linux/arch/x86/kernel/vsyscall_64.c

310 lines
8.5 KiB
C
Raw Normal View History

/*
* Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
* Copyright 2003 Andi Kleen, SuSE Labs.
*
* Thanks to hpa@transmeta.com for some useful hint.
* Special thanks to Ingo Molnar for his early experience with
* a different vsyscall implementation for Linux/IA32 and for the name.
*
* vsyscall 1 is located at -10Mbyte, vsyscall 2 is located
* at virtual address -10Mbyte+1024bytes etc... There are at max 4
* vsyscalls. One vsyscall can reserve more than 1 slot to avoid
* jumping out of line if necessary. We cannot add more with this
* mechanism because older kernels won't return -ENOSYS.
* If we want more than four we need a vDSO.
*
* Note: the concept clashes with user mode linux. If you use UML and
* want per guest time just set the kernel.vsyscall64 sysctl to 0.
*/
/* Disable profiling for userspace code: */
#define DISABLE_BRANCH_PROFILING
tracing: profile likely and unlikely annotations Impact: new unlikely/likely profiler Andrew Morton recently suggested having an in-kernel way to profile likely and unlikely macros. This patch achieves that goal. When configured, every(*) likely and unlikely macro gets a counter attached to it. When the condition is hit, the hit and misses of that condition are recorded. These numbers can later be retrieved by: /debugfs/tracing/profile_likely - All likely markers /debugfs/tracing/profile_unlikely - All unlikely markers. # cat /debug/tracing/profile_unlikely | head correct incorrect % Function File Line ------- --------- - -------- ---- ---- 2167 0 0 do_arch_prctl process_64.c 832 0 0 0 do_arch_prctl process_64.c 804 2670 0 0 IS_ERR err.h 34 71230 5693 7 __switch_to process_64.c 673 76919 0 0 __switch_to process_64.c 639 43184 33743 43 __switch_to process_64.c 624 12740 64181 83 __switch_to process_64.c 594 12740 64174 83 __switch_to process_64.c 590 # cat /debug/tracing/profile_unlikely | \ awk '{ if ($3 > 25) print $0; }' |head -20 44963 35259 43 __switch_to process_64.c 624 12762 67454 84 __switch_to process_64.c 594 12762 67447 84 __switch_to process_64.c 590 1478 595 28 syscall_get_error syscall.h 51 0 2821 100 syscall_trace_leave ptrace.c 1567 0 1 100 native_smp_prepare_cpus smpboot.c 1237 86338 265881 75 calc_delta_fair sched_fair.c 408 210410 108540 34 calc_delta_mine sched.c 1267 0 54550 100 sched_info_queued sched_stats.h 222 51899 66435 56 pick_next_task_fair sched_fair.c 1422 6 10 62 yield_task_fair sched_fair.c 982 7325 2692 26 rt_policy sched.c 144 0 1270 100 pre_schedule_rt sched_rt.c 1261 1268 48073 97 pick_next_task_rt sched_rt.c 884 0 45181 100 sched_info_dequeued sched_stats.h 177 0 15 100 sched_move_task sched.c 8700 0 15 100 sched_move_task sched.c 8690 53167 33217 38 schedule sched.c 4457 0 80208 100 sched_info_switch sched_stats.h 270 30585 49631 61 context_switch sched.c 2619 # cat /debug/tracing/profile_likely | awk '{ if ($3 > 25) print $0; }' 39900 36577 47 pick_next_task sched.c 4397 20824 15233 42 switch_mm mmu_context_64.h 18 0 7 100 __cancel_work_timer workqueue.c 560 617 66484 99 clocksource_adjust timekeeping.c 456 0 346340 100 audit_syscall_exit auditsc.c 1570 38 347350 99 audit_get_context auditsc.c 732 0 345244 100 audit_syscall_entry auditsc.c 1541 38 1017 96 audit_free auditsc.c 1446 0 1090 100 audit_alloc auditsc.c 862 2618 1090 29 audit_alloc auditsc.c 858 0 6 100 move_masked_irq migration.c 9 1 198 99 probe_sched_wakeup trace_sched_switch.c 58 2 2 50 probe_wakeup trace_sched_wakeup.c 227 0 2 100 probe_wakeup_sched_switch trace_sched_wakeup.c 144 4514 2090 31 __grab_cache_page filemap.c 2149 12882 228786 94 mapping_unevictable pagemap.h 50 4 11 73 __flush_cpu_slab slub.c 1466 627757 330451 34 slab_free slub.c 1731 2959 61245 95 dentry_lru_del_init dcache.c 153 946 1217 56 load_elf_binary binfmt_elf.c 904 102 82 44 disk_put_part genhd.h 206 1 1 50 dst_gc_task dst.c 82 0 19 100 tcp_mss_split_point tcp_output.c 1126 As you can see by the above, there's a bit of work to do in rethinking the use of some unlikelys and likelys. Note: the unlikely case had 71 hits that were more than 25%. Note: After submitting my first version of this patch, Andrew Morton showed me a version written by Daniel Walker, where I picked up the following ideas from: 1) Using __builtin_constant_p to avoid profiling fixed values. 2) Using __FILE__ instead of instruction pointers. 3) Using the preprocessor to stop all profiling of likely annotations from vsyscall_64.c. Thanks to Andrew Morton, Arjan van de Ven, Theodore Tso and Ingo Molnar for their feed back on this patch. (*) Not ever unlikely is recorded, those that are used by vsyscalls (a few of them) had to have profiling disabled. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Theodore Tso <tytso@mit.edu> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-12 13:14:39 +08:00
#include <linux/time.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/seqlock.h>
#include <linux/jiffies.h>
#include <linux/sysctl.h>
#include <linux/clocksource.h>
#include <linux/getcpu.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/notifier.h>
#include <asm/vsyscall.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/unistd.h>
#include <asm/fixmap.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/segment.h>
#include <asm/desc.h>
#include <asm/topology.h>
#include <asm/vgtod.h>
#define __vsyscall(nr) \
__attribute__ ((unused, __section__(".vsyscall_" #nr))) notrace
#define __syscall_clobber "r11","cx","memory"
/*
* vsyscall_gtod_data contains data that is :
* - readonly from vsyscalls
* - written by timer interrupt or systcl (/proc/sys/kernel/vsyscall64)
* Try to keep this structure as small as possible to avoid cache line ping pongs
*/
int __vgetcpu_mode __section_vgetcpu_mode;
struct vsyscall_gtod_data __vsyscall_gtod_data __section_vsyscall_gtod_data =
{
.lock = SEQLOCK_UNLOCKED,
.sysctl_enabled = 1,
};
void update_vsyscall_tz(void)
{
unsigned long flags;
write_seqlock_irqsave(&vsyscall_gtod_data.lock, flags);
/* sys_tz has changed */
vsyscall_gtod_data.sys_tz = sys_tz;
write_sequnlock_irqrestore(&vsyscall_gtod_data.lock, flags);
}
void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
u32 mult)
{
unsigned long flags;
write_seqlock_irqsave(&vsyscall_gtod_data.lock, flags);
/* copy vsyscall data */
vsyscall_gtod_data.clock.vread = clock->vread;
vsyscall_gtod_data.clock.cycle_last = clock->cycle_last;
vsyscall_gtod_data.clock.mask = clock->mask;
vsyscall_gtod_data.clock.mult = mult;
vsyscall_gtod_data.clock.shift = clock->shift;
vsyscall_gtod_data.wall_time_sec = wall_time->tv_sec;
vsyscall_gtod_data.wall_time_nsec = wall_time->tv_nsec;
vsyscall_gtod_data.wall_to_monotonic = wall_to_monotonic;
vsyscall_gtod_data.wall_time_coarse = __current_kernel_time();
write_sequnlock_irqrestore(&vsyscall_gtod_data.lock, flags);
}
/* RED-PEN may want to readd seq locking, but then the variable should be
* write-once.
*/
static __always_inline void do_get_tz(struct timezone * tz)
{
*tz = __vsyscall_gtod_data.sys_tz;
}
static __always_inline int gettimeofday(struct timeval *tv, struct timezone *tz)
{
int ret;
asm volatile("syscall"
: "=a" (ret)
: "0" (__NR_gettimeofday),"D" (tv),"S" (tz)
: __syscall_clobber );
return ret;
}
static __always_inline long time_syscall(long *t)
{
long secs;
asm volatile("syscall"
: "=a" (secs)
: "0" (__NR_time),"D" (t) : __syscall_clobber);
return secs;
}
static __always_inline void do_vgettimeofday(struct timeval * tv)
{
cycle_t now, base, mask, cycle_delta;
unsigned seq;
unsigned long mult, shift, nsec;
cycle_t (*vread)(void);
do {
seq = read_seqbegin(&__vsyscall_gtod_data.lock);
vread = __vsyscall_gtod_data.clock.vread;
if (unlikely(!__vsyscall_gtod_data.sysctl_enabled || !vread)) {
gettimeofday(tv,NULL);
return;
}
now = vread();
base = __vsyscall_gtod_data.clock.cycle_last;
mask = __vsyscall_gtod_data.clock.mask;
mult = __vsyscall_gtod_data.clock.mult;
shift = __vsyscall_gtod_data.clock.shift;
tv->tv_sec = __vsyscall_gtod_data.wall_time_sec;
nsec = __vsyscall_gtod_data.wall_time_nsec;
} while (read_seqretry(&__vsyscall_gtod_data.lock, seq));
/* calculate interval: */
cycle_delta = (now - base) & mask;
/* convert to nsecs: */
nsec += (cycle_delta * mult) >> shift;
while (nsec >= NSEC_PER_SEC) {
tv->tv_sec += 1;
nsec -= NSEC_PER_SEC;
}
tv->tv_usec = nsec / NSEC_PER_USEC;
}
int __vsyscall(0) vgettimeofday(struct timeval * tv, struct timezone * tz)
{
if (tv)
do_vgettimeofday(tv);
if (tz)
do_get_tz(tz);
return 0;
}
/* This will break when the xtime seconds get inaccurate, but that is
* unlikely */
time_t __vsyscall(1) vtime(time_t *t)
{
struct timeval tv;
time_t result;
if (unlikely(!__vsyscall_gtod_data.sysctl_enabled))
return time_syscall(t);
vgettimeofday(&tv, NULL);
result = tv.tv_sec;
if (t)
*t = result;
return result;
}
/* Fast way to get current CPU and node.
This helps to do per node and per CPU caches in user space.
The result is not guaranteed without CPU affinity, but usually
works out because the scheduler tries to keep a thread on the same
CPU.
tcache must point to a two element sized long array.
All arguments can be NULL. */
long __vsyscall(2)
vgetcpu(unsigned *cpu, unsigned *node, struct getcpu_cache *tcache)
{
unsigned int p;
unsigned long j = 0;
/* Fast cache - only recompute value once per jiffies and avoid
relatively costly rdtscp/cpuid otherwise.
This works because the scheduler usually keeps the process
on the same CPU and this syscall doesn't guarantee its
results anyways.
We do this here because otherwise user space would do it on
its own in a likely inferior way (no access to jiffies).
If you don't like it pass NULL. */
if (tcache && tcache->blob[0] == (j = __jiffies)) {
p = tcache->blob[1];
} else if (__vgetcpu_mode == VGETCPU_RDTSCP) {
/* Load per CPU data from RDTSCP */
native_read_tscp(&p);
} else {
/* Load per CPU data from GDT */
asm("lsl %1,%0" : "=r" (p) : "r" (__PER_CPU_SEG));
}
if (tcache) {
tcache->blob[0] = j;
tcache->blob[1] = p;
}
if (cpu)
*cpu = p & 0xfff;
if (node)
*node = p >> 12;
return 0;
}
static long __vsyscall(3) venosys_1(void)
{
return -ENOSYS;
}
#ifdef CONFIG_SYSCTL
static ctl_table kernel_table2[] = {
{ .procname = "vsyscall64",
.data = &vsyscall_gtod_data.sysctl_enabled, .maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec },
{}
};
static ctl_table kernel_root_table2[] = {
{ .procname = "kernel", .mode = 0555,
.child = kernel_table2 },
{}
};
#endif
/* Assume __initcall executes before all user space. Hopefully kmod
doesn't violate that. We'll find out if it does. */
static void __cpuinit vsyscall_set_cpu(int cpu)
{
unsigned long d;
unsigned long node = 0;
#ifdef CONFIG_NUMA
x86: fix cpu_to_node references In x86_64 and i386 architectures most arrays that are sized using NR_CPUS lay in local memory on node 0. Not only will most (99%?) of the systems not use all the slots in these arrays, particularly when NR_CPUS is increased to accommodate future very high cpu count systems, but a number of cache lines are passed unnecessarily on the system bus when these arrays are referenced by cpus on other nodes. Typically, the values in these arrays are referenced by the cpu accessing it's own values, though when passing IPI interrupts, the cpu does access the data relevant to the targeted cpu/node. Of course, if the referencing cpu is not on node 0, then the reference will still require cross node exchanges of cache lines. A common use of this is for an interrupt service routine to pass the interrupt to other cpus local to that node. Ideally, all the elements in these arrays should be moved to the per_cpu data area. In some cases (such as x86_cpu_to_apicid) the array is referenced before the per_cpu data areas are setup. In this case, a static array is declared in the __initdata area and initialized by the booting cpu (BSP). The values are then moved to the per_cpu area after it is initialized and the original static array is freed with the rest of the __initdata. This patch: Fix four instances where cpu_to_node is referenced by array instead of via the cpu_to_node macro. This is preparation to moving it to the per_cpu data area. Signed-off-by: Mike Travis <travis@sgi.com> Cc: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-18 00:04:39 +08:00
node = cpu_to_node(cpu);
#endif
if (cpu_has(&cpu_data(cpu), X86_FEATURE_RDTSCP))
write_rdtscp_aux((node << 12) | cpu);
/* Store cpu number in limit so that it can be loaded quickly
in user space in vgetcpu.
12 bits for the CPU and 8 bits for the node. */
d = 0x0f40000000000ULL;
d |= cpu;
d |= (node & 0xf) << 12;
d |= (node >> 4) << 48;
write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_PER_CPU, &d, DESCTYPE_S);
}
static void __cpuinit cpu_vsyscall_init(void *arg)
{
/* preemption should be already off */
vsyscall_set_cpu(raw_smp_processor_id());
}
static int __cpuinit
cpu_vsyscall_notifier(struct notifier_block *n, unsigned long action, void *arg)
{
long cpu = (long)arg;
if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
smp_call_function_single(cpu, cpu_vsyscall_init, NULL, 1);
return NOTIFY_DONE;
}
void __init map_vsyscall(void)
{
extern char __vsyscall_0;
unsigned long physaddr_page0 = __pa_symbol(&__vsyscall_0);
/* Note that VSYSCALL_MAPPED_PAGES must agree with the code below. */
__set_fixmap(VSYSCALL_FIRST_PAGE, physaddr_page0, PAGE_KERNEL_VSYSCALL);
}
static int __init vsyscall_init(void)
{
BUG_ON(((unsigned long) &vgettimeofday !=
VSYSCALL_ADDR(__NR_vgettimeofday)));
BUG_ON((unsigned long) &vtime != VSYSCALL_ADDR(__NR_vtime));
BUG_ON((VSYSCALL_ADDR(0) != __fix_to_virt(VSYSCALL_FIRST_PAGE)));
BUG_ON((unsigned long) &vgetcpu != VSYSCALL_ADDR(__NR_vgetcpu));
#ifdef CONFIG_SYSCTL
[PATCH] sysctl: remove insert_at_head from register_sysctl The semantic effect of insert_at_head is that it would allow new registered sysctl entries to override existing sysctl entries of the same name. Which is pain for caching and the proc interface never implemented. I have done an audit and discovered that none of the current users of register_sysctl care as (excpet for directories) they do not register duplicate sysctl entries. So this patch simply removes the support for overriding existing entries in the sys_sysctl interface since no one uses it or cares and it makes future enhancments harder. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: David Howells <dhowells@redhat.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@muc.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: Corey Minyard <minyard@acm.org> Cc: Neil Brown <neilb@suse.de> Cc: "John W. Linville" <linville@tuxdriver.com> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Jan Kara <jack@ucw.cz> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Patrick McHardy <kaber@trash.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 16:34:09 +08:00
register_sysctl_table(kernel_root_table2);
#endif
on_each_cpu(cpu_vsyscall_init, NULL, 1);
/* notifier priority > KVM */
hotcpu_notifier(cpu_vsyscall_notifier, 30);
return 0;
}
__initcall(vsyscall_init);