linux/drivers/net/wireless/ath9k/core.c

1962 lines
49 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008, Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Implementation of the main "ATH" layer. */
#include "core.h"
#include "regd.h"
static int ath_outdoor; /* enable outdoor use */
static const u8 ath_bcast_mac[ETH_ALEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static u32 ath_chainmask_sel_up_rssi_thres =
ATH_CHAINMASK_SEL_UP_RSSI_THRES;
static u32 ath_chainmask_sel_down_rssi_thres =
ATH_CHAINMASK_SEL_DOWN_RSSI_THRES;
static u32 ath_chainmask_sel_period =
ATH_CHAINMASK_SEL_TIMEOUT;
/* return bus cachesize in 4B word units */
static void bus_read_cachesize(struct ath_softc *sc, int *csz)
{
u8 u8tmp;
pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
*csz = (int)u8tmp;
/*
* This check was put in to avoid "unplesant" consequences if
* the bootrom has not fully initialized all PCI devices.
* Sometimes the cache line size register is not set
*/
if (*csz == 0)
*csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
}
/*
* Set current operating mode
*
* This function initializes and fills the rate table in the ATH object based
* on the operating mode. The blink rates are also set up here, although
* they have been superceeded by the ath_led module.
*/
static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
{
const struct ath9k_rate_table *rt;
int i;
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
rt = sc->sc_rates[mode];
BUG_ON(!rt);
for (i = 0; i < rt->rateCount; i++)
sc->sc_rixmap[rt->info[i].rateCode] = (u8) i;
memzero(sc->sc_hwmap, sizeof(sc->sc_hwmap));
for (i = 0; i < 256; i++) {
u8 ix = rt->rateCodeToIndex[i];
if (ix == 0xff)
continue;
sc->sc_hwmap[i].ieeerate =
rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
sc->sc_hwmap[i].rateKbps = rt->info[ix].rateKbps;
if (rt->info[ix].shortPreamble ||
rt->info[ix].phy == PHY_OFDM) {
/* XXX: Handle this */
}
/* NB: this uses the last entry if the rate isn't found */
/* XXX beware of overlow */
}
sc->sc_currates = rt;
sc->sc_curmode = mode;
/*
* All protection frames are transmited at 2Mb/s for
* 11g, otherwise at 1Mb/s.
* XXX select protection rate index from rate table.
*/
sc->sc_protrix = (mode == WIRELESS_MODE_11g ? 1 : 0);
/* rate index used to send mgt frames */
sc->sc_minrateix = 0;
}
/*
* Select Rate Table
*
* Based on the wireless mode passed in, the rate table in the ATH object
* is set to the mode specific rate table. This also calls the callback
* function to set the rate in the protocol layer object.
*/
static int ath_rate_setup(struct ath_softc *sc, enum wireless_mode mode)
{
struct ath_hal *ah = sc->sc_ah;
const struct ath9k_rate_table *rt;
switch (mode) {
case WIRELESS_MODE_11a:
sc->sc_rates[mode] =
ath9k_hw_getratetable(ah, ATH9K_MODE_SEL_11A);
break;
case WIRELESS_MODE_11b:
sc->sc_rates[mode] =
ath9k_hw_getratetable(ah, ATH9K_MODE_SEL_11B);
break;
case WIRELESS_MODE_11g:
sc->sc_rates[mode] =
ath9k_hw_getratetable(ah, ATH9K_MODE_SEL_11G);
break;
case WIRELESS_MODE_11NA_HT20:
sc->sc_rates[mode] =
ath9k_hw_getratetable(ah, ATH9K_MODE_SEL_11NA_HT20);
break;
case WIRELESS_MODE_11NG_HT20:
sc->sc_rates[mode] =
ath9k_hw_getratetable(ah, ATH9K_MODE_SEL_11NG_HT20);
break;
case WIRELESS_MODE_11NA_HT40PLUS:
sc->sc_rates[mode] =
ath9k_hw_getratetable(ah, ATH9K_MODE_SEL_11NA_HT40PLUS);
break;
case WIRELESS_MODE_11NA_HT40MINUS:
sc->sc_rates[mode] =
ath9k_hw_getratetable(ah,
ATH9K_MODE_SEL_11NA_HT40MINUS);
break;
case WIRELESS_MODE_11NG_HT40PLUS:
sc->sc_rates[mode] =
ath9k_hw_getratetable(ah, ATH9K_MODE_SEL_11NG_HT40PLUS);
break;
case WIRELESS_MODE_11NG_HT40MINUS:
sc->sc_rates[mode] =
ath9k_hw_getratetable(ah,
ATH9K_MODE_SEL_11NG_HT40MINUS);
break;
default:
DPRINTF(sc, ATH_DBG_FATAL, "%s: invalid mode %u\n",
__func__, mode);
return 0;
}
rt = sc->sc_rates[mode];
if (rt == NULL)
return 0;
/* setup rate set in 802.11 protocol layer */
ath_setup_rate(sc, mode, NORMAL_RATE, rt);
return 1;
}
/*
* Set up channel list
*/
static int ath_setup_channels(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int nchan, i, a = 0, b = 0;
u8 regclassids[ATH_REGCLASSIDS_MAX];
u32 nregclass = 0;
struct ieee80211_supported_band *band_2ghz;
struct ieee80211_supported_band *band_5ghz;
struct ieee80211_channel *chan_2ghz;
struct ieee80211_channel *chan_5ghz;
struct ath9k_channel *c;
/* Fill in ah->ah_channels */
if (!ath9k_regd_init_channels(ah,
ATH_CHAN_MAX,
(u32 *)&nchan,
regclassids,
ATH_REGCLASSIDS_MAX,
&nregclass,
CTRY_DEFAULT,
ATH9K_MODE_SEL_ALL,
false,
1)) {
u32 rd = ah->ah_currentRD;
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to collect channel list; "
"regdomain likely %u country code %u\n",
__func__, rd, CTRY_DEFAULT);
return -EINVAL;
}
band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
for (i = 0; i < nchan; i++) {
c = &ah->ah_channels[i];
if (IS_CHAN_2GHZ(c)) {
chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
chan_2ghz[a].center_freq = c->channel;
chan_2ghz[a].max_power = c->maxTxPower;
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
chan_2ghz[a].flags |=
IEEE80211_CHAN_NO_IBSS;
if (c->channelFlags & CHANNEL_PASSIVE)
chan_2ghz[a].flags |=
IEEE80211_CHAN_PASSIVE_SCAN;
band_2ghz->n_channels = ++a;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 2MHz channel: %d, "
"channelFlags: 0x%x\n",
__func__,
c->channel,
c->channelFlags);
} else if (IS_CHAN_5GHZ(c)) {
chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
chan_5ghz[b].center_freq = c->channel;
chan_5ghz[b].max_power = c->maxTxPower;
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
chan_5ghz[b].flags |=
IEEE80211_CHAN_NO_IBSS;
if (c->channelFlags & CHANNEL_PASSIVE)
chan_5ghz[b].flags |=
IEEE80211_CHAN_PASSIVE_SCAN;
band_5ghz->n_channels = ++b;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 5MHz channel: %d, "
"channelFlags: 0x%x\n",
__func__,
c->channel,
c->channelFlags);
}
}
return 0;
}
/*
* Determine mode from channel flags
*
* This routine will provide the enumerated WIRELESSS_MODE value based
* on the settings of the channel flags. If ho valid set of flags
* exist, the lowest mode (11b) is selected.
*/
static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
{
if (chan->chanmode == CHANNEL_A)
return WIRELESS_MODE_11a;
else if (chan->chanmode == CHANNEL_G)
return WIRELESS_MODE_11g;
else if (chan->chanmode == CHANNEL_B)
return WIRELESS_MODE_11b;
else if (chan->chanmode == CHANNEL_A_HT20)
return WIRELESS_MODE_11NA_HT20;
else if (chan->chanmode == CHANNEL_G_HT20)
return WIRELESS_MODE_11NG_HT20;
else if (chan->chanmode == CHANNEL_A_HT40PLUS)
return WIRELESS_MODE_11NA_HT40PLUS;
else if (chan->chanmode == CHANNEL_A_HT40MINUS)
return WIRELESS_MODE_11NA_HT40MINUS;
else if (chan->chanmode == CHANNEL_G_HT40PLUS)
return WIRELESS_MODE_11NG_HT40PLUS;
else if (chan->chanmode == CHANNEL_G_HT40MINUS)
return WIRELESS_MODE_11NG_HT40MINUS;
/* NB: should not get here */
return WIRELESS_MODE_11b;
}
/*
* Change Channels
*
* Performs the actions to change the channel in the hardware, and set up
* the current operating mode for the new channel.
*/
static void ath_chan_change(struct ath_softc *sc, struct ath9k_channel *chan)
{
enum wireless_mode mode;
mode = ath_chan2mode(chan);
ath_rate_setup(sc, mode);
ath_setcurmode(sc, mode);
}
/*
* Stop the device, grabbing the top-level lock to protect
* against concurrent entry through ath_init (which can happen
* if another thread does a system call and the thread doing the
* stop is preempted).
*/
static int ath_stop(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: invalid %u\n",
__func__, sc->sc_invalid);
/*
* Shutdown the hardware and driver:
* stop output from above
* reset 802.11 state machine
* (sends station deassoc/deauth frames)
* turn off timers
* disable interrupts
* clear transmit machinery
* clear receive machinery
* turn off the radio
* reclaim beacon resources
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
if (!sc->sc_invalid)
ath9k_hw_set_interrupts(ah, 0);
ath_draintxq(sc, false);
if (!sc->sc_invalid) {
ath_stoprecv(sc);
ath9k_hw_phy_disable(ah);
} else
sc->sc_rxlink = NULL;
return 0;
}
/*
* Start Scan
*
* This function is called when starting a channel scan. It will perform
* power save wakeup processing, set the filter for the scan, and get the
* chip ready to send broadcast packets out during the scan.
*/
void ath_scan_start(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
u32 rfilt;
u32 now = (u32) jiffies_to_msecs(get_timestamp());
sc->sc_scanning = 1;
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
ath9k_hw_write_associd(ah, ath_bcast_mac, 0);
/* Restore previous power management state. */
DPRINTF(sc, ATH_DBG_CONFIG, "%d.%03d | %s: RX filter 0x%x aid 0\n",
now / 1000, now % 1000, __func__, rfilt);
}
/*
* Scan End
*
* This routine is called by the upper layer when the scan is completed. This
* will set the filters back to normal operating mode, set the BSSID to the
* correct value, and restore the power save state.
*/
void ath_scan_end(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
u32 rfilt;
u32 now = (u32) jiffies_to_msecs(get_timestamp());
sc->sc_scanning = 0;
/* Request for a full reset due to rx packet filter changes */
sc->sc_full_reset = 1;
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
ath9k_hw_write_associd(ah, sc->sc_curbssid, sc->sc_curaid);
DPRINTF(sc, ATH_DBG_CONFIG, "%d.%03d | %s: RX filter 0x%x aid 0x%x\n",
now / 1000, now % 1000, __func__, rfilt, sc->sc_curaid);
}
/*
* Set the current channel
*
* Set/change channels. If the channel is really being changed, it's done
* by reseting the chip. To accomplish this we must first cleanup any pending
* DMA, then restart stuff after a la ath_init.
*/
int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
{
struct ath_hal *ah = sc->sc_ah;
bool fastcc = true, stopped;
enum ath9k_ht_macmode ht_macmode;
if (sc->sc_invalid) /* if the device is invalid or removed */
return -EIO;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: %u (%u MHz) -> %u (%u MHz), cflags:%x\n",
__func__,
ath9k_hw_mhz2ieee(ah, sc->sc_curchan.channel,
sc->sc_curchan.channelFlags),
sc->sc_curchan.channel,
ath9k_hw_mhz2ieee(ah, hchan->channel, hchan->channelFlags),
hchan->channel, hchan->channelFlags);
ht_macmode = ath_cwm_macmode(sc);
if (hchan->channel != sc->sc_curchan.channel ||
hchan->channelFlags != sc->sc_curchan.channelFlags ||
sc->sc_update_chainmask || sc->sc_full_reset) {
int status;
/*
* This is only performed if the channel settings have
* actually changed.
*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
ath_draintxq(sc, false); /* clear pending tx frames */
stopped = ath_stoprecv(sc); /* turn off frame recv */
/* XXX: do not flush receive queue here. We don't want
* to flush data frames already in queue because of
* changing channel. */
if (!stopped || sc->sc_full_reset)
fastcc = false;
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah, sc->sc_opmode, hchan,
ht_macmode, sc->sc_tx_chainmask,
sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing,
fastcc, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to reset channel %u (%uMhz) "
"flags 0x%x hal status %u\n", __func__,
ath9k_hw_mhz2ieee(ah, hchan->channel,
hchan->channelFlags),
hchan->channel, hchan->channelFlags, status);
spin_unlock_bh(&sc->sc_resetlock);
return -EIO;
}
spin_unlock_bh(&sc->sc_resetlock);
sc->sc_curchan = *hchan;
sc->sc_update_chainmask = 0;
sc->sc_full_reset = 0;
/* Re-enable rx framework */
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to restart recv logic\n", __func__);
return -EIO;
}
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
ath_chan_change(sc, hchan);
ath_update_txpow(sc); /* update tx power state */
/*
* Re-enable interrupts.
*/
ath9k_hw_set_interrupts(ah, sc->sc_imask);
}
return 0;
}
/**********************/
/* Chainmask Handling */
/**********************/
static void ath_chainmask_sel_timertimeout(unsigned long data)
{
struct ath_chainmask_sel *cm = (struct ath_chainmask_sel *)data;
cm->switch_allowed = 1;
}
/* Start chainmask select timer */
static void ath_chainmask_sel_timerstart(struct ath_chainmask_sel *cm)
{
cm->switch_allowed = 0;
mod_timer(&cm->timer, ath_chainmask_sel_period);
}
/* Stop chainmask select timer */
static void ath_chainmask_sel_timerstop(struct ath_chainmask_sel *cm)
{
cm->switch_allowed = 0;
del_timer_sync(&cm->timer);
}
static void ath_chainmask_sel_init(struct ath_softc *sc, struct ath_node *an)
{
struct ath_chainmask_sel *cm = &an->an_chainmask_sel;
memzero(cm, sizeof(struct ath_chainmask_sel));
cm->cur_tx_mask = sc->sc_tx_chainmask;
cm->cur_rx_mask = sc->sc_rx_chainmask;
cm->tx_avgrssi = ATH_RSSI_DUMMY_MARKER;
setup_timer(&cm->timer,
ath_chainmask_sel_timertimeout, (unsigned long) cm);
}
int ath_chainmask_sel_logic(struct ath_softc *sc, struct ath_node *an)
{
struct ath_chainmask_sel *cm = &an->an_chainmask_sel;
/*
* Disable auto-swtiching in one of the following if conditions.
* sc_chainmask_auto_sel is used for internal global auto-switching
* enabled/disabled setting
*/
if (sc->sc_ah->ah_caps.halTxChainMask != ATH_CHAINMASK_SEL_3X3) {
cm->cur_tx_mask = sc->sc_tx_chainmask;
return cm->cur_tx_mask;
}
if (cm->tx_avgrssi == ATH_RSSI_DUMMY_MARKER)
return cm->cur_tx_mask;
if (cm->switch_allowed) {
/* Switch down from tx 3 to tx 2. */
if (cm->cur_tx_mask == ATH_CHAINMASK_SEL_3X3 &&
ATH_RSSI_OUT(cm->tx_avgrssi) >=
ath_chainmask_sel_down_rssi_thres) {
cm->cur_tx_mask = sc->sc_tx_chainmask;
/* Don't let another switch happen until
* this timer expires */
ath_chainmask_sel_timerstart(cm);
}
/* Switch up from tx 2 to 3. */
else if (cm->cur_tx_mask == sc->sc_tx_chainmask &&
ATH_RSSI_OUT(cm->tx_avgrssi) <=
ath_chainmask_sel_up_rssi_thres) {
cm->cur_tx_mask = ATH_CHAINMASK_SEL_3X3;
/* Don't let another switch happen
* until this timer expires */
ath_chainmask_sel_timerstart(cm);
}
}
return cm->cur_tx_mask;
}
/*
* Update tx/rx chainmask. For legacy association,
* hard code chainmask to 1x1, for 11n association, use
* the chainmask configuration.
*/
void ath_update_chainmask(struct ath_softc *sc, int is_ht)
{
sc->sc_update_chainmask = 1;
if (is_ht) {
sc->sc_tx_chainmask = sc->sc_ah->ah_caps.halTxChainMask;
sc->sc_rx_chainmask = sc->sc_ah->ah_caps.halRxChainMask;
} else {
sc->sc_tx_chainmask = 1;
sc->sc_rx_chainmask = 1;
}
DPRINTF(sc, ATH_DBG_CONFIG, "%s: tx chmask: %d, rx chmask: %d\n",
__func__, sc->sc_tx_chainmask, sc->sc_rx_chainmask);
}
/******************/
/* VAP management */
/******************/
/*
* VAP in Listen mode
*
* This routine brings the VAP out of the down state into a "listen" state
* where it waits for association requests. This is used in AP and AdHoc
* modes.
*/
int ath_vap_listen(struct ath_softc *sc, int if_id)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp;
u32 rfilt = 0;
DECLARE_MAC_BUF(mac);
avp = sc->sc_vaps[if_id];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: invalid interface id %u\n",
__func__, if_id);
return -EINVAL;
}
#ifdef CONFIG_SLOW_ANT_DIV
ath_slow_ant_div_stop(&sc->sc_antdiv);
#endif
/* update ratectrl about the new state */
ath_rate_newstate(sc, avp);
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
if (sc->sc_opmode == ATH9K_M_STA || sc->sc_opmode == ATH9K_M_IBSS) {
memcpy(sc->sc_curbssid, ath_bcast_mac, ETH_ALEN);
ath9k_hw_write_associd(ah, sc->sc_curbssid, sc->sc_curaid);
} else
sc->sc_curaid = 0;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, print_mac(mac,
sc->sc_curbssid), sc->sc_curaid);
/*
* XXXX
* Disable BMISS interrupt when we're not associated
*/
ath9k_hw_set_interrupts(ah,
sc->sc_imask & ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS));
sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
/* need to reconfigure the beacons when it moves to RUN */
sc->sc_beacons = 0;
return 0;
}
int ath_vap_attach(struct ath_softc *sc,
int if_id,
struct ieee80211_vif *if_data,
enum ath9k_opmode opmode)
{
struct ath_vap *avp;
if (if_id >= ATH_BCBUF || sc->sc_vaps[if_id] != NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Invalid interface id = %u\n", __func__, if_id);
return -EINVAL;
}
switch (opmode) {
case ATH9K_M_STA:
case ATH9K_M_IBSS:
case ATH9K_M_MONITOR:
break;
case ATH9K_M_HOSTAP:
/* XXX not right, beacon buffer is allocated on RUN trans */
if (list_empty(&sc->sc_bbuf))
return -ENOMEM;
break;
default:
return -EINVAL;
}
/* create ath_vap */
avp = kmalloc(sizeof(struct ath_vap), GFP_KERNEL);
if (avp == NULL)
return -ENOMEM;
memzero(avp, sizeof(struct ath_vap));
avp->av_if_data = if_data;
/* Set the VAP opmode */
avp->av_opmode = opmode;
avp->av_bslot = -1;
INIT_LIST_HEAD(&avp->av_mcastq.axq_q);
INIT_LIST_HEAD(&avp->av_mcastq.axq_acq);
spin_lock_init(&avp->av_mcastq.axq_lock);
ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
sc->sc_vaps[if_id] = avp;
sc->sc_nvaps++;
/* Set the device opmode */
sc->sc_opmode = opmode;
/* default VAP configuration */
avp->av_config.av_fixed_rateset = IEEE80211_FIXED_RATE_NONE;
avp->av_config.av_fixed_retryset = 0x03030303;
return 0;
}
int ath_vap_detach(struct ath_softc *sc, int if_id)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp;
avp = sc->sc_vaps[if_id];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: invalid interface id %u\n",
__func__, if_id);
return -EINVAL;
}
/*
* Quiesce the hardware while we remove the vap. In
* particular we need to reclaim all references to the
* vap state by any frames pending on the tx queues.
*
* XXX can we do this w/o affecting other vap's?
*/
ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
ath_draintxq(sc, false); /* stop xmit side */
ath_stoprecv(sc); /* stop recv side */
ath_flushrecv(sc); /* flush recv queue */
/* Reclaim any pending mcast bufs on the vap. */
ath_tx_draintxq(sc, &avp->av_mcastq, false);
kfree(avp);
sc->sc_vaps[if_id] = NULL;
sc->sc_nvaps--;
return 0;
}
int ath_vap_config(struct ath_softc *sc,
int if_id, struct ath_vap_config *if_config)
{
struct ath_vap *avp;
if (if_id >= ATH_BCBUF) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Invalid interface id = %u\n", __func__, if_id);
return -EINVAL;
}
avp = sc->sc_vaps[if_id];
ASSERT(avp != NULL);
if (avp)
memcpy(&avp->av_config, if_config, sizeof(avp->av_config));
return 0;
}
/********/
/* Core */
/********/
int ath_open(struct ath_softc *sc, struct ath9k_channel *initial_chan)
{
struct ath_hal *ah = sc->sc_ah;
int status;
int error = 0;
enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
DPRINTF(sc, ATH_DBG_CONFIG, "%s: mode %d\n", __func__, sc->sc_opmode);
/*
* Stop anything previously setup. This is safe
* whether this is the first time through or not.
*/
ath_stop(sc);
/* Initialize chanmask selection */
sc->sc_tx_chainmask = ah->ah_caps.halTxChainMask;
sc->sc_rx_chainmask = ah->ah_caps.halRxChainMask;
/* Reset SERDES registers */
ath9k_hw_configpcipowersave(ah, 0);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
sc->sc_curchan = *initial_chan;
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah, sc->sc_opmode, &sc->sc_curchan, ht_macmode,
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing, false, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to reset hardware; hal status %u "
"(freq %u flags 0x%x)\n", __func__, status,
sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
error = -EIO;
spin_unlock_bh(&sc->sc_resetlock);
goto done;
}
spin_unlock_bh(&sc->sc_resetlock);
/*
* This is needed only to setup initial state
* but it's best done after a reset.
*/
ath_update_txpow(sc);
/*
* Setup the hardware after reset:
* The receive engine is set going.
* Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to start recv logic\n", __func__);
error = -EIO;
goto done;
}
/* Setup our intr mask. */
sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
| ATH9K_INT_RXEOL | ATH9K_INT_RXORN
| ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
if (ah->ah_caps.halGTTSupport)
sc->sc_imask |= ATH9K_INT_GTT;
if (ah->ah_caps.halHTSupport)
sc->sc_imask |= ATH9K_INT_CST;
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if (ath9k_hw_phycounters(ah) &&
((sc->sc_opmode == ATH9K_M_STA) || (sc->sc_opmode == ATH9K_M_IBSS)))
sc->sc_imask |= ATH9K_INT_MIB;
/*
* Some hardware processes the TIM IE and fires an
* interrupt when the TIM bit is set. For hardware
* that does, if not overridden by configuration,
* enable the TIM interrupt when operating as station.
*/
if (ah->ah_caps.halEnhancedPmSupport && sc->sc_opmode == ATH9K_M_STA &&
!sc->sc_config.swBeaconProcess)
sc->sc_imask |= ATH9K_INT_TIM;
/*
* Don't enable interrupts here as we've not yet built our
* vap and node data structures, which will be needed as soon
* as we start receiving.
*/
ath_chan_change(sc, initial_chan);
/* XXX: we must make sure h/w is ready and clear invalid flag
* before turning on interrupt. */
sc->sc_invalid = 0;
done:
return error;
}
/*
* Reset the hardware w/o losing operational state. This is
* basically a more efficient way of doing ath_stop, ath_init,
* followed by state transitions to the current 802.11
* operational state. Used to recover from errors rx overrun
* and to reset the hardware when rf gain settings must be reset.
*/
static int ath_reset_start(struct ath_softc *sc, u32 flag)
{
struct ath_hal *ah = sc->sc_ah;
ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
ath_draintxq(sc, flag & RESET_RETRY_TXQ); /* stop xmit side */
ath_stoprecv(sc); /* stop recv side */
ath_flushrecv(sc); /* flush recv queue */
return 0;
}
static int ath_reset_end(struct ath_softc *sc, u32 flag)
{
struct ath_hal *ah = sc->sc_ah;
if (ath_startrecv(sc) != 0) /* restart recv */
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to start recv logic\n", __func__);
/*
* We may be doing a reset in response to a request
* that changes the channel so update any state that
* might change as a result.
*/
ath_chan_change(sc, &sc->sc_curchan);
ath_update_txpow(sc); /* update tx power state */
if (sc->sc_beacons)
ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
ath9k_hw_set_interrupts(ah, sc->sc_imask);
/* Restart the txq */
if (flag & RESET_RETRY_TXQ) {
int i;
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
spin_lock_bh(&sc->sc_txq[i].axq_lock);
ath_txq_schedule(sc, &sc->sc_txq[i]);
spin_unlock_bh(&sc->sc_txq[i].axq_lock);
}
}
}
return 0;
}
int ath_reset(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int status;
int error = 0;
enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
/* NB: indicate channel change so we do a full reset */
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah, sc->sc_opmode, &sc->sc_curchan,
ht_macmode,
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing, false, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to reset hardware; hal status %u\n",
__func__, status);
error = -EIO;
}
spin_unlock_bh(&sc->sc_resetlock);
return error;
}
int ath_suspend(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
/* No I/O if device has been surprise removed */
if (sc->sc_invalid)
return -EIO;
/* Shut off the interrupt before setting sc->sc_invalid to '1' */
ath9k_hw_set_interrupts(ah, 0);
/* XXX: we must make sure h/w will not generate any interrupt
* before setting the invalid flag. */
sc->sc_invalid = 1;
/* disable HAL and put h/w to sleep */
ath9k_hw_disable(sc->sc_ah);
ath9k_hw_configpcipowersave(sc->sc_ah, 1);
return 0;
}
/* Interrupt handler. Most of the actual processing is deferred.
* It's the caller's responsibility to ensure the chip is awake. */
irqreturn_t ath_isr(int irq, void *dev)
{
struct ath_softc *sc = dev;
struct ath_hal *ah = sc->sc_ah;
enum ath9k_int status;
bool sched = false;
do {
if (sc->sc_invalid) {
/*
* The hardware is not ready/present, don't
* touch anything. Note this can happen early
* on if the IRQ is shared.
*/
return IRQ_NONE;
}
if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
return IRQ_NONE;
}
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
status &= sc->sc_imask; /* discard unasked-for bits */
/*
* If there are no status bits set, then this interrupt was not
* for me (should have been caught above).
*/
if (!status)
return IRQ_NONE;
sc->sc_intrstatus = status;
if (status & ATH9K_INT_FATAL) {
/* need a chip reset */
sched = true;
} else if (status & ATH9K_INT_RXORN) {
/* need a chip reset */
sched = true;
} else {
if (status & ATH9K_INT_SWBA) {
/* schedule a tasklet for beacon handling */
tasklet_schedule(&sc->bcon_tasklet);
}
if (status & ATH9K_INT_RXEOL) {
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work
* at least on older hardware revs.
*/
sched = true;
}
if (status & ATH9K_INT_TXURN)
/* bump tx trigger level */
ath9k_hw_updatetxtriglevel(ah, true);
/* XXX: optimize this */
if (status & ATH9K_INT_RX)
sched = true;
if (status & ATH9K_INT_TX)
sched = true;
if (status & ATH9K_INT_BMISS)
sched = true;
/* carrier sense timeout */
if (status & ATH9K_INT_CST)
sched = true;
if (status & ATH9K_INT_MIB) {
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to
* fire.
*/
ath9k_hw_set_interrupts(ah, 0);
/*
* Let the hal handle the event. We assume
* it will clear whatever condition caused
* the interrupt.
*/
ath9k_hw_procmibevent(ah, &sc->sc_halstats);
ath9k_hw_set_interrupts(ah, sc->sc_imask);
}
if (status & ATH9K_INT_TIM_TIMER) {
if (!ah->ah_caps.halAutoSleepSupport) {
/* Clear RxAbort bit so that we can
* receive frames */
ath9k_hw_setrxabort(ah, 0);
sched = true;
}
}
}
} while (0);
if (sched) {
/* turn off every interrupt except SWBA */
ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
tasklet_schedule(&sc->intr_tq);
}
return IRQ_HANDLED;
}
/* Deferred interrupt processing */
static void ath9k_tasklet(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *)data;
u32 status = sc->sc_intrstatus;
if (status & ATH9K_INT_FATAL) {
/* need a chip reset */
ath_internal_reset(sc);
return;
} else {
if (status &
(ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
/* XXX: fill me in */
/*
if (status & ATH9K_INT_RXORN) {
}
if (status & ATH9K_INT_RXEOL) {
}
*/
spin_lock_bh(&sc->sc_rxflushlock);
ath_rx_tasklet(sc, 0);
spin_unlock_bh(&sc->sc_rxflushlock);
}
/* XXX: optimize this */
if (status & ATH9K_INT_TX)
ath_tx_tasklet(sc);
/* XXX: fill me in */
/*
if (status & ATH9K_INT_BMISS) {
}
if (status & (ATH9K_INT_TIM | ATH9K_INT_DTIMSYNC)) {
if (status & ATH9K_INT_TIM) {
}
if (status & ATH9K_INT_DTIMSYNC) {
}
}
*/
}
/* re-enable hardware interrupt */
ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
}
int ath_init(u16 devid, struct ath_softc *sc)
{
struct ath_hal *ah = NULL;
int status;
int error = 0, i;
int csz = 0;
u32 rd;
/* XXX: hardware will not be ready until ath_open() being called */
sc->sc_invalid = 1;
sc->sc_debug = DBG_DEFAULT;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: devid 0x%x\n", __func__, devid);
/* Initialize tasklet */
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
(unsigned long)sc);
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
bus_read_cachesize(sc, &csz);
/* XXX assert csz is non-zero */
sc->sc_cachelsz = csz << 2; /* convert to bytes */
spin_lock_init(&sc->sc_resetlock);
ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
if (ah == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to attach hardware; HAL status %u\n",
__func__, status);
error = -ENXIO;
goto bad;
}
sc->sc_ah = ah;
/* Get the chipset-specific aggr limit. */
sc->sc_rtsaggrlimit = ah->ah_caps.halRtsAggrLimit;
/* Get the hardware key cache size. */
sc->sc_keymax = ah->ah_caps.halKeyCacheSize;
if (sc->sc_keymax > ATH_KEYMAX) {
DPRINTF(sc, ATH_DBG_KEYCACHE,
"%s: Warning, using only %u entries in %u key cache\n",
__func__, ATH_KEYMAX, sc->sc_keymax);
sc->sc_keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->sc_keymax; i++)
ath9k_hw_keyreset(ah, (u16) i);
/*
* Mark key cache slots associated with global keys
* as in use. If we knew TKIP was not to be used we
* could leave the +32, +64, and +32+64 slots free.
* XXX only for splitmic.
*/
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
set_bit(i, sc->sc_keymap);
set_bit(i + 32, sc->sc_keymap);
set_bit(i + 64, sc->sc_keymap);
set_bit(i + 32 + 64, sc->sc_keymap);
}
/*
* Collect the channel list using the default country
* code and including outdoor channels. The 802.11 layer
* is resposible for filtering this list based on settings
* like the phy mode.
*/
rd = ah->ah_currentRD;
error = ath_setup_channels(sc);
if (error)
goto bad;
/* default to STA mode */
sc->sc_opmode = ATH9K_M_MONITOR;
/* Setup rate tables for all potential media types. */
/* 11g encompasses b,g */
ath_rate_setup(sc, WIRELESS_MODE_11a);
ath_rate_setup(sc, WIRELESS_MODE_11g);
/* NB: setup here so ath_rate_update is happy */
ath_setcurmode(sc, WIRELESS_MODE_11a);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that the hal handles reseting
* these queues at the needed time.
*/
sc->sc_bhalq = ath_beaconq_setup(ah);
if (sc->sc_bhalq == -1) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup a beacon xmit queue\n", __func__);
error = -EIO;
goto bad2;
}
sc->sc_cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
if (sc->sc_cabq == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup CAB xmit queue\n", __func__);
error = -EIO;
goto bad2;
}
sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
ath_cabq_update(sc);
for (i = 0; i < ARRAY_SIZE(sc->sc_haltype2q); i++)
sc->sc_haltype2q[i] = -1;
/* Setup data queues */
/* NB: ensure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for BK traffic\n",
__func__);
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for BE traffic\n",
__func__);
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for VI traffic\n",
__func__);
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for VO traffic\n",
__func__);
error = -EIO;
goto bad2;
}
sc->sc_rc = ath_rate_attach(ah);
if (sc->sc_rc == NULL) {
error = EIO;
goto bad2;
}
if (ath9k_hw_getcapability(ah, HAL_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)) {
/*
* Whether we should enable h/w TKIP MIC.
* XXX: if we don't support WME TKIP MIC, then we wouldn't
* report WMM capable, so it's always safe to turn on
* TKIP MIC in this case.
*/
ath9k_hw_setcapability(sc->sc_ah, HAL_CAP_TKIP_MIC, 0, 1, NULL);
}
/*
* Check whether the separate key cache entries
* are required to handle both tx+rx MIC keys.
* With split mic keys the number of stations is limited
* to 27 otherwise 59.
*/
if (ath9k_hw_getcapability(ah, HAL_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)
&& ath9k_hw_getcapability(ah, HAL_CAP_CIPHER,
ATH9K_CIPHER_MIC, NULL)
&& ath9k_hw_getcapability(ah, HAL_CAP_TKIP_SPLIT,
0, NULL))
sc->sc_splitmic = 1;
/* turn on mcast key search if possible */
if (!ath9k_hw_getcapability(ah, HAL_CAP_MCAST_KEYSRCH, 0, NULL))
(void)ath9k_hw_setcapability(ah, HAL_CAP_MCAST_KEYSRCH, 1,
1, NULL);
sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
sc->sc_config.txpowlimit_override = 0;
/* 11n Capabilities */
if (ah->ah_caps.halHTSupport) {
sc->sc_txaggr = 1;
sc->sc_rxaggr = 1;
}
sc->sc_tx_chainmask = ah->ah_caps.halTxChainMask;
sc->sc_rx_chainmask = ah->ah_caps.halRxChainMask;
/* Configuration for rx chain detection */
sc->sc_rxchaindetect_ref = 0;
sc->sc_rxchaindetect_thresh5GHz = 35;
sc->sc_rxchaindetect_thresh2GHz = 35;
sc->sc_rxchaindetect_delta5GHz = 30;
sc->sc_rxchaindetect_delta2GHz = 30;
ath9k_hw_setcapability(ah, HAL_CAP_DIVERSITY, 1, true, NULL);
sc->sc_defant = ath9k_hw_getdefantenna(ah);
ath9k_hw_getmac(ah, sc->sc_myaddr);
if (ah->ah_caps.halBssIdMaskSupport) {
ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
}
sc->sc_slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
/* initialize beacon slots */
for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++)
sc->sc_bslot[i] = ATH_IF_ID_ANY;
/* save MISC configurations */
sc->sc_config.swBeaconProcess = 1;
#ifdef CONFIG_SLOW_ANT_DIV
/* range is 40 - 255, we use something in the middle */
ath_slow_ant_div_init(&sc->sc_antdiv, sc, 0x127);
#endif
return 0;
bad2:
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
bad:
if (ah)
ath9k_hw_detach(ah);
return error;
}
void ath_deinit(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int i;
DPRINTF(sc, ATH_DBG_CONFIG, "%s\n", __func__);
ath_stop(sc);
if (!sc->sc_invalid)
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
ath_rate_detach(sc->sc_rc);
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
ath9k_hw_detach(ah);
}
/*******************/
/* Node Management */
/*******************/
struct ath_node *ath_node_attach(struct ath_softc *sc, u8 *addr, int if_id)
{
struct ath_vap *avp;
struct ath_node *an;
DECLARE_MAC_BUF(mac);
avp = sc->sc_vaps[if_id];
ASSERT(avp != NULL);
/* mac80211 sta_notify callback is from an IRQ context, so no sleep */
an = kmalloc(sizeof(struct ath_node), GFP_ATOMIC);
if (an == NULL)
return NULL;
memzero(an, sizeof(*an));
an->an_sc = sc;
memcpy(an->an_addr, addr, ETH_ALEN);
atomic_set(&an->an_refcnt, 1);
/* set up per-node tx/rx state */
ath_tx_node_init(sc, an);
ath_rx_node_init(sc, an);
ath_chainmask_sel_init(sc, an);
ath_chainmask_sel_timerstart(&an->an_chainmask_sel);
list_add(&an->list, &sc->node_list);
return an;
}
void ath_node_detach(struct ath_softc *sc, struct ath_node *an, bool bh_flag)
{
unsigned long flags;
DECLARE_MAC_BUF(mac);
ath_chainmask_sel_timerstop(&an->an_chainmask_sel);
an->an_flags |= ATH_NODE_CLEAN;
ath_tx_node_cleanup(sc, an, bh_flag);
ath_rx_node_cleanup(sc, an);
ath_tx_node_free(sc, an);
ath_rx_node_free(sc, an);
spin_lock_irqsave(&sc->node_lock, flags);
list_del(&an->list);
spin_unlock_irqrestore(&sc->node_lock, flags);
kfree(an);
}
/* Finds a node and increases the refcnt if found */
struct ath_node *ath_node_get(struct ath_softc *sc, u8 *addr)
{
struct ath_node *an = NULL, *an_found = NULL;
if (list_empty(&sc->node_list)) /* FIXME */
goto out;
list_for_each_entry(an, &sc->node_list, list) {
if (!compare_ether_addr(an->an_addr, addr)) {
atomic_inc(&an->an_refcnt);
an_found = an;
break;
}
}
out:
return an_found;
}
/* Decrements the refcnt and if it drops to zero, detach the node */
void ath_node_put(struct ath_softc *sc, struct ath_node *an, bool bh_flag)
{
if (atomic_dec_and_test(&an->an_refcnt))
ath_node_detach(sc, an, bh_flag);
}
/* Finds a node, doesn't increment refcnt. Caller must hold sc->node_lock */
struct ath_node *ath_node_find(struct ath_softc *sc, u8 *addr)
{
struct ath_node *an = NULL, *an_found = NULL;
if (list_empty(&sc->node_list))
return NULL;
list_for_each_entry(an, &sc->node_list, list)
if (!compare_ether_addr(an->an_addr, addr)) {
an_found = an;
break;
}
return an_found;
}
/*
* Set up New Node
*
* Setup driver-specific state for a newly associated node. This routine
* really only applies if compression or XR are enabled, there is no code
* covering any other cases.
*/
void ath_newassoc(struct ath_softc *sc,
struct ath_node *an, int isnew, int isuapsd)
{
int tidno;
/* if station reassociates, tear down the aggregation state. */
if (!isnew) {
for (tidno = 0; tidno < WME_NUM_TID; tidno++) {
if (sc->sc_txaggr)
ath_tx_aggr_teardown(sc, an, tidno);
if (sc->sc_rxaggr)
ath_rx_aggr_teardown(sc, an, tidno);
}
}
an->an_flags = 0;
}
/**************/
/* Encryption */
/**************/
void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot)
{
ath9k_hw_keyreset(sc->sc_ah, keyix);
if (freeslot)
clear_bit(keyix, sc->sc_keymap);
}
int ath_keyset(struct ath_softc *sc,
u16 keyix,
struct ath9k_keyval *hk,
const u8 mac[ETH_ALEN])
{
bool status;
status = ath9k_hw_set_keycache_entry(sc->sc_ah,
keyix, hk, mac, false);
return status != false;
}
/***********************/
/* TX Power/Regulatory */
/***********************/
/*
* Set Transmit power in HAL
*
* This routine makes the actual HAL calls to set the new transmit power
* limit.
*/
void ath_update_txpow(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
u32 txpow;
if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
/* read back in case value is clamped */
ath9k_hw_getcapability(ah, HAL_CAP_TXPOW, 1, &txpow);
sc->sc_curtxpow = txpow;
}
}
/* Return the current country and domain information */
void ath_get_currentCountry(struct ath_softc *sc,
struct ath9k_country_entry *ctry)
{
ath9k_regd_get_current_country(sc->sc_ah, ctry);
/* If HAL not specific yet, since it is band dependent,
* use the one we passed in. */
if (ctry->countryCode == CTRY_DEFAULT) {
ctry->iso[0] = 0;
ctry->iso[1] = 0;
} else if (ctry->iso[0] && ctry->iso[1]) {
if (!ctry->iso[2]) {
if (ath_outdoor)
ctry->iso[2] = 'O';
else
ctry->iso[2] = 'I';
}
}
}
/**************************/
/* Slow Antenna Diversity */
/**************************/
void ath_slow_ant_div_init(struct ath_antdiv *antdiv,
struct ath_softc *sc,
int32_t rssitrig)
{
int trig;
/* antdivf_rssitrig can range from 40 - 0xff */
trig = (rssitrig > 0xff) ? 0xff : rssitrig;
trig = (rssitrig < 40) ? 40 : rssitrig;
antdiv->antdiv_sc = sc;
antdiv->antdivf_rssitrig = trig;
}
void ath_slow_ant_div_start(struct ath_antdiv *antdiv,
u8 num_antcfg,
const u8 *bssid)
{
antdiv->antdiv_num_antcfg =
num_antcfg < ATH_ANT_DIV_MAX_CFG ?
num_antcfg : ATH_ANT_DIV_MAX_CFG;
antdiv->antdiv_state = ATH_ANT_DIV_IDLE;
antdiv->antdiv_curcfg = 0;
antdiv->antdiv_bestcfg = 0;
antdiv->antdiv_laststatetsf = 0;
memcpy(antdiv->antdiv_bssid, bssid, sizeof(antdiv->antdiv_bssid));
antdiv->antdiv_start = 1;
}
void ath_slow_ant_div_stop(struct ath_antdiv *antdiv)
{
antdiv->antdiv_start = 0;
}
static int32_t ath_find_max_val(int32_t *val,
u8 num_val, u8 *max_index)
{
u32 MaxVal = *val++;
u32 cur_index = 0;
*max_index = 0;
while (++cur_index < num_val) {
if (*val > MaxVal) {
MaxVal = *val;
*max_index = cur_index;
}
val++;
}
return MaxVal;
}
void ath_slow_ant_div(struct ath_antdiv *antdiv,
struct ieee80211_hdr *hdr,
struct ath_rx_status *rx_stats)
{
struct ath_softc *sc = antdiv->antdiv_sc;
struct ath_hal *ah = sc->sc_ah;
u64 curtsf = 0;
u8 bestcfg, curcfg = antdiv->antdiv_curcfg;
__le16 fc = hdr->frame_control;
if (antdiv->antdiv_start && ieee80211_is_beacon(fc)
&& !compare_ether_addr(hdr->addr3, antdiv->antdiv_bssid)) {
antdiv->antdiv_lastbrssi[curcfg] = rx_stats->rs_rssi;
antdiv->antdiv_lastbtsf[curcfg] = ath9k_hw_gettsf64(sc->sc_ah);
curtsf = antdiv->antdiv_lastbtsf[curcfg];
} else {
return;
}
switch (antdiv->antdiv_state) {
case ATH_ANT_DIV_IDLE:
if ((antdiv->antdiv_lastbrssi[curcfg] <
antdiv->antdivf_rssitrig)
&& ((curtsf - antdiv->antdiv_laststatetsf) >
ATH_ANT_DIV_MIN_IDLE_US)) {
curcfg++;
if (curcfg == antdiv->antdiv_num_antcfg)
curcfg = 0;
if (!ath9k_hw_select_antconfig(ah, curcfg)) {
antdiv->antdiv_bestcfg = antdiv->antdiv_curcfg;
antdiv->antdiv_curcfg = curcfg;
antdiv->antdiv_laststatetsf = curtsf;
antdiv->antdiv_state = ATH_ANT_DIV_SCAN;
}
}
break;
case ATH_ANT_DIV_SCAN:
if ((curtsf - antdiv->antdiv_laststatetsf) <
ATH_ANT_DIV_MIN_SCAN_US)
break;
curcfg++;
if (curcfg == antdiv->antdiv_num_antcfg)
curcfg = 0;
if (curcfg == antdiv->antdiv_bestcfg) {
ath_find_max_val(antdiv->antdiv_lastbrssi,
antdiv->antdiv_num_antcfg, &bestcfg);
if (!ath9k_hw_select_antconfig(ah, bestcfg)) {
antdiv->antdiv_bestcfg = bestcfg;
antdiv->antdiv_curcfg = bestcfg;
antdiv->antdiv_laststatetsf = curtsf;
antdiv->antdiv_state = ATH_ANT_DIV_IDLE;
}
} else {
if (!ath9k_hw_select_antconfig(ah, curcfg)) {
antdiv->antdiv_curcfg = curcfg;
antdiv->antdiv_laststatetsf = curtsf;
antdiv->antdiv_state = ATH_ANT_DIV_SCAN;
}
}
break;
}
}
/***********************/
/* Descriptor Handling */
/***********************/
/*
* Set up DMA descriptors
*
* This function will allocate both the DMA descriptor structure, and the
* buffers it contains. These are used to contain the descriptors used
* by the system.
*/
int ath_descdma_setup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head,
const char *name,
int nbuf,
int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
struct ath_desc *ds;
struct ath_buf *bf;
int i, bsize, error;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA: %u buffers %u desc/buf\n",
__func__, name, nbuf, ndesc);
/* ath_desc must be a multiple of DWORDs */
if ((sizeof(struct ath_desc) % 4) != 0) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: ath_desc not DWORD aligned\n",
__func__);
ASSERT((sizeof(struct ath_desc) % 4) == 0);
error = -ENOMEM;
goto fail;
}
dd->dd_name = name;
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
/*
* Need additional DMA memory because we can't use
* descriptors that cross the 4K page boundary. Assume
* one skipped descriptor per 4K page.
*/
if (!(sc->sc_ah->ah_caps.hal4kbSplitTransSupport)) {
u32 ndesc_skipped =
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
u32 dma_len;
while (ndesc_skipped) {
dma_len = ndesc_skipped * sizeof(struct ath_desc);
dd->dd_desc_len += dma_len;
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
};
}
/* allocate descriptors */
dd->dd_desc = pci_alloc_consistent(sc->pdev,
dd->dd_desc_len,
&dd->dd_desc_paddr);
if (dd->dd_desc == NULL) {
error = -ENOMEM;
goto fail;
}
ds = dd->dd_desc;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA map: %p (%u) -> %llx (%u)\n",
__func__, dd->dd_name, ds, (u32) dd->dd_desc_len,
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
/* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = kmalloc(bsize, GFP_KERNEL);
if (bf == NULL) {
error = -ENOMEM;
goto fail2;
}
memzero(bf, bsize);
dd->dd_bufptr = bf;
INIT_LIST_HEAD(head);
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (!(sc->sc_ah->ah_caps.hal4kbSplitTransSupport)) {
/*
* Skip descriptor addresses which can cause 4KB
* boundary crossing (addr + length) with a 32 dword
* descriptor fetch.
*/
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
ASSERT((caddr_t) bf->bf_desc <
((caddr_t) dd->dd_desc +
dd->dd_desc_len));
ds += ndesc;
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
list_add_tail(&bf->list, head);
}
return 0;
fail2:
pci_free_consistent(sc->pdev,
dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
fail:
memzero(dd, sizeof(*dd));
return error;
#undef ATH_DESC_4KB_BOUND_CHECK
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
#undef DS2PHYS
}
/*
* Cleanup DMA descriptors
*
* This function will free the DMA block that was allocated for the descriptor
* pool. Since this was allocated as one "chunk", it is freed in the same
* manner.
*/
void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head)
{
/* Free memory associated with descriptors */
pci_free_consistent(sc->pdev,
dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
INIT_LIST_HEAD(head);
kfree(dd->dd_bufptr);
memzero(dd, sizeof(*dd));
}
/*************/
/* Utilities */
/*************/
void ath_internal_reset(struct ath_softc *sc)
{
ath_reset_start(sc, 0);
ath_reset(sc);
ath_reset_end(sc, 0);
}
int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case 0:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_VO];
break;
case 1:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_VI];
break;
case 2:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
break;
case 3:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_BK];
break;
default:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
break;
}
return qnum;
}
int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case ATH9K_WME_AC_VO:
qnum = 0;
break;
case ATH9K_WME_AC_VI:
qnum = 1;
break;
case ATH9K_WME_AC_BE:
qnum = 2;
break;
case ATH9K_WME_AC_BK:
qnum = 3;
break;
default:
qnum = -1;
break;
}
return qnum;
}
/*
* Expand time stamp to TSF
*
* Extend 15-bit time stamp from rx descriptor to
* a full 64-bit TSF using the current h/w TSF.
*/
u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp)
{
u64 tsf;
tsf = ath9k_hw_gettsf64(sc->sc_ah);
if ((tsf & 0x7fff) < rstamp)
tsf -= 0x8000;
return (tsf & ~0x7fff) | rstamp;
}
/*
* Set Default Antenna
*
* Call into the HAL to set the default antenna to use. Not really valid for
* MIMO technology.
*/
void ath_setdefantenna(void *context, u32 antenna)
{
struct ath_softc *sc = (struct ath_softc *)context;
struct ath_hal *ah = sc->sc_ah;
/* XXX block beacon interrupts */
ath9k_hw_setantenna(ah, antenna);
sc->sc_defant = antenna;
sc->sc_rxotherant = 0;
}
/*
* Set Slot Time
*
* This will wake up the chip if required, and set the slot time for the
* frame (maximum transmit time). Slot time is assumed to be already set
* in the ATH object member sc_slottime
*/
void ath_setslottime(struct ath_softc *sc)
{
ath9k_hw_setslottime(sc->sc_ah, sc->sc_slottime);
sc->sc_updateslot = OK;
}