selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* Copyright (c) 2020 Facebook */
|
|
|
|
#define _GNU_SOURCE
|
|
|
|
#include <argp.h>
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#include <sys/time.h>
|
|
|
|
#include <sched.h>
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include <pthread.h>
|
|
|
|
#include <sys/sysinfo.h>
|
|
|
|
#include <sys/resource.h>
|
|
|
|
#include <signal.h>
|
|
|
|
#include "bench.h"
|
|
|
|
#include "testing_helpers.h"
|
|
|
|
|
|
|
|
struct env env = {
|
|
|
|
.warmup_sec = 1,
|
|
|
|
.duration_sec = 5,
|
|
|
|
.affinity = false,
|
|
|
|
.consumer_cnt = 1,
|
|
|
|
.producer_cnt = 1,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int libbpf_print_fn(enum libbpf_print_level level,
|
|
|
|
const char *format, va_list args)
|
|
|
|
{
|
|
|
|
if (level == LIBBPF_DEBUG && !env.verbose)
|
|
|
|
return 0;
|
|
|
|
return vfprintf(stderr, format, args);
|
|
|
|
}
|
|
|
|
|
2021-12-10 22:16:50 +08:00
|
|
|
void setup_libbpf(void)
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
{
|
2021-05-25 11:59:32 +08:00
|
|
|
libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
libbpf_set_print(libbpf_print_fn);
|
|
|
|
}
|
|
|
|
|
2021-10-28 07:45:03 +08:00
|
|
|
void false_hits_report_progress(int iter, struct bench_res *res, long delta_ns)
|
|
|
|
{
|
|
|
|
long total = res->false_hits + res->hits + res->drops;
|
|
|
|
|
|
|
|
printf("Iter %3d (%7.3lfus): ",
|
|
|
|
iter, (delta_ns - 1000000000) / 1000.0);
|
|
|
|
|
|
|
|
printf("%ld false hits of %ld total operations. Percentage = %2.2f %%\n",
|
|
|
|
res->false_hits, total, ((float)res->false_hits / total) * 100);
|
|
|
|
}
|
|
|
|
|
|
|
|
void false_hits_report_final(struct bench_res res[], int res_cnt)
|
|
|
|
{
|
|
|
|
long total_hits = 0, total_drops = 0, total_false_hits = 0, total_ops = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < res_cnt; i++) {
|
|
|
|
total_hits += res[i].hits;
|
|
|
|
total_false_hits += res[i].false_hits;
|
|
|
|
total_drops += res[i].drops;
|
|
|
|
}
|
|
|
|
total_ops = total_hits + total_false_hits + total_drops;
|
|
|
|
|
|
|
|
printf("Summary: %ld false hits of %ld total operations. ",
|
|
|
|
total_false_hits, total_ops);
|
|
|
|
printf("Percentage = %2.2f %%\n",
|
|
|
|
((float)total_false_hits / total_ops) * 100);
|
|
|
|
}
|
|
|
|
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
void hits_drops_report_progress(int iter, struct bench_res *res, long delta_ns)
|
|
|
|
{
|
|
|
|
double hits_per_sec, drops_per_sec;
|
|
|
|
double hits_per_prod;
|
|
|
|
|
|
|
|
hits_per_sec = res->hits / 1000000.0 / (delta_ns / 1000000000.0);
|
|
|
|
hits_per_prod = hits_per_sec / env.producer_cnt;
|
|
|
|
drops_per_sec = res->drops / 1000000.0 / (delta_ns / 1000000000.0);
|
|
|
|
|
|
|
|
printf("Iter %3d (%7.3lfus): ",
|
|
|
|
iter, (delta_ns - 1000000000) / 1000.0);
|
|
|
|
|
2021-10-28 07:45:04 +08:00
|
|
|
printf("hits %8.3lfM/s (%7.3lfM/prod), drops %8.3lfM/s, total operations %8.3lfM/s\n",
|
|
|
|
hits_per_sec, hits_per_prod, drops_per_sec, hits_per_sec + drops_per_sec);
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void hits_drops_report_final(struct bench_res res[], int res_cnt)
|
|
|
|
{
|
|
|
|
int i;
|
2021-10-28 07:45:04 +08:00
|
|
|
double hits_mean = 0.0, drops_mean = 0.0, total_ops_mean = 0.0;
|
|
|
|
double hits_stddev = 0.0, drops_stddev = 0.0, total_ops_stddev = 0.0;
|
|
|
|
double total_ops;
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
|
|
|
|
for (i = 0; i < res_cnt; i++) {
|
|
|
|
hits_mean += res[i].hits / 1000000.0 / (0.0 + res_cnt);
|
|
|
|
drops_mean += res[i].drops / 1000000.0 / (0.0 + res_cnt);
|
|
|
|
}
|
2021-10-28 07:45:04 +08:00
|
|
|
total_ops_mean = hits_mean + drops_mean;
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
|
|
|
|
if (res_cnt > 1) {
|
|
|
|
for (i = 0; i < res_cnt; i++) {
|
|
|
|
hits_stddev += (hits_mean - res[i].hits / 1000000.0) *
|
|
|
|
(hits_mean - res[i].hits / 1000000.0) /
|
|
|
|
(res_cnt - 1.0);
|
|
|
|
drops_stddev += (drops_mean - res[i].drops / 1000000.0) *
|
|
|
|
(drops_mean - res[i].drops / 1000000.0) /
|
|
|
|
(res_cnt - 1.0);
|
2021-10-28 07:45:04 +08:00
|
|
|
total_ops = res[i].hits + res[i].drops;
|
|
|
|
total_ops_stddev += (total_ops_mean - total_ops / 1000000.0) *
|
|
|
|
(total_ops_mean - total_ops / 1000000.0) /
|
|
|
|
(res_cnt - 1.0);
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
}
|
|
|
|
hits_stddev = sqrt(hits_stddev);
|
|
|
|
drops_stddev = sqrt(drops_stddev);
|
2021-10-28 07:45:04 +08:00
|
|
|
total_ops_stddev = sqrt(total_ops_stddev);
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
}
|
|
|
|
printf("Summary: hits %8.3lf \u00B1 %5.3lfM/s (%7.3lfM/prod), ",
|
|
|
|
hits_mean, hits_stddev, hits_mean / env.producer_cnt);
|
2021-10-28 07:45:04 +08:00
|
|
|
printf("drops %8.3lf \u00B1 %5.3lfM/s, ",
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
drops_mean, drops_stddev);
|
2021-10-28 07:45:04 +08:00
|
|
|
printf("total operations %8.3lf \u00B1 %5.3lfM/s\n",
|
|
|
|
total_ops_mean, total_ops_stddev);
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
}
|
|
|
|
|
selftest/bpf/benchs: Add bpf_loop benchmark
Add benchmark to measure the throughput and latency of the bpf_loop
call.
Testing this on my dev machine on 1 thread, the data is as follows:
nr_loops: 10
bpf_loop - throughput: 198.519 ± 0.155 M ops/s, latency: 5.037 ns/op
nr_loops: 100
bpf_loop - throughput: 247.448 ± 0.305 M ops/s, latency: 4.041 ns/op
nr_loops: 500
bpf_loop - throughput: 260.839 ± 0.380 M ops/s, latency: 3.834 ns/op
nr_loops: 1000
bpf_loop - throughput: 262.806 ± 0.629 M ops/s, latency: 3.805 ns/op
nr_loops: 5000
bpf_loop - throughput: 264.211 ± 1.508 M ops/s, latency: 3.785 ns/op
nr_loops: 10000
bpf_loop - throughput: 265.366 ± 3.054 M ops/s, latency: 3.768 ns/op
nr_loops: 50000
bpf_loop - throughput: 235.986 ± 20.205 M ops/s, latency: 4.238 ns/op
nr_loops: 100000
bpf_loop - throughput: 264.482 ± 0.279 M ops/s, latency: 3.781 ns/op
nr_loops: 500000
bpf_loop - throughput: 309.773 ± 87.713 M ops/s, latency: 3.228 ns/op
nr_loops: 1000000
bpf_loop - throughput: 262.818 ± 4.143 M ops/s, latency: 3.805 ns/op
>From this data, we can see that the latency per loop decreases as the
number of loops increases. On this particular machine, each loop had an
overhead of about ~4 ns, and we were able to run ~250 million loops
per second.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211130030622.4131246-5-joannekoong@fb.com
2021-11-30 11:06:22 +08:00
|
|
|
void ops_report_progress(int iter, struct bench_res *res, long delta_ns)
|
|
|
|
{
|
|
|
|
double hits_per_sec, hits_per_prod;
|
|
|
|
|
|
|
|
hits_per_sec = res->hits / 1000000.0 / (delta_ns / 1000000000.0);
|
|
|
|
hits_per_prod = hits_per_sec / env.producer_cnt;
|
|
|
|
|
|
|
|
printf("Iter %3d (%7.3lfus): ", iter, (delta_ns - 1000000000) / 1000.0);
|
|
|
|
|
|
|
|
printf("hits %8.3lfM/s (%7.3lfM/prod)\n", hits_per_sec, hits_per_prod);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ops_report_final(struct bench_res res[], int res_cnt)
|
|
|
|
{
|
|
|
|
double hits_mean = 0.0, hits_stddev = 0.0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < res_cnt; i++)
|
|
|
|
hits_mean += res[i].hits / 1000000.0 / (0.0 + res_cnt);
|
|
|
|
|
|
|
|
if (res_cnt > 1) {
|
|
|
|
for (i = 0; i < res_cnt; i++)
|
|
|
|
hits_stddev += (hits_mean - res[i].hits / 1000000.0) *
|
|
|
|
(hits_mean - res[i].hits / 1000000.0) /
|
|
|
|
(res_cnt - 1.0);
|
|
|
|
|
|
|
|
hits_stddev = sqrt(hits_stddev);
|
|
|
|
}
|
|
|
|
printf("Summary: throughput %8.3lf \u00B1 %5.3lf M ops/s (%7.3lfM ops/prod), ",
|
|
|
|
hits_mean, hits_stddev, hits_mean / env.producer_cnt);
|
|
|
|
printf("latency %8.3lf ns/op\n", 1000.0 / hits_mean * env.producer_cnt);
|
|
|
|
}
|
|
|
|
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
const char *argp_program_version = "benchmark";
|
|
|
|
const char *argp_program_bug_address = "<bpf@vger.kernel.org>";
|
|
|
|
const char argp_program_doc[] =
|
|
|
|
"benchmark Generic benchmarking framework.\n"
|
|
|
|
"\n"
|
|
|
|
"This tool runs benchmarks.\n"
|
|
|
|
"\n"
|
|
|
|
"USAGE: benchmark <bench-name>\n"
|
|
|
|
"\n"
|
|
|
|
"EXAMPLES:\n"
|
|
|
|
" # run 'count-local' benchmark with 1 producer and 1 consumer\n"
|
|
|
|
" benchmark count-local\n"
|
|
|
|
" # run 'count-local' with 16 producer and 8 consumer thread, pinned to CPUs\n"
|
|
|
|
" benchmark -p16 -c8 -a count-local\n";
|
|
|
|
|
|
|
|
enum {
|
|
|
|
ARG_PROD_AFFINITY_SET = 1000,
|
|
|
|
ARG_CONS_AFFINITY_SET = 1001,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct argp_option opts[] = {
|
|
|
|
{ "list", 'l', NULL, 0, "List available benchmarks"},
|
|
|
|
{ "duration", 'd', "SEC", 0, "Duration of benchmark, seconds"},
|
|
|
|
{ "warmup", 'w', "SEC", 0, "Warm-up period, seconds"},
|
|
|
|
{ "producers", 'p', "NUM", 0, "Number of producer threads"},
|
|
|
|
{ "consumers", 'c', "NUM", 0, "Number of consumer threads"},
|
|
|
|
{ "verbose", 'v', NULL, 0, "Verbose debug output"},
|
|
|
|
{ "affinity", 'a', NULL, 0, "Set consumer/producer thread affinity"},
|
|
|
|
{ "prod-affinity", ARG_PROD_AFFINITY_SET, "CPUSET", 0,
|
|
|
|
"Set of CPUs for producer threads; implies --affinity"},
|
|
|
|
{ "cons-affinity", ARG_CONS_AFFINITY_SET, "CPUSET", 0,
|
|
|
|
"Set of CPUs for consumer threads; implies --affinity"},
|
|
|
|
{},
|
|
|
|
};
|
|
|
|
|
bpf: Add BPF ringbuf and perf buffer benchmarks
Extend bench framework with ability to have benchmark-provided child argument
parser for custom benchmark-specific parameters. This makes bench generic code
modular and independent from any specific benchmark.
Also implement a set of benchmarks for new BPF ring buffer and existing perf
buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf
and perfbuf:,
- rb-libbpf utilizes stock libbpf ring_buffer manager for reading data;
- rb-custom implements custom ring buffer setup and reading code, to
eliminate overheads inherent in generic libbpf code due to callback
functions and the need to update consumer position after each consumed
record, instead of batching updates (due to pessimistic assumption that
user callback might take long time and thus could unnecessarily hold ring
buffer space for too long);
- pb-libbpf uses stock libbpf perf_buffer code with all the default
settings, though uses higher-performance raw event callback to minimize
unnecessary overhead;
- pb-custom implements its own custom consumer code to minimize any possible
overhead of generic libbpf implementation and indirect function calls.
All of the test support default, no data notification skipped, mode, as well
as sampled mode (with --rb-sampled flag), which allows to trigger epoll
notification less frequently and reduce overhead. As will be shown, this mode
is especially critical for perf buffer, which suffers from high overhead of
wakeups in kernel.
Otherwise, all benchamrks implement similar way to generate a batch of records
by using fentry/sys_getpgid BPF program, which pushes a bunch of records in
a tight loop and records number of successful and dropped samples. Each record
is a small 8-byte integer, to minimize the effect of memory copying with
bpf_perf_event_output() and bpf_ringbuf_output().
Benchmarks that have only one producer implement optional back-to-back mode,
in which record production and consumption is alternating on the same CPU.
This is the highest-throughput happy case, showing ultimate performance
achievable with either BPF ringbuf or perfbuf.
All the below scenarios are implemented in a script in
benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread
Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU.
Single-producer, parallel producer
==================================
rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s)
rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s)
pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s)
pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s)
Single-producer, parallel producer, sampled notification
========================================================
rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s)
rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s)
pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s)
Single producer on one CPU, consumer on another one, both running at full
speed. Curiously, rb-libbpf has higher throughput than objectively faster (due
to more lightweight consumer code path) rb-custom. It appears that faster
consumer causes kernel to send notifications more frequently, because consumer
appears to be caught up more frequently. Performance of perfbuf suffers from
default "no sampling" policy and huge overhead that causes.
In sampled mode, rb-custom is winning very significantly eliminating too
frequent in-kernel wakeups, the gain appears to be more than 2x.
Perf buffer achieves even more impressive wins, compared to stock perfbuf
settings, with 10x improvements in throughput with 1:500 sampling rate. The
trade-off is that with sampling, application might not get next X events until
X+1st arrives, which is not always acceptable. With steady influx of events,
though, this shouldn't be a problem.
Overall, single-producer performance of ring buffers seems to be better no
matter the sampled/non-sampled modes, but it especially beats ring buffer
without sampling due to its adaptive notification approach.
Single-producer, back-to-back mode
==================================
rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s)
rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s)
rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s)
rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s)
pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s)
pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s)
Here we test a back-to-back mode, which is arguably best-case scenario both
for BPF ringbuf and perfbuf, because there is no contention and for ringbuf
also no excessive notification, because consumer appears to be behind after
the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs
16 million records per second exchanged between producer and consumer. Sampled
mode actually hurts a bit due to slightly slower producer logic (it needs to
fetch amount of data available to decide whether to skip or force notification).
Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to
no-sampling version. There also doesn't seem to be noticeable overhead from
generic libbpf handling code.
Perfbuf back-to-back, effect of sample rate
===========================================
pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s)
pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s)
pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s)
pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s)
pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s)
pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s)
pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s)
pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s)
pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s)
This benchmark shows the effect of event sampling for perfbuf. Back-to-back
mode for highest throughput. Just doing every 5th record notification gives
3.5x speed up. 250-500 appears to be the point of diminishing return, with
almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw
and pb-custom.
Ringbuf back-to-back, effect of sample rate
===========================================
rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s)
rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s)
rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s)
rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s)
rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s)
rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s)
rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s)
rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s)
rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s)
rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s)
rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s)
Similar benchmark for ring buffer also shows a great advantage (in terms of
throughput) of skipping notifications. Skipping every 5th one gives 4x boost.
Also similar to perfbuf case, 250-500 seems to be the point of diminishing
returns, giving roughly 20x better results.
Keep in mind, for this test, notifications are controlled manually with
BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous
benchmarks, adaptive notifications based on consumer's positions provides same
(or even slightly better due to simpler load generator on BPF side) benefits in
favorable back-to-back scenario. Over zealous and fast consumer, which is
almost always caught up, will make thoughput numbers smaller. That's the case
when manual notification control might prove to be extremely beneficial.
Ringbuf back-to-back, reserve+commit vs output
==============================================
reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s)
output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s)
Ringbuf sampled, reserve+commit vs output
=========================================
reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s)
output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s)
BPF ringbuf supports two sets of APIs with various usability and performance
tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output().
This benchmark clearly shows superiority of reserve+commit approach, despite
using a small 8-byte record size.
Single-producer, consumer/producer competing on the same CPU, low batch count
=============================================================================
rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s)
rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s)
pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s)
This benchmark shows one of the worst-case scenarios, in which producer and
consumer do not coordinate *and* fight for the same CPU. No batch count and
sampling settings were able to eliminate drops for ringbuffer, producer is
just too fast for consumer to keep up. But ringbuf and perfbuf still able to
pass through quite a lot of messages, which is more than enough for a lot of
applications.
Ringbuf, multi-producer contention
==================================
rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s)
rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s)
rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s)
Ringbuf uses a very short-duration spinlock during reservation phase, to check
few invariants, increment producer count and set record header. This is the
biggest point of contention for ringbuf implementation. This benchmark
evaluates the effect of multiple competing writers on overall throughput of
a single shared ringbuffer.
Overall throughput drops almost 2x when going from single to two
highly-contended producers, gradually dropping with additional competing
producers. Performance drop stabilizes at around 20 producers and hovers
around 2mln even with 50+ fighting producers, which is a 5x drop compared to
non-contended case. Good kernel implementation in kernel helps maintain decent
performance here.
Note, that in the intended real-world scenarios, it's not expected to get even
close to such a high levels of contention. But if contention will become
a problem, there is always an option of sharding few ring buffers across a set
of CPUs.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-05-29 15:54:23 +08:00
|
|
|
extern struct argp bench_ringbufs_argp;
|
2021-10-28 07:45:03 +08:00
|
|
|
extern struct argp bench_bloom_map_argp;
|
selftest/bpf/benchs: Add bpf_loop benchmark
Add benchmark to measure the throughput and latency of the bpf_loop
call.
Testing this on my dev machine on 1 thread, the data is as follows:
nr_loops: 10
bpf_loop - throughput: 198.519 ± 0.155 M ops/s, latency: 5.037 ns/op
nr_loops: 100
bpf_loop - throughput: 247.448 ± 0.305 M ops/s, latency: 4.041 ns/op
nr_loops: 500
bpf_loop - throughput: 260.839 ± 0.380 M ops/s, latency: 3.834 ns/op
nr_loops: 1000
bpf_loop - throughput: 262.806 ± 0.629 M ops/s, latency: 3.805 ns/op
nr_loops: 5000
bpf_loop - throughput: 264.211 ± 1.508 M ops/s, latency: 3.785 ns/op
nr_loops: 10000
bpf_loop - throughput: 265.366 ± 3.054 M ops/s, latency: 3.768 ns/op
nr_loops: 50000
bpf_loop - throughput: 235.986 ± 20.205 M ops/s, latency: 4.238 ns/op
nr_loops: 100000
bpf_loop - throughput: 264.482 ± 0.279 M ops/s, latency: 3.781 ns/op
nr_loops: 500000
bpf_loop - throughput: 309.773 ± 87.713 M ops/s, latency: 3.228 ns/op
nr_loops: 1000000
bpf_loop - throughput: 262.818 ± 4.143 M ops/s, latency: 3.805 ns/op
>From this data, we can see that the latency per loop decreases as the
number of loops increases. On this particular machine, each loop had an
overhead of about ~4 ns, and we were able to run ~250 million loops
per second.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211130030622.4131246-5-joannekoong@fb.com
2021-11-30 11:06:22 +08:00
|
|
|
extern struct argp bench_bpf_loop_argp;
|
2021-12-10 22:16:51 +08:00
|
|
|
extern struct argp bench_strncmp_argp;
|
bpf: Add BPF ringbuf and perf buffer benchmarks
Extend bench framework with ability to have benchmark-provided child argument
parser for custom benchmark-specific parameters. This makes bench generic code
modular and independent from any specific benchmark.
Also implement a set of benchmarks for new BPF ring buffer and existing perf
buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf
and perfbuf:,
- rb-libbpf utilizes stock libbpf ring_buffer manager for reading data;
- rb-custom implements custom ring buffer setup and reading code, to
eliminate overheads inherent in generic libbpf code due to callback
functions and the need to update consumer position after each consumed
record, instead of batching updates (due to pessimistic assumption that
user callback might take long time and thus could unnecessarily hold ring
buffer space for too long);
- pb-libbpf uses stock libbpf perf_buffer code with all the default
settings, though uses higher-performance raw event callback to minimize
unnecessary overhead;
- pb-custom implements its own custom consumer code to minimize any possible
overhead of generic libbpf implementation and indirect function calls.
All of the test support default, no data notification skipped, mode, as well
as sampled mode (with --rb-sampled flag), which allows to trigger epoll
notification less frequently and reduce overhead. As will be shown, this mode
is especially critical for perf buffer, which suffers from high overhead of
wakeups in kernel.
Otherwise, all benchamrks implement similar way to generate a batch of records
by using fentry/sys_getpgid BPF program, which pushes a bunch of records in
a tight loop and records number of successful and dropped samples. Each record
is a small 8-byte integer, to minimize the effect of memory copying with
bpf_perf_event_output() and bpf_ringbuf_output().
Benchmarks that have only one producer implement optional back-to-back mode,
in which record production and consumption is alternating on the same CPU.
This is the highest-throughput happy case, showing ultimate performance
achievable with either BPF ringbuf or perfbuf.
All the below scenarios are implemented in a script in
benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread
Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU.
Single-producer, parallel producer
==================================
rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s)
rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s)
pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s)
pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s)
Single-producer, parallel producer, sampled notification
========================================================
rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s)
rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s)
pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s)
Single producer on one CPU, consumer on another one, both running at full
speed. Curiously, rb-libbpf has higher throughput than objectively faster (due
to more lightweight consumer code path) rb-custom. It appears that faster
consumer causes kernel to send notifications more frequently, because consumer
appears to be caught up more frequently. Performance of perfbuf suffers from
default "no sampling" policy and huge overhead that causes.
In sampled mode, rb-custom is winning very significantly eliminating too
frequent in-kernel wakeups, the gain appears to be more than 2x.
Perf buffer achieves even more impressive wins, compared to stock perfbuf
settings, with 10x improvements in throughput with 1:500 sampling rate. The
trade-off is that with sampling, application might not get next X events until
X+1st arrives, which is not always acceptable. With steady influx of events,
though, this shouldn't be a problem.
Overall, single-producer performance of ring buffers seems to be better no
matter the sampled/non-sampled modes, but it especially beats ring buffer
without sampling due to its adaptive notification approach.
Single-producer, back-to-back mode
==================================
rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s)
rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s)
rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s)
rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s)
pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s)
pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s)
Here we test a back-to-back mode, which is arguably best-case scenario both
for BPF ringbuf and perfbuf, because there is no contention and for ringbuf
also no excessive notification, because consumer appears to be behind after
the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs
16 million records per second exchanged between producer and consumer. Sampled
mode actually hurts a bit due to slightly slower producer logic (it needs to
fetch amount of data available to decide whether to skip or force notification).
Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to
no-sampling version. There also doesn't seem to be noticeable overhead from
generic libbpf handling code.
Perfbuf back-to-back, effect of sample rate
===========================================
pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s)
pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s)
pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s)
pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s)
pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s)
pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s)
pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s)
pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s)
pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s)
This benchmark shows the effect of event sampling for perfbuf. Back-to-back
mode for highest throughput. Just doing every 5th record notification gives
3.5x speed up. 250-500 appears to be the point of diminishing return, with
almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw
and pb-custom.
Ringbuf back-to-back, effect of sample rate
===========================================
rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s)
rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s)
rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s)
rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s)
rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s)
rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s)
rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s)
rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s)
rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s)
rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s)
rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s)
Similar benchmark for ring buffer also shows a great advantage (in terms of
throughput) of skipping notifications. Skipping every 5th one gives 4x boost.
Also similar to perfbuf case, 250-500 seems to be the point of diminishing
returns, giving roughly 20x better results.
Keep in mind, for this test, notifications are controlled manually with
BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous
benchmarks, adaptive notifications based on consumer's positions provides same
(or even slightly better due to simpler load generator on BPF side) benefits in
favorable back-to-back scenario. Over zealous and fast consumer, which is
almost always caught up, will make thoughput numbers smaller. That's the case
when manual notification control might prove to be extremely beneficial.
Ringbuf back-to-back, reserve+commit vs output
==============================================
reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s)
output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s)
Ringbuf sampled, reserve+commit vs output
=========================================
reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s)
output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s)
BPF ringbuf supports two sets of APIs with various usability and performance
tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output().
This benchmark clearly shows superiority of reserve+commit approach, despite
using a small 8-byte record size.
Single-producer, consumer/producer competing on the same CPU, low batch count
=============================================================================
rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s)
rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s)
pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s)
This benchmark shows one of the worst-case scenarios, in which producer and
consumer do not coordinate *and* fight for the same CPU. No batch count and
sampling settings were able to eliminate drops for ringbuffer, producer is
just too fast for consumer to keep up. But ringbuf and perfbuf still able to
pass through quite a lot of messages, which is more than enough for a lot of
applications.
Ringbuf, multi-producer contention
==================================
rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s)
rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s)
rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s)
Ringbuf uses a very short-duration spinlock during reservation phase, to check
few invariants, increment producer count and set record header. This is the
biggest point of contention for ringbuf implementation. This benchmark
evaluates the effect of multiple competing writers on overall throughput of
a single shared ringbuffer.
Overall throughput drops almost 2x when going from single to two
highly-contended producers, gradually dropping with additional competing
producers. Performance drop stabilizes at around 20 producers and hovers
around 2mln even with 50+ fighting producers, which is a 5x drop compared to
non-contended case. Good kernel implementation in kernel helps maintain decent
performance here.
Note, that in the intended real-world scenarios, it's not expected to get even
close to such a high levels of contention. But if contention will become
a problem, there is always an option of sharding few ring buffers across a set
of CPUs.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-05-29 15:54:23 +08:00
|
|
|
|
|
|
|
static const struct argp_child bench_parsers[] = {
|
|
|
|
{ &bench_ringbufs_argp, 0, "Ring buffers benchmark", 0 },
|
2021-10-28 07:45:03 +08:00
|
|
|
{ &bench_bloom_map_argp, 0, "Bloom filter map benchmark", 0 },
|
selftest/bpf/benchs: Add bpf_loop benchmark
Add benchmark to measure the throughput and latency of the bpf_loop
call.
Testing this on my dev machine on 1 thread, the data is as follows:
nr_loops: 10
bpf_loop - throughput: 198.519 ± 0.155 M ops/s, latency: 5.037 ns/op
nr_loops: 100
bpf_loop - throughput: 247.448 ± 0.305 M ops/s, latency: 4.041 ns/op
nr_loops: 500
bpf_loop - throughput: 260.839 ± 0.380 M ops/s, latency: 3.834 ns/op
nr_loops: 1000
bpf_loop - throughput: 262.806 ± 0.629 M ops/s, latency: 3.805 ns/op
nr_loops: 5000
bpf_loop - throughput: 264.211 ± 1.508 M ops/s, latency: 3.785 ns/op
nr_loops: 10000
bpf_loop - throughput: 265.366 ± 3.054 M ops/s, latency: 3.768 ns/op
nr_loops: 50000
bpf_loop - throughput: 235.986 ± 20.205 M ops/s, latency: 4.238 ns/op
nr_loops: 100000
bpf_loop - throughput: 264.482 ± 0.279 M ops/s, latency: 3.781 ns/op
nr_loops: 500000
bpf_loop - throughput: 309.773 ± 87.713 M ops/s, latency: 3.228 ns/op
nr_loops: 1000000
bpf_loop - throughput: 262.818 ± 4.143 M ops/s, latency: 3.805 ns/op
>From this data, we can see that the latency per loop decreases as the
number of loops increases. On this particular machine, each loop had an
overhead of about ~4 ns, and we were able to run ~250 million loops
per second.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211130030622.4131246-5-joannekoong@fb.com
2021-11-30 11:06:22 +08:00
|
|
|
{ &bench_bpf_loop_argp, 0, "bpf_loop helper benchmark", 0 },
|
2021-12-10 22:16:51 +08:00
|
|
|
{ &bench_strncmp_argp, 0, "bpf_strncmp helper benchmark", 0 },
|
bpf: Add BPF ringbuf and perf buffer benchmarks
Extend bench framework with ability to have benchmark-provided child argument
parser for custom benchmark-specific parameters. This makes bench generic code
modular and independent from any specific benchmark.
Also implement a set of benchmarks for new BPF ring buffer and existing perf
buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf
and perfbuf:,
- rb-libbpf utilizes stock libbpf ring_buffer manager for reading data;
- rb-custom implements custom ring buffer setup and reading code, to
eliminate overheads inherent in generic libbpf code due to callback
functions and the need to update consumer position after each consumed
record, instead of batching updates (due to pessimistic assumption that
user callback might take long time and thus could unnecessarily hold ring
buffer space for too long);
- pb-libbpf uses stock libbpf perf_buffer code with all the default
settings, though uses higher-performance raw event callback to minimize
unnecessary overhead;
- pb-custom implements its own custom consumer code to minimize any possible
overhead of generic libbpf implementation and indirect function calls.
All of the test support default, no data notification skipped, mode, as well
as sampled mode (with --rb-sampled flag), which allows to trigger epoll
notification less frequently and reduce overhead. As will be shown, this mode
is especially critical for perf buffer, which suffers from high overhead of
wakeups in kernel.
Otherwise, all benchamrks implement similar way to generate a batch of records
by using fentry/sys_getpgid BPF program, which pushes a bunch of records in
a tight loop and records number of successful and dropped samples. Each record
is a small 8-byte integer, to minimize the effect of memory copying with
bpf_perf_event_output() and bpf_ringbuf_output().
Benchmarks that have only one producer implement optional back-to-back mode,
in which record production and consumption is alternating on the same CPU.
This is the highest-throughput happy case, showing ultimate performance
achievable with either BPF ringbuf or perfbuf.
All the below scenarios are implemented in a script in
benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread
Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU.
Single-producer, parallel producer
==================================
rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s)
rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s)
pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s)
pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s)
Single-producer, parallel producer, sampled notification
========================================================
rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s)
rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s)
pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s)
Single producer on one CPU, consumer on another one, both running at full
speed. Curiously, rb-libbpf has higher throughput than objectively faster (due
to more lightweight consumer code path) rb-custom. It appears that faster
consumer causes kernel to send notifications more frequently, because consumer
appears to be caught up more frequently. Performance of perfbuf suffers from
default "no sampling" policy and huge overhead that causes.
In sampled mode, rb-custom is winning very significantly eliminating too
frequent in-kernel wakeups, the gain appears to be more than 2x.
Perf buffer achieves even more impressive wins, compared to stock perfbuf
settings, with 10x improvements in throughput with 1:500 sampling rate. The
trade-off is that with sampling, application might not get next X events until
X+1st arrives, which is not always acceptable. With steady influx of events,
though, this shouldn't be a problem.
Overall, single-producer performance of ring buffers seems to be better no
matter the sampled/non-sampled modes, but it especially beats ring buffer
without sampling due to its adaptive notification approach.
Single-producer, back-to-back mode
==================================
rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s)
rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s)
rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s)
rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s)
pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s)
pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s)
Here we test a back-to-back mode, which is arguably best-case scenario both
for BPF ringbuf and perfbuf, because there is no contention and for ringbuf
also no excessive notification, because consumer appears to be behind after
the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs
16 million records per second exchanged between producer and consumer. Sampled
mode actually hurts a bit due to slightly slower producer logic (it needs to
fetch amount of data available to decide whether to skip or force notification).
Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to
no-sampling version. There also doesn't seem to be noticeable overhead from
generic libbpf handling code.
Perfbuf back-to-back, effect of sample rate
===========================================
pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s)
pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s)
pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s)
pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s)
pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s)
pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s)
pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s)
pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s)
pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s)
This benchmark shows the effect of event sampling for perfbuf. Back-to-back
mode for highest throughput. Just doing every 5th record notification gives
3.5x speed up. 250-500 appears to be the point of diminishing return, with
almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw
and pb-custom.
Ringbuf back-to-back, effect of sample rate
===========================================
rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s)
rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s)
rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s)
rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s)
rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s)
rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s)
rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s)
rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s)
rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s)
rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s)
rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s)
Similar benchmark for ring buffer also shows a great advantage (in terms of
throughput) of skipping notifications. Skipping every 5th one gives 4x boost.
Also similar to perfbuf case, 250-500 seems to be the point of diminishing
returns, giving roughly 20x better results.
Keep in mind, for this test, notifications are controlled manually with
BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous
benchmarks, adaptive notifications based on consumer's positions provides same
(or even slightly better due to simpler load generator on BPF side) benefits in
favorable back-to-back scenario. Over zealous and fast consumer, which is
almost always caught up, will make thoughput numbers smaller. That's the case
when manual notification control might prove to be extremely beneficial.
Ringbuf back-to-back, reserve+commit vs output
==============================================
reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s)
output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s)
Ringbuf sampled, reserve+commit vs output
=========================================
reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s)
output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s)
BPF ringbuf supports two sets of APIs with various usability and performance
tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output().
This benchmark clearly shows superiority of reserve+commit approach, despite
using a small 8-byte record size.
Single-producer, consumer/producer competing on the same CPU, low batch count
=============================================================================
rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s)
rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s)
pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s)
This benchmark shows one of the worst-case scenarios, in which producer and
consumer do not coordinate *and* fight for the same CPU. No batch count and
sampling settings were able to eliminate drops for ringbuffer, producer is
just too fast for consumer to keep up. But ringbuf and perfbuf still able to
pass through quite a lot of messages, which is more than enough for a lot of
applications.
Ringbuf, multi-producer contention
==================================
rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s)
rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s)
rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s)
Ringbuf uses a very short-duration spinlock during reservation phase, to check
few invariants, increment producer count and set record header. This is the
biggest point of contention for ringbuf implementation. This benchmark
evaluates the effect of multiple competing writers on overall throughput of
a single shared ringbuffer.
Overall throughput drops almost 2x when going from single to two
highly-contended producers, gradually dropping with additional competing
producers. Performance drop stabilizes at around 20 producers and hovers
around 2mln even with 50+ fighting producers, which is a 5x drop compared to
non-contended case. Good kernel implementation in kernel helps maintain decent
performance here.
Note, that in the intended real-world scenarios, it's not expected to get even
close to such a high levels of contention. But if contention will become
a problem, there is always an option of sharding few ring buffers across a set
of CPUs.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-05-29 15:54:23 +08:00
|
|
|
{},
|
|
|
|
};
|
|
|
|
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
static error_t parse_arg(int key, char *arg, struct argp_state *state)
|
|
|
|
{
|
|
|
|
static int pos_args;
|
|
|
|
|
|
|
|
switch (key) {
|
|
|
|
case 'v':
|
|
|
|
env.verbose = true;
|
|
|
|
break;
|
|
|
|
case 'l':
|
|
|
|
env.list = true;
|
|
|
|
break;
|
|
|
|
case 'd':
|
|
|
|
env.duration_sec = strtol(arg, NULL, 10);
|
|
|
|
if (env.duration_sec <= 0) {
|
|
|
|
fprintf(stderr, "Invalid duration: %s\n", arg);
|
|
|
|
argp_usage(state);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'w':
|
|
|
|
env.warmup_sec = strtol(arg, NULL, 10);
|
|
|
|
if (env.warmup_sec <= 0) {
|
|
|
|
fprintf(stderr, "Invalid warm-up duration: %s\n", arg);
|
|
|
|
argp_usage(state);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'p':
|
|
|
|
env.producer_cnt = strtol(arg, NULL, 10);
|
|
|
|
if (env.producer_cnt <= 0) {
|
|
|
|
fprintf(stderr, "Invalid producer count: %s\n", arg);
|
|
|
|
argp_usage(state);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'c':
|
|
|
|
env.consumer_cnt = strtol(arg, NULL, 10);
|
|
|
|
if (env.consumer_cnt <= 0) {
|
|
|
|
fprintf(stderr, "Invalid consumer count: %s\n", arg);
|
|
|
|
argp_usage(state);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'a':
|
|
|
|
env.affinity = true;
|
|
|
|
break;
|
|
|
|
case ARG_PROD_AFFINITY_SET:
|
|
|
|
env.affinity = true;
|
|
|
|
if (parse_num_list(arg, &env.prod_cpus.cpus,
|
|
|
|
&env.prod_cpus.cpus_len)) {
|
|
|
|
fprintf(stderr, "Invalid format of CPU set for producers.");
|
|
|
|
argp_usage(state);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ARG_CONS_AFFINITY_SET:
|
|
|
|
env.affinity = true;
|
|
|
|
if (parse_num_list(arg, &env.cons_cpus.cpus,
|
|
|
|
&env.cons_cpus.cpus_len)) {
|
|
|
|
fprintf(stderr, "Invalid format of CPU set for consumers.");
|
|
|
|
argp_usage(state);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ARGP_KEY_ARG:
|
|
|
|
if (pos_args++) {
|
|
|
|
fprintf(stderr,
|
|
|
|
"Unrecognized positional argument: %s\n", arg);
|
|
|
|
argp_usage(state);
|
|
|
|
}
|
|
|
|
env.bench_name = strdup(arg);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return ARGP_ERR_UNKNOWN;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void parse_cmdline_args(int argc, char **argv)
|
|
|
|
{
|
|
|
|
static const struct argp argp = {
|
|
|
|
.options = opts,
|
|
|
|
.parser = parse_arg,
|
|
|
|
.doc = argp_program_doc,
|
bpf: Add BPF ringbuf and perf buffer benchmarks
Extend bench framework with ability to have benchmark-provided child argument
parser for custom benchmark-specific parameters. This makes bench generic code
modular and independent from any specific benchmark.
Also implement a set of benchmarks for new BPF ring buffer and existing perf
buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf
and perfbuf:,
- rb-libbpf utilizes stock libbpf ring_buffer manager for reading data;
- rb-custom implements custom ring buffer setup and reading code, to
eliminate overheads inherent in generic libbpf code due to callback
functions and the need to update consumer position after each consumed
record, instead of batching updates (due to pessimistic assumption that
user callback might take long time and thus could unnecessarily hold ring
buffer space for too long);
- pb-libbpf uses stock libbpf perf_buffer code with all the default
settings, though uses higher-performance raw event callback to minimize
unnecessary overhead;
- pb-custom implements its own custom consumer code to minimize any possible
overhead of generic libbpf implementation and indirect function calls.
All of the test support default, no data notification skipped, mode, as well
as sampled mode (with --rb-sampled flag), which allows to trigger epoll
notification less frequently and reduce overhead. As will be shown, this mode
is especially critical for perf buffer, which suffers from high overhead of
wakeups in kernel.
Otherwise, all benchamrks implement similar way to generate a batch of records
by using fentry/sys_getpgid BPF program, which pushes a bunch of records in
a tight loop and records number of successful and dropped samples. Each record
is a small 8-byte integer, to minimize the effect of memory copying with
bpf_perf_event_output() and bpf_ringbuf_output().
Benchmarks that have only one producer implement optional back-to-back mode,
in which record production and consumption is alternating on the same CPU.
This is the highest-throughput happy case, showing ultimate performance
achievable with either BPF ringbuf or perfbuf.
All the below scenarios are implemented in a script in
benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread
Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU.
Single-producer, parallel producer
==================================
rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s)
rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s)
pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s)
pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s)
Single-producer, parallel producer, sampled notification
========================================================
rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s)
rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s)
pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s)
Single producer on one CPU, consumer on another one, both running at full
speed. Curiously, rb-libbpf has higher throughput than objectively faster (due
to more lightweight consumer code path) rb-custom. It appears that faster
consumer causes kernel to send notifications more frequently, because consumer
appears to be caught up more frequently. Performance of perfbuf suffers from
default "no sampling" policy and huge overhead that causes.
In sampled mode, rb-custom is winning very significantly eliminating too
frequent in-kernel wakeups, the gain appears to be more than 2x.
Perf buffer achieves even more impressive wins, compared to stock perfbuf
settings, with 10x improvements in throughput with 1:500 sampling rate. The
trade-off is that with sampling, application might not get next X events until
X+1st arrives, which is not always acceptable. With steady influx of events,
though, this shouldn't be a problem.
Overall, single-producer performance of ring buffers seems to be better no
matter the sampled/non-sampled modes, but it especially beats ring buffer
without sampling due to its adaptive notification approach.
Single-producer, back-to-back mode
==================================
rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s)
rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s)
rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s)
rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s)
pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s)
pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s)
Here we test a back-to-back mode, which is arguably best-case scenario both
for BPF ringbuf and perfbuf, because there is no contention and for ringbuf
also no excessive notification, because consumer appears to be behind after
the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs
16 million records per second exchanged between producer and consumer. Sampled
mode actually hurts a bit due to slightly slower producer logic (it needs to
fetch amount of data available to decide whether to skip or force notification).
Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to
no-sampling version. There also doesn't seem to be noticeable overhead from
generic libbpf handling code.
Perfbuf back-to-back, effect of sample rate
===========================================
pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s)
pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s)
pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s)
pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s)
pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s)
pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s)
pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s)
pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s)
pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s)
This benchmark shows the effect of event sampling for perfbuf. Back-to-back
mode for highest throughput. Just doing every 5th record notification gives
3.5x speed up. 250-500 appears to be the point of diminishing return, with
almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw
and pb-custom.
Ringbuf back-to-back, effect of sample rate
===========================================
rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s)
rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s)
rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s)
rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s)
rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s)
rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s)
rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s)
rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s)
rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s)
rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s)
rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s)
Similar benchmark for ring buffer also shows a great advantage (in terms of
throughput) of skipping notifications. Skipping every 5th one gives 4x boost.
Also similar to perfbuf case, 250-500 seems to be the point of diminishing
returns, giving roughly 20x better results.
Keep in mind, for this test, notifications are controlled manually with
BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous
benchmarks, adaptive notifications based on consumer's positions provides same
(or even slightly better due to simpler load generator on BPF side) benefits in
favorable back-to-back scenario. Over zealous and fast consumer, which is
almost always caught up, will make thoughput numbers smaller. That's the case
when manual notification control might prove to be extremely beneficial.
Ringbuf back-to-back, reserve+commit vs output
==============================================
reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s)
output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s)
Ringbuf sampled, reserve+commit vs output
=========================================
reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s)
output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s)
BPF ringbuf supports two sets of APIs with various usability and performance
tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output().
This benchmark clearly shows superiority of reserve+commit approach, despite
using a small 8-byte record size.
Single-producer, consumer/producer competing on the same CPU, low batch count
=============================================================================
rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s)
rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s)
pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s)
This benchmark shows one of the worst-case scenarios, in which producer and
consumer do not coordinate *and* fight for the same CPU. No batch count and
sampling settings were able to eliminate drops for ringbuffer, producer is
just too fast for consumer to keep up. But ringbuf and perfbuf still able to
pass through quite a lot of messages, which is more than enough for a lot of
applications.
Ringbuf, multi-producer contention
==================================
rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s)
rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s)
rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s)
Ringbuf uses a very short-duration spinlock during reservation phase, to check
few invariants, increment producer count and set record header. This is the
biggest point of contention for ringbuf implementation. This benchmark
evaluates the effect of multiple competing writers on overall throughput of
a single shared ringbuffer.
Overall throughput drops almost 2x when going from single to two
highly-contended producers, gradually dropping with additional competing
producers. Performance drop stabilizes at around 20 producers and hovers
around 2mln even with 50+ fighting producers, which is a 5x drop compared to
non-contended case. Good kernel implementation in kernel helps maintain decent
performance here.
Note, that in the intended real-world scenarios, it's not expected to get even
close to such a high levels of contention. But if contention will become
a problem, there is always an option of sharding few ring buffers across a set
of CPUs.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-05-29 15:54:23 +08:00
|
|
|
.children = bench_parsers,
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
};
|
|
|
|
if (argp_parse(&argp, argc, argv, 0, NULL, NULL))
|
|
|
|
exit(1);
|
|
|
|
if (!env.list && !env.bench_name) {
|
|
|
|
argp_help(&argp, stderr, ARGP_HELP_DOC, "bench");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void collect_measurements(long delta_ns);
|
|
|
|
|
|
|
|
static __u64 last_time_ns;
|
|
|
|
static void sigalarm_handler(int signo)
|
|
|
|
{
|
|
|
|
long new_time_ns = get_time_ns();
|
|
|
|
long delta_ns = new_time_ns - last_time_ns;
|
|
|
|
|
|
|
|
collect_measurements(delta_ns);
|
|
|
|
|
|
|
|
last_time_ns = new_time_ns;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set up periodic 1-second timer */
|
|
|
|
static void setup_timer()
|
|
|
|
{
|
|
|
|
static struct sigaction sigalarm_action = {
|
|
|
|
.sa_handler = sigalarm_handler,
|
|
|
|
};
|
|
|
|
struct itimerval timer_settings = {};
|
|
|
|
int err;
|
|
|
|
|
|
|
|
last_time_ns = get_time_ns();
|
|
|
|
err = sigaction(SIGALRM, &sigalarm_action, NULL);
|
|
|
|
if (err < 0) {
|
2020-05-14 20:15:29 +08:00
|
|
|
fprintf(stderr, "failed to install SIGALRM handler: %d\n", -errno);
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
timer_settings.it_interval.tv_sec = 1;
|
|
|
|
timer_settings.it_value.tv_sec = 1;
|
|
|
|
err = setitimer(ITIMER_REAL, &timer_settings, NULL);
|
|
|
|
if (err < 0) {
|
|
|
|
fprintf(stderr, "failed to arm interval timer: %d\n", -errno);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_thread_affinity(pthread_t thread, int cpu)
|
|
|
|
{
|
|
|
|
cpu_set_t cpuset;
|
|
|
|
|
|
|
|
CPU_ZERO(&cpuset);
|
|
|
|
CPU_SET(cpu, &cpuset);
|
|
|
|
if (pthread_setaffinity_np(thread, sizeof(cpuset), &cpuset)) {
|
|
|
|
fprintf(stderr, "setting affinity to CPU #%d failed: %d\n",
|
|
|
|
cpu, errno);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int next_cpu(struct cpu_set *cpu_set)
|
|
|
|
{
|
|
|
|
if (cpu_set->cpus) {
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* find next available CPU */
|
|
|
|
for (i = cpu_set->next_cpu; i < cpu_set->cpus_len; i++) {
|
|
|
|
if (cpu_set->cpus[i]) {
|
|
|
|
cpu_set->next_cpu = i + 1;
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fprintf(stderr, "Not enough CPUs specified, need CPU #%d or higher.\n", i);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return cpu_set->next_cpu++;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct bench_state {
|
|
|
|
int res_cnt;
|
|
|
|
struct bench_res *results;
|
|
|
|
pthread_t *consumers;
|
|
|
|
pthread_t *producers;
|
|
|
|
} state;
|
|
|
|
|
|
|
|
const struct bench *bench = NULL;
|
|
|
|
|
|
|
|
extern const struct bench bench_count_global;
|
|
|
|
extern const struct bench bench_count_local;
|
2020-05-13 03:24:44 +08:00
|
|
|
extern const struct bench bench_rename_base;
|
|
|
|
extern const struct bench bench_rename_kprobe;
|
|
|
|
extern const struct bench bench_rename_kretprobe;
|
|
|
|
extern const struct bench bench_rename_rawtp;
|
|
|
|
extern const struct bench bench_rename_fentry;
|
|
|
|
extern const struct bench bench_rename_fexit;
|
selftest/bpf: Add BPF triggering benchmark
It is sometimes desirable to be able to trigger BPF program from user-space
with minimal overhead. sys_enter would seem to be a good candidate, yet in
a lot of cases there will be a lot of noise from syscalls triggered by other
processes on the system. So while searching for low-overhead alternative, I've
stumbled upon getpgid() syscall, which seems to be specific enough to not
suffer from accidental syscall by other apps.
This set of benchmarks compares tp, raw_tp w/ filtering by syscall ID, kprobe,
fentry and fmod_ret with returning error (so that syscall would not be
executed), to determine the lowest-overhead way. Here are results on my
machine (using benchs/run_bench_trigger.sh script):
base : 9.200 ± 0.319M/s
tp : 6.690 ± 0.125M/s
rawtp : 8.571 ± 0.214M/s
kprobe : 6.431 ± 0.048M/s
fentry : 8.955 ± 0.241M/s
fmodret : 8.903 ± 0.135M/s
So it seems like fmodret doesn't give much benefit for such lightweight
syscall. Raw tracepoint is pretty decent despite additional filtering logic,
but it will be called for any other syscall in the system, which rules it out.
Fentry, though, seems to be adding the least amoung of overhead and achieves
97.3% of performance of baseline no-BPF-attached syscall.
Using getpgid() seems to be preferable to set_task_comm() approach from
test_overhead, as it's about 2.35x faster in a baseline performance.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-5-andriin@fb.com
2020-05-13 03:24:45 +08:00
|
|
|
extern const struct bench bench_trig_base;
|
|
|
|
extern const struct bench bench_trig_tp;
|
|
|
|
extern const struct bench bench_trig_rawtp;
|
|
|
|
extern const struct bench bench_trig_kprobe;
|
|
|
|
extern const struct bench bench_trig_fentry;
|
2020-08-28 06:01:14 +08:00
|
|
|
extern const struct bench bench_trig_fentry_sleep;
|
selftest/bpf: Add BPF triggering benchmark
It is sometimes desirable to be able to trigger BPF program from user-space
with minimal overhead. sys_enter would seem to be a good candidate, yet in
a lot of cases there will be a lot of noise from syscalls triggered by other
processes on the system. So while searching for low-overhead alternative, I've
stumbled upon getpgid() syscall, which seems to be specific enough to not
suffer from accidental syscall by other apps.
This set of benchmarks compares tp, raw_tp w/ filtering by syscall ID, kprobe,
fentry and fmod_ret with returning error (so that syscall would not be
executed), to determine the lowest-overhead way. Here are results on my
machine (using benchs/run_bench_trigger.sh script):
base : 9.200 ± 0.319M/s
tp : 6.690 ± 0.125M/s
rawtp : 8.571 ± 0.214M/s
kprobe : 6.431 ± 0.048M/s
fentry : 8.955 ± 0.241M/s
fmodret : 8.903 ± 0.135M/s
So it seems like fmodret doesn't give much benefit for such lightweight
syscall. Raw tracepoint is pretty decent despite additional filtering logic,
but it will be called for any other syscall in the system, which rules it out.
Fentry, though, seems to be adding the least amoung of overhead and achieves
97.3% of performance of baseline no-BPF-attached syscall.
Using getpgid() seems to be preferable to set_task_comm() approach from
test_overhead, as it's about 2.35x faster in a baseline performance.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-5-andriin@fb.com
2020-05-13 03:24:45 +08:00
|
|
|
extern const struct bench bench_trig_fmodret;
|
2021-11-16 09:30:41 +08:00
|
|
|
extern const struct bench bench_trig_uprobe_base;
|
|
|
|
extern const struct bench bench_trig_uprobe_with_nop;
|
|
|
|
extern const struct bench bench_trig_uretprobe_with_nop;
|
|
|
|
extern const struct bench bench_trig_uprobe_without_nop;
|
|
|
|
extern const struct bench bench_trig_uretprobe_without_nop;
|
bpf: Add BPF ringbuf and perf buffer benchmarks
Extend bench framework with ability to have benchmark-provided child argument
parser for custom benchmark-specific parameters. This makes bench generic code
modular and independent from any specific benchmark.
Also implement a set of benchmarks for new BPF ring buffer and existing perf
buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf
and perfbuf:,
- rb-libbpf utilizes stock libbpf ring_buffer manager for reading data;
- rb-custom implements custom ring buffer setup and reading code, to
eliminate overheads inherent in generic libbpf code due to callback
functions and the need to update consumer position after each consumed
record, instead of batching updates (due to pessimistic assumption that
user callback might take long time and thus could unnecessarily hold ring
buffer space for too long);
- pb-libbpf uses stock libbpf perf_buffer code with all the default
settings, though uses higher-performance raw event callback to minimize
unnecessary overhead;
- pb-custom implements its own custom consumer code to minimize any possible
overhead of generic libbpf implementation and indirect function calls.
All of the test support default, no data notification skipped, mode, as well
as sampled mode (with --rb-sampled flag), which allows to trigger epoll
notification less frequently and reduce overhead. As will be shown, this mode
is especially critical for perf buffer, which suffers from high overhead of
wakeups in kernel.
Otherwise, all benchamrks implement similar way to generate a batch of records
by using fentry/sys_getpgid BPF program, which pushes a bunch of records in
a tight loop and records number of successful and dropped samples. Each record
is a small 8-byte integer, to minimize the effect of memory copying with
bpf_perf_event_output() and bpf_ringbuf_output().
Benchmarks that have only one producer implement optional back-to-back mode,
in which record production and consumption is alternating on the same CPU.
This is the highest-throughput happy case, showing ultimate performance
achievable with either BPF ringbuf or perfbuf.
All the below scenarios are implemented in a script in
benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread
Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU.
Single-producer, parallel producer
==================================
rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s)
rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s)
pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s)
pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s)
Single-producer, parallel producer, sampled notification
========================================================
rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s)
rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s)
pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s)
Single producer on one CPU, consumer on another one, both running at full
speed. Curiously, rb-libbpf has higher throughput than objectively faster (due
to more lightweight consumer code path) rb-custom. It appears that faster
consumer causes kernel to send notifications more frequently, because consumer
appears to be caught up more frequently. Performance of perfbuf suffers from
default "no sampling" policy and huge overhead that causes.
In sampled mode, rb-custom is winning very significantly eliminating too
frequent in-kernel wakeups, the gain appears to be more than 2x.
Perf buffer achieves even more impressive wins, compared to stock perfbuf
settings, with 10x improvements in throughput with 1:500 sampling rate. The
trade-off is that with sampling, application might not get next X events until
X+1st arrives, which is not always acceptable. With steady influx of events,
though, this shouldn't be a problem.
Overall, single-producer performance of ring buffers seems to be better no
matter the sampled/non-sampled modes, but it especially beats ring buffer
without sampling due to its adaptive notification approach.
Single-producer, back-to-back mode
==================================
rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s)
rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s)
rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s)
rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s)
pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s)
pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s)
Here we test a back-to-back mode, which is arguably best-case scenario both
for BPF ringbuf and perfbuf, because there is no contention and for ringbuf
also no excessive notification, because consumer appears to be behind after
the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs
16 million records per second exchanged between producer and consumer. Sampled
mode actually hurts a bit due to slightly slower producer logic (it needs to
fetch amount of data available to decide whether to skip or force notification).
Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to
no-sampling version. There also doesn't seem to be noticeable overhead from
generic libbpf handling code.
Perfbuf back-to-back, effect of sample rate
===========================================
pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s)
pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s)
pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s)
pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s)
pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s)
pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s)
pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s)
pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s)
pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s)
This benchmark shows the effect of event sampling for perfbuf. Back-to-back
mode for highest throughput. Just doing every 5th record notification gives
3.5x speed up. 250-500 appears to be the point of diminishing return, with
almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw
and pb-custom.
Ringbuf back-to-back, effect of sample rate
===========================================
rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s)
rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s)
rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s)
rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s)
rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s)
rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s)
rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s)
rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s)
rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s)
rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s)
rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s)
Similar benchmark for ring buffer also shows a great advantage (in terms of
throughput) of skipping notifications. Skipping every 5th one gives 4x boost.
Also similar to perfbuf case, 250-500 seems to be the point of diminishing
returns, giving roughly 20x better results.
Keep in mind, for this test, notifications are controlled manually with
BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous
benchmarks, adaptive notifications based on consumer's positions provides same
(or even slightly better due to simpler load generator on BPF side) benefits in
favorable back-to-back scenario. Over zealous and fast consumer, which is
almost always caught up, will make thoughput numbers smaller. That's the case
when manual notification control might prove to be extremely beneficial.
Ringbuf back-to-back, reserve+commit vs output
==============================================
reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s)
output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s)
Ringbuf sampled, reserve+commit vs output
=========================================
reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s)
output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s)
BPF ringbuf supports two sets of APIs with various usability and performance
tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output().
This benchmark clearly shows superiority of reserve+commit approach, despite
using a small 8-byte record size.
Single-producer, consumer/producer competing on the same CPU, low batch count
=============================================================================
rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s)
rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s)
pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s)
This benchmark shows one of the worst-case scenarios, in which producer and
consumer do not coordinate *and* fight for the same CPU. No batch count and
sampling settings were able to eliminate drops for ringbuffer, producer is
just too fast for consumer to keep up. But ringbuf and perfbuf still able to
pass through quite a lot of messages, which is more than enough for a lot of
applications.
Ringbuf, multi-producer contention
==================================
rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s)
rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s)
rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s)
Ringbuf uses a very short-duration spinlock during reservation phase, to check
few invariants, increment producer count and set record header. This is the
biggest point of contention for ringbuf implementation. This benchmark
evaluates the effect of multiple competing writers on overall throughput of
a single shared ringbuffer.
Overall throughput drops almost 2x when going from single to two
highly-contended producers, gradually dropping with additional competing
producers. Performance drop stabilizes at around 20 producers and hovers
around 2mln even with 50+ fighting producers, which is a 5x drop compared to
non-contended case. Good kernel implementation in kernel helps maintain decent
performance here.
Note, that in the intended real-world scenarios, it's not expected to get even
close to such a high levels of contention. But if contention will become
a problem, there is always an option of sharding few ring buffers across a set
of CPUs.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-05-29 15:54:23 +08:00
|
|
|
extern const struct bench bench_rb_libbpf;
|
|
|
|
extern const struct bench bench_rb_custom;
|
|
|
|
extern const struct bench bench_pb_libbpf;
|
|
|
|
extern const struct bench bench_pb_custom;
|
2021-10-28 07:45:03 +08:00
|
|
|
extern const struct bench bench_bloom_lookup;
|
|
|
|
extern const struct bench bench_bloom_update;
|
|
|
|
extern const struct bench bench_bloom_false_positive;
|
2021-10-28 07:45:04 +08:00
|
|
|
extern const struct bench bench_hashmap_without_bloom;
|
|
|
|
extern const struct bench bench_hashmap_with_bloom;
|
selftest/bpf/benchs: Add bpf_loop benchmark
Add benchmark to measure the throughput and latency of the bpf_loop
call.
Testing this on my dev machine on 1 thread, the data is as follows:
nr_loops: 10
bpf_loop - throughput: 198.519 ± 0.155 M ops/s, latency: 5.037 ns/op
nr_loops: 100
bpf_loop - throughput: 247.448 ± 0.305 M ops/s, latency: 4.041 ns/op
nr_loops: 500
bpf_loop - throughput: 260.839 ± 0.380 M ops/s, latency: 3.834 ns/op
nr_loops: 1000
bpf_loop - throughput: 262.806 ± 0.629 M ops/s, latency: 3.805 ns/op
nr_loops: 5000
bpf_loop - throughput: 264.211 ± 1.508 M ops/s, latency: 3.785 ns/op
nr_loops: 10000
bpf_loop - throughput: 265.366 ± 3.054 M ops/s, latency: 3.768 ns/op
nr_loops: 50000
bpf_loop - throughput: 235.986 ± 20.205 M ops/s, latency: 4.238 ns/op
nr_loops: 100000
bpf_loop - throughput: 264.482 ± 0.279 M ops/s, latency: 3.781 ns/op
nr_loops: 500000
bpf_loop - throughput: 309.773 ± 87.713 M ops/s, latency: 3.228 ns/op
nr_loops: 1000000
bpf_loop - throughput: 262.818 ± 4.143 M ops/s, latency: 3.805 ns/op
>From this data, we can see that the latency per loop decreases as the
number of loops increases. On this particular machine, each loop had an
overhead of about ~4 ns, and we were able to run ~250 million loops
per second.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211130030622.4131246-5-joannekoong@fb.com
2021-11-30 11:06:22 +08:00
|
|
|
extern const struct bench bench_bpf_loop;
|
2021-12-10 22:16:51 +08:00
|
|
|
extern const struct bench bench_strncmp_no_helper;
|
|
|
|
extern const struct bench bench_strncmp_helper;
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
|
|
|
|
static const struct bench *benchs[] = {
|
|
|
|
&bench_count_global,
|
|
|
|
&bench_count_local,
|
2020-05-13 03:24:44 +08:00
|
|
|
&bench_rename_base,
|
|
|
|
&bench_rename_kprobe,
|
|
|
|
&bench_rename_kretprobe,
|
|
|
|
&bench_rename_rawtp,
|
|
|
|
&bench_rename_fentry,
|
|
|
|
&bench_rename_fexit,
|
selftest/bpf: Add BPF triggering benchmark
It is sometimes desirable to be able to trigger BPF program from user-space
with minimal overhead. sys_enter would seem to be a good candidate, yet in
a lot of cases there will be a lot of noise from syscalls triggered by other
processes on the system. So while searching for low-overhead alternative, I've
stumbled upon getpgid() syscall, which seems to be specific enough to not
suffer from accidental syscall by other apps.
This set of benchmarks compares tp, raw_tp w/ filtering by syscall ID, kprobe,
fentry and fmod_ret with returning error (so that syscall would not be
executed), to determine the lowest-overhead way. Here are results on my
machine (using benchs/run_bench_trigger.sh script):
base : 9.200 ± 0.319M/s
tp : 6.690 ± 0.125M/s
rawtp : 8.571 ± 0.214M/s
kprobe : 6.431 ± 0.048M/s
fentry : 8.955 ± 0.241M/s
fmodret : 8.903 ± 0.135M/s
So it seems like fmodret doesn't give much benefit for such lightweight
syscall. Raw tracepoint is pretty decent despite additional filtering logic,
but it will be called for any other syscall in the system, which rules it out.
Fentry, though, seems to be adding the least amoung of overhead and achieves
97.3% of performance of baseline no-BPF-attached syscall.
Using getpgid() seems to be preferable to set_task_comm() approach from
test_overhead, as it's about 2.35x faster in a baseline performance.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-5-andriin@fb.com
2020-05-13 03:24:45 +08:00
|
|
|
&bench_trig_base,
|
|
|
|
&bench_trig_tp,
|
|
|
|
&bench_trig_rawtp,
|
|
|
|
&bench_trig_kprobe,
|
|
|
|
&bench_trig_fentry,
|
2020-08-28 06:01:14 +08:00
|
|
|
&bench_trig_fentry_sleep,
|
selftest/bpf: Add BPF triggering benchmark
It is sometimes desirable to be able to trigger BPF program from user-space
with minimal overhead. sys_enter would seem to be a good candidate, yet in
a lot of cases there will be a lot of noise from syscalls triggered by other
processes on the system. So while searching for low-overhead alternative, I've
stumbled upon getpgid() syscall, which seems to be specific enough to not
suffer from accidental syscall by other apps.
This set of benchmarks compares tp, raw_tp w/ filtering by syscall ID, kprobe,
fentry and fmod_ret with returning error (so that syscall would not be
executed), to determine the lowest-overhead way. Here are results on my
machine (using benchs/run_bench_trigger.sh script):
base : 9.200 ± 0.319M/s
tp : 6.690 ± 0.125M/s
rawtp : 8.571 ± 0.214M/s
kprobe : 6.431 ± 0.048M/s
fentry : 8.955 ± 0.241M/s
fmodret : 8.903 ± 0.135M/s
So it seems like fmodret doesn't give much benefit for such lightweight
syscall. Raw tracepoint is pretty decent despite additional filtering logic,
but it will be called for any other syscall in the system, which rules it out.
Fentry, though, seems to be adding the least amoung of overhead and achieves
97.3% of performance of baseline no-BPF-attached syscall.
Using getpgid() seems to be preferable to set_task_comm() approach from
test_overhead, as it's about 2.35x faster in a baseline performance.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-5-andriin@fb.com
2020-05-13 03:24:45 +08:00
|
|
|
&bench_trig_fmodret,
|
2021-11-16 09:30:41 +08:00
|
|
|
&bench_trig_uprobe_base,
|
|
|
|
&bench_trig_uprobe_with_nop,
|
|
|
|
&bench_trig_uretprobe_with_nop,
|
|
|
|
&bench_trig_uprobe_without_nop,
|
|
|
|
&bench_trig_uretprobe_without_nop,
|
bpf: Add BPF ringbuf and perf buffer benchmarks
Extend bench framework with ability to have benchmark-provided child argument
parser for custom benchmark-specific parameters. This makes bench generic code
modular and independent from any specific benchmark.
Also implement a set of benchmarks for new BPF ring buffer and existing perf
buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf
and perfbuf:,
- rb-libbpf utilizes stock libbpf ring_buffer manager for reading data;
- rb-custom implements custom ring buffer setup and reading code, to
eliminate overheads inherent in generic libbpf code due to callback
functions and the need to update consumer position after each consumed
record, instead of batching updates (due to pessimistic assumption that
user callback might take long time and thus could unnecessarily hold ring
buffer space for too long);
- pb-libbpf uses stock libbpf perf_buffer code with all the default
settings, though uses higher-performance raw event callback to minimize
unnecessary overhead;
- pb-custom implements its own custom consumer code to minimize any possible
overhead of generic libbpf implementation and indirect function calls.
All of the test support default, no data notification skipped, mode, as well
as sampled mode (with --rb-sampled flag), which allows to trigger epoll
notification less frequently and reduce overhead. As will be shown, this mode
is especially critical for perf buffer, which suffers from high overhead of
wakeups in kernel.
Otherwise, all benchamrks implement similar way to generate a batch of records
by using fentry/sys_getpgid BPF program, which pushes a bunch of records in
a tight loop and records number of successful and dropped samples. Each record
is a small 8-byte integer, to minimize the effect of memory copying with
bpf_perf_event_output() and bpf_ringbuf_output().
Benchmarks that have only one producer implement optional back-to-back mode,
in which record production and consumption is alternating on the same CPU.
This is the highest-throughput happy case, showing ultimate performance
achievable with either BPF ringbuf or perfbuf.
All the below scenarios are implemented in a script in
benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread
Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU.
Single-producer, parallel producer
==================================
rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s)
rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s)
pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s)
pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s)
Single-producer, parallel producer, sampled notification
========================================================
rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s)
rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s)
pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s)
Single producer on one CPU, consumer on another one, both running at full
speed. Curiously, rb-libbpf has higher throughput than objectively faster (due
to more lightweight consumer code path) rb-custom. It appears that faster
consumer causes kernel to send notifications more frequently, because consumer
appears to be caught up more frequently. Performance of perfbuf suffers from
default "no sampling" policy and huge overhead that causes.
In sampled mode, rb-custom is winning very significantly eliminating too
frequent in-kernel wakeups, the gain appears to be more than 2x.
Perf buffer achieves even more impressive wins, compared to stock perfbuf
settings, with 10x improvements in throughput with 1:500 sampling rate. The
trade-off is that with sampling, application might not get next X events until
X+1st arrives, which is not always acceptable. With steady influx of events,
though, this shouldn't be a problem.
Overall, single-producer performance of ring buffers seems to be better no
matter the sampled/non-sampled modes, but it especially beats ring buffer
without sampling due to its adaptive notification approach.
Single-producer, back-to-back mode
==================================
rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s)
rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s)
rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s)
rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s)
pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s)
pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s)
Here we test a back-to-back mode, which is arguably best-case scenario both
for BPF ringbuf and perfbuf, because there is no contention and for ringbuf
also no excessive notification, because consumer appears to be behind after
the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs
16 million records per second exchanged between producer and consumer. Sampled
mode actually hurts a bit due to slightly slower producer logic (it needs to
fetch amount of data available to decide whether to skip or force notification).
Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to
no-sampling version. There also doesn't seem to be noticeable overhead from
generic libbpf handling code.
Perfbuf back-to-back, effect of sample rate
===========================================
pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s)
pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s)
pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s)
pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s)
pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s)
pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s)
pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s)
pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s)
pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s)
This benchmark shows the effect of event sampling for perfbuf. Back-to-back
mode for highest throughput. Just doing every 5th record notification gives
3.5x speed up. 250-500 appears to be the point of diminishing return, with
almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw
and pb-custom.
Ringbuf back-to-back, effect of sample rate
===========================================
rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s)
rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s)
rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s)
rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s)
rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s)
rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s)
rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s)
rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s)
rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s)
rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s)
rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s)
Similar benchmark for ring buffer also shows a great advantage (in terms of
throughput) of skipping notifications. Skipping every 5th one gives 4x boost.
Also similar to perfbuf case, 250-500 seems to be the point of diminishing
returns, giving roughly 20x better results.
Keep in mind, for this test, notifications are controlled manually with
BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous
benchmarks, adaptive notifications based on consumer's positions provides same
(or even slightly better due to simpler load generator on BPF side) benefits in
favorable back-to-back scenario. Over zealous and fast consumer, which is
almost always caught up, will make thoughput numbers smaller. That's the case
when manual notification control might prove to be extremely beneficial.
Ringbuf back-to-back, reserve+commit vs output
==============================================
reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s)
output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s)
Ringbuf sampled, reserve+commit vs output
=========================================
reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s)
output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s)
BPF ringbuf supports two sets of APIs with various usability and performance
tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output().
This benchmark clearly shows superiority of reserve+commit approach, despite
using a small 8-byte record size.
Single-producer, consumer/producer competing on the same CPU, low batch count
=============================================================================
rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s)
rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s)
pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s)
This benchmark shows one of the worst-case scenarios, in which producer and
consumer do not coordinate *and* fight for the same CPU. No batch count and
sampling settings were able to eliminate drops for ringbuffer, producer is
just too fast for consumer to keep up. But ringbuf and perfbuf still able to
pass through quite a lot of messages, which is more than enough for a lot of
applications.
Ringbuf, multi-producer contention
==================================
rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s)
rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s)
rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s)
Ringbuf uses a very short-duration spinlock during reservation phase, to check
few invariants, increment producer count and set record header. This is the
biggest point of contention for ringbuf implementation. This benchmark
evaluates the effect of multiple competing writers on overall throughput of
a single shared ringbuffer.
Overall throughput drops almost 2x when going from single to two
highly-contended producers, gradually dropping with additional competing
producers. Performance drop stabilizes at around 20 producers and hovers
around 2mln even with 50+ fighting producers, which is a 5x drop compared to
non-contended case. Good kernel implementation in kernel helps maintain decent
performance here.
Note, that in the intended real-world scenarios, it's not expected to get even
close to such a high levels of contention. But if contention will become
a problem, there is always an option of sharding few ring buffers across a set
of CPUs.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-05-29 15:54:23 +08:00
|
|
|
&bench_rb_libbpf,
|
|
|
|
&bench_rb_custom,
|
|
|
|
&bench_pb_libbpf,
|
|
|
|
&bench_pb_custom,
|
2021-10-28 07:45:03 +08:00
|
|
|
&bench_bloom_lookup,
|
|
|
|
&bench_bloom_update,
|
|
|
|
&bench_bloom_false_positive,
|
2021-10-28 07:45:04 +08:00
|
|
|
&bench_hashmap_without_bloom,
|
|
|
|
&bench_hashmap_with_bloom,
|
selftest/bpf/benchs: Add bpf_loop benchmark
Add benchmark to measure the throughput and latency of the bpf_loop
call.
Testing this on my dev machine on 1 thread, the data is as follows:
nr_loops: 10
bpf_loop - throughput: 198.519 ± 0.155 M ops/s, latency: 5.037 ns/op
nr_loops: 100
bpf_loop - throughput: 247.448 ± 0.305 M ops/s, latency: 4.041 ns/op
nr_loops: 500
bpf_loop - throughput: 260.839 ± 0.380 M ops/s, latency: 3.834 ns/op
nr_loops: 1000
bpf_loop - throughput: 262.806 ± 0.629 M ops/s, latency: 3.805 ns/op
nr_loops: 5000
bpf_loop - throughput: 264.211 ± 1.508 M ops/s, latency: 3.785 ns/op
nr_loops: 10000
bpf_loop - throughput: 265.366 ± 3.054 M ops/s, latency: 3.768 ns/op
nr_loops: 50000
bpf_loop - throughput: 235.986 ± 20.205 M ops/s, latency: 4.238 ns/op
nr_loops: 100000
bpf_loop - throughput: 264.482 ± 0.279 M ops/s, latency: 3.781 ns/op
nr_loops: 500000
bpf_loop - throughput: 309.773 ± 87.713 M ops/s, latency: 3.228 ns/op
nr_loops: 1000000
bpf_loop - throughput: 262.818 ± 4.143 M ops/s, latency: 3.805 ns/op
>From this data, we can see that the latency per loop decreases as the
number of loops increases. On this particular machine, each loop had an
overhead of about ~4 ns, and we were able to run ~250 million loops
per second.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211130030622.4131246-5-joannekoong@fb.com
2021-11-30 11:06:22 +08:00
|
|
|
&bench_bpf_loop,
|
2021-12-10 22:16:51 +08:00
|
|
|
&bench_strncmp_no_helper,
|
|
|
|
&bench_strncmp_helper,
|
selftests/bpf: Add benchmark runner infrastructure
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
2020-05-13 03:24:43 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static void setup_benchmark()
|
|
|
|
{
|
|
|
|
int i, err;
|
|
|
|
|
|
|
|
if (!env.bench_name) {
|
|
|
|
fprintf(stderr, "benchmark name is not specified\n");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(benchs); i++) {
|
|
|
|
if (strcmp(benchs[i]->name, env.bench_name) == 0) {
|
|
|
|
bench = benchs[i];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!bench) {
|
|
|
|
fprintf(stderr, "benchmark '%s' not found\n", env.bench_name);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("Setting up benchmark '%s'...\n", bench->name);
|
|
|
|
|
|
|
|
state.producers = calloc(env.producer_cnt, sizeof(*state.producers));
|
|
|
|
state.consumers = calloc(env.consumer_cnt, sizeof(*state.consumers));
|
|
|
|
state.results = calloc(env.duration_sec + env.warmup_sec + 2,
|
|
|
|
sizeof(*state.results));
|
|
|
|
if (!state.producers || !state.consumers || !state.results)
|
|
|
|
exit(1);
|
|
|
|
|
|
|
|
if (bench->validate)
|
|
|
|
bench->validate();
|
|
|
|
if (bench->setup)
|
|
|
|
bench->setup();
|
|
|
|
|
|
|
|
for (i = 0; i < env.consumer_cnt; i++) {
|
|
|
|
err = pthread_create(&state.consumers[i], NULL,
|
|
|
|
bench->consumer_thread, (void *)(long)i);
|
|
|
|
if (err) {
|
|
|
|
fprintf(stderr, "failed to create consumer thread #%d: %d\n",
|
|
|
|
i, -errno);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
if (env.affinity)
|
|
|
|
set_thread_affinity(state.consumers[i],
|
|
|
|
next_cpu(&env.cons_cpus));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* unless explicit producer CPU list is specified, continue after
|
|
|
|
* last consumer CPU
|
|
|
|
*/
|
|
|
|
if (!env.prod_cpus.cpus)
|
|
|
|
env.prod_cpus.next_cpu = env.cons_cpus.next_cpu;
|
|
|
|
|
|
|
|
for (i = 0; i < env.producer_cnt; i++) {
|
|
|
|
err = pthread_create(&state.producers[i], NULL,
|
|
|
|
bench->producer_thread, (void *)(long)i);
|
|
|
|
if (err) {
|
|
|
|
fprintf(stderr, "failed to create producer thread #%d: %d\n",
|
|
|
|
i, -errno);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
if (env.affinity)
|
|
|
|
set_thread_affinity(state.producers[i],
|
|
|
|
next_cpu(&env.prod_cpus));
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("Benchmark '%s' started.\n", bench->name);
|
|
|
|
}
|
|
|
|
|
|
|
|
static pthread_mutex_t bench_done_mtx = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
static pthread_cond_t bench_done = PTHREAD_COND_INITIALIZER;
|
|
|
|
|
|
|
|
static void collect_measurements(long delta_ns) {
|
|
|
|
int iter = state.res_cnt++;
|
|
|
|
struct bench_res *res = &state.results[iter];
|
|
|
|
|
|
|
|
bench->measure(res);
|
|
|
|
|
|
|
|
if (bench->report_progress)
|
|
|
|
bench->report_progress(iter, res, delta_ns);
|
|
|
|
|
|
|
|
if (iter == env.duration_sec + env.warmup_sec) {
|
|
|
|
pthread_mutex_lock(&bench_done_mtx);
|
|
|
|
pthread_cond_signal(&bench_done);
|
|
|
|
pthread_mutex_unlock(&bench_done_mtx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
|
|
{
|
|
|
|
parse_cmdline_args(argc, argv);
|
|
|
|
|
|
|
|
if (env.list) {
|
|
|
|
int i;
|
|
|
|
|
|
|
|
printf("Available benchmarks:\n");
|
|
|
|
for (i = 0; i < ARRAY_SIZE(benchs); i++) {
|
|
|
|
printf("- %s\n", benchs[i]->name);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
setup_benchmark();
|
|
|
|
|
|
|
|
setup_timer();
|
|
|
|
|
|
|
|
pthread_mutex_lock(&bench_done_mtx);
|
|
|
|
pthread_cond_wait(&bench_done, &bench_done_mtx);
|
|
|
|
pthread_mutex_unlock(&bench_done_mtx);
|
|
|
|
|
|
|
|
if (bench->report_final)
|
|
|
|
/* skip first sample */
|
|
|
|
bench->report_final(state.results + env.warmup_sec,
|
|
|
|
state.res_cnt - env.warmup_sec);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|