FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
/* FS-Cache worker operation management routines
|
|
|
|
*
|
|
|
|
* Copyright (C) 2008 Red Hat, Inc. All Rights Reserved.
|
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* See Documentation/filesystems/caching/operations.txt
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define FSCACHE_DEBUG_LEVEL OPERATION
|
|
|
|
#include <linux/module.h>
|
2009-11-20 02:11:01 +08:00
|
|
|
#include <linux/seq_file.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
atomic_t fscache_op_debug_id;
|
|
|
|
EXPORT_SYMBOL(fscache_op_debug_id);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscache_enqueue_operation - Enqueue an operation for processing
|
|
|
|
* @op: The operation to enqueue
|
|
|
|
*
|
|
|
|
* Enqueue an operation for processing by the FS-Cache thread pool.
|
|
|
|
*
|
|
|
|
* This will get its own ref on the object.
|
|
|
|
*/
|
|
|
|
void fscache_enqueue_operation(struct fscache_operation *op)
|
|
|
|
{
|
|
|
|
_enter("{OBJ%x OP%x,%u}",
|
|
|
|
op->object->debug_id, op->debug_id, atomic_read(&op->usage));
|
|
|
|
|
2009-11-20 02:11:01 +08:00
|
|
|
fscache_set_op_state(op, "EnQ");
|
|
|
|
|
2009-11-20 02:11:19 +08:00
|
|
|
ASSERT(list_empty(&op->pend_link));
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
ASSERT(op->processor != NULL);
|
|
|
|
ASSERTCMP(op->object->state, >=, FSCACHE_OBJECT_AVAILABLE);
|
|
|
|
ASSERTCMP(atomic_read(&op->usage), >, 0);
|
|
|
|
|
2009-11-20 02:11:19 +08:00
|
|
|
fscache_stat(&fscache_n_op_enqueue);
|
|
|
|
switch (op->flags & FSCACHE_OP_TYPE) {
|
|
|
|
case FSCACHE_OP_FAST:
|
|
|
|
_debug("queue fast");
|
|
|
|
atomic_inc(&op->usage);
|
|
|
|
if (!schedule_work(&op->fast_work))
|
|
|
|
fscache_put_operation(op);
|
|
|
|
break;
|
|
|
|
case FSCACHE_OP_SLOW:
|
|
|
|
_debug("queue slow");
|
|
|
|
slow_work_enqueue(&op->slow_work);
|
|
|
|
break;
|
|
|
|
case FSCACHE_OP_MYTHREAD:
|
|
|
|
_debug("queue for caller's attention");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_ERR "FS-Cache: Unexpected op type %lx",
|
|
|
|
op->flags);
|
|
|
|
BUG();
|
|
|
|
break;
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscache_enqueue_operation);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* start an op running
|
|
|
|
*/
|
|
|
|
static void fscache_run_op(struct fscache_object *object,
|
|
|
|
struct fscache_operation *op)
|
|
|
|
{
|
2009-11-20 02:11:01 +08:00
|
|
|
fscache_set_op_state(op, "Run");
|
|
|
|
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
object->n_in_progress++;
|
|
|
|
if (test_and_clear_bit(FSCACHE_OP_WAITING, &op->flags))
|
|
|
|
wake_up_bit(&op->flags, FSCACHE_OP_WAITING);
|
|
|
|
if (op->processor)
|
|
|
|
fscache_enqueue_operation(op);
|
|
|
|
fscache_stat(&fscache_n_op_run);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* submit an exclusive operation for an object
|
|
|
|
* - other ops are excluded from running simultaneously with this one
|
|
|
|
* - this gets any extra refs it needs on an op
|
|
|
|
*/
|
|
|
|
int fscache_submit_exclusive_op(struct fscache_object *object,
|
|
|
|
struct fscache_operation *op)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("{OBJ%x OP%x},", object->debug_id, op->debug_id);
|
|
|
|
|
2009-11-20 02:11:01 +08:00
|
|
|
fscache_set_op_state(op, "SubmitX");
|
|
|
|
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
spin_lock(&object->lock);
|
|
|
|
ASSERTCMP(object->n_ops, >=, object->n_in_progress);
|
|
|
|
ASSERTCMP(object->n_ops, >=, object->n_exclusive);
|
2009-11-20 02:11:19 +08:00
|
|
|
ASSERT(list_empty(&op->pend_link));
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
|
|
|
|
ret = -ENOBUFS;
|
|
|
|
if (fscache_object_is_active(object)) {
|
|
|
|
op->object = object;
|
|
|
|
object->n_ops++;
|
|
|
|
object->n_exclusive++; /* reads and writes must wait */
|
|
|
|
|
|
|
|
if (object->n_ops > 0) {
|
|
|
|
atomic_inc(&op->usage);
|
|
|
|
list_add_tail(&op->pend_link, &object->pending_ops);
|
|
|
|
fscache_stat(&fscache_n_op_pend);
|
|
|
|
} else if (!list_empty(&object->pending_ops)) {
|
|
|
|
atomic_inc(&op->usage);
|
|
|
|
list_add_tail(&op->pend_link, &object->pending_ops);
|
|
|
|
fscache_stat(&fscache_n_op_pend);
|
|
|
|
fscache_start_operations(object);
|
|
|
|
} else {
|
|
|
|
ASSERTCMP(object->n_in_progress, ==, 0);
|
|
|
|
fscache_run_op(object, op);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* need to issue a new write op after this */
|
|
|
|
clear_bit(FSCACHE_OBJECT_PENDING_WRITE, &object->flags);
|
|
|
|
ret = 0;
|
|
|
|
} else if (object->state == FSCACHE_OBJECT_CREATING) {
|
|
|
|
op->object = object;
|
|
|
|
object->n_ops++;
|
|
|
|
object->n_exclusive++; /* reads and writes must wait */
|
|
|
|
atomic_inc(&op->usage);
|
|
|
|
list_add_tail(&op->pend_link, &object->pending_ops);
|
|
|
|
fscache_stat(&fscache_n_op_pend);
|
|
|
|
ret = 0;
|
|
|
|
} else {
|
|
|
|
/* not allowed to submit ops in any other state */
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&object->lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* report an unexpected submission
|
|
|
|
*/
|
|
|
|
static void fscache_report_unexpected_submission(struct fscache_object *object,
|
|
|
|
struct fscache_operation *op,
|
|
|
|
unsigned long ostate)
|
|
|
|
{
|
|
|
|
static bool once_only;
|
|
|
|
struct fscache_operation *p;
|
|
|
|
unsigned n;
|
|
|
|
|
|
|
|
if (once_only)
|
|
|
|
return;
|
|
|
|
once_only = true;
|
|
|
|
|
|
|
|
kdebug("unexpected submission OP%x [OBJ%x %s]",
|
|
|
|
op->debug_id, object->debug_id,
|
|
|
|
fscache_object_states[object->state]);
|
|
|
|
kdebug("objstate=%s [%s]",
|
|
|
|
fscache_object_states[object->state],
|
|
|
|
fscache_object_states[ostate]);
|
|
|
|
kdebug("objflags=%lx", object->flags);
|
|
|
|
kdebug("objevent=%lx [%lx]", object->events, object->event_mask);
|
|
|
|
kdebug("ops=%u inp=%u exc=%u",
|
|
|
|
object->n_ops, object->n_in_progress, object->n_exclusive);
|
|
|
|
|
|
|
|
if (!list_empty(&object->pending_ops)) {
|
|
|
|
n = 0;
|
|
|
|
list_for_each_entry(p, &object->pending_ops, pend_link) {
|
|
|
|
ASSERTCMP(p->object, ==, object);
|
|
|
|
kdebug("%p %p", op->processor, op->release);
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
|
|
|
|
kdebug("n=%u", n);
|
|
|
|
}
|
|
|
|
|
|
|
|
dump_stack();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* submit an operation for an object
|
|
|
|
* - objects may be submitted only in the following states:
|
|
|
|
* - during object creation (write ops may be submitted)
|
|
|
|
* - whilst the object is active
|
|
|
|
* - after an I/O error incurred in one of the two above states (op rejected)
|
|
|
|
* - this gets any extra refs it needs on an op
|
|
|
|
*/
|
|
|
|
int fscache_submit_op(struct fscache_object *object,
|
|
|
|
struct fscache_operation *op)
|
|
|
|
{
|
|
|
|
unsigned long ostate;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("{OBJ%x OP%x},{%u}",
|
|
|
|
object->debug_id, op->debug_id, atomic_read(&op->usage));
|
|
|
|
|
|
|
|
ASSERTCMP(atomic_read(&op->usage), >, 0);
|
|
|
|
|
2009-11-20 02:11:01 +08:00
|
|
|
fscache_set_op_state(op, "Submit");
|
|
|
|
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
spin_lock(&object->lock);
|
|
|
|
ASSERTCMP(object->n_ops, >=, object->n_in_progress);
|
|
|
|
ASSERTCMP(object->n_ops, >=, object->n_exclusive);
|
2009-11-20 02:11:19 +08:00
|
|
|
ASSERT(list_empty(&op->pend_link));
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
|
|
|
|
ostate = object->state;
|
|
|
|
smp_rmb();
|
|
|
|
|
|
|
|
if (fscache_object_is_active(object)) {
|
|
|
|
op->object = object;
|
|
|
|
object->n_ops++;
|
|
|
|
|
|
|
|
if (object->n_exclusive > 0) {
|
|
|
|
atomic_inc(&op->usage);
|
|
|
|
list_add_tail(&op->pend_link, &object->pending_ops);
|
|
|
|
fscache_stat(&fscache_n_op_pend);
|
|
|
|
} else if (!list_empty(&object->pending_ops)) {
|
|
|
|
atomic_inc(&op->usage);
|
|
|
|
list_add_tail(&op->pend_link, &object->pending_ops);
|
|
|
|
fscache_stat(&fscache_n_op_pend);
|
|
|
|
fscache_start_operations(object);
|
|
|
|
} else {
|
|
|
|
ASSERTCMP(object->n_exclusive, ==, 0);
|
|
|
|
fscache_run_op(object, op);
|
|
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
} else if (object->state == FSCACHE_OBJECT_CREATING) {
|
|
|
|
op->object = object;
|
|
|
|
object->n_ops++;
|
|
|
|
atomic_inc(&op->usage);
|
|
|
|
list_add_tail(&op->pend_link, &object->pending_ops);
|
|
|
|
fscache_stat(&fscache_n_op_pend);
|
|
|
|
ret = 0;
|
2009-11-20 02:11:32 +08:00
|
|
|
} else if (object->state == FSCACHE_OBJECT_DYING ||
|
|
|
|
object->state == FSCACHE_OBJECT_LC_DYING ||
|
|
|
|
object->state == FSCACHE_OBJECT_WITHDRAWING) {
|
|
|
|
fscache_stat(&fscache_n_op_rejected);
|
|
|
|
ret = -ENOBUFS;
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
} else if (!test_bit(FSCACHE_IOERROR, &object->cache->flags)) {
|
|
|
|
fscache_report_unexpected_submission(object, op, ostate);
|
|
|
|
ASSERT(!fscache_object_is_active(object));
|
|
|
|
ret = -ENOBUFS;
|
|
|
|
} else {
|
|
|
|
ret = -ENOBUFS;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&object->lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* queue an object for withdrawal on error, aborting all following asynchronous
|
|
|
|
* operations
|
|
|
|
*/
|
|
|
|
void fscache_abort_object(struct fscache_object *object)
|
|
|
|
{
|
|
|
|
_enter("{OBJ%x}", object->debug_id);
|
|
|
|
|
|
|
|
fscache_raise_event(object, FSCACHE_OBJECT_EV_ERROR);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* jump start the operation processing on an object
|
|
|
|
* - caller must hold object->lock
|
|
|
|
*/
|
|
|
|
void fscache_start_operations(struct fscache_object *object)
|
|
|
|
{
|
|
|
|
struct fscache_operation *op;
|
|
|
|
bool stop = false;
|
|
|
|
|
|
|
|
while (!list_empty(&object->pending_ops) && !stop) {
|
|
|
|
op = list_entry(object->pending_ops.next,
|
|
|
|
struct fscache_operation, pend_link);
|
|
|
|
|
|
|
|
if (test_bit(FSCACHE_OP_EXCLUSIVE, &op->flags)) {
|
|
|
|
if (object->n_in_progress > 0)
|
|
|
|
break;
|
|
|
|
stop = true;
|
|
|
|
}
|
|
|
|
list_del_init(&op->pend_link);
|
2009-11-20 02:11:19 +08:00
|
|
|
fscache_run_op(object, op);
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
|
|
|
|
/* the pending queue was holding a ref on the object */
|
|
|
|
fscache_put_operation(op);
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERTCMP(object->n_in_progress, <=, object->n_ops);
|
|
|
|
|
|
|
|
_debug("woke %d ops on OBJ%x",
|
|
|
|
object->n_in_progress, object->debug_id);
|
|
|
|
}
|
|
|
|
|
2009-11-20 02:11:19 +08:00
|
|
|
/*
|
|
|
|
* cancel an operation that's pending on an object
|
|
|
|
*/
|
|
|
|
int fscache_cancel_op(struct fscache_operation *op)
|
|
|
|
{
|
|
|
|
struct fscache_object *object = op->object;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("OBJ%x OP%x}", op->object->debug_id, op->debug_id);
|
|
|
|
|
|
|
|
spin_lock(&object->lock);
|
|
|
|
|
|
|
|
ret = -EBUSY;
|
|
|
|
if (!list_empty(&op->pend_link)) {
|
|
|
|
fscache_stat(&fscache_n_op_cancelled);
|
|
|
|
list_del_init(&op->pend_link);
|
|
|
|
object->n_ops--;
|
|
|
|
if (test_bit(FSCACHE_OP_EXCLUSIVE, &op->flags))
|
|
|
|
object->n_exclusive--;
|
|
|
|
if (test_and_clear_bit(FSCACHE_OP_WAITING, &op->flags))
|
|
|
|
wake_up_bit(&op->flags, FSCACHE_OP_WAITING);
|
|
|
|
fscache_put_operation(op);
|
|
|
|
ret = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&object->lock);
|
|
|
|
_leave(" = %d", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
/*
|
|
|
|
* release an operation
|
|
|
|
* - queues pending ops if this is the last in-progress op
|
|
|
|
*/
|
|
|
|
void fscache_put_operation(struct fscache_operation *op)
|
|
|
|
{
|
|
|
|
struct fscache_object *object;
|
|
|
|
struct fscache_cache *cache;
|
|
|
|
|
|
|
|
_enter("{OBJ%x OP%x,%d}",
|
|
|
|
op->object->debug_id, op->debug_id, atomic_read(&op->usage));
|
|
|
|
|
|
|
|
ASSERTCMP(atomic_read(&op->usage), >, 0);
|
|
|
|
|
|
|
|
if (!atomic_dec_and_test(&op->usage))
|
|
|
|
return;
|
|
|
|
|
2009-11-20 02:11:01 +08:00
|
|
|
fscache_set_op_state(op, "Put");
|
|
|
|
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
_debug("PUT OP");
|
|
|
|
if (test_and_set_bit(FSCACHE_OP_DEAD, &op->flags))
|
|
|
|
BUG();
|
|
|
|
|
|
|
|
fscache_stat(&fscache_n_op_release);
|
|
|
|
|
|
|
|
if (op->release) {
|
|
|
|
op->release(op);
|
|
|
|
op->release = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
object = op->object;
|
|
|
|
|
2009-11-20 02:11:04 +08:00
|
|
|
if (test_bit(FSCACHE_OP_DEC_READ_CNT, &op->flags))
|
|
|
|
atomic_dec(&object->n_reads);
|
|
|
|
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
/* now... we may get called with the object spinlock held, so we
|
|
|
|
* complete the cleanup here only if we can immediately acquire the
|
|
|
|
* lock, and defer it otherwise */
|
|
|
|
if (!spin_trylock(&object->lock)) {
|
|
|
|
_debug("defer put");
|
|
|
|
fscache_stat(&fscache_n_op_deferred_release);
|
|
|
|
|
|
|
|
cache = object->cache;
|
|
|
|
spin_lock(&cache->op_gc_list_lock);
|
|
|
|
list_add_tail(&op->pend_link, &cache->op_gc_list);
|
|
|
|
spin_unlock(&cache->op_gc_list_lock);
|
|
|
|
schedule_work(&cache->op_gc);
|
|
|
|
_leave(" [defer]");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (test_bit(FSCACHE_OP_EXCLUSIVE, &op->flags)) {
|
|
|
|
ASSERTCMP(object->n_exclusive, >, 0);
|
|
|
|
object->n_exclusive--;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERTCMP(object->n_in_progress, >, 0);
|
|
|
|
object->n_in_progress--;
|
|
|
|
if (object->n_in_progress == 0)
|
|
|
|
fscache_start_operations(object);
|
|
|
|
|
|
|
|
ASSERTCMP(object->n_ops, >, 0);
|
|
|
|
object->n_ops--;
|
|
|
|
if (object->n_ops == 0)
|
|
|
|
fscache_raise_event(object, FSCACHE_OBJECT_EV_CLEARED);
|
|
|
|
|
|
|
|
spin_unlock(&object->lock);
|
|
|
|
|
|
|
|
kfree(op);
|
|
|
|
_leave(" [done]");
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscache_put_operation);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* garbage collect operations that have had their release deferred
|
|
|
|
*/
|
|
|
|
void fscache_operation_gc(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct fscache_operation *op;
|
|
|
|
struct fscache_object *object;
|
|
|
|
struct fscache_cache *cache =
|
|
|
|
container_of(work, struct fscache_cache, op_gc);
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
|
|
|
do {
|
|
|
|
spin_lock(&cache->op_gc_list_lock);
|
|
|
|
if (list_empty(&cache->op_gc_list)) {
|
|
|
|
spin_unlock(&cache->op_gc_list_lock);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
op = list_entry(cache->op_gc_list.next,
|
|
|
|
struct fscache_operation, pend_link);
|
|
|
|
list_del(&op->pend_link);
|
|
|
|
spin_unlock(&cache->op_gc_list_lock);
|
|
|
|
|
|
|
|
object = op->object;
|
|
|
|
|
|
|
|
_debug("GC DEFERRED REL OBJ%x OP%x",
|
|
|
|
object->debug_id, op->debug_id);
|
|
|
|
fscache_stat(&fscache_n_op_gc);
|
|
|
|
|
|
|
|
ASSERTCMP(atomic_read(&op->usage), ==, 0);
|
|
|
|
|
|
|
|
spin_lock(&object->lock);
|
|
|
|
if (test_bit(FSCACHE_OP_EXCLUSIVE, &op->flags)) {
|
|
|
|
ASSERTCMP(object->n_exclusive, >, 0);
|
|
|
|
object->n_exclusive--;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERTCMP(object->n_in_progress, >, 0);
|
|
|
|
object->n_in_progress--;
|
|
|
|
if (object->n_in_progress == 0)
|
|
|
|
fscache_start_operations(object);
|
|
|
|
|
|
|
|
ASSERTCMP(object->n_ops, >, 0);
|
|
|
|
object->n_ops--;
|
|
|
|
if (object->n_ops == 0)
|
|
|
|
fscache_raise_event(object, FSCACHE_OBJECT_EV_CLEARED);
|
|
|
|
|
|
|
|
spin_unlock(&object->lock);
|
|
|
|
|
|
|
|
} while (count++ < 20);
|
|
|
|
|
|
|
|
if (!list_empty(&cache->op_gc_list))
|
|
|
|
schedule_work(&cache->op_gc);
|
|
|
|
|
|
|
|
_leave("");
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* allow the slow work item processor to get a ref on an operation
|
|
|
|
*/
|
|
|
|
static int fscache_op_get_ref(struct slow_work *work)
|
|
|
|
{
|
|
|
|
struct fscache_operation *op =
|
|
|
|
container_of(work, struct fscache_operation, slow_work);
|
|
|
|
|
|
|
|
atomic_inc(&op->usage);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* allow the slow work item processor to discard a ref on an operation
|
|
|
|
*/
|
|
|
|
static void fscache_op_put_ref(struct slow_work *work)
|
|
|
|
{
|
|
|
|
struct fscache_operation *op =
|
|
|
|
container_of(work, struct fscache_operation, slow_work);
|
|
|
|
|
|
|
|
fscache_put_operation(op);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* execute an operation using the slow thread pool to provide processing context
|
|
|
|
* - the caller holds a ref to this object, so we don't need to hold one
|
|
|
|
*/
|
|
|
|
static void fscache_op_execute(struct slow_work *work)
|
|
|
|
{
|
|
|
|
struct fscache_operation *op =
|
|
|
|
container_of(work, struct fscache_operation, slow_work);
|
|
|
|
unsigned long start;
|
|
|
|
|
|
|
|
_enter("{OBJ%x OP%x,%d}",
|
|
|
|
op->object->debug_id, op->debug_id, atomic_read(&op->usage));
|
|
|
|
|
|
|
|
ASSERT(op->processor != NULL);
|
|
|
|
start = jiffies;
|
|
|
|
op->processor(op);
|
|
|
|
fscache_hist(fscache_ops_histogram, start);
|
|
|
|
|
|
|
|
_leave("");
|
|
|
|
}
|
|
|
|
|
2009-11-20 02:11:01 +08:00
|
|
|
/*
|
|
|
|
* describe an operation for slow-work debugging
|
|
|
|
*/
|
2010-03-29 20:08:52 +08:00
|
|
|
#ifdef CONFIG_SLOW_WORK_DEBUG
|
2009-11-20 02:11:01 +08:00
|
|
|
static void fscache_op_desc(struct slow_work *work, struct seq_file *m)
|
|
|
|
{
|
|
|
|
struct fscache_operation *op =
|
|
|
|
container_of(work, struct fscache_operation, slow_work);
|
|
|
|
|
|
|
|
seq_printf(m, "FSC: OBJ%x OP%x: %s/%s fl=%lx",
|
|
|
|
op->object->debug_id, op->debug_id,
|
|
|
|
op->name, op->state, op->flags);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
const struct slow_work_ops fscache_op_slow_work_ops = {
|
2009-11-20 02:10:23 +08:00
|
|
|
.owner = THIS_MODULE,
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
.get_ref = fscache_op_get_ref,
|
|
|
|
.put_ref = fscache_op_put_ref,
|
|
|
|
.execute = fscache_op_execute,
|
2010-03-29 20:08:52 +08:00
|
|
|
#ifdef CONFIG_SLOW_WORK_DEBUG
|
2009-11-20 02:11:01 +08:00
|
|
|
.desc = fscache_op_desc,
|
|
|
|
#endif
|
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 23:42:39 +08:00
|
|
|
};
|