there is no more data to be copied, the flag in 'options' field is cleared for that descriptor signalling EOP to the application. If application reads a batch of descriptors using for example the libxdp interfaces, it is not guaranteed that the batch will end with a full packet. It might end in the middle of a packet and the rest of the frames of that packet will arrive at the beginning of the next batch. AF_XDP ensures that only a complete packet (along with all its frags) is sent to application. Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Link: https://lore.kernel.org/r/20230719132421.584801-6-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 21:24:02 +08:00
if (len > xsk_pool_get_rx_frame_size(xs->pool) && !xs->sg) {
xs->rx_dropped++;
return -ENOSPC;
}
sk_mark_napi_id_once_xdp(&xs->sk, xdp);
return 0;
}
static void xsk_flush(struct xdp_sock *xs)
{
xskq_prod_submit(xs->rx);
__xskq_cons_release(xs->pool->fq);
sock_def_readable(&xs->sk);
}
int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
{
u32 len = xdp_get_buff_len(xdp);
int err;
spin_lock_bh(&xs->rx_lock);
err = xsk_rcv_check(xs, xdp, len);
if (!err) {
err = __xsk_rcv(xs, xdp, len);
xsk_flush(xs);
}
spin_unlock_bh(&xs->rx_lock);
return err;
}
static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
{
u32 len = xdp_get_buff_len(xdp);
int err;
err = xsk_rcv_check(xs, xdp, len);
if (err)
return err;
if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) {
len = xdp->data_end - xdp->data;
return xsk_rcv_zc(xs, xdp, len);
}
err = __xsk_rcv(xs, xdp, len);
if (!err)
xdp_return_buff(xdp);
return err;
}
int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
{
int err;
err = xsk_rcv(xs, xdp);
if (err)
return err;
if (!xs->flush_node.prev) {
struct list_head *flush_list = bpf_net_ctx_get_xskmap_flush_list();
list_add(&xs->flush_node, flush_list);
}
return 0;
}
void __xsk_map_flush(struct list_head *flush_list)
{
struct xdp_sock *xs, *tmp;
list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
xsk_flush(xs);
__list_del_clearprev(&xs->flush_node);
}
}
void xsk_tx_completed(struct xsk_buff_pool *pool, u32 nb_entries)
{
xskq_prod_submit_n(pool->cq, nb_entries);
}
EXPORT_SYMBOL(xsk_tx_completed);
void xsk_tx_release(struct xsk_buff_pool *pool)
{
struct xdp_sock *xs;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
xsk: Publish global consumer pointers when NAPI is finished The commit 4b638f13bab4 ("xsk: Eliminate the RX batch size") introduced a much more lazy way of updating the global consumer pointers from the kernel side, by only doing so when running out of entries in the fill or Tx rings (the rings consumed by the kernel). This can result in a deadlock with the user application if the kernel requires more than one entry to proceed and the application cannot put these entries in the fill ring because the kernel has not updated the global consumer pointer since the ring is not empty. Fix this by publishing the local kernel side consumer pointer whenever we have completed Rx or Tx processing in the kernel. This way, user space will have an up-to-date view of the consumer pointers whenever it gets to execute in the one core case (application and driver on the same core), or after a certain number of packets have been processed in the two core case (application and driver on different cores). A side effect of this patch is that the one core case gets better performance, but the two core case gets worse. The reason that the one core case improves is that updating the global consumer pointer is relatively cheap since the application by definition is not running when the kernel is (they are on the same core) and it is beneficial for the application, once it gets to run, to have pointers that are as up to date as possible since it then can operate on more packets and buffers. In the two core case, the most important performance aspect is to minimize the number of accesses to the global pointers since they are shared between two cores and bounces between the caches of those cores. This patch results in more updates to global state, which means lower performance in the two core case. Fixes: 4b638f13bab4 ("xsk: Eliminate the RX batch size") Reported-by: Ryan Goodfellow <rgoodfel@isi.edu> Reported-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Acked-by: Maxim Mikityanskiy <maximmi@mellanox.com> Link: https://lore.kernel.org/bpf/1581348432-6747-1-git-send-email-magnus.karlsson@intel.com
2020-02-10 23:27:12 +08:00
__xskq_cons_release(xs->tx);
if (xsk_tx_writeable(xs))
xs->sk.sk_write_space(&xs->sk);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(xsk_tx_release);
bool xsk_tx_peek_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc)
{
bool budget_exhausted = false;
struct xdp_sock *xs;
rcu_read_lock();
again:
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
if (xs->tx_budget_spent >= MAX_PER_SOCKET_BUDGET) {
budget_exhausted = true;
continue;
}
if (!xskq_cons_peek_desc(xs->tx, desc, pool)) {
if (xskq_has_descs(xs->tx))
xskq_cons_release(xs->tx);
continue;
}
xs->tx_budget_spent++;
/* This is the backpressure mechanism for the Tx path.
* Reserve space in the completion queue and only proceed
* if there is space in it. This avoids having to implement
* any buffering in the Tx path.
*/
if (xskq_prod_reserve_addr(pool->cq, desc->addr))
goto out;
xskq_cons_release(xs->tx);
rcu_read_unlock();
return true;
}
if (budget_exhausted) {
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list)
xs->tx_budget_spent = 0;
budget_exhausted = false;
goto again;
}
out:
rcu_read_unlock();
return false;
}
EXPORT_SYMBOL(xsk_tx_peek_desc);
static u32 xsk_tx_peek_release_fallback(struct xsk_buff_pool *pool, u32 max_entries)
{
struct xdp_desc *descs = pool->tx_descs;
u32 nb_pkts = 0;
while (nb_pkts < max_entries && xsk_tx_peek_desc(pool, &descs[nb_pkts]))
nb_pkts++;
xsk_tx_release(pool);
return nb_pkts;
}
xsk: Fix backpressure mechanism on Tx Commit d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") fixed batch API usage against set of descriptors with invalid ones but introduced a problem when AF_XDP SW rings are smaller than HW ones. Mismatch of reported Tx'ed frames between HW generator and user space app was observed. It turned out that backpressure mechanism became a bottleneck when the amount of produced descriptors to CQ is lower than what we grabbed from XSK Tx ring. Say that 512 entries had been taken from XSK Tx ring but we had only 490 free entries in CQ. Then callsite (ZC driver) will produce only 490 entries onto HW Tx ring but 512 entries will be released from Tx ring and this is what will be seen by the user space. In order to fix this case, mix XSK Tx/CQ ring interractions by moving around internal functions and changing call order: * pull out xskq_prod_nb_free() from xskq_prod_reserve_addr_batch() up to xsk_tx_peek_release_desc_batch(); ** move xskq_cons_release_n() into xskq_cons_read_desc_batch() After doing so, algorithm can be described as follows: 1. lookup Tx entries 2. use value from 1. to reserve space in CQ (*) 3. Read from Tx ring as much descriptors as value from 2 3a. release descriptors from XSK Tx ring (**) 4. Finally produce addresses to CQ Fixes: d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220830121705.8618-1-maciej.fijalkowski@intel.com
2022-08-30 20:17:05 +08:00
u32 xsk_tx_peek_release_desc_batch(struct xsk_buff_pool *pool, u32 nb_pkts)
{
struct xdp_sock *xs;
rcu_read_lock();
if (!list_is_singular(&pool->xsk_tx_list)) {
/* Fallback to the non-batched version */
rcu_read_unlock();
xsk: Fix backpressure mechanism on Tx Commit d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") fixed batch API usage against set of descriptors with invalid ones but introduced a problem when AF_XDP SW rings are smaller than HW ones. Mismatch of reported Tx'ed frames between HW generator and user space app was observed. It turned out that backpressure mechanism became a bottleneck when the amount of produced descriptors to CQ is lower than what we grabbed from XSK Tx ring. Say that 512 entries had been taken from XSK Tx ring but we had only 490 free entries in CQ. Then callsite (ZC driver) will produce only 490 entries onto HW Tx ring but 512 entries will be released from Tx ring and this is what will be seen by the user space. In order to fix this case, mix XSK Tx/CQ ring interractions by moving around internal functions and changing call order: * pull out xskq_prod_nb_free() from xskq_prod_reserve_addr_batch() up to xsk_tx_peek_release_desc_batch(); ** move xskq_cons_release_n() into xskq_cons_read_desc_batch() After doing so, algorithm can be described as follows: 1. lookup Tx entries 2. use value from 1. to reserve space in CQ (*) 3. Read from Tx ring as much descriptors as value from 2 3a. release descriptors from XSK Tx ring (**) 4. Finally produce addresses to CQ Fixes: d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220830121705.8618-1-maciej.fijalkowski@intel.com
2022-08-30 20:17:05 +08:00
return xsk_tx_peek_release_fallback(pool, nb_pkts);
}
xs = list_first_or_null_rcu(&pool->xsk_tx_list, struct xdp_sock, tx_list);
if (!xs) {
nb_pkts = 0;
goto out;
}
xsk: Fix backpressure mechanism on Tx Commit d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") fixed batch API usage against set of descriptors with invalid ones but introduced a problem when AF_XDP SW rings are smaller than HW ones. Mismatch of reported Tx'ed frames between HW generator and user space app was observed. It turned out that backpressure mechanism became a bottleneck when the amount of produced descriptors to CQ is lower than what we grabbed from XSK Tx ring. Say that 512 entries had been taken from XSK Tx ring but we had only 490 free entries in CQ. Then callsite (ZC driver) will produce only 490 entries onto HW Tx ring but 512 entries will be released from Tx ring and this is what will be seen by the user space. In order to fix this case, mix XSK Tx/CQ ring interractions by moving around internal functions and changing call order: * pull out xskq_prod_nb_free() from xskq_prod_reserve_addr_batch() up to xsk_tx_peek_release_desc_batch(); ** move xskq_cons_release_n() into xskq_cons_read_desc_batch() After doing so, algorithm can be described as follows: 1. lookup Tx entries 2. use value from 1. to reserve space in CQ (*) 3. Read from Tx ring as much descriptors as value from 2 3a. release descriptors from XSK Tx ring (**) 4. Finally produce addresses to CQ Fixes: d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220830121705.8618-1-maciej.fijalkowski@intel.com
2022-08-30 20:17:05 +08:00
nb_pkts = xskq_cons_nb_entries(xs->tx, nb_pkts);
/* This is the backpressure mechanism for the Tx path. Try to
* reserve space in the completion queue for all packets, but
* if there are fewer slots available, just process that many
* packets. This avoids having to implement any buffering in
* the Tx path.
*/
xsk: Fix backpressure mechanism on Tx Commit d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") fixed batch API usage against set of descriptors with invalid ones but introduced a problem when AF_XDP SW rings are smaller than HW ones. Mismatch of reported Tx'ed frames between HW generator and user space app was observed. It turned out that backpressure mechanism became a bottleneck when the amount of produced descriptors to CQ is lower than what we grabbed from XSK Tx ring. Say that 512 entries had been taken from XSK Tx ring but we had only 490 free entries in CQ. Then callsite (ZC driver) will produce only 490 entries onto HW Tx ring but 512 entries will be released from Tx ring and this is what will be seen by the user space. In order to fix this case, mix XSK Tx/CQ ring interractions by moving around internal functions and changing call order: * pull out xskq_prod_nb_free() from xskq_prod_reserve_addr_batch() up to xsk_tx_peek_release_desc_batch(); ** move xskq_cons_release_n() into xskq_cons_read_desc_batch() After doing so, algorithm can be described as follows: 1. lookup Tx entries 2. use value from 1. to reserve space in CQ (*) 3. Read from Tx ring as much descriptors as value from 2 3a. release descriptors from XSK Tx ring (**) 4. Finally produce addresses to CQ Fixes: d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220830121705.8618-1-maciej.fijalkowski@intel.com
2022-08-30 20:17:05 +08:00
nb_pkts = xskq_prod_nb_free(pool->cq, nb_pkts);
if (!nb_pkts)
goto out;
xsk: Fix backpressure mechanism on Tx Commit d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") fixed batch API usage against set of descriptors with invalid ones but introduced a problem when AF_XDP SW rings are smaller than HW ones. Mismatch of reported Tx'ed frames between HW generator and user space app was observed. It turned out that backpressure mechanism became a bottleneck when the amount of produced descriptors to CQ is lower than what we grabbed from XSK Tx ring. Say that 512 entries had been taken from XSK Tx ring but we had only 490 free entries in CQ. Then callsite (ZC driver) will produce only 490 entries onto HW Tx ring but 512 entries will be released from Tx ring and this is what will be seen by the user space. In order to fix this case, mix XSK Tx/CQ ring interractions by moving around internal functions and changing call order: * pull out xskq_prod_nb_free() from xskq_prod_reserve_addr_batch() up to xsk_tx_peek_release_desc_batch(); ** move xskq_cons_release_n() into xskq_cons_read_desc_batch() After doing so, algorithm can be described as follows: 1. lookup Tx entries 2. use value from 1. to reserve space in CQ (*) 3. Read from Tx ring as much descriptors as value from 2 3a. release descriptors from XSK Tx ring (**) 4. Finally produce addresses to CQ Fixes: d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220830121705.8618-1-maciej.fijalkowski@intel.com
2022-08-30 20:17:05 +08:00
nb_pkts = xskq_cons_read_desc_batch(xs->tx, pool, nb_pkts);
if (!nb_pkts) {
xs->tx->queue_empty_descs++;
goto out;
}
__xskq_cons_release(xs->tx);
xsk: Fix backpressure mechanism on Tx Commit d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") fixed batch API usage against set of descriptors with invalid ones but introduced a problem when AF_XDP SW rings are smaller than HW ones. Mismatch of reported Tx'ed frames between HW generator and user space app was observed. It turned out that backpressure mechanism became a bottleneck when the amount of produced descriptors to CQ is lower than what we grabbed from XSK Tx ring. Say that 512 entries had been taken from XSK Tx ring but we had only 490 free entries in CQ. Then callsite (ZC driver) will produce only 490 entries onto HW Tx ring but 512 entries will be released from Tx ring and this is what will be seen by the user space. In order to fix this case, mix XSK Tx/CQ ring interractions by moving around internal functions and changing call order: * pull out xskq_prod_nb_free() from xskq_prod_reserve_addr_batch() up to xsk_tx_peek_release_desc_batch(); ** move xskq_cons_release_n() into xskq_cons_read_desc_batch() After doing so, algorithm can be described as follows: 1. lookup Tx entries 2. use value from 1. to reserve space in CQ (*) 3. Read from Tx ring as much descriptors as value from 2 3a. release descriptors from XSK Tx ring (**) 4. Finally produce addresses to CQ Fixes: d678cbd2f867 ("xsk: Fix handling of invalid descriptors in XSK TX batching API") Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220830121705.8618-1-maciej.fijalkowski@intel.com
2022-08-30 20:17:05 +08:00
xskq_prod_write_addr_batch(pool->cq, pool->tx_descs, nb_pkts);
xs->sk.sk_write_space(&xs->sk);
out:
rcu_read_unlock();
return nb_pkts;
}
EXPORT_SYMBOL(xsk_tx_peek_release_desc_batch);
static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
{
struct net_device *dev = xs->dev;
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
return dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
}
static int xsk_cq_reserve_addr_locked(struct xdp_sock *xs, u64 addr)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&xs->pool->cq_lock, flags);
ret = xskq_prod_reserve_addr(xs->pool->cq, addr);
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
return ret;
}
static void xsk_cq_submit_locked(struct xdp_sock *xs, u32 n)
{
unsigned long flags;
spin_lock_irqsave(&xs->pool->cq_lock, flags);
xskq_prod_submit_n(xs->pool->cq, n);
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
}
static void xsk_cq_cancel_locked(struct xdp_sock *xs, u32 n)
{
xsk: fix potential race in SKB TX completion code There is a potential race in the TX completion code for the SKB case. One process enters the sendmsg code of an AF_XDP socket in order to send a frame. The execution eventually trickles down to the driver that is told to send the packet. However, it decides to drop the packet due to some error condition (e.g., rings full) and frees the SKB. This will trigger the SKB destructor and a completion will be sent to the AF_XDP user space through its single-producer/single-consumer queues. At the same time a TX interrupt has fired on another core and it dispatches the TX completion code in the driver. It does its HW specific things and ends up freeing the SKB associated with the transmitted packet. This will trigger the SKB destructor and a completion will be sent to the AF_XDP user space through its single-producer/single-consumer queues. With a pseudo call stack, it would look like this: Core 1: sendmsg() being called in the application netdev_start_xmit() Driver entered through ndo_start_xmit Driver decides to free the SKB for some reason (e.g., rings full) Destructor of SKB called xskq_produce_addr() is called to signal completion to user space Core 2: TX completion irq NAPI loop Driver irq handler for TX completions Frees the SKB Destructor of SKB called xskq_produce_addr() is called to signal completion to user space We now have a violation of the single-producer/single-consumer principle for our queues as there are two threads trying to produce at the same time on the same queue. Fixed by introducing a spin_lock in the destructor. In regards to the performance, I get around 1.74 Mpps for txonly before and after the introduction of the spinlock. There is of course some impact due to the spin lock but it is in the less significant digits that are too noisy for me to measure. But let us say that the version without the spin lock got 1.745 Mpps in the best case and the version with 1.735 Mpps in the worst case, then that would mean a maximum drop in performance of 0.5%. Fixes: 35fcde7f8deb ("xsk: support for Tx") Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-06-29 15:48:20 +08:00
unsigned long flags;
spin_lock_irqsave(&xs->pool->cq_lock, flags);
xskq_prod_cancel_n(xs->pool->cq, n);
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
}
static u32 xsk_get_num_desc(struct sk_buff *skb)
{
return skb ? (long)skb_shinfo(skb)->destructor_arg : 0;
}
static void xsk_destruct_skb(struct sk_buff *skb)
{
xsk: Add TX timestamp and TX checksum offload support This change actually defines the (initial) metadata layout that should be used by AF_XDP userspace (xsk_tx_metadata). The first field is flags which requests appropriate offloads, followed by the offload-specific fields. The supported per-device offloads are exported via netlink (new xsk-flags). The offloads themselves are still implemented in a bit of a framework-y fashion that's left from my initial kfunc attempt. I'm introducing new xsk_tx_metadata_ops which drivers are supposed to implement. The drivers are also supposed to call xsk_tx_metadata_request/xsk_tx_metadata_complete in the right places. Since xsk_tx_metadata_{request,_complete} are static inline, we don't incur any extra overhead doing indirect calls. The benefit of this scheme is as follows: - keeps all metadata layout parsing away from driver code - makes it easy to grep and see which drivers implement what - don't need any extra flags to maintain to keep track of what offloads are implemented; if the callback is implemented - the offload is supported (used by netlink reporting code) Two offloads are defined right now: 1. XDP_TXMD_FLAGS_CHECKSUM: skb-style csum_start+csum_offset 2. XDP_TXMD_FLAGS_TIMESTAMP: writes TX timestamp back into metadata area upon completion (tx_timestamp field) XDP_TXMD_FLAGS_TIMESTAMP is also implemented for XDP_COPY mode: it writes SW timestamp from the skb destructor (note I'm reusing hwtstamps to pass metadata pointer). The struct is forward-compatible and can be extended in the future by appending more fields. Reviewed-by: Song Yoong Siang <yoong.siang.song@intel.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20231127190319.1190813-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-28 03:03:08 +08:00
struct xsk_tx_metadata_compl *compl = &skb_shinfo(skb)->xsk_meta;
if (compl->tx_timestamp) {
/* sw completion timestamp, not a real one */
*compl->tx_timestamp = ktime_get_tai_fast_ns();
}
xsk_cq_submit_locked(xdp_sk(skb->sk), xsk_get_num_desc(skb));
sock_wfree(skb);
}
static void xsk_set_destructor_arg(struct sk_buff *skb)
{
long num = xsk_get_num_desc(xdp_sk(skb->sk)->skb) + 1;
skb_shinfo(skb)->destructor_arg = (void *)num;
}
static void xsk_consume_skb(struct sk_buff *skb)
{
struct xdp_sock *xs = xdp_sk(skb->sk);
skb->destructor = sock_wfree;
xsk_cq_cancel_locked(xs, xsk_get_num_desc(skb));
/* Free skb without triggering the perf drop trace */
consume_skb(skb);
xs->skb = NULL;
}
static void xsk_drop_skb(struct sk_buff *skb)
{
xdp_sk(skb->sk)->tx->invalid_descs += xsk_get_num_desc(skb);
xsk_consume_skb(skb);
}
static struct sk_buff *xsk_build_skb_zerocopy(struct xdp_sock *xs,
struct xdp_desc *desc)
{
struct xsk_buff_pool *pool = xs->pool;
u32 hr, len, ts, offset, copy, copied;
struct sk_buff *skb = xs->skb;
struct page *page;
void *buffer;
int err, i;
u64 addr;
if (!skb) {
hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(xs->dev->needed_headroom));
skb = sock_alloc_send_skb(&xs->sk, hr, 1, &err);
if (unlikely(!skb))
return ERR_PTR(err);
skb_reserve(skb, hr);
}
addr = desc->addr;
len = desc->len;
ts = pool->unaligned ? len : pool->chunk_size;
buffer = xsk_buff_raw_get_data(pool, addr);
offset = offset_in_page(buffer);
addr = buffer - pool->addrs;
for (copied = 0, i = skb_shinfo(skb)->nr_frags; copied < len; i++) {
if (unlikely(i >= MAX_SKB_FRAGS))
xsk: Fix xsk_build_skb() error: 'skb' dereferencing possible ERR_PTR() Currently, xsk_build_skb() is a function that builds skb in two possible ways and then is ended with common error handling. We can distinguish four possible error paths and handling in xsk_build_skb(): 1. sock_alloc_send_skb fails: Retry (skb is NULL). 2. skb_store_bits fails : Free skb and retry. 3. MAX_SKB_FRAGS exceeded: Free skb, cleanup and drop packet. 4. alloc_page fails for frag: Retry page allocation w/o freeing skb 1] and 3] can happen in xsk_build_skb_zerocopy(), which is one of the two code paths responsible for building skb. Common error path in xsk_build_skb() assumes that in case errno != -EAGAIN, skb is a valid pointer, which is wrong as kernel test robot reports that in xsk_build_skb_zerocopy() other errno values are returned for skb being NULL. To fix this, set -EOVERFLOW as error when MAX_SKB_FRAGS are exceeded and packet needs to be dropped in both xsk_build_skb() and xsk_build_skb_zerocopy() and use this to distinguish against all other error cases. Also, add explicit kfree_skb() for 3] so that handling of 1], 2], and 3] becomes identical where allocation needs to be retried. Fixes: cf24f5a5feea ("xsk: add support for AF_XDP multi-buffer on Tx path") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Closes: https://lore.kernel.org/r/202307210434.OjgqFcbB-lkp@intel.com Link: https://lore.kernel.org/bpf/20230823144713.2231808-1-tirthendu.sarkar@intel.com
2023-08-23 22:47:13 +08:00
return ERR_PTR(-EOVERFLOW);
page = pool->umem->pgs[addr >> PAGE_SHIFT];
get_page(page);
copy = min_t(u32, PAGE_SIZE - offset, len - copied);
skb_fill_page_desc(skb, i, page, offset, copy);
copied += copy;
addr += copy;
offset = 0;
}
skb->len += len;
skb->data_len += len;
skb->truesize += ts;
refcount_add(ts, &xs->sk.sk_wmem_alloc);
return skb;
}
static struct sk_buff *xsk_build_skb(struct xdp_sock *xs,
struct xdp_desc *desc)
{
xsk: Add TX timestamp and TX checksum offload support This change actually defines the (initial) metadata layout that should be used by AF_XDP userspace (xsk_tx_metadata). The first field is flags which requests appropriate offloads, followed by the offload-specific fields. The supported per-device offloads are exported via netlink (new xsk-flags). The offloads themselves are still implemented in a bit of a framework-y fashion that's left from my initial kfunc attempt. I'm introducing new xsk_tx_metadata_ops which drivers are supposed to implement. The drivers are also supposed to call xsk_tx_metadata_request/xsk_tx_metadata_complete in the right places. Since xsk_tx_metadata_{request,_complete} are static inline, we don't incur any extra overhead doing indirect calls. The benefit of this scheme is as follows: - keeps all metadata layout parsing away from driver code - makes it easy to grep and see which drivers implement what - don't need any extra flags to maintain to keep track of what offloads are implemented; if the callback is implemented - the offload is supported (used by netlink reporting code) Two offloads are defined right now: 1. XDP_TXMD_FLAGS_CHECKSUM: skb-style csum_start+csum_offset 2. XDP_TXMD_FLAGS_TIMESTAMP: writes TX timestamp back into metadata area upon completion (tx_timestamp field) XDP_TXMD_FLAGS_TIMESTAMP is also implemented for XDP_COPY mode: it writes SW timestamp from the skb destructor (note I'm reusing hwtstamps to pass metadata pointer). The struct is forward-compatible and can be extended in the future by appending more fields. Reviewed-by: Song Yoong Siang <yoong.siang.song@intel.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20231127190319.1190813-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-28 03:03:08 +08:00
struct xsk_tx_metadata *meta = NULL;
struct net_device *dev = xs->dev;
struct sk_buff *skb = xs->skb;
xsk: Add TX timestamp and TX checksum offload support This change actually defines the (initial) metadata layout that should be used by AF_XDP userspace (xsk_tx_metadata). The first field is flags which requests appropriate offloads, followed by the offload-specific fields. The supported per-device offloads are exported via netlink (new xsk-flags). The offloads themselves are still implemented in a bit of a framework-y fashion that's left from my initial kfunc attempt. I'm introducing new xsk_tx_metadata_ops which drivers are supposed to implement. The drivers are also supposed to call xsk_tx_metadata_request/xsk_tx_metadata_complete in the right places. Since xsk_tx_metadata_{request,_complete} are static inline, we don't incur any extra overhead doing indirect calls. The benefit of this scheme is as follows: - keeps all metadata layout parsing away from driver code - makes it easy to grep and see which drivers implement what - don't need any extra flags to maintain to keep track of what offloads are implemented; if the callback is implemented - the offload is supported (used by netlink reporting code) Two offloads are defined right now: 1. XDP_TXMD_FLAGS_CHECKSUM: skb-style csum_start+csum_offset 2. XDP_TXMD_FLAGS_TIMESTAMP: writes TX timestamp back into metadata area upon completion (tx_timestamp field) XDP_TXMD_FLAGS_TIMESTAMP is also implemented for XDP_COPY mode: it writes SW timestamp from the skb destructor (note I'm reusing hwtstamps to pass metadata pointer). The struct is forward-compatible and can be extended in the future by appending more fields. Reviewed-by: Song Yoong Siang <yoong.siang.song@intel.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20231127190319.1190813-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-28 03:03:08 +08:00
bool first_frag = false;
int err;
if (dev->priv_flags & IFF_TX_SKB_NO_LINEAR) {
skb = xsk_build_skb_zerocopy(xs, desc);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
goto free_err;
}
} else {
u32 hr, tr, len;
void *buffer;
buffer = xsk_buff_raw_get_data(xs->pool, desc->addr);
len = desc->len;
if (!skb) {
hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(dev->needed_headroom));
tr = dev->needed_tailroom;
skb = sock_alloc_send_skb(&xs->sk, hr + len + tr, 1, &err);
if (unlikely(!skb))
goto free_err;
skb_reserve(skb, hr);
skb_put(skb, len);
err = skb_store_bits(skb, 0, buffer, len);
xsk: Fix xsk_build_skb() error: 'skb' dereferencing possible ERR_PTR() Currently, xsk_build_skb() is a function that builds skb in two possible ways and then is ended with common error handling. We can distinguish four possible error paths and handling in xsk_build_skb(): 1. sock_alloc_send_skb fails: Retry (skb is NULL). 2. skb_store_bits fails : Free skb and retry. 3. MAX_SKB_FRAGS exceeded: Free skb, cleanup and drop packet. 4. alloc_page fails for frag: Retry page allocation w/o freeing skb 1] and 3] can happen in xsk_build_skb_zerocopy(), which is one of the two code paths responsible for building skb. Common error path in xsk_build_skb() assumes that in case errno != -EAGAIN, skb is a valid pointer, which is wrong as kernel test robot reports that in xsk_build_skb_zerocopy() other errno values are returned for skb being NULL. To fix this, set -EOVERFLOW as error when MAX_SKB_FRAGS are exceeded and packet needs to be dropped in both xsk_build_skb() and xsk_build_skb_zerocopy() and use this to distinguish against all other error cases. Also, add explicit kfree_skb() for 3] so that handling of 1], 2], and 3] becomes identical where allocation needs to be retried. Fixes: cf24f5a5feea ("xsk: add support for AF_XDP multi-buffer on Tx path") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Closes: https://lore.kernel.org/r/202307210434.OjgqFcbB-lkp@intel.com Link: https://lore.kernel.org/bpf/20230823144713.2231808-1-tirthendu.sarkar@intel.com
2023-08-23 22:47:13 +08:00
if (unlikely(err)) {
kfree_skb(skb);
goto free_err;
xsk: Fix xsk_build_skb() error: 'skb' dereferencing possible ERR_PTR() Currently, xsk_build_skb() is a function that builds skb in two possible ways and then is ended with common error handling. We can distinguish four possible error paths and handling in xsk_build_skb(): 1. sock_alloc_send_skb fails: Retry (skb is NULL). 2. skb_store_bits fails : Free skb and retry. 3. MAX_SKB_FRAGS exceeded: Free skb, cleanup and drop packet. 4. alloc_page fails for frag: Retry page allocation w/o freeing skb 1] and 3] can happen in xsk_build_skb_zerocopy(), which is one of the two code paths responsible for building skb. Common error path in xsk_build_skb() assumes that in case errno != -EAGAIN, skb is a valid pointer, which is wrong as kernel test robot reports that in xsk_build_skb_zerocopy() other errno values are returned for skb being NULL. To fix this, set -EOVERFLOW as error when MAX_SKB_FRAGS are exceeded and packet needs to be dropped in both xsk_build_skb() and xsk_build_skb_zerocopy() and use this to distinguish against all other error cases. Also, add explicit kfree_skb() for 3] so that handling of 1], 2], and 3] becomes identical where allocation needs to be retried. Fixes: cf24f5a5feea ("xsk: add support for AF_XDP multi-buffer on Tx path") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Closes: https://lore.kernel.org/r/202307210434.OjgqFcbB-lkp@intel.com Link: https://lore.kernel.org/bpf/20230823144713.2231808-1-tirthendu.sarkar@intel.com
2023-08-23 22:47:13 +08:00
}
xsk: Add TX timestamp and TX checksum offload support This change actually defines the (initial) metadata layout that should be used by AF_XDP userspace (xsk_tx_metadata). The first field is flags which requests appropriate offloads, followed by the offload-specific fields. The supported per-device offloads are exported via netlink (new xsk-flags). The offloads themselves are still implemented in a bit of a framework-y fashion that's left from my initial kfunc attempt. I'm introducing new xsk_tx_metadata_ops which drivers are supposed to implement. The drivers are also supposed to call xsk_tx_metadata_request/xsk_tx_metadata_complete in the right places. Since xsk_tx_metadata_{request,_complete} are static inline, we don't incur any extra overhead doing indirect calls. The benefit of this scheme is as follows: - keeps all metadata layout parsing away from driver code - makes it easy to grep and see which drivers implement what - don't need any extra flags to maintain to keep track of what offloads are implemented; if the callback is implemented - the offload is supported (used by netlink reporting code) Two offloads are defined right now: 1. XDP_TXMD_FLAGS_CHECKSUM: skb-style csum_start+csum_offset 2. XDP_TXMD_FLAGS_TIMESTAMP: writes TX timestamp back into metadata area upon completion (tx_timestamp field) XDP_TXMD_FLAGS_TIMESTAMP is also implemented for XDP_COPY mode: it writes SW timestamp from the skb destructor (note I'm reusing hwtstamps to pass metadata pointer). The struct is forward-compatible and can be extended in the future by appending more fields. Reviewed-by: Song Yoong Siang <yoong.siang.song@intel.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20231127190319.1190813-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-28 03:03:08 +08:00
first_frag = true;
} else {
int nr_frags = skb_shinfo(skb)->nr_frags;
struct page *page;
u8 *vaddr;
if (unlikely(nr_frags == (MAX_SKB_FRAGS - 1) && xp_mb_desc(desc))) {
xsk: Fix xsk_build_skb() error: 'skb' dereferencing possible ERR_PTR() Currently, xsk_build_skb() is a function that builds skb in two possible ways and then is ended with common error handling. We can distinguish four possible error paths and handling in xsk_build_skb(): 1. sock_alloc_send_skb fails: Retry (skb is NULL). 2. skb_store_bits fails : Free skb and retry. 3. MAX_SKB_FRAGS exceeded: Free skb, cleanup and drop packet. 4. alloc_page fails for frag: Retry page allocation w/o freeing skb 1] and 3] can happen in xsk_build_skb_zerocopy(), which is one of the two code paths responsible for building skb. Common error path in xsk_build_skb() assumes that in case errno != -EAGAIN, skb is a valid pointer, which is wrong as kernel test robot reports that in xsk_build_skb_zerocopy() other errno values are returned for skb being NULL. To fix this, set -EOVERFLOW as error when MAX_SKB_FRAGS are exceeded and packet needs to be dropped in both xsk_build_skb() and xsk_build_skb_zerocopy() and use this to distinguish against all other error cases. Also, add explicit kfree_skb() for 3] so that handling of 1], 2], and 3] becomes identical where allocation needs to be retried. Fixes: cf24f5a5feea ("xsk: add support for AF_XDP multi-buffer on Tx path") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Closes: https://lore.kernel.org/r/202307210434.OjgqFcbB-lkp@intel.com Link: https://lore.kernel.org/bpf/20230823144713.2231808-1-tirthendu.sarkar@intel.com
2023-08-23 22:47:13 +08:00
err = -EOVERFLOW;
goto free_err;
}
page = alloc_page(xs->sk.sk_allocation);
if (unlikely(!page)) {
err = -EAGAIN;
goto free_err;
}
vaddr = kmap_local_page(page);
memcpy(vaddr, buffer, len);
kunmap_local(vaddr);
skb_add_rx_frag(skb, nr_frags, page, 0, len, PAGE_SIZE);
refcount_add(PAGE_SIZE, &xs->sk.sk_wmem_alloc);
}
xsk: Add TX timestamp and TX checksum offload support This change actually defines the (initial) metadata layout that should be used by AF_XDP userspace (xsk_tx_metadata). The first field is flags which requests appropriate offloads, followed by the offload-specific fields. The supported per-device offloads are exported via netlink (new xsk-flags). The offloads themselves are still implemented in a bit of a framework-y fashion that's left from my initial kfunc attempt. I'm introducing new xsk_tx_metadata_ops which drivers are supposed to implement. The drivers are also supposed to call xsk_tx_metadata_request/xsk_tx_metadata_complete in the right places. Since xsk_tx_metadata_{request,_complete} are static inline, we don't incur any extra overhead doing indirect calls. The benefit of this scheme is as follows: - keeps all metadata layout parsing away from driver code - makes it easy to grep and see which drivers implement what - don't need any extra flags to maintain to keep track of what offloads are implemented; if the callback is implemented - the offload is supported (used by netlink reporting code) Two offloads are defined right now: 1. XDP_TXMD_FLAGS_CHECKSUM: skb-style csum_start+csum_offset 2. XDP_TXMD_FLAGS_TIMESTAMP: writes TX timestamp back into metadata area upon completion (tx_timestamp field) XDP_TXMD_FLAGS_TIMESTAMP is also implemented for XDP_COPY mode: it writes SW timestamp from the skb destructor (note I'm reusing hwtstamps to pass metadata pointer). The struct is forward-compatible and can be extended in the future by appending more fields. Reviewed-by: Song Yoong Siang <yoong.siang.song@intel.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20231127190319.1190813-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-28 03:03:08 +08:00
if (first_frag && desc->options & XDP_TX_METADATA) {
if (unlikely(xs->pool->tx_metadata_len == 0)) {
err = -EINVAL;
goto free_err;
}
meta = buffer - xs->pool->tx_metadata_len;
if (unlikely(!xsk_buff_valid_tx_metadata(meta))) {
err = -EINVAL;
goto free_err;
}
xsk: Add TX timestamp and TX checksum offload support This change actually defines the (initial) metadata layout that should be used by AF_XDP userspace (xsk_tx_metadata). The first field is flags which requests appropriate offloads, followed by the offload-specific fields. The supported per-device offloads are exported via netlink (new xsk-flags). The offloads themselves are still implemented in a bit of a framework-y fashion that's left from my initial kfunc attempt. I'm introducing new xsk_tx_metadata_ops which drivers are supposed to implement. The drivers are also supposed to call xsk_tx_metadata_request/xsk_tx_metadata_complete in the right places. Since xsk_tx_metadata_{request,_complete} are static inline, we don't incur any extra overhead doing indirect calls. The benefit of this scheme is as follows: - keeps all metadata layout parsing away from driver code - makes it easy to grep and see which drivers implement what - don't need any extra flags to maintain to keep track of what offloads are implemented; if the callback is implemented - the offload is supported (used by netlink reporting code) Two offloads are defined right now: 1. XDP_TXMD_FLAGS_CHECKSUM: skb-style csum_start+csum_offset 2. XDP_TXMD_FLAGS_TIMESTAMP: writes TX timestamp back into metadata area upon completion (tx_timestamp field) XDP_TXMD_FLAGS_TIMESTAMP is also implemented for XDP_COPY mode: it writes SW timestamp from the skb destructor (note I'm reusing hwtstamps to pass metadata pointer). The struct is forward-compatible and can be extended in the future by appending more fields. Reviewed-by: Song Yoong Siang <yoong.siang.song@intel.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20231127190319.1190813-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-28 03:03:08 +08:00
if (meta->flags & XDP_TXMD_FLAGS_CHECKSUM) {
if (unlikely(meta->request.csum_start +
meta->request.csum_offset +
sizeof(__sum16) > len)) {
err = -EINVAL;
goto free_err;
}
skb->csum_start = hr + meta->request.csum_start;
skb->csum_offset = meta->request.csum_offset;
skb->ip_summed = CHECKSUM_PARTIAL;
if (unlikely(xs->pool->tx_sw_csum)) {
err = skb_checksum_help(skb);
if (err)
goto free_err;
}
xsk: Add TX timestamp and TX checksum offload support This change actually defines the (initial) metadata layout that should be used by AF_XDP userspace (xsk_tx_metadata). The first field is flags which requests appropriate offloads, followed by the offload-specific fields. The supported per-device offloads are exported via netlink (new xsk-flags). The offloads themselves are still implemented in a bit of a framework-y fashion that's left from my initial kfunc attempt. I'm introducing new xsk_tx_metadata_ops which drivers are supposed to implement. The drivers are also supposed to call xsk_tx_metadata_request/xsk_tx_metadata_complete in the right places. Since xsk_tx_metadata_{request,_complete} are static inline, we don't incur any extra overhead doing indirect calls. The benefit of this scheme is as follows: - keeps all metadata layout parsing away from driver code - makes it easy to grep and see which drivers implement what - don't need any extra flags to maintain to keep track of what offloads are implemented; if the callback is implemented - the offload is supported (used by netlink reporting code) Two offloads are defined right now: 1. XDP_TXMD_FLAGS_CHECKSUM: skb-style csum_start+csum_offset 2. XDP_TXMD_FLAGS_TIMESTAMP: writes TX timestamp back into metadata area upon completion (tx_timestamp field) XDP_TXMD_FLAGS_TIMESTAMP is also implemented for XDP_COPY mode: it writes SW timestamp from the skb destructor (note I'm reusing hwtstamps to pass metadata pointer). The struct is forward-compatible and can be extended in the future by appending more fields. Reviewed-by: Song Yoong Siang <yoong.siang.song@intel.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20231127190319.1190813-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-28 03:03:08 +08:00
}
}
}
skb->dev = dev;
skb->priority = READ_ONCE(xs->sk.sk_priority);
skb->mark = READ_ONCE(xs->sk.sk_mark);
skb->destructor = xsk_destruct_skb;
xsk: Add TX timestamp and TX checksum offload support This change actually defines the (initial) metadata layout that should be used by AF_XDP userspace (xsk_tx_metadata). The first field is flags which requests appropriate offloads, followed by the offload-specific fields. The supported per-device offloads are exported via netlink (new xsk-flags). The offloads themselves are still implemented in a bit of a framework-y fashion that's left from my initial kfunc attempt. I'm introducing new xsk_tx_metadata_ops which drivers are supposed to implement. The drivers are also supposed to call xsk_tx_metadata_request/xsk_tx_metadata_complete in the right places. Since xsk_tx_metadata_{request,_complete} are static inline, we don't incur any extra overhead doing indirect calls. The benefit of this scheme is as follows: - keeps all metadata layout parsing away from driver code - makes it easy to grep and see which drivers implement what - don't need any extra flags to maintain to keep track of what offloads are implemented; if the callback is implemented - the offload is supported (used by netlink reporting code) Two offloads are defined right now: 1. XDP_TXMD_FLAGS_CHECKSUM: skb-style csum_start+csum_offset 2. XDP_TXMD_FLAGS_TIMESTAMP: writes TX timestamp back into metadata area upon completion (tx_timestamp field) XDP_TXMD_FLAGS_TIMESTAMP is also implemented for XDP_COPY mode: it writes SW timestamp from the skb destructor (note I'm reusing hwtstamps to pass metadata pointer). The struct is forward-compatible and can be extended in the future by appending more fields. Reviewed-by: Song Yoong Siang <yoong.siang.song@intel.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20231127190319.1190813-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-28 03:03:08 +08:00
xsk_tx_metadata_to_compl(meta, &skb_shinfo(skb)->xsk_meta);
xsk_set_destructor_arg(skb);
return skb;
free_err:
xsk: Fix xsk_build_skb() error: 'skb' dereferencing possible ERR_PTR() Currently, xsk_build_skb() is a function that builds skb in two possible ways and then is ended with common error handling. We can distinguish four possible error paths and handling in xsk_build_skb(): 1. sock_alloc_send_skb fails: Retry (skb is NULL). 2. skb_store_bits fails : Free skb and retry. 3. MAX_SKB_FRAGS exceeded: Free skb, cleanup and drop packet. 4. alloc_page fails for frag: Retry page allocation w/o freeing skb 1] and 3] can happen in xsk_build_skb_zerocopy(), which is one of the two code paths responsible for building skb. Common error path in xsk_build_skb() assumes that in case errno != -EAGAIN, skb is a valid pointer, which is wrong as kernel test robot reports that in xsk_build_skb_zerocopy() other errno values are returned for skb being NULL. To fix this, set -EOVERFLOW as error when MAX_SKB_FRAGS are exceeded and packet needs to be dropped in both xsk_build_skb() and xsk_build_skb_zerocopy() and use this to distinguish against all other error cases. Also, add explicit kfree_skb() for 3] so that handling of 1], 2], and 3] becomes identical where allocation needs to be retried. Fixes: cf24f5a5feea ("xsk: add support for AF_XDP multi-buffer on Tx path") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Closes: https://lore.kernel.org/r/202307210434.OjgqFcbB-lkp@intel.com Link: https://lore.kernel.org/bpf/20230823144713.2231808-1-tirthendu.sarkar@intel.com
2023-08-23 22:47:13 +08:00
if (err == -EOVERFLOW) {
/* Drop the packet */
xsk_set_destructor_arg(xs->skb);
xsk_drop_skb(xs->skb);
xskq_cons_release(xs->tx);
xsk: Fix xsk_build_skb() error: 'skb' dereferencing possible ERR_PTR() Currently, xsk_build_skb() is a function that builds skb in two possible ways and then is ended with common error handling. We can distinguish four possible error paths and handling in xsk_build_skb(): 1. sock_alloc_send_skb fails: Retry (skb is NULL). 2. skb_store_bits fails : Free skb and retry. 3. MAX_SKB_FRAGS exceeded: Free skb, cleanup and drop packet. 4. alloc_page fails for frag: Retry page allocation w/o freeing skb 1] and 3] can happen in xsk_build_skb_zerocopy(), which is one of the two code paths responsible for building skb. Common error path in xsk_build_skb() assumes that in case errno != -EAGAIN, skb is a valid pointer, which is wrong as kernel test robot reports that in xsk_build_skb_zerocopy() other errno values are returned for skb being NULL. To fix this, set -EOVERFLOW as error when MAX_SKB_FRAGS are exceeded and packet needs to be dropped in both xsk_build_skb() and xsk_build_skb_zerocopy() and use this to distinguish against all other error cases. Also, add explicit kfree_skb() for 3] so that handling of 1], 2], and 3] becomes identical where allocation needs to be retried. Fixes: cf24f5a5feea ("xsk: add support for AF_XDP multi-buffer on Tx path") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Closes: https://lore.kernel.org/r/202307210434.OjgqFcbB-lkp@intel.com Link: https://lore.kernel.org/bpf/20230823144713.2231808-1-tirthendu.sarkar@intel.com
2023-08-23 22:47:13 +08:00
} else {
/* Let application retry */
xsk_cq_cancel_locked(xs, 1);
}
return ERR_PTR(err);
}
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
static int __xsk_generic_xmit(struct sock *sk)
{
struct xdp_sock *xs = xdp_sk(sk);
u32 max_batch = TX_BATCH_SIZE;
bool sent_frame = false;
struct xdp_desc desc;
struct sk_buff *skb;
int err = 0;
mutex_lock(&xs->mutex);
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
/* Since we dropped the RCU read lock, the socket state might have changed. */
if (unlikely(!xsk_is_bound(xs))) {
err = -ENXIO;
goto out;
}
if (xs->queue_id >= xs->dev->real_num_tx_queues)
goto out;
while (xskq_cons_peek_desc(xs->tx, &desc, xs->pool)) {
if (max_batch-- == 0) {
err = -EAGAIN;
goto out;
}
/* This is the backpressure mechanism for the Tx path.
* Reserve space in the completion queue and only proceed
* if there is space in it. This avoids having to implement
* any buffering in the Tx path.
*/
if (xsk_cq_reserve_addr_locked(xs, desc.addr))
goto out;
skb = xsk_build_skb(xs, &desc);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
xsk: Fix xsk_build_skb() error: 'skb' dereferencing possible ERR_PTR() Currently, xsk_build_skb() is a function that builds skb in two possible ways and then is ended with common error handling. We can distinguish four possible error paths and handling in xsk_build_skb(): 1. sock_alloc_send_skb fails: Retry (skb is NULL). 2. skb_store_bits fails : Free skb and retry. 3. MAX_SKB_FRAGS exceeded: Free skb, cleanup and drop packet. 4. alloc_page fails for frag: Retry page allocation w/o freeing skb 1] and 3] can happen in xsk_build_skb_zerocopy(), which is one of the two code paths responsible for building skb. Common error path in xsk_build_skb() assumes that in case errno != -EAGAIN, skb is a valid pointer, which is wrong as kernel test robot reports that in xsk_build_skb_zerocopy() other errno values are returned for skb being NULL. To fix this, set -EOVERFLOW as error when MAX_SKB_FRAGS are exceeded and packet needs to be dropped in both xsk_build_skb() and xsk_build_skb_zerocopy() and use this to distinguish against all other error cases. Also, add explicit kfree_skb() for 3] so that handling of 1], 2], and 3] becomes identical where allocation needs to be retried. Fixes: cf24f5a5feea ("xsk: add support for AF_XDP multi-buffer on Tx path") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Tirthendu Sarkar <tirthendu.sarkar@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Closes: https://lore.kernel.org/r/202307210434.OjgqFcbB-lkp@intel.com Link: https://lore.kernel.org/bpf/20230823144713.2231808-1-tirthendu.sarkar@intel.com
2023-08-23 22:47:13 +08:00
if (err != -EOVERFLOW)
goto out;
err = 0;
continue;
}
xskq_cons_release(xs->tx);
if (xp_mb_desc(&desc)) {
xs->skb = skb;
continue;
}
err = __dev_direct_xmit(skb, xs->queue_id);
if (err == NETDEV_TX_BUSY) {
/* Tell user-space to retry the send */
xskq_cons_cancel_n(xs->tx, xsk_get_num_desc(skb));
xsk_consume_skb(skb);
err = -EAGAIN;
goto out;
}
/* Ignore NET_XMIT_CN as packet might have been sent */
if (err == NET_XMIT_DROP) {
/* SKB completed but not sent */
err = -EBUSY;
xs->skb = NULL;
goto out;
}
sent_frame = true;
xs->skb = NULL;
}
if (xskq_has_descs(xs->tx)) {
if (xs->skb)
xsk_drop_skb(xs->skb);
xskq_cons_release(xs->tx);
}
out:
if (sent_frame)
if (xsk_tx_writeable(xs))
sk->sk_write_space(sk);
mutex_unlock(&xs->mutex);
return err;
}
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
static int xsk_generic_xmit(struct sock *sk)
{
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
int ret;
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
/* Drop the RCU lock since the SKB path might sleep. */
rcu_read_unlock();
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
ret = __xsk_generic_xmit(sk);
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
/* Reaquire RCU lock before going into common code. */
rcu_read_lock();
return ret;
}
static bool xsk_no_wakeup(struct sock *sk)
{
#ifdef CONFIG_NET_RX_BUSY_POLL
/* Prefer busy-polling, skip the wakeup. */
return READ_ONCE(sk->sk_prefer_busy_poll) && READ_ONCE(sk->sk_ll_usec) &&
READ_ONCE(sk->sk_napi_id) >= MIN_NAPI_ID;
#else
return false;
#endif
}
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
static int xsk_check_common(struct xdp_sock *xs)
{
if (unlikely(!xsk_is_bound(xs)))
return -ENXIO;
if (unlikely(!(xs->dev->flags & IFF_UP)))
return -ENETDOWN;
return 0;
}
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
static int __xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
{
bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct xsk_buff_pool *pool;
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
int err;
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
err = xsk_check_common(xs);
if (err)
return err;
if (unlikely(need_wait))
return -EOPNOTSUPP;
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
if (unlikely(!xs->tx))
return -ENOBUFS;
if (sk_can_busy_loop(sk)) {
if (xs->zc)
__sk_mark_napi_id_once(sk, xsk_pool_get_napi_id(xs->pool));
sk_busy_loop(sk, 1); /* only support non-blocking sockets */
}
if (xs->zc && xsk_no_wakeup(sk))
return 0;
pool = xs->pool;
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
if (pool->cached_need_wakeup & XDP_WAKEUP_TX) {
if (xs->zc)
return xsk_wakeup(xs, XDP_WAKEUP_TX);
return xsk_generic_xmit(sk);
}
return 0;
}
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
{
int ret;
rcu_read_lock();
ret = __xsk_sendmsg(sock, m, total_len);
rcu_read_unlock();
return ret;
}
static int __xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
{
bool need_wait = !(flags & MSG_DONTWAIT);
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
int err;
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
err = xsk_check_common(xs);
if (err)
return err;
if (unlikely(!xs->rx))
return -ENOBUFS;
if (unlikely(need_wait))
return -EOPNOTSUPP;
if (sk_can_busy_loop(sk))
sk_busy_loop(sk, 1); /* only support non-blocking sockets */
if (xsk_no_wakeup(sk))
return 0;
if (xs->pool->cached_need_wakeup & XDP_WAKEUP_RX && xs->zc)
return xsk_wakeup(xs, XDP_WAKEUP_RX);
return 0;
}
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
static int xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
{
int ret;
rcu_read_lock();
ret = __xsk_recvmsg(sock, m, len, flags);
rcu_read_unlock();
return ret;
}
static __poll_t xsk_poll(struct file *file, struct socket *sock,
struct poll_table_struct *wait)
{
__poll_t mask = 0;
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct xsk_buff_pool *pool;
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
sock_poll_wait(file, sock, wait);
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
rcu_read_lock();
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
if (xsk_check_common(xs))
goto out;
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
pool = xs->pool;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
if (pool->cached_need_wakeup) {
if (xs->zc)
xsk_wakeup(xs, pool->cached_need_wakeup);
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
else if (xs->tx)
/* Poll needs to drive Tx also in copy mode */
xsk: check IFF_UP earlier in Tx path Xsk Tx can be triggered via either sendmsg() or poll() syscalls. These two paths share a call to common function xsk_xmit() which has two sanity checks within. A pseudo code example to show the two paths: __xsk_sendmsg() : xsk_poll(): if (unlikely(!xsk_is_bound(xs))) if (unlikely(!xsk_is_bound(xs))) return -ENXIO; return mask; if (unlikely(need_wait)) (...) return -EOPNOTSUPP; xsk_xmit() mark napi id (...) xsk_xmit() xsk_xmit(): if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; As it can be observed above, in sendmsg() napi id can be marked on interface that was not brought up and this causes a NULL ptr dereference: [31757.505631] BUG: kernel NULL pointer dereference, address: 0000000000000018 [31757.512710] #PF: supervisor read access in kernel mode [31757.517936] #PF: error_code(0x0000) - not-present page [31757.523149] PGD 0 P4D 0 [31757.525726] Oops: 0000 [#1] PREEMPT SMP NOPTI [31757.530154] CPU: 26 PID: 95641 Comm: xdpsock Not tainted 6.2.0-rc5+ #40 [31757.536871] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [31757.547457] RIP: 0010:xsk_sendmsg+0xde/0x180 [31757.551799] Code: 00 75 a2 48 8b 00 a8 04 75 9b 84 d2 74 69 8b 85 14 01 00 00 85 c0 75 1b 48 8b 85 28 03 00 00 48 8b 80 98 00 00 00 48 8b 40 20 <8b> 40 18 89 85 14 01 00 00 8b bd 14 01 00 00 81 ff 00 01 00 00 0f [31757.570840] RSP: 0018:ffffc90034f27dc0 EFLAGS: 00010246 [31757.576143] RAX: 0000000000000000 RBX: ffffc90034f27e18 RCX: 0000000000000000 [31757.583389] RDX: 0000000000000001 RSI: ffffc90034f27e18 RDI: ffff88984cf3c100 [31757.590631] RBP: ffff88984714a800 R08: ffff88984714a800 R09: 0000000000000000 [31757.597877] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000fffffffa [31757.605123] R13: 0000000000000000 R14: 0000000000000003 R15: 0000000000000000 [31757.612364] FS: 00007fb4c5931180(0000) GS:ffff88afdfa00000(0000) knlGS:0000000000000000 [31757.620571] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [31757.626406] CR2: 0000000000000018 CR3: 000000184b41c003 CR4: 00000000007706e0 [31757.633648] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [31757.640894] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [31757.648139] PKRU: 55555554 [31757.650894] Call Trace: [31757.653385] <TASK> [31757.655524] sock_sendmsg+0x8f/0xa0 [31757.659077] ? sockfd_lookup_light+0x12/0x70 [31757.663416] __sys_sendto+0xfc/0x170 [31757.667051] ? do_sched_setscheduler+0xdb/0x1b0 [31757.671658] __x64_sys_sendto+0x20/0x30 [31757.675557] do_syscall_64+0x38/0x90 [31757.679197] entry_SYSCALL_64_after_hwframe+0x72/0xdc [31757.687969] Code: 8e f6 ff 44 8b 4c 24 2c 4c 8b 44 24 20 41 89 c4 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 3a 44 89 e7 48 89 44 24 08 e8 b5 8e f6 ff 48 [31757.707007] RSP: 002b:00007ffd49c73c70 EFLAGS: 00000293 ORIG_RAX: 000000000000002c [31757.714694] RAX: ffffffffffffffda RBX: 000055a996565380 RCX: 00007fb4c5727c16 [31757.721939] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 [31757.729184] RBP: 0000000000000040 R08: 0000000000000000 R09: 0000000000000000 [31757.736429] R10: 0000000000000040 R11: 0000000000000293 R12: 0000000000000000 [31757.743673] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [31757.754940] </TASK> To fix this, let's make xsk_xmit a function that will be responsible for generic Tx, where RCU is handled accordingly and pull out sanity checks and xs->zc handling. Populate sanity checks to __xsk_sendmsg() and xsk_poll(). Fixes: ca2e1a627035 ("xsk: Mark napi_id on sendmsg()") Fixes: 18b1ab7aa76b ("xsk: Fix race at socket teardown") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com> Link: https://lore.kernel.org/r/20230215143309.13145-1-maciej.fijalkowski@intel.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2023-02-15 22:33:09 +08:00
xsk_generic_xmit(sk);
}
if (xs->rx && !xskq_prod_is_empty(xs->rx))
mask |= EPOLLIN | EPOLLRDNORM;
if (xs->tx && xsk_tx_writeable(xs))
mask |= EPOLLOUT | EPOLLWRNORM;
out:
xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time. Fixes: 42fddcc7c64b ("xsk: use state member for socket synchronization") Reported-by: Elza Mathew <elza.mathew@intel.com> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn@kernel.org> Link: https://lore.kernel.org/bpf/20220228094552.10134-1-magnus.karlsson@gmail.com
2022-02-28 17:45:52 +08:00
rcu_read_unlock();
return mask;
}
static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
bool umem_queue)
{
struct xsk_queue *q;
if (entries == 0 || *queue || !is_power_of_2(entries))
return -EINVAL;
q = xskq_create(entries, umem_queue);
if (!q)
return -ENOMEM;
/* Make sure queue is ready before it can be seen by others */
smp_wmb();
WRITE_ONCE(*queue, q);
return 0;
}
static void xsk_unbind_dev(struct xdp_sock *xs)
{
struct net_device *dev = xs->dev;
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
if (xs->state != XSK_BOUND)
return;
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
WRITE_ONCE(xs->state, XSK_UNBOUND);
/* Wait for driver to stop using the xdp socket. */
xp_del_xsk(xs->pool, xs);
synchronize_net();
dev_put(dev);
}
static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-25 00:05:55 +08:00
struct xdp_sock __rcu ***map_entry)
{
struct xsk_map *map = NULL;
struct xsk_map_node *node;
*map_entry = NULL;
spin_lock_bh(&xs->map_list_lock);
node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
node);
if (node) {
bpf_map_inc(&node->map->map);
map = node->map;
*map_entry = node->map_entry;
}
spin_unlock_bh(&xs->map_list_lock);
return map;
}
static void xsk_delete_from_maps(struct xdp_sock *xs)
{
/* This function removes the current XDP socket from all the
* maps it resides in. We need to take extra care here, due to
* the two locks involved. Each map has a lock synchronizing
* updates to the entries, and each socket has a lock that
* synchronizes access to the list of maps (map_list). For
* deadlock avoidance the locks need to be taken in the order
* "map lock"->"socket map list lock". We start off by
* accessing the socket map list, and take a reference to the
* map to guarantee existence between the
* xsk_get_map_list_entry() and xsk_map_try_sock_delete()
* calls. Then we ask the map to remove the socket, which
* tries to remove the socket from the map. Note that there
* might be updates to the map between
* xsk_get_map_list_entry() and xsk_map_try_sock_delete().
*/
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-25 00:05:55 +08:00
struct xdp_sock __rcu **map_entry = NULL;
struct xsk_map *map;
while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
xsk_map_try_sock_delete(map, xs, map_entry);
bpf_map_put(&map->map);
}
}
static int xsk_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct net *net;
if (!sk)
return 0;
net = sock_net(sk);
if (xs->skb)
xsk_drop_skb(xs->skb);
mutex_lock(&net->xdp.lock);
sk_del_node_init_rcu(sk);
mutex_unlock(&net->xdp.lock);
sock_prot_inuse_add(net, sk->sk_prot, -1);
xsk_delete_from_maps(xs);
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
mutex_lock(&xs->mutex);
xsk_unbind_dev(xs);
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
mutex_unlock(&xs->mutex);
xskq_destroy(xs->rx);
xskq_destroy(xs->tx);
xskq_destroy(xs->fq_tmp);
xskq_destroy(xs->cq_tmp);
sock_orphan(sk);
sock->sk = NULL;
sock_put(sk);
return 0;
}
static struct socket *xsk_lookup_xsk_from_fd(int fd)
{
struct socket *sock;
int err;
sock = sockfd_lookup(fd, &err);
if (!sock)
return ERR_PTR(-ENOTSOCK);
if (sock->sk->sk_family != PF_XDP) {
sockfd_put(sock);
return ERR_PTR(-ENOPROTOOPT);
}
return sock;
}
static bool xsk_validate_queues(struct xdp_sock *xs)
{
return xs->fq_tmp && xs->cq_tmp;
}
static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
{
struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct net_device *dev;
xsk: Honor SO_BINDTODEVICE on bind Initial creation of an AF_XDP socket requires CAP_NET_RAW capability. A privileged process might create the socket and pass it to a non-privileged process for later use. However, that process will be able to bind the socket to any network interface. Even though it will not be able to receive any traffic without modification of the BPF map, the situation is not ideal. Sockets already have a mechanism that can be used to restrict what interface they can be attached to. That is SO_BINDTODEVICE. To change the SO_BINDTODEVICE binding the process will need CAP_NET_RAW. Make xsk_bind() honor the SO_BINDTODEVICE in order to allow safer workflow when non-privileged process is using AF_XDP. The intended workflow is following: 1. First process creates a bare socket with socket(AF_XDP, ...). 2. First process loads the XSK program to the interface. 3. First process adds the socket fd to a BPF map. 4. First process ties socket fd to a particular interface using SO_BINDTODEVICE. 5. First process sends socket fd to a second process. 6. Second process allocates UMEM. 7. Second process binds socket to the interface with bind(...). 8. Second process sends/receives the traffic. All the steps above are possible today if the first process is privileged and the second one has sufficient RLIMIT_MEMLOCK and no capabilities. However, the second process will be able to bind the socket to any interface it wants on step 7 and send traffic from it. With the proposed change, the second process will be able to bind the socket only to a specific interface chosen by the first process at step 4. Fixes: 965a99098443 ("xsk: add support for bind for Rx") Signed-off-by: Ilya Maximets <i.maximets@ovn.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Jason Wang <jasowang@redhat.com> Link: https://lore.kernel.org/bpf/20230703175329.3259672-1-i.maximets@ovn.org
2023-07-04 01:53:29 +08:00
int bound_dev_if;
u32 flags, qid;
int err = 0;
if (addr_len < sizeof(struct sockaddr_xdp))
return -EINVAL;
if (sxdp->sxdp_family != AF_XDP)
return -EINVAL;
flags = sxdp->sxdp_flags;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
XDP_USE_NEED_WAKEUP | XDP_USE_SG))
return -EINVAL;
xsk: Honor SO_BINDTODEVICE on bind Initial creation of an AF_XDP socket requires CAP_NET_RAW capability. A privileged process might create the socket and pass it to a non-privileged process for later use. However, that process will be able to bind the socket to any network interface. Even though it will not be able to receive any traffic without modification of the BPF map, the situation is not ideal. Sockets already have a mechanism that can be used to restrict what interface they can be attached to. That is SO_BINDTODEVICE. To change the SO_BINDTODEVICE binding the process will need CAP_NET_RAW. Make xsk_bind() honor the SO_BINDTODEVICE in order to allow safer workflow when non-privileged process is using AF_XDP. The intended workflow is following: 1. First process creates a bare socket with socket(AF_XDP, ...). 2. First process loads the XSK program to the interface. 3. First process adds the socket fd to a BPF map. 4. First process ties socket fd to a particular interface using SO_BINDTODEVICE. 5. First process sends socket fd to a second process. 6. Second process allocates UMEM. 7. Second process binds socket to the interface with bind(...). 8. Second process sends/receives the traffic. All the steps above are possible today if the first process is privileged and the second one has sufficient RLIMIT_MEMLOCK and no capabilities. However, the second process will be able to bind the socket to any interface it wants on step 7 and send traffic from it. With the proposed change, the second process will be able to bind the socket only to a specific interface chosen by the first process at step 4. Fixes: 965a99098443 ("xsk: add support for bind for Rx") Signed-off-by: Ilya Maximets <i.maximets@ovn.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Jason Wang <jasowang@redhat.com> Link: https://lore.kernel.org/bpf/20230703175329.3259672-1-i.maximets@ovn.org
2023-07-04 01:53:29 +08:00
bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
if (bound_dev_if && bound_dev_if != sxdp->sxdp_ifindex)
return -EINVAL;
rtnl_lock();
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
err = -EBUSY;
goto out_release;
}
dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
if (!dev) {
err = -ENODEV;
goto out_release;
}
if (!xs->rx && !xs->tx) {
err = -EINVAL;
goto out_unlock;
}
qid = sxdp->sxdp_queue_id;
if (flags & XDP_SHARED_UMEM) {
struct xdp_sock *umem_xs;
struct socket *sock;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
(flags & XDP_USE_NEED_WAKEUP) || (flags & XDP_USE_SG)) {
/* Cannot specify flags for shared sockets. */
err = -EINVAL;
goto out_unlock;
}
if (xs->umem) {
/* We have already our own. */
err = -EINVAL;
goto out_unlock;
}
sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
if (IS_ERR(sock)) {
err = PTR_ERR(sock);
goto out_unlock;
}
umem_xs = xdp_sk(sock->sk);
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
if (!xsk_is_bound(umem_xs)) {
err = -EBADF;
sockfd_put(sock);
goto out_unlock;
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
}
if (umem_xs->queue_id != qid || umem_xs->dev != dev) {
/* Share the umem with another socket on another qid
* and/or device.
*/
xs->pool = xp_create_and_assign_umem(xs,
umem_xs->umem);
if (!xs->pool) {
err = -ENOMEM;
sockfd_put(sock);
goto out_unlock;
}
err = xp_assign_dev_shared(xs->pool, umem_xs, dev,
qid);
if (err) {
xp_destroy(xs->pool);
xs->pool = NULL;
sockfd_put(sock);
goto out_unlock;
}
} else {
/* Share the buffer pool with the other socket. */
if (xs->fq_tmp || xs->cq_tmp) {
/* Do not allow setting your own fq or cq. */
err = -EINVAL;
sockfd_put(sock);
goto out_unlock;
}
xp_get_pool(umem_xs->pool);
xs->pool = umem_xs->pool;
xsk: Fix possible crash when multiple sockets are created Fix a crash that happens if an Rx only socket is created first, then a second socket is created that is Tx only and bound to the same umem as the first socket and also the same netdev and queue_id together with the XDP_SHARED_UMEM flag. In this specific case, the tx_descs array page pool was not created by the first socket as it was an Rx only socket. When the second socket is bound it needs this tx_descs array of this shared page pool as it has a Tx component, but unfortunately it was never allocated, leading to a crash. Note that this array is only used for zero-copy drivers using the batched Tx APIs, currently only ice and i40e. [ 5511.150360] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 5511.158419] #PF: supervisor write access in kernel mode [ 5511.164472] #PF: error_code(0x0002) - not-present page [ 5511.170416] PGD 0 P4D 0 [ 5511.173347] Oops: 0002 [#1] PREEMPT SMP PTI [ 5511.178186] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G E 5.18.0-rc1+ #97 [ 5511.187245] Hardware name: Intel Corp. GRANTLEY/GRANTLEY, BIOS GRRFCRB1.86B.0276.D07.1605190235 05/19/2016 [ 5511.198418] RIP: 0010:xsk_tx_peek_release_desc_batch+0x198/0x310 [ 5511.205375] Code: c0 83 c6 01 84 c2 74 6d 8d 46 ff 23 07 44 89 e1 48 83 c0 14 48 c1 e1 04 48 c1 e0 04 48 03 47 10 4c 01 c1 48 8b 50 08 48 8b 00 <48> 89 51 08 48 89 01 41 80 bd d7 00 00 00 00 75 82 48 8b 19 49 8b [ 5511.227091] RSP: 0018:ffffc90000003dd0 EFLAGS: 00010246 [ 5511.233135] RAX: 0000000000000000 RBX: ffff88810c8da600 RCX: 0000000000000000 [ 5511.241384] RDX: 000000000000003c RSI: 0000000000000001 RDI: ffff888115f555c0 [ 5511.249634] RBP: ffffc90000003e08 R08: 0000000000000000 R09: ffff889092296b48 [ 5511.257886] R10: 0000ffffffffffff R11: ffff889092296800 R12: 0000000000000000 [ 5511.266138] R13: ffff88810c8db500 R14: 0000000000000040 R15: 0000000000000100 [ 5511.274387] FS: 0000000000000000(0000) GS:ffff88903f800000(0000) knlGS:0000000000000000 [ 5511.283746] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5511.290389] CR2: 0000000000000008 CR3: 00000001046e2001 CR4: 00000000003706f0 [ 5511.298640] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 5511.306892] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 5511.315142] Call Trace: [ 5511.317972] <IRQ> [ 5511.320301] ice_xmit_zc+0x68/0x2f0 [ice] [ 5511.324977] ? ktime_get+0x38/0xa0 [ 5511.328913] ice_napi_poll+0x7a/0x6a0 [ice] [ 5511.333784] __napi_poll+0x2c/0x160 [ 5511.337821] net_rx_action+0xdd/0x200 [ 5511.342058] __do_softirq+0xe6/0x2dd [ 5511.346198] irq_exit_rcu+0xb5/0x100 [ 5511.350339] common_interrupt+0xa4/0xc0 [ 5511.354777] </IRQ> [ 5511.357201] <TASK> [ 5511.359625] asm_common_interrupt+0x1e/0x40 [ 5511.364466] RIP: 0010:cpuidle_enter_state+0xd2/0x360 [ 5511.370211] Code: 49 89 c5 0f 1f 44 00 00 31 ff e8 e9 00 7b ff 45 84 ff 74 12 9c 58 f6 c4 02 0f 85 72 02 00 00 31 ff e8 02 0c 80 ff fb 45 85 f6 <0f> 88 11 01 00 00 49 63 c6 4c 2b 2c 24 48 8d 14 40 48 8d 14 90 49 [ 5511.391921] RSP: 0018:ffffffff82a03e60 EFLAGS: 00000202 [ 5511.397962] RAX: ffff88903f800000 RBX: 0000000000000001 RCX: 000000000000001f [ 5511.406214] RDX: 0000000000000000 RSI: ffffffff823400b9 RDI: ffffffff8234c046 [ 5511.424646] RBP: ffff88810a384800 R08: 000005032a28c046 R09: 0000000000000008 [ 5511.443233] R10: 000000000000000b R11: 0000000000000006 R12: ffffffff82bcf700 [ 5511.461922] R13: 000005032a28c046 R14: 0000000000000001 R15: 0000000000000000 [ 5511.480300] cpuidle_enter+0x29/0x40 [ 5511.494329] do_idle+0x1c7/0x250 [ 5511.507610] cpu_startup_entry+0x19/0x20 [ 5511.521394] start_kernel+0x649/0x66e [ 5511.534626] secondary_startup_64_no_verify+0xc3/0xcb [ 5511.549230] </TASK> Detect such case during bind() and allocate this memory region via newly introduced xp_alloc_tx_descs(). Also, use kvcalloc instead of kcalloc as for other buffer pool allocations, so that it matches the kvfree() from xp_destroy(). Fixes: d1bc532e99be ("i40e: xsk: Move tmp desc array from driver to pool") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220425153745.481322-1-maciej.fijalkowski@intel.com
2022-04-25 23:37:45 +08:00
/* If underlying shared umem was created without Tx
* ring, allocate Tx descs array that Tx batching API
* utilizes
*/
if (xs->tx && !xs->pool->tx_descs) {
err = xp_alloc_tx_descs(xs->pool, xs);
if (err) {
xp_put_pool(xs->pool);
xs->pool = NULL;
xsk: Fix possible crash when multiple sockets are created Fix a crash that happens if an Rx only socket is created first, then a second socket is created that is Tx only and bound to the same umem as the first socket and also the same netdev and queue_id together with the XDP_SHARED_UMEM flag. In this specific case, the tx_descs array page pool was not created by the first socket as it was an Rx only socket. When the second socket is bound it needs this tx_descs array of this shared page pool as it has a Tx component, but unfortunately it was never allocated, leading to a crash. Note that this array is only used for zero-copy drivers using the batched Tx APIs, currently only ice and i40e. [ 5511.150360] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 5511.158419] #PF: supervisor write access in kernel mode [ 5511.164472] #PF: error_code(0x0002) - not-present page [ 5511.170416] PGD 0 P4D 0 [ 5511.173347] Oops: 0002 [#1] PREEMPT SMP PTI [ 5511.178186] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G E 5.18.0-rc1+ #97 [ 5511.187245] Hardware name: Intel Corp. GRANTLEY/GRANTLEY, BIOS GRRFCRB1.86B.0276.D07.1605190235 05/19/2016 [ 5511.198418] RIP: 0010:xsk_tx_peek_release_desc_batch+0x198/0x310 [ 5511.205375] Code: c0 83 c6 01 84 c2 74 6d 8d 46 ff 23 07 44 89 e1 48 83 c0 14 48 c1 e1 04 48 c1 e0 04 48 03 47 10 4c 01 c1 48 8b 50 08 48 8b 00 <48> 89 51 08 48 89 01 41 80 bd d7 00 00 00 00 75 82 48 8b 19 49 8b [ 5511.227091] RSP: 0018:ffffc90000003dd0 EFLAGS: 00010246 [ 5511.233135] RAX: 0000000000000000 RBX: ffff88810c8da600 RCX: 0000000000000000 [ 5511.241384] RDX: 000000000000003c RSI: 0000000000000001 RDI: ffff888115f555c0 [ 5511.249634] RBP: ffffc90000003e08 R08: 0000000000000000 R09: ffff889092296b48 [ 5511.257886] R10: 0000ffffffffffff R11: ffff889092296800 R12: 0000000000000000 [ 5511.266138] R13: ffff88810c8db500 R14: 0000000000000040 R15: 0000000000000100 [ 5511.274387] FS: 0000000000000000(0000) GS:ffff88903f800000(0000) knlGS:0000000000000000 [ 5511.283746] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5511.290389] CR2: 0000000000000008 CR3: 00000001046e2001 CR4: 00000000003706f0 [ 5511.298640] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 5511.306892] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 5511.315142] Call Trace: [ 5511.317972] <IRQ> [ 5511.320301] ice_xmit_zc+0x68/0x2f0 [ice] [ 5511.324977] ? ktime_get+0x38/0xa0 [ 5511.328913] ice_napi_poll+0x7a/0x6a0 [ice] [ 5511.333784] __napi_poll+0x2c/0x160 [ 5511.337821] net_rx_action+0xdd/0x200 [ 5511.342058] __do_softirq+0xe6/0x2dd [ 5511.346198] irq_exit_rcu+0xb5/0x100 [ 5511.350339] common_interrupt+0xa4/0xc0 [ 5511.354777] </IRQ> [ 5511.357201] <TASK> [ 5511.359625] asm_common_interrupt+0x1e/0x40 [ 5511.364466] RIP: 0010:cpuidle_enter_state+0xd2/0x360 [ 5511.370211] Code: 49 89 c5 0f 1f 44 00 00 31 ff e8 e9 00 7b ff 45 84 ff 74 12 9c 58 f6 c4 02 0f 85 72 02 00 00 31 ff e8 02 0c 80 ff fb 45 85 f6 <0f> 88 11 01 00 00 49 63 c6 4c 2b 2c 24 48 8d 14 40 48 8d 14 90 49 [ 5511.391921] RSP: 0018:ffffffff82a03e60 EFLAGS: 00000202 [ 5511.397962] RAX: ffff88903f800000 RBX: 0000000000000001 RCX: 000000000000001f [ 5511.406214] RDX: 0000000000000000 RSI: ffffffff823400b9 RDI: ffffffff8234c046 [ 5511.424646] RBP: ffff88810a384800 R08: 000005032a28c046 R09: 0000000000000008 [ 5511.443233] R10: 000000000000000b R11: 0000000000000006 R12: ffffffff82bcf700 [ 5511.461922] R13: 000005032a28c046 R14: 0000000000000001 R15: 0000000000000000 [ 5511.480300] cpuidle_enter+0x29/0x40 [ 5511.494329] do_idle+0x1c7/0x250 [ 5511.507610] cpu_startup_entry+0x19/0x20 [ 5511.521394] start_kernel+0x649/0x66e [ 5511.534626] secondary_startup_64_no_verify+0xc3/0xcb [ 5511.549230] </TASK> Detect such case during bind() and allocate this memory region via newly introduced xp_alloc_tx_descs(). Also, use kvcalloc instead of kcalloc as for other buffer pool allocations, so that it matches the kvfree() from xp_destroy(). Fixes: d1bc532e99be ("i40e: xsk: Move tmp desc array from driver to pool") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220425153745.481322-1-maciej.fijalkowski@intel.com
2022-04-25 23:37:45 +08:00
sockfd_put(sock);
goto out_unlock;
}
}
}
xdp_get_umem(umem_xs->umem);
WRITE_ONCE(xs->umem, umem_xs->umem);
sockfd_put(sock);
} else if (!xs->umem || !xsk_validate_queues(xs)) {
err = -EINVAL;
goto out_unlock;
} else {
/* This xsk has its own umem. */
xs->pool = xp_create_and_assign_umem(xs, xs->umem);
if (!xs->pool) {
err = -ENOMEM;
goto out_unlock;
}
err = xp_assign_dev(xs->pool, dev, qid, flags);
if (err) {
xp_destroy(xs->pool);
xs->pool = NULL;
goto out_unlock;
}
}
/* FQ and CQ are now owned by the buffer pool and cleaned up with it. */
xs->fq_tmp = NULL;
xs->cq_tmp = NULL;
xs->dev = dev;
xs->zc = xs->umem->zc;
xs->sg = !!(xs->umem->flags & XDP_UMEM_SG_FLAG);
xs->queue_id = qid;
xp_add_xsk(xs->pool, xs);
out_unlock:
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
if (err) {
dev_put(dev);
xsk: use state member for socket synchronization Prior the state variable was introduced by Ilya, the dev member was used to determine whether the socket was bound or not. However, when dev was read, proper SMP barriers and READ_ONCE were missing. In order to address the missing barriers and READ_ONCE, we start using the state variable as a point of synchronization. The state member read/write is paired with proper SMP barriers, and from this follows that the members described above does not need READ_ONCE if used in conjunction with state check. In all syscalls and the xsk_rcv path we check if state is XSK_BOUND. If that is the case we do a SMP read barrier, and this implies that the dev, umem and all rings are correctly setup. Note that no READ_ONCE are needed for these variable if used when state is XSK_BOUND (plus the read barrier). To summarize: The members struct xdp_sock members dev, queue_id, umem, fq, cq, tx, rx, and state were read lock-less, with incorrect barriers and missing {READ, WRITE}_ONCE. Now, umem, fq, cq, tx, rx, and state are read lock-less. When these members are updated, WRITE_ONCE is used. When read, READ_ONCE are only used when read outside the control mutex (e.g. mmap) or, not synchronized with the state member (XSK_BOUND plus smp_rmb()) Note that dev and queue_id do not need a WRITE_ONCE or READ_ONCE, due to the introduce state synchronization (XSK_BOUND plus smp_rmb()). Introducing the state check also fixes a race, found by syzcaller, in xsk_poll() where umem could be accessed when stale. Suggested-by: Hillf Danton <hdanton@sina.com> Reported-by: syzbot+c82697e3043781e08802@syzkaller.appspotmail.com Fixes: 77cd0d7b3f25 ("xsk: add support for need_wakeup flag in AF_XDP rings") Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-09-04 19:49:12 +08:00
} else {
/* Matches smp_rmb() in bind() for shared umem
* sockets, and xsk_is_bound().
*/
smp_wmb();
WRITE_ONCE(xs->state, XSK_BOUND);
}
out_release:
mutex_unlock(&xs->mutex);
rtnl_unlock();
return err;
}
struct xdp_umem_reg_v1 {
__u64 addr; /* Start of packet data area */
__u64 len; /* Length of packet data area */
__u32 chunk_size;
__u32 headroom;
};
struct xdp_umem_reg_v2 {
__u64 addr; /* Start of packet data area */
__u64 len; /* Length of packet data area */
__u32 chunk_size;
__u32 headroom;
__u32 flags;
};
static int xsk_setsockopt(struct socket *sock, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int err;
if (level != SOL_XDP)
return -ENOPROTOOPT;
switch (optname) {
case XDP_RX_RING:
case XDP_TX_RING:
{
struct xsk_queue **q;
int entries;
if (optlen < sizeof(entries))
return -EINVAL;
if (copy_from_sockptr(&entries, optval, sizeof(entries)))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
err = xsk_init_queue(entries, q, false);
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
if (!err && optname == XDP_TX_RING)
/* Tx needs to be explicitly woken up the first time */
xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
mutex_unlock(&xs->mutex);
return err;
}
case XDP_UMEM_REG:
{
size_t mr_size = sizeof(struct xdp_umem_reg);
struct xdp_umem_reg mr = {};
struct xdp_umem *umem;
if (optlen < sizeof(struct xdp_umem_reg_v1))
return -EINVAL;
else if (optlen < sizeof(struct xdp_umem_reg_v2))
mr_size = sizeof(struct xdp_umem_reg_v1);
else if (optlen < sizeof(mr))
mr_size = sizeof(struct xdp_umem_reg_v2);
if (copy_from_sockptr(&mr, optval, mr_size))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY || xs->umem) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
umem = xdp_umem_create(&mr);
if (IS_ERR(umem)) {
mutex_unlock(&xs->mutex);
return PTR_ERR(umem);
}
/* Make sure umem is ready before it can be seen by others */
smp_wmb();
WRITE_ONCE(xs->umem, umem);
mutex_unlock(&xs->mutex);
return 0;
}
case XDP_UMEM_FILL_RING:
case XDP_UMEM_COMPLETION_RING:
{
struct xsk_queue **q;
int entries;
xsk: validate user input for XDP_{UMEM|COMPLETION}_FILL_RING syzbot reported an illegal copy in xsk_setsockopt() [1] Make sure to validate setsockopt() @optlen parameter. [1] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420 Read of size 4 at addr ffff888028c6cde3 by task syz-executor.0/7549 CPU: 0 PID: 7549 Comm: syz-executor.0 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] copy_from_sockptr include/linux/sockptr.h:55 [inline] xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420 do_sock_setsockopt+0x3af/0x720 net/socket.c:2311 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6d/0x75 RIP: 0033:0x7fb40587de69 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fb40665a0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00007fb4059abf80 RCX: 00007fb40587de69 RDX: 0000000000000005 RSI: 000000000000011b RDI: 0000000000000006 RBP: 00007fb4058ca47a R08: 0000000000000002 R09: 0000000000000000 R10: 0000000020001980 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fb4059abf80 R15: 00007fff57ee4d08 </TASK> Allocated by task 7549: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:370 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slub.c:3966 [inline] __kmalloc+0x233/0x4a0 mm/slub.c:3979 kmalloc include/linux/slab.h:632 [inline] __cgroup_bpf_run_filter_setsockopt+0xd2f/0x1040 kernel/bpf/cgroup.c:1869 do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6d/0x75 The buggy address belongs to the object at ffff888028c6cde0 which belongs to the cache kmalloc-8 of size 8 The buggy address is located 1 bytes to the right of allocated 2-byte region [ffff888028c6cde0, ffff888028c6cde2) The buggy address belongs to the physical page: page:ffffea0000a31b00 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888028c6c9c0 pfn:0x28c6c anon flags: 0xfff00000000800(slab|node=0|zone=1|lastcpupid=0x7ff) page_type: 0xffffffff() raw: 00fff00000000800 ffff888014c41280 0000000000000000 dead000000000001 raw: ffff888028c6c9c0 0000000080800057 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112cc0(GFP_USER|__GFP_NOWARN|__GFP_NORETRY), pid 6648, tgid 6644 (syz-executor.0), ts 133906047828, free_ts 133859922223 set_page_owner include/linux/page_owner.h:31 [inline] post_alloc_hook+0x1ea/0x210 mm/page_alloc.c:1533 prep_new_page mm/page_alloc.c:1540 [inline] get_page_from_freelist+0x33ea/0x3580 mm/page_alloc.c:3311 __alloc_pages+0x256/0x680 mm/page_alloc.c:4569 __alloc_pages_node include/linux/gfp.h:238 [inline] alloc_pages_node include/linux/gfp.h:261 [inline] alloc_slab_page+0x5f/0x160 mm/slub.c:2175 allocate_slab mm/slub.c:2338 [inline] new_slab+0x84/0x2f0 mm/slub.c:2391 ___slab_alloc+0xc73/0x1260 mm/slub.c:3525 __slab_alloc mm/slub.c:3610 [inline] __slab_alloc_node mm/slub.c:3663 [inline] slab_alloc_node mm/slub.c:3835 [inline] __do_kmalloc_node mm/slub.c:3965 [inline] __kmalloc_node+0x2db/0x4e0 mm/slub.c:3973 kmalloc_node include/linux/slab.h:648 [inline] __vmalloc_area_node mm/vmalloc.c:3197 [inline] __vmalloc_node_range+0x5f9/0x14a0 mm/vmalloc.c:3392 __vmalloc_node mm/vmalloc.c:3457 [inline] vzalloc+0x79/0x90 mm/vmalloc.c:3530 bpf_check+0x260/0x19010 kernel/bpf/verifier.c:21162 bpf_prog_load+0x1667/0x20f0 kernel/bpf/syscall.c:2895 __sys_bpf+0x4ee/0x810 kernel/bpf/syscall.c:5631 __do_sys_bpf kernel/bpf/syscall.c:5738 [inline] __se_sys_bpf kernel/bpf/syscall.c:5736 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5736 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6d/0x75 page last free pid 6650 tgid 6647 stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1140 [inline] free_unref_page_prepare+0x95d/0xa80 mm/page_alloc.c:2346 free_unref_page_list+0x5a3/0x850 mm/page_alloc.c:2532 release_pages+0x2117/0x2400 mm/swap.c:1042 tlb_batch_pages_flush mm/mmu_gather.c:98 [inline] tlb_flush_mmu_free mm/mmu_gather.c:293 [inline] tlb_flush_mmu+0x34d/0x4e0 mm/mmu_gather.c:300 tlb_finish_mmu+0xd4/0x200 mm/mmu_gather.c:392 exit_mmap+0x4b6/0xd40 mm/mmap.c:3300 __mmput+0x115/0x3c0 kernel/fork.c:1345 exit_mm+0x220/0x310 kernel/exit.c:569 do_exit+0x99e/0x27e0 kernel/exit.c:865 do_group_exit+0x207/0x2c0 kernel/exit.c:1027 get_signal+0x176e/0x1850 kernel/signal.c:2907 arch_do_signal_or_restart+0x96/0x860 arch/x86/kernel/signal.c:310 exit_to_user_mode_loop kernel/entry/common.c:105 [inline] exit_to_user_mode_prepare include/linux/entry-common.h:328 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:201 [inline] syscall_exit_to_user_mode+0xc9/0x360 kernel/entry/common.c:212 do_syscall_64+0x10a/0x240 arch/x86/entry/common.c:89 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Memory state around the buggy address: ffff888028c6cc80: fa fc fc fc fa fc fc fc fa fc fc fc fa fc fc fc ffff888028c6cd00: fa fc fc fc fa fc fc fc 00 fc fc fc 06 fc fc fc >ffff888028c6cd80: fa fc fc fc fa fc fc fc fa fc fc fc 02 fc fc fc ^ ffff888028c6ce00: fa fc fc fc fa fc fc fc fa fc fc fc fa fc fc fc ffff888028c6ce80: fa fc fc fc fa fc fc fc fa fc fc fc fa fc fc fc Fixes: 423f38329d26 ("xsk: add umem fill queue support and mmap") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: "Björn Töpel" <bjorn@kernel.org> Cc: Magnus Karlsson <magnus.karlsson@intel.com> Cc: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Cc: Jonathan Lemon <jonathan.lemon@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/r/20240404202738.3634547-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-04-05 04:27:38 +08:00
if (optlen < sizeof(entries))
return -EINVAL;
if (copy_from_sockptr(&entries, optval, sizeof(entries)))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
q = (optname == XDP_UMEM_FILL_RING) ? &xs->fq_tmp :
&xs->cq_tmp;
err = xsk_init_queue(entries, q, true);
mutex_unlock(&xs->mutex);
return err;
}
default:
break;
}
return -ENOPROTOOPT;
}
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
{
ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
ring->desc = offsetof(struct xdp_rxtx_ring, desc);
}
static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
{
ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
ring->desc = offsetof(struct xdp_umem_ring, desc);
}
struct xdp_statistics_v1 {
__u64 rx_dropped;
__u64 rx_invalid_descs;
__u64 tx_invalid_descs;
};
static int xsk_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int len;
if (level != SOL_XDP)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
switch (optname) {
case XDP_STATISTICS:
{
struct xdp_statistics stats = {};
bool extra_stats = true;
size_t stats_size;
if (len < sizeof(struct xdp_statistics_v1)) {
return -EINVAL;
} else if (len < sizeof(stats)) {
extra_stats = false;
stats_size = sizeof(struct xdp_statistics_v1);
} else {
stats_size = sizeof(stats);
}
mutex_lock(&xs->mutex);
stats.rx_dropped = xs->rx_dropped;
if (extra_stats) {
stats.rx_ring_full = xs->rx_queue_full;
stats.rx_fill_ring_empty_descs =
xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0;
stats.tx_ring_empty_descs = xskq_nb_queue_empty_descs(xs->tx);
} else {
stats.rx_dropped += xs->rx_queue_full;
}
stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
mutex_unlock(&xs->mutex);
if (copy_to_user(optval, &stats, stats_size))
return -EFAULT;
if (put_user(stats_size, optlen))
return -EFAULT;
return 0;
}
case XDP_MMAP_OFFSETS:
{
struct xdp_mmap_offsets off;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
struct xdp_mmap_offsets_v1 off_v1;
bool flags_supported = true;
void *to_copy;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
if (len < sizeof(off_v1))
return -EINVAL;
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
else if (len < sizeof(off))
flags_supported = false;
if (flags_supported) {
/* xdp_ring_offset is identical to xdp_ring_offset_v1
* except for the flags field added to the end.
*/
xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
&off.rx);
xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
&off.tx);
xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
&off.fr);
xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
&off.cr);
off.rx.flags = offsetof(struct xdp_rxtx_ring,
ptrs.flags);
off.tx.flags = offsetof(struct xdp_rxtx_ring,
ptrs.flags);
off.fr.flags = offsetof(struct xdp_umem_ring,
ptrs.flags);
off.cr.flags = offsetof(struct xdp_umem_ring,
ptrs.flags);
len = sizeof(off);
to_copy = &off;
} else {
xsk_enter_rxtx_offsets(&off_v1.rx);
xsk_enter_rxtx_offsets(&off_v1.tx);
xsk_enter_umem_offsets(&off_v1.fr);
xsk_enter_umem_offsets(&off_v1.cr);
len = sizeof(off_v1);
to_copy = &off_v1;
}
xsk: add support for need_wakeup flag in AF_XDP rings This commit adds support for a new flag called need_wakeup in the AF_XDP Tx and fill rings. When this flag is set, it means that the application has to explicitly wake up the kernel Rx (for the bit in the fill ring) or kernel Tx (for bit in the Tx ring) processing by issuing a syscall. Poll() can wake up both depending on the flags submitted and sendto() will wake up tx processing only. The main reason for introducing this new flag is to be able to efficiently support the case when application and driver is executing on the same core. Previously, the driver was just busy-spinning on the fill ring if it ran out of buffers in the HW and there were none on the fill ring. This approach works when the application is running on another core as it can replenish the fill ring while the driver is busy-spinning. Though, this is a lousy approach if both of them are running on the same core as the probability of the fill ring getting more entries when the driver is busy-spinning is zero. With this new feature the driver now sets the need_wakeup flag and returns to the application. The application can then replenish the fill queue and then explicitly wake up the Rx processing in the kernel using the syscall poll(). For Tx, the flag is only set to one if the driver has no outstanding Tx completion interrupts. If it has some, the flag is zero as it will be woken up by a completion interrupt anyway. As a nice side effect, this new flag also improves the performance of the case where application and driver are running on two different cores as it reduces the number of syscalls to the kernel. The kernel tells user space if it needs to be woken up by a syscall, and this eliminates many of the syscalls. This flag needs some simple driver support. If the driver does not support this, the Rx flag is always zero and the Tx flag is always one. This makes any application relying on this feature default to the old behaviour of not requiring any syscalls in the Rx path and always having to call sendto() in the Tx path. For backwards compatibility reasons, this feature has to be explicitly turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend that you always turn it on as it so far always have had a positive performance impact. The name and inspiration of the flag has been taken from io_uring by Jens Axboe. Details about this feature in io_uring can be found in http://kernel.dk/io_uring.pdf, section 8.3. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-14 15:27:17 +08:00
if (copy_to_user(optval, to_copy, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
case XDP_OPTIONS:
{
struct xdp_options opts = {};
if (len < sizeof(opts))
return -EINVAL;
mutex_lock(&xs->mutex);
if (xs->zc)
opts.flags |= XDP_OPTIONS_ZEROCOPY;
mutex_unlock(&xs->mutex);
len = sizeof(opts);
if (copy_to_user(optval, &opts, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
default:
break;
}
return -EOPNOTSUPP;
}
static int xsk_mmap(struct file *file, struct socket *sock,
struct vm_area_struct *vma)
{
loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
unsigned long size = vma->vm_end - vma->vm_start;
struct xdp_sock *xs = xdp_sk(sock->sk);
int state = READ_ONCE(xs->state);
struct xsk_queue *q = NULL;
if (state != XSK_READY && state != XSK_BOUND)
return -EBUSY;
if (offset == XDP_PGOFF_RX_RING) {
q = READ_ONCE(xs->rx);
} else if (offset == XDP_PGOFF_TX_RING) {
q = READ_ONCE(xs->tx);
} else {
/* Matches the smp_wmb() in XDP_UMEM_REG */
smp_rmb();
if (offset == XDP_UMEM_PGOFF_FILL_RING)
q = state == XSK_READY ? READ_ONCE(xs->fq_tmp) :
READ_ONCE(xs->pool->fq);
else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
q = state == XSK_READY ? READ_ONCE(xs->cq_tmp) :
READ_ONCE(xs->pool->cq);
}
if (!q)
return -EINVAL;
/* Matches the smp_wmb() in xsk_init_queue */
smp_rmb();
if (size > q->ring_vmalloc_size)
return -EINVAL;
return remap_vmalloc_range(vma, q->ring, 0);
}
static int xsk_notifier(struct notifier_block *this,
unsigned long msg, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct net *net = dev_net(dev);
struct sock *sk;
switch (msg) {
case NETDEV_UNREGISTER:
mutex_lock(&net->xdp.lock);
sk_for_each(sk, &net->xdp.list) {
struct xdp_sock *xs = xdp_sk(sk);
mutex_lock(&xs->mutex);
if (xs->dev == dev) {
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
xsk_unbind_dev(xs);
/* Clear device references. */
xp_clear_dev(xs->pool);
}
mutex_unlock(&xs->mutex);
}
mutex_unlock(&net->xdp.lock);
break;
}
return NOTIFY_DONE;
}
static struct proto xsk_proto = {
.name = "XDP",
.owner = THIS_MODULE,
.obj_size = sizeof(struct xdp_sock),
};
static const struct proto_ops xsk_proto_ops = {
.family = PF_XDP,
.owner = THIS_MODULE,
.release = xsk_release,
.bind = xsk_bind,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = sock_no_getname,
.poll = xsk_poll,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = xsk_setsockopt,
.getsockopt = xsk_getsockopt,
.sendmsg = xsk_sendmsg,
.recvmsg = xsk_recvmsg,
.mmap = xsk_mmap,
};
static void xsk_destruct(struct sock *sk)
{
struct xdp_sock *xs = xdp_sk(sk);
if (!sock_flag(sk, SOCK_DEAD))
return;
xsk: Fix possible memory leak at socket close Fix a possible memory leak at xsk socket close that is caused by the refcounting of the umem object being wrong. The reference count of the umem was decremented only after the pool had been freed. Note that if the buffer pool is destroyed, it is important that the umem is destroyed after the pool, otherwise the umem would disappear while the driver is still running. And as the buffer pool needs to be destroyed in a work queue, the umem is also (if its refcount reaches zero) destroyed after the buffer pool in that same work queue. What was missing is that the refcount also needs to be decremented when the pool is not freed and when the pool has not even been created. The first case happens when the refcount of the pool is higher than 1, i.e. it is still being used by some other socket using the same device and queue id. In this case, it is safe to decrement the refcount of the umem outside of the work queue as the umem will never be freed because the refcount of the umem is always greater than or equal to the refcount of the buffer pool. The second case is if the buffer pool has not been created yet, i.e. the socket was closed before it was bound but after the umem was created. In this case, it is safe to destroy the umem outside of the work queue, since there is no pool that can use it by definition. Fixes: 1c1efc2af158 ("xsk: Create and free buffer pool independently from umem") Reported-by: syzbot+eb71df123dc2be2c1456@syzkaller.appspotmail.com Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn.topel@intel.com> Link: https://lore.kernel.org/bpf/1603801921-2712-1-git-send-email-magnus.karlsson@gmail.com
2020-10-27 20:32:01 +08:00
if (!xp_put_pool(xs->pool))
xdp_put_umem(xs->umem, !xs->pool);
}
static int xsk_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct xdp_sock *xs;
struct sock *sk;
if (!ns_capable(net->user_ns, CAP_NET_RAW))
return -EPERM;
if (sock->type != SOCK_RAW)
return -ESOCKTNOSUPPORT;
if (protocol)
return -EPROTONOSUPPORT;
sock->state = SS_UNCONNECTED;
sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
if (!sk)
return -ENOBUFS;
sock->ops = &xsk_proto_ops;
sock_init_data(sock, sk);
sk->sk_family = PF_XDP;
sk->sk_destruct = xsk_destruct;
sock_set_flag(sk, SOCK_RCU_FREE);
xs = xdp_sk(sk);
xs->state = XSK_READY;
mutex_init(&xs->mutex);
spin_lock_init(&xs->rx_lock);
INIT_LIST_HEAD(&xs->map_list);
spin_lock_init(&xs->map_list_lock);
mutex_lock(&net->xdp.lock);
sk_add_node_rcu(sk, &net->xdp.list);
mutex_unlock(&net->xdp.lock);
sock_prot_inuse_add(net, &xsk_proto, 1);
return 0;
}
static const struct net_proto_family xsk_family_ops = {
.family = PF_XDP,
.create = xsk_create,
.owner = THIS_MODULE,
};
static struct notifier_block xsk_netdev_notifier = {
.notifier_call = xsk_notifier,
};
static int __net_init xsk_net_init(struct net *net)
{
mutex_init(&net->xdp.lock);
INIT_HLIST_HEAD(&net->xdp.list);
return 0;
}
static void __net_exit xsk_net_exit(struct net *net)
{
WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
}
static struct pernet_operations xsk_net_ops = {
.init = xsk_net_init,
.exit = xsk_net_exit,
};
static int __init xsk_init(void)
{
int err;
err = proto_register(&xsk_proto, 0 /* no slab */);
if (err)
goto out;
err = sock_register(&xsk_family_ops);
if (err)
goto out_proto;
err = register_pernet_subsys(&xsk_net_ops);
if (err)
goto out_sk;
err = register_netdevice_notifier(&xsk_netdev_notifier);
if (err)
goto out_pernet;
return 0;
out_pernet:
unregister_pernet_subsys(&xsk_net_ops);
out_sk:
sock_unregister(PF_XDP);
out_proto:
proto_unregister(&xsk_proto);
out:
return err;
}
fs_initcall(xsk_init);