linux/include/net/dsa.h

62 lines
1.6 KiB
C
Raw Normal View History

net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
/*
* include/net/dsa.h - Driver for Distributed Switch Architecture switch chips
dsa: add switch chip cascading support The initial version of the DSA driver only supported a single switch chip per network interface, while DSA-capable switch chips can be interconnected to form a tree of switch chips. This patch adds support for multiple switch chips on a network interface. An example topology for a 16-port device with an embedded CPU is as follows: +-----+ +--------+ +--------+ | |eth0 10| switch |9 10| switch | | CPU +----------+ +-------+ | | | | chip 0 | | chip 1 | +-----+ +---++---+ +---++---+ || || || || ||1000baseT ||1000baseT ||ports 1-8 ||ports 9-16 This requires a couple of interdependent changes in the DSA layer: - The dsa platform driver data needs to be extended: there is still only one netdevice per DSA driver instance (eth0 in the example above), but each of the switch chips in the tree needs its own mii_bus device pointer, MII management bus address, and port name array. (include/net/dsa.h) The existing in-tree dsa users need some small changes to deal with this. (arch/arm) - The DSA and Ethertype DSA tagging modules need to be extended to use the DSA device ID field on receive and demultiplex the packet accordingly, and fill in the DSA device ID field on transmit according to which switch chip the packet is heading to. (net/dsa/tag_{dsa,edsa}.c) - The concept of "CPU port", which is the switch chip port that the CPU is connected to (port 10 on switch chip 0 in the example), needs to be extended with the concept of "upstream port", which is the port on the switch chip that will bring us one hop closer to the CPU (port 10 for both switch chips in the example above). - The dsa platform data needs to specify which ports on which switch chips are links to other switch chips, so that we can enable DSA tagging mode on them. (For inter-switch links, we always use non-EtherType DSA tagging, since it has lower overhead. The CPU link uses dsa or edsa tagging depending on what the 'root' switch chip supports.) This is done by specifying "dsa" for the given port in the port array. - The dsa platform data needs to be extended with information on via which port to reach any given switch chip from any given switch chip. This info is specified via the per-switch chip data struct ->rtable[] array, which gives the nexthop ports for each of the other switches in the tree. For the example topology above, the dsa platform data would look something like this: static struct dsa_chip_data sw[2] = { { .mii_bus = &foo, .sw_addr = 1, .port_names[0] = "p1", .port_names[1] = "p2", .port_names[2] = "p3", .port_names[3] = "p4", .port_names[4] = "p5", .port_names[5] = "p6", .port_names[6] = "p7", .port_names[7] = "p8", .port_names[9] = "dsa", .port_names[10] = "cpu", .rtable = (s8 []){ -1, 9, }, }, { .mii_bus = &foo, .sw_addr = 2, .port_names[0] = "p9", .port_names[1] = "p10", .port_names[2] = "p11", .port_names[3] = "p12", .port_names[4] = "p13", .port_names[5] = "p14", .port_names[6] = "p15", .port_names[7] = "p16", .port_names[10] = "dsa", .rtable = (s8 []){ 10, -1, }, }, }, static struct dsa_platform_data pd = { .netdev = &foo, .nr_switches = 2, .sw = sw, }; Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Gary Thomas <gary@mlbassoc.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 17:52:09 +08:00
* Copyright (c) 2008-2009 Marvell Semiconductor
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#ifndef __LINUX_NET_DSA_H
#define __LINUX_NET_DSA_H
dsa: add switch chip cascading support The initial version of the DSA driver only supported a single switch chip per network interface, while DSA-capable switch chips can be interconnected to form a tree of switch chips. This patch adds support for multiple switch chips on a network interface. An example topology for a 16-port device with an embedded CPU is as follows: +-----+ +--------+ +--------+ | |eth0 10| switch |9 10| switch | | CPU +----------+ +-------+ | | | | chip 0 | | chip 1 | +-----+ +---++---+ +---++---+ || || || || ||1000baseT ||1000baseT ||ports 1-8 ||ports 9-16 This requires a couple of interdependent changes in the DSA layer: - The dsa platform driver data needs to be extended: there is still only one netdevice per DSA driver instance (eth0 in the example above), but each of the switch chips in the tree needs its own mii_bus device pointer, MII management bus address, and port name array. (include/net/dsa.h) The existing in-tree dsa users need some small changes to deal with this. (arch/arm) - The DSA and Ethertype DSA tagging modules need to be extended to use the DSA device ID field on receive and demultiplex the packet accordingly, and fill in the DSA device ID field on transmit according to which switch chip the packet is heading to. (net/dsa/tag_{dsa,edsa}.c) - The concept of "CPU port", which is the switch chip port that the CPU is connected to (port 10 on switch chip 0 in the example), needs to be extended with the concept of "upstream port", which is the port on the switch chip that will bring us one hop closer to the CPU (port 10 for both switch chips in the example above). - The dsa platform data needs to specify which ports on which switch chips are links to other switch chips, so that we can enable DSA tagging mode on them. (For inter-switch links, we always use non-EtherType DSA tagging, since it has lower overhead. The CPU link uses dsa or edsa tagging depending on what the 'root' switch chip supports.) This is done by specifying "dsa" for the given port in the port array. - The dsa platform data needs to be extended with information on via which port to reach any given switch chip from any given switch chip. This info is specified via the per-switch chip data struct ->rtable[] array, which gives the nexthop ports for each of the other switches in the tree. For the example topology above, the dsa platform data would look something like this: static struct dsa_chip_data sw[2] = { { .mii_bus = &foo, .sw_addr = 1, .port_names[0] = "p1", .port_names[1] = "p2", .port_names[2] = "p3", .port_names[3] = "p4", .port_names[4] = "p5", .port_names[5] = "p6", .port_names[6] = "p7", .port_names[7] = "p8", .port_names[9] = "dsa", .port_names[10] = "cpu", .rtable = (s8 []){ -1, 9, }, }, { .mii_bus = &foo, .sw_addr = 2, .port_names[0] = "p9", .port_names[1] = "p10", .port_names[2] = "p11", .port_names[3] = "p12", .port_names[4] = "p13", .port_names[5] = "p14", .port_names[6] = "p15", .port_names[7] = "p16", .port_names[10] = "dsa", .rtable = (s8 []){ 10, -1, }, }, }, static struct dsa_platform_data pd = { .netdev = &foo, .nr_switches = 2, .sw = sw, }; Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Gary Thomas <gary@mlbassoc.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 17:52:09 +08:00
#define DSA_MAX_SWITCHES 4
#define DSA_MAX_PORTS 12
struct dsa_chip_data {
/*
* How to access the switch configuration registers.
*/
struct device *mii_bus;
int sw_addr;
/*
* The names of the switch's ports. Use "cpu" to
* designate the switch port that the cpu is connected to,
* "dsa" to indicate that this port is a DSA link to
* another switch, NULL to indicate the port is unused,
* or any other string to indicate this is a physical port.
*/
char *port_names[DSA_MAX_PORTS];
/*
* An array (with nr_chips elements) of which element [a]
* indicates which port on this switch should be used to
* send packets to that are destined for switch a. Can be
* NULL if there is only one switch chip.
*/
s8 *rtable;
};
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
struct dsa_platform_data {
/*
* Reference to a Linux network interface that connects
dsa: add switch chip cascading support The initial version of the DSA driver only supported a single switch chip per network interface, while DSA-capable switch chips can be interconnected to form a tree of switch chips. This patch adds support for multiple switch chips on a network interface. An example topology for a 16-port device with an embedded CPU is as follows: +-----+ +--------+ +--------+ | |eth0 10| switch |9 10| switch | | CPU +----------+ +-------+ | | | | chip 0 | | chip 1 | +-----+ +---++---+ +---++---+ || || || || ||1000baseT ||1000baseT ||ports 1-8 ||ports 9-16 This requires a couple of interdependent changes in the DSA layer: - The dsa platform driver data needs to be extended: there is still only one netdevice per DSA driver instance (eth0 in the example above), but each of the switch chips in the tree needs its own mii_bus device pointer, MII management bus address, and port name array. (include/net/dsa.h) The existing in-tree dsa users need some small changes to deal with this. (arch/arm) - The DSA and Ethertype DSA tagging modules need to be extended to use the DSA device ID field on receive and demultiplex the packet accordingly, and fill in the DSA device ID field on transmit according to which switch chip the packet is heading to. (net/dsa/tag_{dsa,edsa}.c) - The concept of "CPU port", which is the switch chip port that the CPU is connected to (port 10 on switch chip 0 in the example), needs to be extended with the concept of "upstream port", which is the port on the switch chip that will bring us one hop closer to the CPU (port 10 for both switch chips in the example above). - The dsa platform data needs to specify which ports on which switch chips are links to other switch chips, so that we can enable DSA tagging mode on them. (For inter-switch links, we always use non-EtherType DSA tagging, since it has lower overhead. The CPU link uses dsa or edsa tagging depending on what the 'root' switch chip supports.) This is done by specifying "dsa" for the given port in the port array. - The dsa platform data needs to be extended with information on via which port to reach any given switch chip from any given switch chip. This info is specified via the per-switch chip data struct ->rtable[] array, which gives the nexthop ports for each of the other switches in the tree. For the example topology above, the dsa platform data would look something like this: static struct dsa_chip_data sw[2] = { { .mii_bus = &foo, .sw_addr = 1, .port_names[0] = "p1", .port_names[1] = "p2", .port_names[2] = "p3", .port_names[3] = "p4", .port_names[4] = "p5", .port_names[5] = "p6", .port_names[6] = "p7", .port_names[7] = "p8", .port_names[9] = "dsa", .port_names[10] = "cpu", .rtable = (s8 []){ -1, 9, }, }, { .mii_bus = &foo, .sw_addr = 2, .port_names[0] = "p9", .port_names[1] = "p10", .port_names[2] = "p11", .port_names[3] = "p12", .port_names[4] = "p13", .port_names[5] = "p14", .port_names[6] = "p15", .port_names[7] = "p16", .port_names[10] = "dsa", .rtable = (s8 []){ 10, -1, }, }, }, static struct dsa_platform_data pd = { .netdev = &foo, .nr_switches = 2, .sw = sw, }; Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Gary Thomas <gary@mlbassoc.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 17:52:09 +08:00
* to the root switch chip of the tree.
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
*/
struct device *netdev;
/*
dsa: add switch chip cascading support The initial version of the DSA driver only supported a single switch chip per network interface, while DSA-capable switch chips can be interconnected to form a tree of switch chips. This patch adds support for multiple switch chips on a network interface. An example topology for a 16-port device with an embedded CPU is as follows: +-----+ +--------+ +--------+ | |eth0 10| switch |9 10| switch | | CPU +----------+ +-------+ | | | | chip 0 | | chip 1 | +-----+ +---++---+ +---++---+ || || || || ||1000baseT ||1000baseT ||ports 1-8 ||ports 9-16 This requires a couple of interdependent changes in the DSA layer: - The dsa platform driver data needs to be extended: there is still only one netdevice per DSA driver instance (eth0 in the example above), but each of the switch chips in the tree needs its own mii_bus device pointer, MII management bus address, and port name array. (include/net/dsa.h) The existing in-tree dsa users need some small changes to deal with this. (arch/arm) - The DSA and Ethertype DSA tagging modules need to be extended to use the DSA device ID field on receive and demultiplex the packet accordingly, and fill in the DSA device ID field on transmit according to which switch chip the packet is heading to. (net/dsa/tag_{dsa,edsa}.c) - The concept of "CPU port", which is the switch chip port that the CPU is connected to (port 10 on switch chip 0 in the example), needs to be extended with the concept of "upstream port", which is the port on the switch chip that will bring us one hop closer to the CPU (port 10 for both switch chips in the example above). - The dsa platform data needs to specify which ports on which switch chips are links to other switch chips, so that we can enable DSA tagging mode on them. (For inter-switch links, we always use non-EtherType DSA tagging, since it has lower overhead. The CPU link uses dsa or edsa tagging depending on what the 'root' switch chip supports.) This is done by specifying "dsa" for the given port in the port array. - The dsa platform data needs to be extended with information on via which port to reach any given switch chip from any given switch chip. This info is specified via the per-switch chip data struct ->rtable[] array, which gives the nexthop ports for each of the other switches in the tree. For the example topology above, the dsa platform data would look something like this: static struct dsa_chip_data sw[2] = { { .mii_bus = &foo, .sw_addr = 1, .port_names[0] = "p1", .port_names[1] = "p2", .port_names[2] = "p3", .port_names[3] = "p4", .port_names[4] = "p5", .port_names[5] = "p6", .port_names[6] = "p7", .port_names[7] = "p8", .port_names[9] = "dsa", .port_names[10] = "cpu", .rtable = (s8 []){ -1, 9, }, }, { .mii_bus = &foo, .sw_addr = 2, .port_names[0] = "p9", .port_names[1] = "p10", .port_names[2] = "p11", .port_names[3] = "p12", .port_names[4] = "p13", .port_names[5] = "p14", .port_names[6] = "p15", .port_names[7] = "p16", .port_names[10] = "dsa", .rtable = (s8 []){ 10, -1, }, }, }, static struct dsa_platform_data pd = { .netdev = &foo, .nr_switches = 2, .sw = sw, }; Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Gary Thomas <gary@mlbassoc.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 17:52:09 +08:00
* Info structs describing each of the switch chips
* connected via this network interface.
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
*/
dsa: add switch chip cascading support The initial version of the DSA driver only supported a single switch chip per network interface, while DSA-capable switch chips can be interconnected to form a tree of switch chips. This patch adds support for multiple switch chips on a network interface. An example topology for a 16-port device with an embedded CPU is as follows: +-----+ +--------+ +--------+ | |eth0 10| switch |9 10| switch | | CPU +----------+ +-------+ | | | | chip 0 | | chip 1 | +-----+ +---++---+ +---++---+ || || || || ||1000baseT ||1000baseT ||ports 1-8 ||ports 9-16 This requires a couple of interdependent changes in the DSA layer: - The dsa platform driver data needs to be extended: there is still only one netdevice per DSA driver instance (eth0 in the example above), but each of the switch chips in the tree needs its own mii_bus device pointer, MII management bus address, and port name array. (include/net/dsa.h) The existing in-tree dsa users need some small changes to deal with this. (arch/arm) - The DSA and Ethertype DSA tagging modules need to be extended to use the DSA device ID field on receive and demultiplex the packet accordingly, and fill in the DSA device ID field on transmit according to which switch chip the packet is heading to. (net/dsa/tag_{dsa,edsa}.c) - The concept of "CPU port", which is the switch chip port that the CPU is connected to (port 10 on switch chip 0 in the example), needs to be extended with the concept of "upstream port", which is the port on the switch chip that will bring us one hop closer to the CPU (port 10 for both switch chips in the example above). - The dsa platform data needs to specify which ports on which switch chips are links to other switch chips, so that we can enable DSA tagging mode on them. (For inter-switch links, we always use non-EtherType DSA tagging, since it has lower overhead. The CPU link uses dsa or edsa tagging depending on what the 'root' switch chip supports.) This is done by specifying "dsa" for the given port in the port array. - The dsa platform data needs to be extended with information on via which port to reach any given switch chip from any given switch chip. This info is specified via the per-switch chip data struct ->rtable[] array, which gives the nexthop ports for each of the other switches in the tree. For the example topology above, the dsa platform data would look something like this: static struct dsa_chip_data sw[2] = { { .mii_bus = &foo, .sw_addr = 1, .port_names[0] = "p1", .port_names[1] = "p2", .port_names[2] = "p3", .port_names[3] = "p4", .port_names[4] = "p5", .port_names[5] = "p6", .port_names[6] = "p7", .port_names[7] = "p8", .port_names[9] = "dsa", .port_names[10] = "cpu", .rtable = (s8 []){ -1, 9, }, }, { .mii_bus = &foo, .sw_addr = 2, .port_names[0] = "p9", .port_names[1] = "p10", .port_names[2] = "p11", .port_names[3] = "p12", .port_names[4] = "p13", .port_names[5] = "p14", .port_names[6] = "p15", .port_names[7] = "p16", .port_names[10] = "dsa", .rtable = (s8 []){ 10, -1, }, }, }, static struct dsa_platform_data pd = { .netdev = &foo, .nr_switches = 2, .sw = sw, }; Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Gary Thomas <gary@mlbassoc.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 17:52:09 +08:00
int nr_chips;
struct dsa_chip_data *chip;
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
};
extern bool dsa_uses_dsa_tags(void *dsa_ptr);
extern bool dsa_uses_trailer_tags(void *dsa_ptr);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
#endif