linux/kernel/kcsan/report.c

716 lines
22 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* KCSAN reporting.
*
* Copyright (C) 2019, Google LLC.
*/
#include <linux/debug_locks.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/kallsyms.h>
#include <linux/kernel.h>
kcsan: Make KCSAN compatible with lockdep We must avoid any recursion into lockdep if KCSAN is enabled on utilities used by lockdep. One manifestation of this is corruption of lockdep's IRQ trace state (if TRACE_IRQFLAGS), resulting in spurious warnings (see below). This commit fixes this by: 1. Using raw_local_irq{save,restore} in kcsan_setup_watchpoint(). 2. Disabling lockdep in kcsan_report(). Tested with: CONFIG_LOCKDEP=y CONFIG_DEBUG_LOCKDEP=y CONFIG_TRACE_IRQFLAGS=y This fix eliminates spurious warnings such as the following one: WARNING: CPU: 0 PID: 2 at kernel/locking/lockdep.c:4406 check_flags.part.0+0x101/0x220 Modules linked in: CPU: 0 PID: 2 Comm: kthreadd Not tainted 5.5.0-rc1+ #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:check_flags.part.0+0x101/0x220 <snip> Call Trace: lock_is_held_type+0x69/0x150 freezer_fork+0x20b/0x370 cgroup_post_fork+0x2c9/0x5c0 copy_process+0x2675/0x3b40 _do_fork+0xbe/0xa30 ? _raw_spin_unlock_irqrestore+0x40/0x50 ? match_held_lock+0x56/0x250 ? kthread_park+0xf0/0xf0 kernel_thread+0xa6/0xd0 ? kthread_park+0xf0/0xf0 kthreadd+0x321/0x3d0 ? kthread_create_on_cpu+0x130/0x130 ret_from_fork+0x3a/0x50 irq event stamp: 64 hardirqs last enabled at (63): [<ffffffff9a7995d0>] _raw_spin_unlock_irqrestore+0x40/0x50 hardirqs last disabled at (64): [<ffffffff992a96d2>] kcsan_setup_watchpoint+0x92/0x460 softirqs last enabled at (32): [<ffffffff990489b8>] fpu__copy+0xe8/0x470 softirqs last disabled at (30): [<ffffffff99048939>] fpu__copy+0x69/0x470 Reported-by: Qian Cai <cai@lca.pw> Signed-off-by: Marco Elver <elver@google.com> Acked-by: Alexander Potapenko <glider@google.com> Tested-by: Qian Cai <cai@lca.pw> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-16 00:25:12 +08:00
#include <linux/lockdep.h>
#include <linux/preempt.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/stacktrace.h>
#include "kcsan.h"
#include "encoding.h"
/*
* Max. number of stack entries to show in the report.
*/
#define NUM_STACK_ENTRIES 64
/* Common access info. */
struct access_info {
const volatile void *ptr;
size_t size;
int access_type;
int task_pid;
int cpu_id;
unsigned long ip;
};
/*
* Other thread info: communicated from other racing thread to thread that set
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
* up the watchpoint, which then prints the complete report atomically.
*/
struct other_info {
struct access_info ai;
unsigned long stack_entries[NUM_STACK_ENTRIES];
int num_stack_entries;
/*
* Optionally pass @current. Typically we do not need to pass @current
* via @other_info since just @task_pid is sufficient. Passing @current
* has additional overhead.
*
* To safely pass @current, we must either use get_task_struct/
* put_task_struct, or stall the thread that populated @other_info.
*
* We cannot rely on get_task_struct/put_task_struct in case
* release_report() races with a task being released, and would have to
* free it in release_report(). This may result in deadlock if we want
* to use KCSAN on the allocators.
*
* Since we also want to reliably print held locks for
* CONFIG_KCSAN_VERBOSE, the current implementation stalls the thread
* that populated @other_info until it has been consumed.
*/
struct task_struct *task;
};
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
/*
* To never block any producers of struct other_info, we need as many elements
* as we have watchpoints (upper bound on concurrent races to report).
*/
static struct other_info other_infos[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
/*
* Information about reported races; used to rate limit reporting.
*/
struct report_time {
/*
* The last time the race was reported.
*/
unsigned long time;
/*
* The frames of the 2 threads; if only 1 thread is known, one frame
* will be 0.
*/
unsigned long frame1;
unsigned long frame2;
};
/*
* Since we also want to be able to debug allocators with KCSAN, to avoid
* deadlock, report_times cannot be dynamically resized with krealloc in
* rate_limit_report.
*
* Therefore, we use a fixed-size array, which at most will occupy a page. This
* still adequately rate limits reports, assuming that a) number of unique data
* races is not excessive, and b) occurrence of unique races within the
* same time window is limited.
*/
#define REPORT_TIMES_MAX (PAGE_SIZE / sizeof(struct report_time))
#define REPORT_TIMES_SIZE \
(CONFIG_KCSAN_REPORT_ONCE_IN_MS > REPORT_TIMES_MAX ? \
REPORT_TIMES_MAX : \
CONFIG_KCSAN_REPORT_ONCE_IN_MS)
static struct report_time report_times[REPORT_TIMES_SIZE];
/*
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
* Spinlock serializing report generation, and access to @other_infos. Although
* it could make sense to have a finer-grained locking story for @other_infos,
* report generation needs to be serialized either way, so not much is gained.
*/
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
static DEFINE_RAW_SPINLOCK(report_lock);
/*
* Checks if the race identified by thread frames frame1 and frame2 has
* been reported since (now - KCSAN_REPORT_ONCE_IN_MS).
*/
static bool rate_limit_report(unsigned long frame1, unsigned long frame2)
{
struct report_time *use_entry = &report_times[0];
unsigned long invalid_before;
int i;
BUILD_BUG_ON(CONFIG_KCSAN_REPORT_ONCE_IN_MS != 0 && REPORT_TIMES_SIZE == 0);
if (CONFIG_KCSAN_REPORT_ONCE_IN_MS == 0)
return false;
invalid_before = jiffies - msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS);
/* Check if a matching race report exists. */
for (i = 0; i < REPORT_TIMES_SIZE; ++i) {
struct report_time *rt = &report_times[i];
/*
* Must always select an entry for use to store info as we
* cannot resize report_times; at the end of the scan, use_entry
* will be the oldest entry, which ideally also happened before
* KCSAN_REPORT_ONCE_IN_MS ago.
*/
if (time_before(rt->time, use_entry->time))
use_entry = rt;
/*
* Initially, no need to check any further as this entry as well
* as following entries have never been used.
*/
if (rt->time == 0)
break;
/* Check if entry expired. */
if (time_before(rt->time, invalid_before))
continue; /* before KCSAN_REPORT_ONCE_IN_MS ago */
/* Reported recently, check if race matches. */
if ((rt->frame1 == frame1 && rt->frame2 == frame2) ||
(rt->frame1 == frame2 && rt->frame2 == frame1))
return true;
}
use_entry->time = jiffies;
use_entry->frame1 = frame1;
use_entry->frame2 = frame2;
return false;
}
/*
* Special rules to skip reporting.
*/
static bool
skip_report(enum kcsan_value_change value_change, unsigned long top_frame)
{
/* Should never get here if value_change==FALSE. */
WARN_ON_ONCE(value_change == KCSAN_VALUE_CHANGE_FALSE);
/*
* The first call to skip_report always has value_change==TRUE, since we
* cannot know the value written of an instrumented access. For the 2nd
* call there are 6 cases with CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY:
*
* 1. read watchpoint, conflicting write (value_change==TRUE): report;
* 2. read watchpoint, conflicting write (value_change==MAYBE): skip;
* 3. write watchpoint, conflicting write (value_change==TRUE): report;
* 4. write watchpoint, conflicting write (value_change==MAYBE): skip;
* 5. write watchpoint, conflicting read (value_change==MAYBE): skip;
* 6. write watchpoint, conflicting read (value_change==TRUE): report;
*
* Cases 1-4 are intuitive and expected; case 5 ensures we do not report
* data races where the write may have rewritten the same value; case 6
* is possible either if the size is larger than what we check value
* changes for or the access type is KCSAN_ACCESS_ASSERT.
*/
if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) &&
value_change == KCSAN_VALUE_CHANGE_MAYBE) {
/*
* The access is a write, but the data value did not change.
*
* We opt-out of this filter for certain functions at request of
* maintainers.
*/
char buf[64];
int len = scnprintf(buf, sizeof(buf), "%ps", (void *)top_frame);
if (!strnstr(buf, "rcu_", len) &&
!strnstr(buf, "_rcu", len) &&
!strnstr(buf, "_srcu", len))
return true;
}
return kcsan_skip_report_debugfs(top_frame);
}
static const char *get_access_type(int type)
{
kcsan: Add support for scoped accesses This adds support for scoped accesses, where the memory range is checked for the duration of the scope. The feature is implemented by inserting the relevant access information into a list of scoped accesses for the current execution context, which are then checked (until removed) on every call (through instrumentation) into the KCSAN runtime. An alternative, more complex, implementation could set up a watchpoint for the scoped access, and keep the watchpoint set up. This, however, would require first exposing a handle to the watchpoint, as well as dealing with cases such as accesses by the same thread while the watchpoint is still set up (and several more cases). It is also doubtful if this would provide any benefit, since the majority of delay where the watchpoint is set up is likely due to the injected delays by KCSAN. Therefore, the implementation in this patch is simpler and avoids hurting KCSAN's main use-case (normal data race detection); it also implicitly increases scoped-access race-detection-ability due to increased probability of setting up watchpoints by repeatedly calling __kcsan_check_access() throughout the scope of the access. The implementation required adding an additional conditional branch to the fast-path. However, the microbenchmark showed a *speedup* of ~5% on the fast-path. This appears to be due to subtly improved codegen by GCC from moving get_ctx() and associated load of preempt_count earlier. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-26 00:41:56 +08:00
if (type & KCSAN_ACCESS_ASSERT) {
if (type & KCSAN_ACCESS_SCOPED) {
if (type & KCSAN_ACCESS_WRITE)
return "assert no accesses (reordered)";
kcsan: Add support for scoped accesses This adds support for scoped accesses, where the memory range is checked for the duration of the scope. The feature is implemented by inserting the relevant access information into a list of scoped accesses for the current execution context, which are then checked (until removed) on every call (through instrumentation) into the KCSAN runtime. An alternative, more complex, implementation could set up a watchpoint for the scoped access, and keep the watchpoint set up. This, however, would require first exposing a handle to the watchpoint, as well as dealing with cases such as accesses by the same thread while the watchpoint is still set up (and several more cases). It is also doubtful if this would provide any benefit, since the majority of delay where the watchpoint is set up is likely due to the injected delays by KCSAN. Therefore, the implementation in this patch is simpler and avoids hurting KCSAN's main use-case (normal data race detection); it also implicitly increases scoped-access race-detection-ability due to increased probability of setting up watchpoints by repeatedly calling __kcsan_check_access() throughout the scope of the access. The implementation required adding an additional conditional branch to the fast-path. However, the microbenchmark showed a *speedup* of ~5% on the fast-path. This appears to be due to subtly improved codegen by GCC from moving get_ctx() and associated load of preempt_count earlier. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-26 00:41:56 +08:00
else
return "assert no writes (reordered)";
kcsan: Add support for scoped accesses This adds support for scoped accesses, where the memory range is checked for the duration of the scope. The feature is implemented by inserting the relevant access information into a list of scoped accesses for the current execution context, which are then checked (until removed) on every call (through instrumentation) into the KCSAN runtime. An alternative, more complex, implementation could set up a watchpoint for the scoped access, and keep the watchpoint set up. This, however, would require first exposing a handle to the watchpoint, as well as dealing with cases such as accesses by the same thread while the watchpoint is still set up (and several more cases). It is also doubtful if this would provide any benefit, since the majority of delay where the watchpoint is set up is likely due to the injected delays by KCSAN. Therefore, the implementation in this patch is simpler and avoids hurting KCSAN's main use-case (normal data race detection); it also implicitly increases scoped-access race-detection-ability due to increased probability of setting up watchpoints by repeatedly calling __kcsan_check_access() throughout the scope of the access. The implementation required adding an additional conditional branch to the fast-path. However, the microbenchmark showed a *speedup* of ~5% on the fast-path. This appears to be due to subtly improved codegen by GCC from moving get_ctx() and associated load of preempt_count earlier. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-26 00:41:56 +08:00
} else {
if (type & KCSAN_ACCESS_WRITE)
return "assert no accesses";
else
return "assert no writes";
}
}
switch (type) {
case 0:
return "read";
case KCSAN_ACCESS_ATOMIC:
return "read (marked)";
case KCSAN_ACCESS_WRITE:
return "write";
case KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
return "write (marked)";
kcsan: Support compounded read-write instrumentation Add support for compounded read-write instrumentation if supported by the compiler. Adds the necessary instrumentation functions, and a new type which is used to generate a more descriptive report. Furthermore, such compounded memory access instrumentation is excluded from the "assume aligned writes up to word size are atomic" rule, because we cannot assume that the compiler emits code that is atomic for compound ops. LLVM/Clang added support for the feature in: https://github.com/llvm/llvm-project/commit/785d41a261d136b64ab6c15c5d35f2adc5ad53e3 The new instrumentation is emitted for sets of memory accesses in the same basic block to the same address with at least one read appearing before a write. These typically result from compound operations such as ++, --, +=, -=, |=, &=, etc. but also equivalent forms such as "var = var + 1". Where the compiler determines that it is equivalent to emit a call to a single __tsan_read_write instead of separate __tsan_read and __tsan_write, we can then benefit from improved performance and better reporting for such access patterns. The new reports now show that the ops are both reads and writes, for example: read-write to 0xffffffff90548a38 of 8 bytes by task 143 on cpu 3: test_kernel_rmw_array+0x45/0xa0 access_thread+0x71/0xb0 kthread+0x21e/0x240 ret_from_fork+0x22/0x30 read-write to 0xffffffff90548a38 of 8 bytes by task 144 on cpu 2: test_kernel_rmw_array+0x45/0xa0 access_thread+0x71/0xb0 kthread+0x21e/0x240 ret_from_fork+0x22/0x30 Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-07-24 15:00:01 +08:00
case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE:
return "read-write";
case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
return "read-write (marked)";
kcsan: Add support for scoped accesses This adds support for scoped accesses, where the memory range is checked for the duration of the scope. The feature is implemented by inserting the relevant access information into a list of scoped accesses for the current execution context, which are then checked (until removed) on every call (through instrumentation) into the KCSAN runtime. An alternative, more complex, implementation could set up a watchpoint for the scoped access, and keep the watchpoint set up. This, however, would require first exposing a handle to the watchpoint, as well as dealing with cases such as accesses by the same thread while the watchpoint is still set up (and several more cases). It is also doubtful if this would provide any benefit, since the majority of delay where the watchpoint is set up is likely due to the injected delays by KCSAN. Therefore, the implementation in this patch is simpler and avoids hurting KCSAN's main use-case (normal data race detection); it also implicitly increases scoped-access race-detection-ability due to increased probability of setting up watchpoints by repeatedly calling __kcsan_check_access() throughout the scope of the access. The implementation required adding an additional conditional branch to the fast-path. However, the microbenchmark showed a *speedup* of ~5% on the fast-path. This appears to be due to subtly improved codegen by GCC from moving get_ctx() and associated load of preempt_count earlier. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-26 00:41:56 +08:00
case KCSAN_ACCESS_SCOPED:
return "read (reordered)";
kcsan: Add support for scoped accesses This adds support for scoped accesses, where the memory range is checked for the duration of the scope. The feature is implemented by inserting the relevant access information into a list of scoped accesses for the current execution context, which are then checked (until removed) on every call (through instrumentation) into the KCSAN runtime. An alternative, more complex, implementation could set up a watchpoint for the scoped access, and keep the watchpoint set up. This, however, would require first exposing a handle to the watchpoint, as well as dealing with cases such as accesses by the same thread while the watchpoint is still set up (and several more cases). It is also doubtful if this would provide any benefit, since the majority of delay where the watchpoint is set up is likely due to the injected delays by KCSAN. Therefore, the implementation in this patch is simpler and avoids hurting KCSAN's main use-case (normal data race detection); it also implicitly increases scoped-access race-detection-ability due to increased probability of setting up watchpoints by repeatedly calling __kcsan_check_access() throughout the scope of the access. The implementation required adding an additional conditional branch to the fast-path. However, the microbenchmark showed a *speedup* of ~5% on the fast-path. This appears to be due to subtly improved codegen by GCC from moving get_ctx() and associated load of preempt_count earlier. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-26 00:41:56 +08:00
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_ATOMIC:
return "read (marked, reordered)";
kcsan: Add support for scoped accesses This adds support for scoped accesses, where the memory range is checked for the duration of the scope. The feature is implemented by inserting the relevant access information into a list of scoped accesses for the current execution context, which are then checked (until removed) on every call (through instrumentation) into the KCSAN runtime. An alternative, more complex, implementation could set up a watchpoint for the scoped access, and keep the watchpoint set up. This, however, would require first exposing a handle to the watchpoint, as well as dealing with cases such as accesses by the same thread while the watchpoint is still set up (and several more cases). It is also doubtful if this would provide any benefit, since the majority of delay where the watchpoint is set up is likely due to the injected delays by KCSAN. Therefore, the implementation in this patch is simpler and avoids hurting KCSAN's main use-case (normal data race detection); it also implicitly increases scoped-access race-detection-ability due to increased probability of setting up watchpoints by repeatedly calling __kcsan_check_access() throughout the scope of the access. The implementation required adding an additional conditional branch to the fast-path. However, the microbenchmark showed a *speedup* of ~5% on the fast-path. This appears to be due to subtly improved codegen by GCC from moving get_ctx() and associated load of preempt_count earlier. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-26 00:41:56 +08:00
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE:
return "write (reordered)";
kcsan: Add support for scoped accesses This adds support for scoped accesses, where the memory range is checked for the duration of the scope. The feature is implemented by inserting the relevant access information into a list of scoped accesses for the current execution context, which are then checked (until removed) on every call (through instrumentation) into the KCSAN runtime. An alternative, more complex, implementation could set up a watchpoint for the scoped access, and keep the watchpoint set up. This, however, would require first exposing a handle to the watchpoint, as well as dealing with cases such as accesses by the same thread while the watchpoint is still set up (and several more cases). It is also doubtful if this would provide any benefit, since the majority of delay where the watchpoint is set up is likely due to the injected delays by KCSAN. Therefore, the implementation in this patch is simpler and avoids hurting KCSAN's main use-case (normal data race detection); it also implicitly increases scoped-access race-detection-ability due to increased probability of setting up watchpoints by repeatedly calling __kcsan_check_access() throughout the scope of the access. The implementation required adding an additional conditional branch to the fast-path. However, the microbenchmark showed a *speedup* of ~5% on the fast-path. This appears to be due to subtly improved codegen by GCC from moving get_ctx() and associated load of preempt_count earlier. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-26 00:41:56 +08:00
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
return "write (marked, reordered)";
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE:
return "read-write (reordered)";
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
return "read-write (marked, reordered)";
default:
BUG();
}
}
static const char *get_bug_type(int type)
{
return (type & KCSAN_ACCESS_ASSERT) != 0 ? "assert: race" : "data-race";
}
/* Return thread description: in task or interrupt. */
static const char *get_thread_desc(int task_id)
{
if (task_id != -1) {
static char buf[32]; /* safe: protected by report_lock */
snprintf(buf, sizeof(buf), "task %i", task_id);
return buf;
}
return "interrupt";
}
/* Helper to skip KCSAN-related functions in stack-trace. */
static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries)
{
char buf[64];
char *cur;
int len, skip;
for (skip = 0; skip < num_entries; ++skip) {
len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skip]);
/* Never show tsan_* or {read,write}_once_size. */
if (strnstr(buf, "tsan_", len) ||
strnstr(buf, "_once_size", len))
continue;
cur = strnstr(buf, "kcsan_", len);
if (cur) {
cur += strlen("kcsan_");
if (!str_has_prefix(cur, "test"))
continue; /* KCSAN runtime function. */
/* KCSAN related test. */
}
/*
* No match for runtime functions -- @skip entries to skip to
* get to first frame of interest.
*/
break;
}
return skip;
}
/*
* Skips to the first entry that matches the function of @ip, and then replaces
* that entry with @ip, returning the entries to skip with @replaced containing
* the replaced entry.
*/
static int
replace_stack_entry(unsigned long stack_entries[], int num_entries, unsigned long ip,
unsigned long *replaced)
{
unsigned long symbolsize, offset;
unsigned long target_func;
int skip;
if (kallsyms_lookup_size_offset(ip, &symbolsize, &offset))
target_func = ip - offset;
else
goto fallback;
for (skip = 0; skip < num_entries; ++skip) {
unsigned long func = stack_entries[skip];
if (!kallsyms_lookup_size_offset(func, &symbolsize, &offset))
goto fallback;
func -= offset;
if (func == target_func) {
*replaced = stack_entries[skip];
stack_entries[skip] = ip;
return skip;
}
}
fallback:
/* Should not happen; the resulting stack trace is likely misleading. */
WARN_ONCE(1, "Cannot find frame for %pS in stack trace", (void *)ip);
return get_stack_skipnr(stack_entries, num_entries);
}
static int
sanitize_stack_entries(unsigned long stack_entries[], int num_entries, unsigned long ip,
unsigned long *replaced)
{
return ip ? replace_stack_entry(stack_entries, num_entries, ip, replaced) :
get_stack_skipnr(stack_entries, num_entries);
}
/* Compares symbolized strings of addr1 and addr2. */
static int sym_strcmp(void *addr1, void *addr2)
{
char buf1[64];
char buf2[64];
snprintf(buf1, sizeof(buf1), "%pS", addr1);
snprintf(buf2, sizeof(buf2), "%pS", addr2);
return strncmp(buf1, buf2, sizeof(buf1));
}
static void
print_stack_trace(unsigned long stack_entries[], int num_entries, unsigned long reordered_to)
{
stack_trace_print(stack_entries, num_entries, 0);
if (reordered_to)
pr_err(" |\n +-> reordered to: %pS\n", (void *)reordered_to);
}
static void print_verbose_info(struct task_struct *task)
{
if (!task)
return;
/* Restore IRQ state trace for printing. */
kcsan_restore_irqtrace(task);
pr_err("\n");
debug_show_held_locks(task);
print_irqtrace_events(task);
}
static void print_report(enum kcsan_value_change value_change,
const struct access_info *ai,
struct other_info *other_info,
kcsan: Report observed value changes When a thread detects that a memory location was modified without its watchpoint being hit, the report notes that a change was detected, but does not provide concrete values for the change. Knowing the concrete values can be very helpful in tracking down any racy writers (e.g. as specific values may only be written in some portions of code, or under certain conditions). When we detect a modification, let's report the concrete old/new values, along with the access's mask of relevant bits (and which relevant bits were modified). This can make it easier to identify potential racy writers. As the snapshots are at most 8 bytes, we can only report values for acceses up to this size, but this appears to cater for the common case. When we detect a race via a watchpoint, we may or may not have concrete values for the modification. To be helpful, let's attempt to log them when we do as they can be ignored where irrelevant. The resulting reports appears as follows, with values zero-padded to the access width: | ================================================================== | BUG: KCSAN: data-race in el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | | race at unknown origin, with read to 0xffff00007ae6aa00 of 8 bytes by task 223 on cpu 1: | el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | do_el0_svc+0x48/0xec arch/arm64/kernel/syscall.c:178 | el0_svc arch/arm64/kernel/entry-common.c:226 [inline] | el0_sync_handler+0x1a4/0x390 arch/arm64/kernel/entry-common.c:236 | el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:674 | | value changed: 0x0000000000000000 -> 0x0000000000000002 | | Reported by Kernel Concurrency Sanitizer on: | CPU: 1 PID: 223 Comm: syz-executor.1 Not tainted 5.8.0-rc3-00094-ga73f923ecc8e-dirty #3 | Hardware name: linux,dummy-virt (DT) | ================================================================== If an access mask is set, it is shown underneath the "value changed" line as "bits changed: 0x<bits changed> with mask 0x<non-zero mask>". Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: align "value changed" and "bits changed" lines, which required massaging the message; do not print bits+mask if no mask set. ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:24 +08:00
u64 old, u64 new, u64 mask)
{
unsigned long reordered_to = 0;
unsigned long stack_entries[NUM_STACK_ENTRIES] = { 0 };
int num_stack_entries = stack_trace_save(stack_entries, NUM_STACK_ENTRIES, 1);
int skipnr = sanitize_stack_entries(stack_entries, num_stack_entries, ai->ip, &reordered_to);
unsigned long this_frame = stack_entries[skipnr];
unsigned long other_reordered_to = 0;
unsigned long other_frame = 0;
int other_skipnr = 0; /* silence uninit warnings */
/*
* Must check report filter rules before starting to print.
*/
if (skip_report(KCSAN_VALUE_CHANGE_TRUE, stack_entries[skipnr]))
return;
if (other_info) {
other_skipnr = sanitize_stack_entries(other_info->stack_entries,
other_info->num_stack_entries,
other_info->ai.ip, &other_reordered_to);
other_frame = other_info->stack_entries[other_skipnr];
/* @value_change is only known for the other thread */
if (skip_report(value_change, other_frame))
return;
}
if (rate_limit_report(this_frame, other_frame))
return;
/* Print report header. */
pr_err("==================================================================\n");
if (other_info) {
int cmp;
/*
* Order functions lexographically for consistent bug titles.
* Do not print offset of functions to keep title short.
*/
cmp = sym_strcmp((void *)other_frame, (void *)this_frame);
pr_err("BUG: KCSAN: %s in %ps / %ps\n",
get_bug_type(ai->access_type | other_info->ai.access_type),
(void *)(cmp < 0 ? other_frame : this_frame),
(void *)(cmp < 0 ? this_frame : other_frame));
} else {
pr_err("BUG: KCSAN: %s in %pS\n", get_bug_type(ai->access_type),
(void *)this_frame);
}
pr_err("\n");
/* Print information about the racing accesses. */
if (other_info) {
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
get_access_type(other_info->ai.access_type), other_info->ai.ptr,
other_info->ai.size, get_thread_desc(other_info->ai.task_pid),
other_info->ai.cpu_id);
/* Print the other thread's stack trace. */
print_stack_trace(other_info->stack_entries + other_skipnr,
other_info->num_stack_entries - other_skipnr,
other_reordered_to);
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
print_verbose_info(other_info->task);
pr_err("\n");
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
get_access_type(ai->access_type), ai->ptr, ai->size,
get_thread_desc(ai->task_pid), ai->cpu_id);
} else {
pr_err("race at unknown origin, with %s to 0x%px of %zu bytes by %s on cpu %i:\n",
get_access_type(ai->access_type), ai->ptr, ai->size,
get_thread_desc(ai->task_pid), ai->cpu_id);
}
/* Print stack trace of this thread. */
print_stack_trace(stack_entries + skipnr, num_stack_entries - skipnr, reordered_to);
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
print_verbose_info(current);
kcsan: Report observed value changes When a thread detects that a memory location was modified without its watchpoint being hit, the report notes that a change was detected, but does not provide concrete values for the change. Knowing the concrete values can be very helpful in tracking down any racy writers (e.g. as specific values may only be written in some portions of code, or under certain conditions). When we detect a modification, let's report the concrete old/new values, along with the access's mask of relevant bits (and which relevant bits were modified). This can make it easier to identify potential racy writers. As the snapshots are at most 8 bytes, we can only report values for acceses up to this size, but this appears to cater for the common case. When we detect a race via a watchpoint, we may or may not have concrete values for the modification. To be helpful, let's attempt to log them when we do as they can be ignored where irrelevant. The resulting reports appears as follows, with values zero-padded to the access width: | ================================================================== | BUG: KCSAN: data-race in el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | | race at unknown origin, with read to 0xffff00007ae6aa00 of 8 bytes by task 223 on cpu 1: | el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | do_el0_svc+0x48/0xec arch/arm64/kernel/syscall.c:178 | el0_svc arch/arm64/kernel/entry-common.c:226 [inline] | el0_sync_handler+0x1a4/0x390 arch/arm64/kernel/entry-common.c:236 | el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:674 | | value changed: 0x0000000000000000 -> 0x0000000000000002 | | Reported by Kernel Concurrency Sanitizer on: | CPU: 1 PID: 223 Comm: syz-executor.1 Not tainted 5.8.0-rc3-00094-ga73f923ecc8e-dirty #3 | Hardware name: linux,dummy-virt (DT) | ================================================================== If an access mask is set, it is shown underneath the "value changed" line as "bits changed: 0x<bits changed> with mask 0x<non-zero mask>". Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: align "value changed" and "bits changed" lines, which required massaging the message; do not print bits+mask if no mask set. ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:24 +08:00
/* Print observed value change. */
if (ai->size <= 8) {
int hex_len = ai->size * 2;
u64 diff = old ^ new;
if (mask)
diff &= mask;
if (diff) {
pr_err("\n");
pr_err("value changed: 0x%0*llx -> 0x%0*llx\n",
hex_len, old, hex_len, new);
if (mask) {
pr_err(" bits changed: 0x%0*llx with mask 0x%0*llx\n",
hex_len, diff, hex_len, mask);
}
}
}
/* Print report footer. */
pr_err("\n");
pr_err("Reported by Kernel Concurrency Sanitizer on:\n");
dump_stack_print_info(KERN_DEFAULT);
pr_err("==================================================================\n");
panic: Consolidate open-coded panic_on_warn checks Several run-time checkers (KASAN, UBSAN, KFENCE, KCSAN, sched) roll their own warnings, and each check "panic_on_warn". Consolidate this into a single function so that future instrumentation can be added in a single location. Cc: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Segall <bsegall@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: David Gow <davidgow@google.com> Cc: tangmeng <tangmeng@uniontech.com> Cc: Jann Horn <jannh@google.com> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Petr Mladek <pmladek@suse.com> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com> Cc: Tiezhu Yang <yangtiezhu@loongson.cn> Cc: kasan-dev@googlegroups.com Cc: linux-mm@kvack.org Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Link: https://lore.kernel.org/r/20221117234328.594699-4-keescook@chromium.org
2022-11-18 07:43:24 +08:00
check_panic_on_warn("KCSAN");
}
static void release_report(unsigned long *flags, struct other_info *other_info)
{
/*
* Use size to denote valid/invalid, since KCSAN entirely ignores
* 0-sized accesses.
*/
other_info->ai.size = 0;
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
raw_spin_unlock_irqrestore(&report_lock, *flags);
}
/*
* Sets @other_info->task and awaits consumption of @other_info.
*
* Precondition: report_lock is held.
* Postcondition: report_lock is held.
*/
static void set_other_info_task_blocking(unsigned long *flags,
const struct access_info *ai,
struct other_info *other_info)
{
/*
* We may be instrumenting a code-path where current->state is already
* something other than TASK_RUNNING.
*/
const bool is_running = task_is_running(current);
/*
* To avoid deadlock in case we are in an interrupt here and this is a
* race with a task on the same CPU (KCSAN_INTERRUPT_WATCHER), provide a
* timeout to ensure this works in all contexts.
*
* Await approximately the worst case delay of the reporting thread (if
* we are not interrupted).
*/
int timeout = max(kcsan_udelay_task, kcsan_udelay_interrupt);
other_info->task = current;
do {
if (is_running) {
/*
* Let lockdep know the real task is sleeping, to print
* the held locks (recall we turned lockdep off, so
* locking/unlocking @report_lock won't be recorded).
*/
set_current_state(TASK_UNINTERRUPTIBLE);
}
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
raw_spin_unlock_irqrestore(&report_lock, *flags);
/*
* We cannot call schedule() since we also cannot reliably
* determine if sleeping here is permitted -- see in_atomic().
*/
udelay(1);
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
raw_spin_lock_irqsave(&report_lock, *flags);
if (timeout-- < 0) {
/*
* Abort. Reset @other_info->task to NULL, since it
* appears the other thread is still going to consume
* it. It will result in no verbose info printed for
* this task.
*/
other_info->task = NULL;
break;
}
/*
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
* If invalid, or @ptr nor @current matches, then @other_info
* has been consumed and we may continue. If not, retry.
*/
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
} while (other_info->ai.size && other_info->ai.ptr == ai->ptr &&
other_info->task == current);
if (is_running)
set_current_state(TASK_RUNNING);
}
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
/* Populate @other_info; requires that the provided @other_info not in use. */
static void prepare_report_producer(unsigned long *flags,
const struct access_info *ai,
struct other_info *other_info)
{
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
raw_spin_lock_irqsave(&report_lock, *flags);
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
/*
* The same @other_infos entry cannot be used concurrently, because
* there is a one-to-one mapping to watchpoint slots (@watchpoints in
* core.c), and a watchpoint is only released for reuse after reporting
* is done by the consumer of @other_info. Therefore, it is impossible
* for another concurrent prepare_report_producer() to set the same
* @other_info, and are guaranteed exclusivity for the @other_infos
* entry pointed to by @other_info.
*
* To check this property holds, size should never be non-zero here,
* because every consumer of struct other_info resets size to 0 in
* release_report().
*/
WARN_ON(other_info->ai.size);
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
other_info->ai = *ai;
other_info->num_stack_entries = stack_trace_save(other_info->stack_entries, NUM_STACK_ENTRIES, 2);
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
set_other_info_task_blocking(flags, ai, other_info);
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
raw_spin_unlock_irqrestore(&report_lock, *flags);
}
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
/* Awaits producer to fill @other_info and then returns. */
static bool prepare_report_consumer(unsigned long *flags,
const struct access_info *ai,
struct other_info *other_info)
{
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
raw_spin_lock_irqsave(&report_lock, *flags);
while (!other_info->ai.size) { /* Await valid @other_info. */
raw_spin_unlock_irqrestore(&report_lock, *flags);
cpu_relax();
raw_spin_lock_irqsave(&report_lock, *flags);
}
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
/* Should always have a matching access based on watchpoint encoding. */
if (WARN_ON(!matching_access((unsigned long)other_info->ai.ptr & WATCHPOINT_ADDR_MASK, other_info->ai.size,
(unsigned long)ai->ptr & WATCHPOINT_ADDR_MASK, ai->size)))
goto discard;
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
if (!matching_access((unsigned long)other_info->ai.ptr, other_info->ai.size,
(unsigned long)ai->ptr, ai->size)) {
/*
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
* If the actual accesses to not match, this was a false
* positive due to watchpoint encoding.
*/
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ENCODING_FALSE_POSITIVES]);
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
goto discard;
}
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
return true;
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
discard:
release_report(flags, other_info);
return false;
}
static struct access_info prepare_access_info(const volatile void *ptr, size_t size,
int access_type, unsigned long ip)
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
{
return (struct access_info) {
.ptr = ptr,
.size = size,
.access_type = access_type,
.task_pid = in_task() ? task_pid_nr(current) : -1,
.cpu_id = raw_smp_processor_id(),
/* Only replace stack entry with @ip if scoped access. */
.ip = (access_type & KCSAN_ACCESS_SCOPED) ? ip : 0,
};
}
kcsan: Distinguish kcsan_report() calls Currently kcsan_report() is used to handle three distinct cases: * The caller hit a watchpoint when attempting an access. Some information regarding the caller and access are recorded, but no output is produced. * A caller which previously setup a watchpoint detected that the watchpoint has been hit, and possibly detected a change to the location in memory being watched. This may result in output reporting the interaction between this caller and the caller which hit the watchpoint. * A caller detected a change to a modification to a memory location which wasn't detected by a watchpoint, for which there is no information on the other thread. This may result in output reporting the unexpected change. ... depending on the specific case the caller has distinct pieces of information available, but the prototype of kcsan_report() has to handle all three cases. This means that in some cases we pass redundant information, and in others we don't pass all the information we could pass. This also means that the report code has to demux these three cases. So that we can pass some additional information while also simplifying the callers and report code, add separate kcsan_report_*() functions for the distinct cases, updating callers accordingly. As the watchpoint_idx is unused in the case of kcsan_report_unknown_origin(), this passes a dummy value into kcsan_report(). Subsequent patches will refactor the report code to avoid this. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: try to make kcsan_report_*() names more descriptive ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:18 +08:00
void kcsan_report_set_info(const volatile void *ptr, size_t size, int access_type,
unsigned long ip, int watchpoint_idx)
kcsan: Distinguish kcsan_report() calls Currently kcsan_report() is used to handle three distinct cases: * The caller hit a watchpoint when attempting an access. Some information regarding the caller and access are recorded, but no output is produced. * A caller which previously setup a watchpoint detected that the watchpoint has been hit, and possibly detected a change to the location in memory being watched. This may result in output reporting the interaction between this caller and the caller which hit the watchpoint. * A caller detected a change to a modification to a memory location which wasn't detected by a watchpoint, for which there is no information on the other thread. This may result in output reporting the unexpected change. ... depending on the specific case the caller has distinct pieces of information available, but the prototype of kcsan_report() has to handle all three cases. This means that in some cases we pass redundant information, and in others we don't pass all the information we could pass. This also means that the report code has to demux these three cases. So that we can pass some additional information while also simplifying the callers and report code, add separate kcsan_report_*() functions for the distinct cases, updating callers accordingly. As the watchpoint_idx is unused in the case of kcsan_report_unknown_origin(), this passes a dummy value into kcsan_report(). Subsequent patches will refactor the report code to avoid this. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: try to make kcsan_report_*() names more descriptive ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:18 +08:00
{
const struct access_info ai = prepare_access_info(ptr, size, access_type, ip);
unsigned long flags;
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
kcsan_disable_current();
lockdep_off(); /* See kcsan_report_known_origin(). */
prepare_report_producer(&flags, &ai, &other_infos[watchpoint_idx]);
lockdep_on();
kcsan_enable_current();
kcsan: Distinguish kcsan_report() calls Currently kcsan_report() is used to handle three distinct cases: * The caller hit a watchpoint when attempting an access. Some information regarding the caller and access are recorded, but no output is produced. * A caller which previously setup a watchpoint detected that the watchpoint has been hit, and possibly detected a change to the location in memory being watched. This may result in output reporting the interaction between this caller and the caller which hit the watchpoint. * A caller detected a change to a modification to a memory location which wasn't detected by a watchpoint, for which there is no information on the other thread. This may result in output reporting the unexpected change. ... depending on the specific case the caller has distinct pieces of information available, but the prototype of kcsan_report() has to handle all three cases. This means that in some cases we pass redundant information, and in others we don't pass all the information we could pass. This also means that the report code has to demux these three cases. So that we can pass some additional information while also simplifying the callers and report code, add separate kcsan_report_*() functions for the distinct cases, updating callers accordingly. As the watchpoint_idx is unused in the case of kcsan_report_unknown_origin(), this passes a dummy value into kcsan_report(). Subsequent patches will refactor the report code to avoid this. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: try to make kcsan_report_*() names more descriptive ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:18 +08:00
}
void kcsan_report_known_origin(const volatile void *ptr, size_t size, int access_type,
unsigned long ip, enum kcsan_value_change value_change,
int watchpoint_idx, u64 old, u64 new, u64 mask)
kcsan: Distinguish kcsan_report() calls Currently kcsan_report() is used to handle three distinct cases: * The caller hit a watchpoint when attempting an access. Some information regarding the caller and access are recorded, but no output is produced. * A caller which previously setup a watchpoint detected that the watchpoint has been hit, and possibly detected a change to the location in memory being watched. This may result in output reporting the interaction between this caller and the caller which hit the watchpoint. * A caller detected a change to a modification to a memory location which wasn't detected by a watchpoint, for which there is no information on the other thread. This may result in output reporting the unexpected change. ... depending on the specific case the caller has distinct pieces of information available, but the prototype of kcsan_report() has to handle all three cases. This means that in some cases we pass redundant information, and in others we don't pass all the information we could pass. This also means that the report code has to demux these three cases. So that we can pass some additional information while also simplifying the callers and report code, add separate kcsan_report_*() functions for the distinct cases, updating callers accordingly. As the watchpoint_idx is unused in the case of kcsan_report_unknown_origin(), this passes a dummy value into kcsan_report(). Subsequent patches will refactor the report code to avoid this. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: try to make kcsan_report_*() names more descriptive ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:18 +08:00
{
const struct access_info ai = prepare_access_info(ptr, size, access_type, ip);
struct other_info *other_info = &other_infos[watchpoint_idx];
unsigned long flags = 0;
kcsan_disable_current();
kcsan: Make KCSAN compatible with lockdep We must avoid any recursion into lockdep if KCSAN is enabled on utilities used by lockdep. One manifestation of this is corruption of lockdep's IRQ trace state (if TRACE_IRQFLAGS), resulting in spurious warnings (see below). This commit fixes this by: 1. Using raw_local_irq{save,restore} in kcsan_setup_watchpoint(). 2. Disabling lockdep in kcsan_report(). Tested with: CONFIG_LOCKDEP=y CONFIG_DEBUG_LOCKDEP=y CONFIG_TRACE_IRQFLAGS=y This fix eliminates spurious warnings such as the following one: WARNING: CPU: 0 PID: 2 at kernel/locking/lockdep.c:4406 check_flags.part.0+0x101/0x220 Modules linked in: CPU: 0 PID: 2 Comm: kthreadd Not tainted 5.5.0-rc1+ #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:check_flags.part.0+0x101/0x220 <snip> Call Trace: lock_is_held_type+0x69/0x150 freezer_fork+0x20b/0x370 cgroup_post_fork+0x2c9/0x5c0 copy_process+0x2675/0x3b40 _do_fork+0xbe/0xa30 ? _raw_spin_unlock_irqrestore+0x40/0x50 ? match_held_lock+0x56/0x250 ? kthread_park+0xf0/0xf0 kernel_thread+0xa6/0xd0 ? kthread_park+0xf0/0xf0 kthreadd+0x321/0x3d0 ? kthread_create_on_cpu+0x130/0x130 ret_from_fork+0x3a/0x50 irq event stamp: 64 hardirqs last enabled at (63): [<ffffffff9a7995d0>] _raw_spin_unlock_irqrestore+0x40/0x50 hardirqs last disabled at (64): [<ffffffff992a96d2>] kcsan_setup_watchpoint+0x92/0x460 softirqs last enabled at (32): [<ffffffff990489b8>] fpu__copy+0xe8/0x470 softirqs last disabled at (30): [<ffffffff99048939>] fpu__copy+0x69/0x470 Reported-by: Qian Cai <cai@lca.pw> Signed-off-by: Marco Elver <elver@google.com> Acked-by: Alexander Potapenko <glider@google.com> Tested-by: Qian Cai <cai@lca.pw> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-16 00:25:12 +08:00
/*
* Because we may generate reports when we're in scheduler code, the use
* of printk() could deadlock. Until such time that all printing code
* called in print_report() is scheduler-safe, accept the risk, and just
* get our message out. As such, also disable lockdep to hide the
* warning, and avoid disabling lockdep for the rest of the kernel.
kcsan: Make KCSAN compatible with lockdep We must avoid any recursion into lockdep if KCSAN is enabled on utilities used by lockdep. One manifestation of this is corruption of lockdep's IRQ trace state (if TRACE_IRQFLAGS), resulting in spurious warnings (see below). This commit fixes this by: 1. Using raw_local_irq{save,restore} in kcsan_setup_watchpoint(). 2. Disabling lockdep in kcsan_report(). Tested with: CONFIG_LOCKDEP=y CONFIG_DEBUG_LOCKDEP=y CONFIG_TRACE_IRQFLAGS=y This fix eliminates spurious warnings such as the following one: WARNING: CPU: 0 PID: 2 at kernel/locking/lockdep.c:4406 check_flags.part.0+0x101/0x220 Modules linked in: CPU: 0 PID: 2 Comm: kthreadd Not tainted 5.5.0-rc1+ #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:check_flags.part.0+0x101/0x220 <snip> Call Trace: lock_is_held_type+0x69/0x150 freezer_fork+0x20b/0x370 cgroup_post_fork+0x2c9/0x5c0 copy_process+0x2675/0x3b40 _do_fork+0xbe/0xa30 ? _raw_spin_unlock_irqrestore+0x40/0x50 ? match_held_lock+0x56/0x250 ? kthread_park+0xf0/0xf0 kernel_thread+0xa6/0xd0 ? kthread_park+0xf0/0xf0 kthreadd+0x321/0x3d0 ? kthread_create_on_cpu+0x130/0x130 ret_from_fork+0x3a/0x50 irq event stamp: 64 hardirqs last enabled at (63): [<ffffffff9a7995d0>] _raw_spin_unlock_irqrestore+0x40/0x50 hardirqs last disabled at (64): [<ffffffff992a96d2>] kcsan_setup_watchpoint+0x92/0x460 softirqs last enabled at (32): [<ffffffff990489b8>] fpu__copy+0xe8/0x470 softirqs last disabled at (30): [<ffffffff99048939>] fpu__copy+0x69/0x470 Reported-by: Qian Cai <cai@lca.pw> Signed-off-by: Marco Elver <elver@google.com> Acked-by: Alexander Potapenko <glider@google.com> Tested-by: Qian Cai <cai@lca.pw> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-16 00:25:12 +08:00
*/
lockdep_off();
if (!prepare_report_consumer(&flags, &ai, other_info))
goto out;
/*
* Never report if value_change is FALSE, only when it is
* either TRUE or MAYBE. In case of MAYBE, further filtering may
* be done once we know the full stack trace in print_report().
*/
if (value_change != KCSAN_VALUE_CHANGE_FALSE)
kcsan: Report observed value changes When a thread detects that a memory location was modified without its watchpoint being hit, the report notes that a change was detected, but does not provide concrete values for the change. Knowing the concrete values can be very helpful in tracking down any racy writers (e.g. as specific values may only be written in some portions of code, or under certain conditions). When we detect a modification, let's report the concrete old/new values, along with the access's mask of relevant bits (and which relevant bits were modified). This can make it easier to identify potential racy writers. As the snapshots are at most 8 bytes, we can only report values for acceses up to this size, but this appears to cater for the common case. When we detect a race via a watchpoint, we may or may not have concrete values for the modification. To be helpful, let's attempt to log them when we do as they can be ignored where irrelevant. The resulting reports appears as follows, with values zero-padded to the access width: | ================================================================== | BUG: KCSAN: data-race in el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | | race at unknown origin, with read to 0xffff00007ae6aa00 of 8 bytes by task 223 on cpu 1: | el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | do_el0_svc+0x48/0xec arch/arm64/kernel/syscall.c:178 | el0_svc arch/arm64/kernel/entry-common.c:226 [inline] | el0_sync_handler+0x1a4/0x390 arch/arm64/kernel/entry-common.c:236 | el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:674 | | value changed: 0x0000000000000000 -> 0x0000000000000002 | | Reported by Kernel Concurrency Sanitizer on: | CPU: 1 PID: 223 Comm: syz-executor.1 Not tainted 5.8.0-rc3-00094-ga73f923ecc8e-dirty #3 | Hardware name: linux,dummy-virt (DT) | ================================================================== If an access mask is set, it is shown underneath the "value changed" line as "bits changed: 0x<bits changed> with mask 0x<non-zero mask>". Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: align "value changed" and "bits changed" lines, which required massaging the message; do not print bits+mask if no mask set. ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:24 +08:00
print_report(value_change, &ai, other_info, old, new, mask);
release_report(&flags, other_info);
out:
lockdep_on();
kcsan_enable_current();
kcsan: Distinguish kcsan_report() calls Currently kcsan_report() is used to handle three distinct cases: * The caller hit a watchpoint when attempting an access. Some information regarding the caller and access are recorded, but no output is produced. * A caller which previously setup a watchpoint detected that the watchpoint has been hit, and possibly detected a change to the location in memory being watched. This may result in output reporting the interaction between this caller and the caller which hit the watchpoint. * A caller detected a change to a modification to a memory location which wasn't detected by a watchpoint, for which there is no information on the other thread. This may result in output reporting the unexpected change. ... depending on the specific case the caller has distinct pieces of information available, but the prototype of kcsan_report() has to handle all three cases. This means that in some cases we pass redundant information, and in others we don't pass all the information we could pass. This also means that the report code has to demux these three cases. So that we can pass some additional information while also simplifying the callers and report code, add separate kcsan_report_*() functions for the distinct cases, updating callers accordingly. As the watchpoint_idx is unused in the case of kcsan_report_unknown_origin(), this passes a dummy value into kcsan_report(). Subsequent patches will refactor the report code to avoid this. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: try to make kcsan_report_*() names more descriptive ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:18 +08:00
}
kcsan: Report observed value changes When a thread detects that a memory location was modified without its watchpoint being hit, the report notes that a change was detected, but does not provide concrete values for the change. Knowing the concrete values can be very helpful in tracking down any racy writers (e.g. as specific values may only be written in some portions of code, or under certain conditions). When we detect a modification, let's report the concrete old/new values, along with the access's mask of relevant bits (and which relevant bits were modified). This can make it easier to identify potential racy writers. As the snapshots are at most 8 bytes, we can only report values for acceses up to this size, but this appears to cater for the common case. When we detect a race via a watchpoint, we may or may not have concrete values for the modification. To be helpful, let's attempt to log them when we do as they can be ignored where irrelevant. The resulting reports appears as follows, with values zero-padded to the access width: | ================================================================== | BUG: KCSAN: data-race in el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | | race at unknown origin, with read to 0xffff00007ae6aa00 of 8 bytes by task 223 on cpu 1: | el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | do_el0_svc+0x48/0xec arch/arm64/kernel/syscall.c:178 | el0_svc arch/arm64/kernel/entry-common.c:226 [inline] | el0_sync_handler+0x1a4/0x390 arch/arm64/kernel/entry-common.c:236 | el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:674 | | value changed: 0x0000000000000000 -> 0x0000000000000002 | | Reported by Kernel Concurrency Sanitizer on: | CPU: 1 PID: 223 Comm: syz-executor.1 Not tainted 5.8.0-rc3-00094-ga73f923ecc8e-dirty #3 | Hardware name: linux,dummy-virt (DT) | ================================================================== If an access mask is set, it is shown underneath the "value changed" line as "bits changed: 0x<bits changed> with mask 0x<non-zero mask>". Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: align "value changed" and "bits changed" lines, which required massaging the message; do not print bits+mask if no mask set. ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:24 +08:00
void kcsan_report_unknown_origin(const volatile void *ptr, size_t size, int access_type,
unsigned long ip, u64 old, u64 new, u64 mask)
kcsan: Distinguish kcsan_report() calls Currently kcsan_report() is used to handle three distinct cases: * The caller hit a watchpoint when attempting an access. Some information regarding the caller and access are recorded, but no output is produced. * A caller which previously setup a watchpoint detected that the watchpoint has been hit, and possibly detected a change to the location in memory being watched. This may result in output reporting the interaction between this caller and the caller which hit the watchpoint. * A caller detected a change to a modification to a memory location which wasn't detected by a watchpoint, for which there is no information on the other thread. This may result in output reporting the unexpected change. ... depending on the specific case the caller has distinct pieces of information available, but the prototype of kcsan_report() has to handle all three cases. This means that in some cases we pass redundant information, and in others we don't pass all the information we could pass. This also means that the report code has to demux these three cases. So that we can pass some additional information while also simplifying the callers and report code, add separate kcsan_report_*() functions for the distinct cases, updating callers accordingly. As the watchpoint_idx is unused in the case of kcsan_report_unknown_origin(), this passes a dummy value into kcsan_report(). Subsequent patches will refactor the report code to avoid this. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: try to make kcsan_report_*() names more descriptive ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:18 +08:00
{
const struct access_info ai = prepare_access_info(ptr, size, access_type, ip);
unsigned long flags;
kcsan_disable_current();
lockdep_off(); /* See kcsan_report_known_origin(). */
raw_spin_lock_irqsave(&report_lock, flags);
kcsan: Report observed value changes When a thread detects that a memory location was modified without its watchpoint being hit, the report notes that a change was detected, but does not provide concrete values for the change. Knowing the concrete values can be very helpful in tracking down any racy writers (e.g. as specific values may only be written in some portions of code, or under certain conditions). When we detect a modification, let's report the concrete old/new values, along with the access's mask of relevant bits (and which relevant bits were modified). This can make it easier to identify potential racy writers. As the snapshots are at most 8 bytes, we can only report values for acceses up to this size, but this appears to cater for the common case. When we detect a race via a watchpoint, we may or may not have concrete values for the modification. To be helpful, let's attempt to log them when we do as they can be ignored where irrelevant. The resulting reports appears as follows, with values zero-padded to the access width: | ================================================================== | BUG: KCSAN: data-race in el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | | race at unknown origin, with read to 0xffff00007ae6aa00 of 8 bytes by task 223 on cpu 1: | el0_svc_common+0x34/0x25c arch/arm64/kernel/syscall.c:96 | do_el0_svc+0x48/0xec arch/arm64/kernel/syscall.c:178 | el0_svc arch/arm64/kernel/entry-common.c:226 [inline] | el0_sync_handler+0x1a4/0x390 arch/arm64/kernel/entry-common.c:236 | el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:674 | | value changed: 0x0000000000000000 -> 0x0000000000000002 | | Reported by Kernel Concurrency Sanitizer on: | CPU: 1 PID: 223 Comm: syz-executor.1 Not tainted 5.8.0-rc3-00094-ga73f923ecc8e-dirty #3 | Hardware name: linux,dummy-virt (DT) | ================================================================== If an access mask is set, it is shown underneath the "value changed" line as "bits changed: 0x<bits changed> with mask 0x<non-zero mask>". Signed-off-by: Mark Rutland <mark.rutland@arm.com> [ elver@google.com: align "value changed" and "bits changed" lines, which required massaging the message; do not print bits+mask if no mask set. ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-04-14 19:28:24 +08:00
print_report(KCSAN_VALUE_CHANGE_TRUE, &ai, NULL, old, new, mask);
raw_spin_unlock_irqrestore(&report_lock, flags);
kcsan: Make KCSAN compatible with lockdep We must avoid any recursion into lockdep if KCSAN is enabled on utilities used by lockdep. One manifestation of this is corruption of lockdep's IRQ trace state (if TRACE_IRQFLAGS), resulting in spurious warnings (see below). This commit fixes this by: 1. Using raw_local_irq{save,restore} in kcsan_setup_watchpoint(). 2. Disabling lockdep in kcsan_report(). Tested with: CONFIG_LOCKDEP=y CONFIG_DEBUG_LOCKDEP=y CONFIG_TRACE_IRQFLAGS=y This fix eliminates spurious warnings such as the following one: WARNING: CPU: 0 PID: 2 at kernel/locking/lockdep.c:4406 check_flags.part.0+0x101/0x220 Modules linked in: CPU: 0 PID: 2 Comm: kthreadd Not tainted 5.5.0-rc1+ #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:check_flags.part.0+0x101/0x220 <snip> Call Trace: lock_is_held_type+0x69/0x150 freezer_fork+0x20b/0x370 cgroup_post_fork+0x2c9/0x5c0 copy_process+0x2675/0x3b40 _do_fork+0xbe/0xa30 ? _raw_spin_unlock_irqrestore+0x40/0x50 ? match_held_lock+0x56/0x250 ? kthread_park+0xf0/0xf0 kernel_thread+0xa6/0xd0 ? kthread_park+0xf0/0xf0 kthreadd+0x321/0x3d0 ? kthread_create_on_cpu+0x130/0x130 ret_from_fork+0x3a/0x50 irq event stamp: 64 hardirqs last enabled at (63): [<ffffffff9a7995d0>] _raw_spin_unlock_irqrestore+0x40/0x50 hardirqs last disabled at (64): [<ffffffff992a96d2>] kcsan_setup_watchpoint+0x92/0x460 softirqs last enabled at (32): [<ffffffff990489b8>] fpu__copy+0xe8/0x470 softirqs last disabled at (30): [<ffffffff99048939>] fpu__copy+0x69/0x470 Reported-by: Qian Cai <cai@lca.pw> Signed-off-by: Marco Elver <elver@google.com> Acked-by: Alexander Potapenko <glider@google.com> Tested-by: Qian Cai <cai@lca.pw> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-16 00:25:12 +08:00
lockdep_on();
kcsan: Avoid blocking producers in prepare_report() To avoid deadlock in case watchers can be interrupted, we need to ensure that producers of the struct other_info can never be blocked by an unrelated consumer. (Likely to occur with KCSAN_INTERRUPT_WATCHER.) There are several cases that can lead to this scenario, for example: 1. A watchpoint A was set up by task T1, but interrupted by interrupt I1. Some other thread (task or interrupt) finds watchpoint A consumes it, and sets other_info. Then I1 also finds some unrelated watchpoint B, consumes it, but is blocked because other_info is in use. T1 cannot consume other_info because I1 never returns -> deadlock. 2. A watchpoint A was set up by task T1, but interrupted by interrupt I1, which also sets up a watchpoint B. Some other thread finds watchpoint A, and consumes it and sets up other_info with its information. Similarly some other thread finds watchpoint B and consumes it, but is then blocked because other_info is in use. When I1 continues it sees its watchpoint was consumed, and that it must wait for other_info, which currently contains information to be consumed by T1. However, T1 cannot unblock other_info because I1 never returns -> deadlock. To avoid this, we need to ensure that producers of struct other_info always have a usable other_info entry. This is obviously not the case with only a single instance of struct other_info, as concurrent producers must wait for the entry to be released by some consumer (which may be locked up as illustrated above). While it would be nice if producers could simply call kmalloc() and append their instance of struct other_info to a list, we are very limited in this code path: since KCSAN can instrument the allocators themselves, calling kmalloc() could lead to deadlock or corrupted allocator state. Since producers of the struct other_info will always succeed at try_consume_watchpoint(), preceding the call into kcsan_report(), we know that the particular watchpoint slot cannot simply be reused or consumed by another potential other_info producer. If we move removal of a watchpoint after reporting (by the consumer of struct other_info), we can see a consumed watchpoint as a held lock on elements of other_info, if we create a one-to-one mapping of a watchpoint to an other_info element. Therefore, the simplest solution is to create an array of struct other_info that is as large as the watchpoints array in core.c, and pass the watchpoint index to kcsan_report() for producers and consumers, and change watchpoints to be removed after reporting is done. With a default config on a 64-bit system, the array other_infos consumes ~37KiB. For most systems today this is not a problem. On smaller memory constrained systems, the config value CONFIG_KCSAN_NUM_WATCHPOINTS can be reduced appropriately. Overall, this change is a simplification of the prepare_report() code, and makes some of the checks (such as checking if at least one access is a write) redundant. Tested: $ tools/testing/selftests/rcutorture/bin/kvm.sh \ --cpus 12 --duration 10 --kconfig "CONFIG_DEBUG_INFO=y \ CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n \ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n \ CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y \ CONFIG_KCSAN_INTERRUPT_WATCHER=y CONFIG_PROVE_LOCKING=y" \ --configs TREE03 => No longer hangs and runs to completion as expected. Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-19 01:38:45 +08:00
kcsan_enable_current();
}