linux/mm/slab.h

648 lines
17 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
* Internal slab definitions
*/
#ifdef CONFIG_SLOB
/*
* Common fields provided in kmem_cache by all slab allocators
* This struct is either used directly by the allocator (SLOB)
* or the allocator must include definitions for all fields
* provided in kmem_cache_common in their definition of kmem_cache.
*
* Once we can do anonymous structs (C11 standard) we could put a
* anonymous struct definition in these allocators so that the
* separate allocations in the kmem_cache structure of SLAB and
* SLUB is no longer needed.
*/
struct kmem_cache {
unsigned int object_size;/* The original size of the object */
unsigned int size; /* The aligned/padded/added on size */
unsigned int align; /* Alignment as calculated */
slab_flags_t flags; /* Active flags on the slab */
unsigned int useroffset;/* Usercopy region offset */
unsigned int usersize; /* Usercopy region size */
const char *name; /* Slab name for sysfs */
int refcount; /* Use counter */
void (*ctor)(void *); /* Called on object slot creation */
struct list_head list; /* List of all slab caches on the system */
};
#endif /* CONFIG_SLOB */
#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif
#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif
#include <linux/memcontrol.h>
#include <linux/fault-inject.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
mm: reorganize SLAB freelist randomization The kernel heap allocators are using a sequential freelist making their allocation predictable. This predictability makes kernel heap overflow easier to exploit. An attacker can careful prepare the kernel heap to control the following chunk overflowed. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) ***Problems that needed solving: - Randomize the Freelist (singled linked) used in the SLUB allocator. - Ensure good performance to encourage usage. - Get best entropy in early boot stage. ***Parts: - 01/02 Reorganize the SLAB Freelist randomization to share elements with the SLUB implementation. - 02/02 The SLUB Freelist randomization implementation. Similar approach than the SLAB but tailored to the singled freelist used in SLUB. ***Performance data: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) This patch (of 2): This commit reorganizes the previous SLAB freelist randomization to prepare for the SLUB implementation. It moves functions that will be shared to slab_common. The entropy functions are changed to align with the SLUB implementation, now using get_random_(int|long) functions. These functions were chosen because they provide a bit more entropy early on boot and better performance when specific arch instructions are not available. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 06:21:56 +08:00
#include <linux/random.h>
#include <linux/sched/mm.h>
/*
* State of the slab allocator.
*
* This is used to describe the states of the allocator during bootup.
* Allocators use this to gradually bootstrap themselves. Most allocators
* have the problem that the structures used for managing slab caches are
* allocated from slab caches themselves.
*/
enum slab_state {
DOWN, /* No slab functionality yet */
PARTIAL, /* SLUB: kmem_cache_node available */
PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
UP, /* Slab caches usable but not all extras yet */
FULL /* Everything is working */
};
extern enum slab_state slab_state;
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
/* The list of all slab caches on the system */
extern struct list_head slab_caches;
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;
mm, slab: rename kmalloc-node cache to kmalloc-<size> SLAB as part of its bootstrap pre-creates one kmalloc cache that can fit the kmem_cache_node management structure, and puts it into the generic kmalloc cache array (e.g. for 128b objects). The name of this cache is "kmalloc-node", which is confusing for readers of /proc/slabinfo as the cache is used for generic allocations (and not just the kmem_cache_node struct) and it appears as the kmalloc-128 cache is missing. An easy solution is to use the kmalloc-<size> name when pre-creating the cache, which we can get from the kmalloc_info array. Example /proc/slabinfo before the patch: ... kmalloc-256 1647 1984 256 16 1 : tunables 120 60 8 : slabdata 124 124 828 kmalloc-192 1974 1974 192 21 1 : tunables 120 60 8 : slabdata 94 94 133 kmalloc-96 1332 1344 128 32 1 : tunables 120 60 8 : slabdata 42 42 219 kmalloc-64 2505 5952 64 64 1 : tunables 120 60 8 : slabdata 93 93 715 kmalloc-32 4278 4464 32 124 1 : tunables 120 60 8 : slabdata 36 36 346 kmalloc-node 1352 1376 128 32 1 : tunables 120 60 8 : slabdata 43 43 53 kmem_cache 132 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 After the patch: ... kmalloc-256 1672 2160 256 16 1 : tunables 120 60 8 : slabdata 135 135 807 kmalloc-192 1992 2016 192 21 1 : tunables 120 60 8 : slabdata 96 96 203 kmalloc-96 1159 1184 128 32 1 : tunables 120 60 8 : slabdata 37 37 116 kmalloc-64 2561 4864 64 64 1 : tunables 120 60 8 : slabdata 76 76 785 kmalloc-32 4253 4340 32 124 1 : tunables 120 60 8 : slabdata 35 35 270 kmalloc-128 1256 1280 128 32 1 : tunables 120 60 8 : slabdata 40 40 39 kmem_cache 125 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 [vbabka@suse.cz: export the whole kmalloc_info structure instead of just a name accessor, per Christoph Lameter] Link: http://lkml.kernel.org/r/54e80303-b814-4232-66d4-95b34d3eb9d0@suse.cz Link: http://lkml.kernel.org/r/20170203181008.24898-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:05 +08:00
/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
mm, slab: make kmalloc_info[] contain all types of names Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 09:49:21 +08:00
const char *name[NR_KMALLOC_TYPES];
unsigned int size;
mm, slab: rename kmalloc-node cache to kmalloc-<size> SLAB as part of its bootstrap pre-creates one kmalloc cache that can fit the kmem_cache_node management structure, and puts it into the generic kmalloc cache array (e.g. for 128b objects). The name of this cache is "kmalloc-node", which is confusing for readers of /proc/slabinfo as the cache is used for generic allocations (and not just the kmem_cache_node struct) and it appears as the kmalloc-128 cache is missing. An easy solution is to use the kmalloc-<size> name when pre-creating the cache, which we can get from the kmalloc_info array. Example /proc/slabinfo before the patch: ... kmalloc-256 1647 1984 256 16 1 : tunables 120 60 8 : slabdata 124 124 828 kmalloc-192 1974 1974 192 21 1 : tunables 120 60 8 : slabdata 94 94 133 kmalloc-96 1332 1344 128 32 1 : tunables 120 60 8 : slabdata 42 42 219 kmalloc-64 2505 5952 64 64 1 : tunables 120 60 8 : slabdata 93 93 715 kmalloc-32 4278 4464 32 124 1 : tunables 120 60 8 : slabdata 36 36 346 kmalloc-node 1352 1376 128 32 1 : tunables 120 60 8 : slabdata 43 43 53 kmem_cache 132 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 After the patch: ... kmalloc-256 1672 2160 256 16 1 : tunables 120 60 8 : slabdata 135 135 807 kmalloc-192 1992 2016 192 21 1 : tunables 120 60 8 : slabdata 96 96 203 kmalloc-96 1159 1184 128 32 1 : tunables 120 60 8 : slabdata 37 37 116 kmalloc-64 2561 4864 64 64 1 : tunables 120 60 8 : slabdata 76 76 785 kmalloc-32 4253 4340 32 124 1 : tunables 120 60 8 : slabdata 35 35 270 kmalloc-128 1256 1280 128 32 1 : tunables 120 60 8 : slabdata 40 40 39 kmem_cache 125 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 [vbabka@suse.cz: export the whole kmalloc_info structure instead of just a name accessor, per Christoph Lameter] Link: http://lkml.kernel.org/r/54e80303-b814-4232-66d4-95b34d3eb9d0@suse.cz Link: http://lkml.kernel.org/r/20170203181008.24898-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:05 +08:00
} kmalloc_info[];
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
slab: correct size_index table before replacing the bootstrap kmem_cache_node This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:57 +08:00
void setup_kmalloc_cache_index_table(void);
void create_kmalloc_caches(slab_flags_t);
/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
#endif
gfp_t kmalloc_fix_flags(gfp_t flags);
/* Functions provided by the slab allocators */
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
slab_flags_t flags, unsigned int useroffset,
unsigned int usersize);
extern void create_boot_cache(struct kmem_cache *, const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize);
int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
slab_flags_t flags, const char *name, void (*ctor)(void *));
#ifndef CONFIG_SLOB
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *));
slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name);
#else
static inline struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{ return NULL; }
static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name)
{
return flags;
}
#endif
/* Legal flag mask for kmem_cache_create(), for various configurations */
mm: add support for kmem caches in DMA32 zone Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables", v6. This is a followup to the discussion in [1], [2]. IOMMUs using ARMv7 short-descriptor format require page tables (level 1 and 2) to be allocated within the first 4GB of RAM, even on 64-bit systems. For L1 tables that are bigger than a page, we can just use __get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still use GFP_DMA). For L2 tables that only take 1KB, it would be a waste to allocate a full page, so we considered 3 approaches: 1. This series, adding support for GFP_DMA32 slab caches. 2. genalloc, which requires pre-allocating the maximum number of L2 page tables (4096, so 4MB of memory). 3. page_frag, which is not very memory-efficient as it is unable to reuse freed fragments until the whole page is freed. [3] This series is the most memory-efficient approach. stable@ note: We confirmed that this is a regression, and IOMMU errors happen on 4.19 and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue most likely starts from commit ad67f5a6545f ("arm64: replace ZONE_DMA with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek platforms (and maybe others?). [1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html [2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html [3] https://patchwork.codeaurora.org/patch/671639/ This patch (of 3): IOMMUs using ARMv7 short-descriptor format require page tables to be allocated within the first 4GB of RAM, even on 64-bit systems. On arm64, this is done by passing GFP_DMA32 flag to memory allocation functions. For IOMMU L2 tables that only take 1KB, it would be a waste to allocate a full page using get_free_pages, so we considered 3 approaches: 1. This patch, adding support for GFP_DMA32 slab caches. 2. genalloc, which requires pre-allocating the maximum number of L2 page tables (4096, so 4MB of memory). 3. page_frag, which is not very memory-efficient as it is unable to reuse freed fragments until the whole page is freed. This change makes it possible to create a custom cache in DMA32 zone using kmem_cache_create, then allocate memory using kmem_cache_alloc. We do not create a DMA32 kmalloc cache array, as there are currently no users of kmalloc(..., GFP_DMA32). These calls will continue to trigger a warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK. This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32 kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and unnecessary). Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org Signed-off-by: Nicolas Boichat <drinkcat@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Sasha Levin <Alexander.Levin@microsoft.com> Cc: Huaisheng Ye <yehs1@lenovo.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yong Wu <yong.wu@mediatek.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Tomasz Figa <tfiga@google.com> Cc: Yingjoe Chen <yingjoe.chen@mediatek.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 11:43:42 +08:00
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
SLAB_CACHE_DMA32 | SLAB_PANIC | \
SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif
#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
SLAB_ACCOUNT)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
SLAB_TEMPORARY | SLAB_ACCOUNT)
#else
#define SLAB_CACHE_FLAGS (0)
#endif
/* Common flags available with current configuration */
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
SLAB_RED_ZONE | \
SLAB_POISON | \
SLAB_STORE_USER | \
SLAB_TRACE | \
SLAB_CONSISTENCY_CHECKS | \
SLAB_MEM_SPREAD | \
SLAB_NOLEAKTRACE | \
SLAB_RECLAIM_ACCOUNT | \
SLAB_TEMPORARY | \
SLAB_ACCOUNT)
slab, slub: skip unnecessary kasan_cache_shutdown() The kasan quarantine is designed to delay freeing slab objects to catch use-after-free. The quarantine can be large (several percent of machine memory size). When kmem_caches are deleted related objects are flushed from the quarantine but this requires scanning the entire quarantine which can be very slow. We have seen the kernel busily working on this while holding slab_mutex and badly affecting cache_reaper, slabinfo readers and memcg kmem cache creations. It can easily reproduced by following script: yes . | head -1000000 | xargs stat > /dev/null for i in `seq 1 10`; do seq 500 | (cd /cg/memory && xargs mkdir) seq 500 | xargs -I{} sh -c 'echo $BASHPID > \ /cg/memory/{}/tasks && exec stat .' > /dev/null seq 500 | (cd /cg/memory && xargs rmdir) done The busy stack: kasan_cache_shutdown shutdown_cache memcg_destroy_kmem_caches mem_cgroup_css_free css_free_rwork_fn process_one_work worker_thread kthread ret_from_fork This patch is based on the observation that if the kmem_cache to be destroyed is empty then there should not be any objects of this cache in the quarantine. Without the patch the script got stuck for couple of hours. With the patch the script completed within a second. Link: http://lkml.kernel.org/r/20180327230603.54721-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 07:21:57 +08:00
bool __kmem_cache_empty(struct kmem_cache *);
int __kmem_cache_shutdown(struct kmem_cache *);
mm: slab: free kmem_cache_node after destroy sysfs file When slub_debug alloc_calls_show is enabled we will try to track location and user of slab object on each online node, kmem_cache_node structure and cpu_cache/cpu_slub shouldn't be freed till there is the last reference to sysfs file. This fixes the following panic: BUG: unable to handle kernel NULL pointer dereference at 0000000000000020 IP: list_locations+0x169/0x4e0 PGD 257304067 PUD 438456067 PMD 0 Oops: 0000 [#1] SMP CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30 Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011 task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000 RIP: list_locations+0x169/0x4e0 Call Trace: alloc_calls_show+0x1d/0x30 slab_attr_show+0x1b/0x30 sysfs_read_file+0x9a/0x1a0 vfs_read+0x9c/0x170 SyS_read+0x58/0xb0 system_call_fastpath+0x16/0x1b Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10 CR2: 0000000000000020 Separated __kmem_cache_release from __kmem_cache_shutdown which now called on slab_kmem_cache_release (after the last reference to sysfs file object has dropped). Reintroduced locking in free_partial as sysfs file might access cache's partial list after shutdowning - partial revert of the commit 69cb8e6b7c29 ("slub: free slabs without holding locks"). Zap __remove_partial and use remove_partial (w/o underscores) as free_partial now takes list_lock which s partial revert for commit 1e4dd9461fab ("slub: do not assert not having lock in removing freed partial") Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-18 05:11:37 +08:00
void __kmem_cache_release(struct kmem_cache *);
int __kmem_cache_shrink(struct kmem_cache *);
slub: use sysfs'es release mechanism for kmem_cache debugobjects warning during netfilter exit: ------------[ cut here ]------------ WARNING: CPU: 6 PID: 4178 at lib/debugobjects.c:260 debug_print_object+0x8d/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 6 PID: 4178 Comm: kworker/u16:2 Tainted: G W 3.11.0-next-20130906-sasha #3984 Workqueue: netns cleanup_net Call Trace: dump_stack+0x52/0x87 warn_slowpath_common+0x8c/0xc0 warn_slowpath_fmt+0x46/0x50 debug_print_object+0x8d/0xb0 __debug_check_no_obj_freed+0xa5/0x220 debug_check_no_obj_freed+0x15/0x20 kmem_cache_free+0x197/0x340 kmem_cache_destroy+0x86/0xe0 nf_conntrack_cleanup_net_list+0x131/0x170 nf_conntrack_pernet_exit+0x5d/0x70 ops_exit_list+0x5e/0x70 cleanup_net+0xfb/0x1c0 process_one_work+0x338/0x550 worker_thread+0x215/0x350 kthread+0xe7/0xf0 ret_from_fork+0x7c/0xb0 Also during dcookie cleanup: WARNING: CPU: 12 PID: 9725 at lib/debugobjects.c:260 debug_print_object+0x8c/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 12 PID: 9725 Comm: trinity-c141 Not tainted 3.15.0-rc2-next-20140423-sasha-00018-gc4ff6c4 #408 Call Trace: dump_stack (lib/dump_stack.c:52) warn_slowpath_common (kernel/panic.c:430) warn_slowpath_fmt (kernel/panic.c:445) debug_print_object (lib/debugobjects.c:262) __debug_check_no_obj_freed (lib/debugobjects.c:697) debug_check_no_obj_freed (lib/debugobjects.c:726) kmem_cache_free (mm/slub.c:2689 mm/slub.c:2717) kmem_cache_destroy (mm/slab_common.c:363) dcookie_unregister (fs/dcookies.c:302 fs/dcookies.c:343) event_buffer_release (arch/x86/oprofile/../../../drivers/oprofile/event_buffer.c:153) __fput (fs/file_table.c:217) ____fput (fs/file_table.c:253) task_work_run (kernel/task_work.c:125 (discriminator 1)) do_notify_resume (include/linux/tracehook.h:196 arch/x86/kernel/signal.c:751) int_signal (arch/x86/kernel/entry_64.S:807) Sysfs has a release mechanism. Use that to release the kmem_cache structure if CONFIG_SYSFS is enabled. Only slub is changed - slab currently only supports /proc/slabinfo and not /sys/kernel/slab/*. We talked about adding that and someone was working on it. [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build] [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build even more] Signed-off-by: Christoph Lameter <cl@linux.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Greg KH <greg@kroah.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Pekka Enberg <penberg@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Bart Van Assche <bvanassche@acm.org> Cc: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:08 +08:00
void slab_kmem_cache_release(struct kmem_cache *);
struct seq_file;
struct file;
struct slabinfo {
unsigned long active_objs;
unsigned long num_objs;
unsigned long active_slabs;
unsigned long num_slabs;
unsigned long shared_avail;
unsigned int limit;
unsigned int batchcount;
unsigned int shared;
unsigned int objects_per_slab;
unsigned int cache_order;
};
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos);
/*
* Generic implementation of bulk operations
* These are useful for situations in which the allocator cannot
* perform optimizations. In that case segments of the object listed
* may be allocated or freed using these operations.
*/
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
{
return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
}
mm, slab/slub: improve error reporting and overhead of cache_from_obj() cache_from_obj() was added by commit b9ce5ef49f00 ("sl[au]b: always get the cache from its page in kmem_cache_free()") to support kmemcg, where per-memcg cache can be different from the root one, so we can't use the kmem_cache pointer given to kmem_cache_free(). Prior to that commit, SLUB already had debugging check+warning that could be enabled to compare the given kmem_cache pointer to one referenced by the slab page where the object-to-be-freed resides. This check was moved to cache_from_obj(). Later the check was also enabled for SLAB_FREELIST_HARDENED configs by commit 598a0717a816 ("mm/slab: validate cache membership under freelist hardening"). These checks and warnings can be useful especially for the debugging, which can be improved. Commit 598a0717a816 changed the pr_err() with WARN_ON_ONCE() to WARN_ONCE() so only the first hit is now reported, others are silent. This patch changes it to WARN() so that all errors are reported. It's also useful to print SLUB allocation/free tracking info for the offending object, if tracking is enabled. Thus, export the SLUB print_tracking() function and provide an empty one for SLAB. For SLUB we can also benefit from the static key check in kmem_cache_debug_flags(), but we need to move this function to slab.h and declare the static key there. [1] https://lore.kernel.org/r/20200608230654.828134-18-guro@fb.com [vbabka@suse.cz: avoid bogus WARN()] Link: https://lore.kernel.org/r/20200623090213.GW5535@shao2-debian Link: http://lkml.kernel.org/r/b33e0fa7-cd28-4788-9e54-5927846329ef@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Jann Horn <jannh@google.com> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Link: http://lkml.kernel.org/r/afeda7ac-748b-33d8-a905-56b708148ad5@suse.cz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:19:05 +08:00
#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
extern void print_tracking(struct kmem_cache *s, void *object);
#else
static inline void print_tracking(struct kmem_cache *s, void *object)
{
}
#endif
/*
* Returns true if any of the specified slub_debug flags is enabled for the
* cache. Use only for flags parsed by setup_slub_debug() as it also enables
* the static key.
*/
static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
{
#ifdef CONFIG_SLUB_DEBUG
VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
if (static_branch_unlikely(&slub_debug_enabled))
return s->flags & flags;
#endif
return false;
}
mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB Introduce new config option, which is used to replace repeating CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more memcg+kmem related code, so let's keep the defines more clearly. Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:47:25 +08:00
#ifdef CONFIG_MEMCG_KMEM
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
mm: memcg/slab: pre-allocate obj_cgroups for slab caches with SLAB_ACCOUNT In general it's unknown in advance if a slab page will contain accounted objects or not. In order to avoid memory waste, an obj_cgroup vector is allocated dynamically when a need to account of a new object arises. Such approach is memory efficient, but requires an expensive cmpxchg() to set up the memcg/objcgs pointer, because an allocation can race with a different allocation on another cpu. But in some common cases it's known for sure that a slab page will contain accounted objects: if the page belongs to a slab cache with a SLAB_ACCOUNT flag set. It includes such popular objects like vm_area_struct, anon_vma, task_struct, etc. In such cases we can pre-allocate the objcgs vector and simple assign it to the page without any atomic operations, because at this early stage the page is not visible to anyone else. A very simplistic benchmark (allocating 10000000 64-bytes objects in a row) shows ~15% win. In the real life it seems that most workloads are not very sensitive to the speed of (accounted) slab allocations. [guro@fb.com: open-code set_page_objcgs() and add some comments, by Johannes] Link: https://lkml.kernel.org/r/20201113001926.GA2934489@carbon.dhcp.thefacebook.com [akpm@linux-foundation.org: fix it for mm-slub-call-account_slab_page-after-slab-page-initialization-fix.patch] Link: https://lkml.kernel.org/r/20201110195753.530157-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:03:11 +08:00
gfp_t gfp, bool new_page);
static inline void memcg_free_page_obj_cgroups(struct page *page)
{
kfree(page_objcgs(page));
mm: memcontrol: Use helpers to read page's memcg data Patch series "mm: allow mapping accounted kernel pages to userspace", v6. Currently a non-slab kernel page which has been charged to a memory cgroup can't be mapped to userspace. The underlying reason is simple: PageKmemcg flag is defined as a page type (like buddy, offline, etc), so it takes a bit from a page->mapped counter. Pages with a type set can't be mapped to userspace. But in general the kmemcg flag has nothing to do with mapping to userspace. It only means that the page has been accounted by the page allocator, so it has to be properly uncharged on release. Some bpf maps are mapping the vmalloc-based memory to userspace, and their memory can't be accounted because of this implementation detail. This patchset removes this limitation by moving the PageKmemcg flag into one of the free bits of the page->mem_cgroup pointer. Also it formalizes accesses to the page->mem_cgroup and page->obj_cgroups using new helpers, adds several checks and removes a couple of obsolete functions. As the result the code became more robust with fewer open-coded bit tricks. This patch (of 4): Currently there are many open-coded reads of the page->mem_cgroup pointer, as well as a couple of read helpers, which are barely used. It creates an obstacle on a way to reuse some bits of the pointer for storing additional bits of information. In fact, we already do this for slab pages, where the last bit indicates that a pointer has an attached vector of objcg pointers instead of a regular memcg pointer. This commits uses 2 existing helpers and introduces a new helper to converts all read sides to calls of these helpers: struct mem_cgroup *page_memcg(struct page *page); struct mem_cgroup *page_memcg_rcu(struct page *page); struct mem_cgroup *page_memcg_check(struct page *page); page_memcg_check() is intended to be used in cases when the page can be a slab page and have a memcg pointer pointing at objcg vector. It does check the lowest bit, and if set, returns NULL. page_memcg() contains a VM_BUG_ON_PAGE() check for the page not being a slab page. To make sure nobody uses a direct access, struct page's mem_cgroup/obj_cgroups is converted to unsigned long memcg_data. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
2020-12-02 05:58:27 +08:00
page->memcg_data = 0;
}
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
static inline size_t obj_full_size(struct kmem_cache *s)
{
/*
* For each accounted object there is an extra space which is used
* to store obj_cgroup membership. Charge it too.
*/
return s->size + sizeof(struct obj_cgroup *);
}
/*
* Returns false if the allocation should fail.
*/
static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
struct obj_cgroup **objcgp,
size_t objects, gfp_t flags)
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
{
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:21:10 +08:00
struct obj_cgroup *objcg;
if (!memcg_kmem_enabled())
return true;
if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
return true;
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:21:10 +08:00
objcg = get_obj_cgroup_from_current();
if (!objcg)
return true;
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:21:10 +08:00
if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
obj_cgroup_put(objcg);
return false;
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
}
*objcgp = objcg;
return true;
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
}
static inline void mod_objcg_state(struct obj_cgroup *objcg,
struct pglist_data *pgdat,
enum node_stat_item idx, int nr)
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
{
struct mem_cgroup *memcg;
struct lruvec *lruvec;
rcu_read_lock();
memcg = obj_cgroup_memcg(objcg);
lruvec = mem_cgroup_lruvec(memcg, pgdat);
mod_memcg_lruvec_state(lruvec, idx, nr);
rcu_read_unlock();
}
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
struct obj_cgroup *objcg,
gfp_t flags, size_t size,
void **p)
{
struct page *page;
unsigned long off;
size_t i;
if (!memcg_kmem_enabled() || !objcg)
return;
flags &= ~__GFP_ACCOUNT;
for (i = 0; i < size; i++) {
if (likely(p[i])) {
page = virt_to_head_page(p[i]);
if (!page_objcgs(page) &&
mm: memcg/slab: pre-allocate obj_cgroups for slab caches with SLAB_ACCOUNT In general it's unknown in advance if a slab page will contain accounted objects or not. In order to avoid memory waste, an obj_cgroup vector is allocated dynamically when a need to account of a new object arises. Such approach is memory efficient, but requires an expensive cmpxchg() to set up the memcg/objcgs pointer, because an allocation can race with a different allocation on another cpu. But in some common cases it's known for sure that a slab page will contain accounted objects: if the page belongs to a slab cache with a SLAB_ACCOUNT flag set. It includes such popular objects like vm_area_struct, anon_vma, task_struct, etc. In such cases we can pre-allocate the objcgs vector and simple assign it to the page without any atomic operations, because at this early stage the page is not visible to anyone else. A very simplistic benchmark (allocating 10000000 64-bytes objects in a row) shows ~15% win. In the real life it seems that most workloads are not very sensitive to the speed of (accounted) slab allocations. [guro@fb.com: open-code set_page_objcgs() and add some comments, by Johannes] Link: https://lkml.kernel.org/r/20201113001926.GA2934489@carbon.dhcp.thefacebook.com [akpm@linux-foundation.org: fix it for mm-slub-call-account_slab_page-after-slab-page-initialization-fix.patch] Link: https://lkml.kernel.org/r/20201110195753.530157-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:03:11 +08:00
memcg_alloc_page_obj_cgroups(page, s, flags,
false)) {
obj_cgroup_uncharge(objcg, obj_full_size(s));
continue;
}
off = obj_to_index(s, page, p[i]);
obj_cgroup_get(objcg);
page_objcgs(page)[off] = objcg;
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
mod_objcg_state(objcg, page_pgdat(page),
cache_vmstat_idx(s), obj_full_size(s));
} else {
obj_cgroup_uncharge(objcg, obj_full_size(s));
}
}
obj_cgroup_put(objcg);
}
static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
void **p, int objects)
{
struct kmem_cache *s;
struct obj_cgroup **objcgs;
struct obj_cgroup *objcg;
struct page *page;
unsigned int off;
int i;
if (!memcg_kmem_enabled())
return;
for (i = 0; i < objects; i++) {
if (unlikely(!p[i]))
continue;
page = virt_to_head_page(p[i]);
objcgs = page_objcgs(page);
if (!objcgs)
continue;
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
if (!s_orig)
s = page->slab_cache;
else
s = s_orig;
off = obj_to_index(s, page, p[i]);
objcg = objcgs[off];
if (!objcg)
continue;
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
objcgs[off] = NULL;
obj_cgroup_uncharge(objcg, obj_full_size(s));
mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
-obj_full_size(s));
obj_cgroup_put(objcg);
}
}
mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB Introduce new config option, which is used to replace repeating CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more memcg+kmem related code, so let's keep the defines more clearly. Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:47:25 +08:00
#else /* CONFIG_MEMCG_KMEM */
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:21:10 +08:00
static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages Every slab page charged to a non-root memory cgroup has a pointer to the memory cgroup and holds a reference to it, which protects a non-empty memory cgroup from being released. At the same time the page has a pointer to the corresponding kmem_cache, and also hold a reference to the kmem_cache. And kmem_cache by itself holds a reference to the cgroup. So there is clearly some redundancy, which allows to stop setting the page->mem_cgroup pointer and rely on getting memcg pointer indirectly via kmem_cache. Further it will allow to change this pointer easier, without a need to go over all charged pages. So let's stop setting page->mem_cgroup pointer for slab pages, and stop using the css refcounter directly for protecting the memory cgroup from going away. Instead rely on kmem_cache as an intermediate object. Make sure that vmstats and shrinker lists are working as previously, as well as /proc/kpagecgroup interface. Link: http://lkml.kernel.org/r/20190611231813.3148843-10-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:56:31 +08:00
{
return NULL;
}
static inline int memcg_alloc_page_obj_cgroups(struct page *page,
mm: memcg/slab: pre-allocate obj_cgroups for slab caches with SLAB_ACCOUNT In general it's unknown in advance if a slab page will contain accounted objects or not. In order to avoid memory waste, an obj_cgroup vector is allocated dynamically when a need to account of a new object arises. Such approach is memory efficient, but requires an expensive cmpxchg() to set up the memcg/objcgs pointer, because an allocation can race with a different allocation on another cpu. But in some common cases it's known for sure that a slab page will contain accounted objects: if the page belongs to a slab cache with a SLAB_ACCOUNT flag set. It includes such popular objects like vm_area_struct, anon_vma, task_struct, etc. In such cases we can pre-allocate the objcgs vector and simple assign it to the page without any atomic operations, because at this early stage the page is not visible to anyone else. A very simplistic benchmark (allocating 10000000 64-bytes objects in a row) shows ~15% win. In the real life it seems that most workloads are not very sensitive to the speed of (accounted) slab allocations. [guro@fb.com: open-code set_page_objcgs() and add some comments, by Johannes] Link: https://lkml.kernel.org/r/20201113001926.GA2934489@carbon.dhcp.thefacebook.com [akpm@linux-foundation.org: fix it for mm-slub-call-account_slab_page-after-slab-page-initialization-fix.patch] Link: https://lkml.kernel.org/r/20201110195753.530157-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:03:11 +08:00
struct kmem_cache *s, gfp_t gfp,
bool new_page)
{
return 0;
}
static inline void memcg_free_page_obj_cgroups(struct page *page)
{
}
static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
struct obj_cgroup **objcgp,
size_t objects, gfp_t flags)
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
{
return true;
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
}
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
struct obj_cgroup *objcg,
gfp_t flags, size_t size,
void **p)
{
}
static inline void memcg_slab_free_hook(struct kmem_cache *s,
void **p, int objects)
{
}
mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB Introduce new config option, which is used to replace repeating CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more memcg+kmem related code, so let's keep the defines more clearly. Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:47:25 +08:00
#endif /* CONFIG_MEMCG_KMEM */
mm/slab: sanity-check page type when looking up cache This avoids any possible type confusion when looking up an object. For example, if a non-slab were to be passed to kfree(), the invalid slab_cache pointer (i.e. overlapped with some other value from the struct page union) would be used for subsequent slab manipulations that could lead to further memory corruption. Since the page is already in cache, adding the PageSlab() check will have nearly zero cost, so add a check and WARN() to virt_to_cache(). Additionally replaces an open-coded virt_to_cache(). To support the failure mode this also updates all callers of virt_to_cache() and cache_from_obj() to handle a NULL cache pointer return value (though note that several already handle this case gracefully). [dan.carpenter@oracle.com: restore IRQs in kfree()] Link: http://lkml.kernel.org/r/20190613065637.GE16334@mwanda Link: http://lkml.kernel.org/r/20190530045017.15252-3-keescook@chromium.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:53:26 +08:00
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
struct page *page;
page = virt_to_head_page(obj);
if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
__func__))
return NULL;
return page->slab_cache;
}
static __always_inline void account_slab_page(struct page *page, int order,
mm: memcg/slab: pre-allocate obj_cgroups for slab caches with SLAB_ACCOUNT In general it's unknown in advance if a slab page will contain accounted objects or not. In order to avoid memory waste, an obj_cgroup vector is allocated dynamically when a need to account of a new object arises. Such approach is memory efficient, but requires an expensive cmpxchg() to set up the memcg/objcgs pointer, because an allocation can race with a different allocation on another cpu. But in some common cases it's known for sure that a slab page will contain accounted objects: if the page belongs to a slab cache with a SLAB_ACCOUNT flag set. It includes such popular objects like vm_area_struct, anon_vma, task_struct, etc. In such cases we can pre-allocate the objcgs vector and simple assign it to the page without any atomic operations, because at this early stage the page is not visible to anyone else. A very simplistic benchmark (allocating 10000000 64-bytes objects in a row) shows ~15% win. In the real life it seems that most workloads are not very sensitive to the speed of (accounted) slab allocations. [guro@fb.com: open-code set_page_objcgs() and add some comments, by Johannes] Link: https://lkml.kernel.org/r/20201113001926.GA2934489@carbon.dhcp.thefacebook.com [akpm@linux-foundation.org: fix it for mm-slub-call-account_slab_page-after-slab-page-initialization-fix.patch] Link: https://lkml.kernel.org/r/20201110195753.530157-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:03:11 +08:00
struct kmem_cache *s,
gfp_t gfp)
{
mm: memcg/slab: pre-allocate obj_cgroups for slab caches with SLAB_ACCOUNT In general it's unknown in advance if a slab page will contain accounted objects or not. In order to avoid memory waste, an obj_cgroup vector is allocated dynamically when a need to account of a new object arises. Such approach is memory efficient, but requires an expensive cmpxchg() to set up the memcg/objcgs pointer, because an allocation can race with a different allocation on another cpu. But in some common cases it's known for sure that a slab page will contain accounted objects: if the page belongs to a slab cache with a SLAB_ACCOUNT flag set. It includes such popular objects like vm_area_struct, anon_vma, task_struct, etc. In such cases we can pre-allocate the objcgs vector and simple assign it to the page without any atomic operations, because at this early stage the page is not visible to anyone else. A very simplistic benchmark (allocating 10000000 64-bytes objects in a row) shows ~15% win. In the real life it seems that most workloads are not very sensitive to the speed of (accounted) slab allocations. [guro@fb.com: open-code set_page_objcgs() and add some comments, by Johannes] Link: https://lkml.kernel.org/r/20201113001926.GA2934489@carbon.dhcp.thefacebook.com [akpm@linux-foundation.org: fix it for mm-slub-call-account_slab_page-after-slab-page-initialization-fix.patch] Link: https://lkml.kernel.org/r/20201110195753.530157-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:03:11 +08:00
if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
memcg_alloc_page_obj_cgroups(page, s, gfp, true);
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
PAGE_SIZE << order);
}
static __always_inline void unaccount_slab_page(struct page *page, int order,
struct kmem_cache *s)
{
if (memcg_kmem_enabled())
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
memcg_free_page_obj_cgroups(page);
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:21:10 +08:00
mm: memcg/slab: charge individual slab objects instead of pages Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:20:59 +08:00
mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
-(PAGE_SIZE << order));
}
mm, slab/slub: improve error reporting and overhead of cache_from_obj() cache_from_obj() was added by commit b9ce5ef49f00 ("sl[au]b: always get the cache from its page in kmem_cache_free()") to support kmemcg, where per-memcg cache can be different from the root one, so we can't use the kmem_cache pointer given to kmem_cache_free(). Prior to that commit, SLUB already had debugging check+warning that could be enabled to compare the given kmem_cache pointer to one referenced by the slab page where the object-to-be-freed resides. This check was moved to cache_from_obj(). Later the check was also enabled for SLAB_FREELIST_HARDENED configs by commit 598a0717a816 ("mm/slab: validate cache membership under freelist hardening"). These checks and warnings can be useful especially for the debugging, which can be improved. Commit 598a0717a816 changed the pr_err() with WARN_ON_ONCE() to WARN_ONCE() so only the first hit is now reported, others are silent. This patch changes it to WARN() so that all errors are reported. It's also useful to print SLUB allocation/free tracking info for the offending object, if tracking is enabled. Thus, export the SLUB print_tracking() function and provide an empty one for SLAB. For SLUB we can also benefit from the static key check in kmem_cache_debug_flags(), but we need to move this function to slab.h and declare the static key there. [1] https://lore.kernel.org/r/20200608230654.828134-18-guro@fb.com [vbabka@suse.cz: avoid bogus WARN()] Link: https://lore.kernel.org/r/20200623090213.GW5535@shao2-debian Link: http://lkml.kernel.org/r/b33e0fa7-cd28-4788-9e54-5927846329ef@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Jann Horn <jannh@google.com> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Link: http://lkml.kernel.org/r/afeda7ac-748b-33d8-a905-56b708148ad5@suse.cz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:19:05 +08:00
static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
struct kmem_cache *cachep;
if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
!kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
return s;
cachep = virt_to_cache(x);
if (WARN(cachep && cachep != s,
mm, slab/slub: improve error reporting and overhead of cache_from_obj() cache_from_obj() was added by commit b9ce5ef49f00 ("sl[au]b: always get the cache from its page in kmem_cache_free()") to support kmemcg, where per-memcg cache can be different from the root one, so we can't use the kmem_cache pointer given to kmem_cache_free(). Prior to that commit, SLUB already had debugging check+warning that could be enabled to compare the given kmem_cache pointer to one referenced by the slab page where the object-to-be-freed resides. This check was moved to cache_from_obj(). Later the check was also enabled for SLAB_FREELIST_HARDENED configs by commit 598a0717a816 ("mm/slab: validate cache membership under freelist hardening"). These checks and warnings can be useful especially for the debugging, which can be improved. Commit 598a0717a816 changed the pr_err() with WARN_ON_ONCE() to WARN_ONCE() so only the first hit is now reported, others are silent. This patch changes it to WARN() so that all errors are reported. It's also useful to print SLUB allocation/free tracking info for the offending object, if tracking is enabled. Thus, export the SLUB print_tracking() function and provide an empty one for SLAB. For SLUB we can also benefit from the static key check in kmem_cache_debug_flags(), but we need to move this function to slab.h and declare the static key there. [1] https://lore.kernel.org/r/20200608230654.828134-18-guro@fb.com [vbabka@suse.cz: avoid bogus WARN()] Link: https://lore.kernel.org/r/20200623090213.GW5535@shao2-debian Link: http://lkml.kernel.org/r/b33e0fa7-cd28-4788-9e54-5927846329ef@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Jann Horn <jannh@google.com> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Link: http://lkml.kernel.org/r/afeda7ac-748b-33d8-a905-56b708148ad5@suse.cz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:19:05 +08:00
"%s: Wrong slab cache. %s but object is from %s\n",
__func__, s->name, cachep->name))
print_tracking(cachep, x);
return cachep;
}
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
return s->object_size;
#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
/*
* Debugging requires use of the padding between object
* and whatever may come after it.
*/
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
return s->object_size;
# endif
if (s->flags & SLAB_KASAN)
return s->object_size;
/*
* If we have the need to store the freelist pointer
* back there or track user information then we can
* only use the space before that information.
*/
if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
return s->inuse;
/*
* Else we can use all the padding etc for the allocation
*/
return s->size;
#endif
}
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
struct obj_cgroup **objcgp,
size_t size, gfp_t flags)
{
flags &= gfp_allowed_mask;
mm: extract might_alloc() debug check Extracted from slab.h, which seems to have the most complete version including the correct might_sleep() check. Roll it out to slob.c. Motivated by a discussion with Paul about possibly changing call_rcu behaviour to allocate memory, but only roughly every 500th call. There are a lot fewer places in the kernel that care about whether allocating memory is allowed or not (due to deadlocks with reclaim code) than places that care whether sleeping is allowed. But debugging these also tends to be a lot harder, so nice descriptive checks could come in handy. I might have some use eventually for annotations in drivers/gpu. Note that unlike fs_reclaim_acquire/release gfpflags_allow_blocking does not consult the PF_MEMALLOC flags. But there is no flag equivalent for GFP_NOWAIT, hence this check can't go wrong due to memalloc_no*_save/restore contexts. Willy is working on a patch series which might change this: https://lore.kernel.org/linux-mm/20200625113122.7540-7-willy@infradead.org/ I think best would be if that updates gfpflags_allow_blocking(), since there's a ton of callers all over the place for that already. Link: https://lkml.kernel.org/r/20201125162532.1299794-3-daniel.vetter@ffwll.ch Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Michel Lespinasse <walken@google.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Waiman Long <longman@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Qian Cai <cai@lca.pw> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Christian König <christian.koenig@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Thomas Hellström (Intel) <thomas_os@shipmail.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 11:08:34 +08:00
might_alloc(flags);
if (should_failslab(s, flags))
return NULL;
if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
return NULL;
return s;
}
static inline void slab_post_alloc_hook(struct kmem_cache *s,
kasan, mm: integrate slab init_on_alloc with HW_TAGS This change uses the previously added memory initialization feature of HW_TAGS KASAN routines for slab memory when init_on_alloc is enabled. With this change, memory initialization memset() is no longer called when both HW_TAGS KASAN and init_on_alloc are enabled. Instead, memory is initialized in KASAN runtime. The memory initialization memset() is moved into slab_post_alloc_hook() that currently directly follows the initialization loop. A new argument is added to slab_post_alloc_hook() that indicates whether to initialize the memory or not. To avoid discrepancies with which memory gets initialized that can be caused by future changes, both KASAN hook and initialization memset() are put together and a warning comment is added. Combining setting allocation tags with memory initialization improves HW_TAGS KASAN performance when init_on_alloc is enabled. Link: https://lkml.kernel.org/r/c1292aeb5d519da221ec74a0684a949b027d7720.1615296150.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 14:00:06 +08:00
struct obj_cgroup *objcg, gfp_t flags,
size_t size, void **p, bool init)
{
size_t i;
flags &= gfp_allowed_mask;
kasan, mm: integrate slab init_on_alloc with HW_TAGS This change uses the previously added memory initialization feature of HW_TAGS KASAN routines for slab memory when init_on_alloc is enabled. With this change, memory initialization memset() is no longer called when both HW_TAGS KASAN and init_on_alloc are enabled. Instead, memory is initialized in KASAN runtime. The memory initialization memset() is moved into slab_post_alloc_hook() that currently directly follows the initialization loop. A new argument is added to slab_post_alloc_hook() that indicates whether to initialize the memory or not. To avoid discrepancies with which memory gets initialized that can be caused by future changes, both KASAN hook and initialization memset() are put together and a warning comment is added. Combining setting allocation tags with memory initialization improves HW_TAGS KASAN performance when init_on_alloc is enabled. Link: https://lkml.kernel.org/r/c1292aeb5d519da221ec74a0684a949b027d7720.1615296150.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 14:00:06 +08:00
/*
* As memory initialization might be integrated into KASAN,
* kasan_slab_alloc and initialization memset must be
* kept together to avoid discrepancies in behavior.
*
* As p[i] might get tagged, memset and kmemleak hook come after KASAN.
*/
for (i = 0; i < size; i++) {
kasan, mm: integrate slab init_on_alloc with HW_TAGS This change uses the previously added memory initialization feature of HW_TAGS KASAN routines for slab memory when init_on_alloc is enabled. With this change, memory initialization memset() is no longer called when both HW_TAGS KASAN and init_on_alloc are enabled. Instead, memory is initialized in KASAN runtime. The memory initialization memset() is moved into slab_post_alloc_hook() that currently directly follows the initialization loop. A new argument is added to slab_post_alloc_hook() that indicates whether to initialize the memory or not. To avoid discrepancies with which memory gets initialized that can be caused by future changes, both KASAN hook and initialization memset() are put together and a warning comment is added. Combining setting allocation tags with memory initialization improves HW_TAGS KASAN performance when init_on_alloc is enabled. Link: https://lkml.kernel.org/r/c1292aeb5d519da221ec74a0684a949b027d7720.1615296150.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 14:00:06 +08:00
p[i] = kasan_slab_alloc(s, p[i], flags, init);
if (p[i] && init && !kasan_has_integrated_init())
memset(p[i], 0, s->object_size);
kmemleak_alloc_recursive(p[i], s->object_size, 1,
s->flags, flags);
}
memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
}
#ifndef CONFIG_SLOB
/*
* The slab lists for all objects.
*/
struct kmem_cache_node {
spinlock_t list_lock;
#ifdef CONFIG_SLAB
struct list_head slabs_partial; /* partial list first, better asm code */
struct list_head slabs_full;
struct list_head slabs_free;
unsigned long total_slabs; /* length of all slab lists */
unsigned long free_slabs; /* length of free slab list only */
unsigned long free_objects;
unsigned int free_limit;
unsigned int colour_next; /* Per-node cache coloring */
struct array_cache *shared; /* shared per node */
struct alien_cache **alien; /* on other nodes */
unsigned long next_reap; /* updated without locking */
int free_touched; /* updated without locking */
#endif
#ifdef CONFIG_SLUB
unsigned long nr_partial;
struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
atomic_long_t nr_slabs;
atomic_long_t total_objects;
struct list_head full;
#endif
#endif
};
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
return s->node[node];
}
/*
* Iterator over all nodes. The body will be executed for each node that has
* a kmem_cache_node structure allocated (which is true for all online nodes)
*/
#define for_each_kmem_cache_node(__s, __node, __n) \
for (__node = 0; __node < nr_node_ids; __node++) \
if ((__n = get_node(__s, __node)))
#endif
void *slab_start(struct seq_file *m, loff_t *pos);
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
int memcg_slab_show(struct seq_file *m, void *p);
mm: oom: show unreclaimable slab info when unreclaimable slabs > user memory The kernel may panic when an oom happens without killable process sometimes it is caused by huge unreclaimable slabs used by kernel. Although kdump could help debug such problem, however, kdump is not available on all architectures and it might be malfunction sometime. And, since kernel already panic it is worthy capturing such information in dmesg to aid touble shooting. Print out unreclaimable slab info (used size and total size) which actual memory usage is not zero (num_objs * size != 0) when unreclaimable slabs amount is greater than total user memory (LRU pages). The output looks like: Unreclaimable slab info: Name Used Total rpc_buffers 31KB 31KB rpc_tasks 7KB 7KB ebitmap_node 1964KB 1964KB avtab_node 5024KB 5024KB xfs_buf 1402KB 1402KB xfs_ili 134KB 134KB xfs_efi_item 115KB 115KB xfs_efd_item 115KB 115KB xfs_buf_item 134KB 134KB xfs_log_item_desc 342KB 342KB xfs_trans 1412KB 1412KB xfs_ifork 212KB 212KB [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:32:07 +08:00
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif
mm: kasan: initial memory quarantine implementation Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. When the object is freed, its state changes from KASAN_STATE_ALLOC to KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine instead of being returned to the allocator, therefore every subsequent access to that object triggers a KASAN error, and the error handler is able to say where the object has been allocated and deallocated. When it's time for the object to leave quarantine, its state becomes KASAN_STATE_FREE and it's returned to the allocator. From now on the allocator may reuse it for another allocation. Before that happens, it's still possible to detect a use-after free on that object (it retains the allocation/deallocation stacks). When the allocator reuses this object, the shadow is unpoisoned and old allocation/deallocation stacks are wiped. Therefore a use of this object, even an incorrect one, won't trigger ASan warning. Without the quarantine, it's not guaranteed that the objects aren't reused immediately, that's why the probability of catching a use-after-free is lower than with quarantine in place. Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. Freed objects are first added to per-cpu quarantine queues. When a cache is destroyed or memory shrinking is requested, the objects are moved into the global quarantine queue. Whenever a kmalloc call allows memory reclaiming, the oldest objects are popped out of the global queue until the total size of objects in quarantine is less than 3/4 of the maximum quarantine size (which is a fraction of installed physical memory). As long as an object remains in the quarantine, KASAN is able to report accesses to it, so the chance of reporting a use-after-free is increased. Once the object leaves quarantine, the allocator may reuse it, in which case the object is unpoisoned and KASAN can't detect incorrect accesses to it. Right now quarantine support is only enabled in SLAB allocator. Unification of KASAN features in SLAB and SLUB will be done later. This patch is based on the "mm: kasan: quarantine" patch originally prepared by Dmitry Chernenkov. A number of improvements have been suggested by Andrey Ryabinin. [glider@google.com: v9] Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 07:59:11 +08:00
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
mm: reorganize SLAB freelist randomization The kernel heap allocators are using a sequential freelist making their allocation predictable. This predictability makes kernel heap overflow easier to exploit. An attacker can careful prepare the kernel heap to control the following chunk overflowed. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) ***Problems that needed solving: - Randomize the Freelist (singled linked) used in the SLUB allocator. - Ensure good performance to encourage usage. - Get best entropy in early boot stage. ***Parts: - 01/02 Reorganize the SLAB Freelist randomization to share elements with the SLUB implementation. - 02/02 The SLUB Freelist randomization implementation. Similar approach than the SLAB but tailored to the singled freelist used in SLUB. ***Performance data: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) This patch (of 2): This commit reorganizes the previous SLAB freelist randomization to prepare for the SLUB implementation. It moves functions that will be shared to slab_common. The entropy functions are changed to align with the SLUB implementation, now using get_random_(int|long) functions. These functions were chosen because they provide a bit more entropy early on boot and better performance when specific arch instructions are not available. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 06:21:56 +08:00
#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
unsigned int count, gfp_t gfp)
{
return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options Patch series "add init_on_alloc/init_on_free boot options", v10. Provide init_on_alloc and init_on_free boot options. These are aimed at preventing possible information leaks and making the control-flow bugs that depend on uninitialized values more deterministic. Enabling either of the options guarantees that the memory returned by the page allocator and SL[AU]B is initialized with zeroes. SLOB allocator isn't supported at the moment, as its emulation of kmem caches complicates handling of SLAB_TYPESAFE_BY_RCU caches correctly. Enabling init_on_free also guarantees that pages and heap objects are initialized right after they're freed, so it won't be possible to access stale data by using a dangling pointer. As suggested by Michal Hocko, right now we don't let the heap users to disable initialization for certain allocations. There's not enough evidence that doing so can speed up real-life cases, and introducing ways to opt-out may result in things going out of control. This patch (of 2): The new options are needed to prevent possible information leaks and make control-flow bugs that depend on uninitialized values more deterministic. This is expected to be on-by-default on Android and Chrome OS. And it gives the opportunity for anyone else to use it under distros too via the boot args. (The init_on_free feature is regularly requested by folks where memory forensics is included in their threat models.) init_on_alloc=1 makes the kernel initialize newly allocated pages and heap objects with zeroes. Initialization is done at allocation time at the places where checks for __GFP_ZERO are performed. init_on_free=1 makes the kernel initialize freed pages and heap objects with zeroes upon their deletion. This helps to ensure sensitive data doesn't leak via use-after-free accesses. Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator returns zeroed memory. The two exceptions are slab caches with constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never zero-initialized to preserve their semantics. Both init_on_alloc and init_on_free default to zero, but those defaults can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and CONFIG_INIT_ON_FREE_DEFAULT_ON. If either SLUB poisoning or page poisoning is enabled, those options take precedence over init_on_alloc and init_on_free: initialization is only applied to unpoisoned allocations. Slowdown for the new features compared to init_on_free=0, init_on_alloc=0: hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%) hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%) Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%) Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%) Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%) Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%) The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline is within the standard error. The new features are also going to pave the way for hardware memory tagging (e.g. arm64's MTE), which will require both on_alloc and on_free hooks to set the tags for heap objects. With MTE, tagging will have the same cost as memory initialization. Although init_on_free is rather costly, there are paranoid use-cases where in-memory data lifetime is desired to be minimized. There are various arguments for/against the realism of the associated threat models, but given that we'll need the infrastructure for MTE anyway, and there are people who want wipe-on-free behavior no matter what the performance cost, it seems reasonable to include it in this series. [glider@google.com: v8] Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com [glider@google.com: v9] Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com [glider@google.com: v10] Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts Acked-by: James Morris <jamorris@linux.microsoft.com>] Cc: Christoph Lameter <cl@linux.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Sandeep Patil <sspatil@android.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Jann Horn <jannh@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:59:19 +08:00
static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
{
if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
&init_on_alloc)) {
mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options Patch series "add init_on_alloc/init_on_free boot options", v10. Provide init_on_alloc and init_on_free boot options. These are aimed at preventing possible information leaks and making the control-flow bugs that depend on uninitialized values more deterministic. Enabling either of the options guarantees that the memory returned by the page allocator and SL[AU]B is initialized with zeroes. SLOB allocator isn't supported at the moment, as its emulation of kmem caches complicates handling of SLAB_TYPESAFE_BY_RCU caches correctly. Enabling init_on_free also guarantees that pages and heap objects are initialized right after they're freed, so it won't be possible to access stale data by using a dangling pointer. As suggested by Michal Hocko, right now we don't let the heap users to disable initialization for certain allocations. There's not enough evidence that doing so can speed up real-life cases, and introducing ways to opt-out may result in things going out of control. This patch (of 2): The new options are needed to prevent possible information leaks and make control-flow bugs that depend on uninitialized values more deterministic. This is expected to be on-by-default on Android and Chrome OS. And it gives the opportunity for anyone else to use it under distros too via the boot args. (The init_on_free feature is regularly requested by folks where memory forensics is included in their threat models.) init_on_alloc=1 makes the kernel initialize newly allocated pages and heap objects with zeroes. Initialization is done at allocation time at the places where checks for __GFP_ZERO are performed. init_on_free=1 makes the kernel initialize freed pages and heap objects with zeroes upon their deletion. This helps to ensure sensitive data doesn't leak via use-after-free accesses. Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator returns zeroed memory. The two exceptions are slab caches with constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never zero-initialized to preserve their semantics. Both init_on_alloc and init_on_free default to zero, but those defaults can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and CONFIG_INIT_ON_FREE_DEFAULT_ON. If either SLUB poisoning or page poisoning is enabled, those options take precedence over init_on_alloc and init_on_free: initialization is only applied to unpoisoned allocations. Slowdown for the new features compared to init_on_free=0, init_on_alloc=0: hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%) hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%) Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%) Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%) Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%) Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%) The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline is within the standard error. The new features are also going to pave the way for hardware memory tagging (e.g. arm64's MTE), which will require both on_alloc and on_free hooks to set the tags for heap objects. With MTE, tagging will have the same cost as memory initialization. Although init_on_free is rather costly, there are paranoid use-cases where in-memory data lifetime is desired to be minimized. There are various arguments for/against the realism of the associated threat models, but given that we'll need the infrastructure for MTE anyway, and there are people who want wipe-on-free behavior no matter what the performance cost, it seems reasonable to include it in this series. [glider@google.com: v8] Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com [glider@google.com: v9] Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com [glider@google.com: v10] Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts Acked-by: James Morris <jamorris@linux.microsoft.com>] Cc: Christoph Lameter <cl@linux.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Sandeep Patil <sspatil@android.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Jann Horn <jannh@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:59:19 +08:00
if (c->ctor)
return false;
if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
return flags & __GFP_ZERO;
return true;
}
return flags & __GFP_ZERO;
}
static inline bool slab_want_init_on_free(struct kmem_cache *c)
{
if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
&init_on_free))
mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options Patch series "add init_on_alloc/init_on_free boot options", v10. Provide init_on_alloc and init_on_free boot options. These are aimed at preventing possible information leaks and making the control-flow bugs that depend on uninitialized values more deterministic. Enabling either of the options guarantees that the memory returned by the page allocator and SL[AU]B is initialized with zeroes. SLOB allocator isn't supported at the moment, as its emulation of kmem caches complicates handling of SLAB_TYPESAFE_BY_RCU caches correctly. Enabling init_on_free also guarantees that pages and heap objects are initialized right after they're freed, so it won't be possible to access stale data by using a dangling pointer. As suggested by Michal Hocko, right now we don't let the heap users to disable initialization for certain allocations. There's not enough evidence that doing so can speed up real-life cases, and introducing ways to opt-out may result in things going out of control. This patch (of 2): The new options are needed to prevent possible information leaks and make control-flow bugs that depend on uninitialized values more deterministic. This is expected to be on-by-default on Android and Chrome OS. And it gives the opportunity for anyone else to use it under distros too via the boot args. (The init_on_free feature is regularly requested by folks where memory forensics is included in their threat models.) init_on_alloc=1 makes the kernel initialize newly allocated pages and heap objects with zeroes. Initialization is done at allocation time at the places where checks for __GFP_ZERO are performed. init_on_free=1 makes the kernel initialize freed pages and heap objects with zeroes upon their deletion. This helps to ensure sensitive data doesn't leak via use-after-free accesses. Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator returns zeroed memory. The two exceptions are slab caches with constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never zero-initialized to preserve their semantics. Both init_on_alloc and init_on_free default to zero, but those defaults can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and CONFIG_INIT_ON_FREE_DEFAULT_ON. If either SLUB poisoning or page poisoning is enabled, those options take precedence over init_on_alloc and init_on_free: initialization is only applied to unpoisoned allocations. Slowdown for the new features compared to init_on_free=0, init_on_alloc=0: hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%) hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%) Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%) Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%) Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%) Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%) The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline is within the standard error. The new features are also going to pave the way for hardware memory tagging (e.g. arm64's MTE), which will require both on_alloc and on_free hooks to set the tags for heap objects. With MTE, tagging will have the same cost as memory initialization. Although init_on_free is rather costly, there are paranoid use-cases where in-memory data lifetime is desired to be minimized. There are various arguments for/against the realism of the associated threat models, but given that we'll need the infrastructure for MTE anyway, and there are people who want wipe-on-free behavior no matter what the performance cost, it seems reasonable to include it in this series. [glider@google.com: v8] Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com [glider@google.com: v9] Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com [glider@google.com: v10] Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts Acked-by: James Morris <jamorris@linux.microsoft.com>] Cc: Christoph Lameter <cl@linux.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Sandeep Patil <sspatil@android.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Jann Horn <jannh@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:59:19 +08:00
return !(c->ctor ||
(c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
return false;
}
#ifdef CONFIG_PRINTK
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
#define KS_ADDRS_COUNT 16
struct kmem_obj_info {
void *kp_ptr;
struct page *kp_page;
void *kp_objp;
unsigned long kp_data_offset;
struct kmem_cache *kp_slab_cache;
void *kp_ret;
void *kp_stack[KS_ADDRS_COUNT];
};
void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page);
#endif
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
#endif /* MM_SLAB_H */