linux/include/drm/drmP.h

636 lines
19 KiB
C
Raw Normal View History

/*
* Internal Header for the Direct Rendering Manager
*
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
* Copyright (c) 2009-2010, Code Aurora Forum.
* All rights reserved.
*
* Author: Rickard E. (Rik) Faith <faith@valinux.com>
* Author: Gareth Hughes <gareth@valinux.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef _DRM_P_H_
#define _DRM_P_H_
#include <linux/agp_backend.h>
#include <linux/cdev.h>
#include <linux/dma-mapping.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/highmem.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/kref.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/poll.h>
#include <linux/ratelimit.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 20:00:45 +08:00
#include <linux/dma-fence.h>
#include <linux/module.h>
#include <asm/mman.h>
#include <asm/pgalloc.h>
#include <linux/uaccess.h>
#include <uapi/drm/drm.h>
#include <uapi/drm/drm_mode.h>
#include <drm/drm_agpsupport.h>
#include <drm/drm_crtc.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_global.h>
#include <drm/drm_hashtab.h>
#include <drm/drm_mem_util.h>
#include <drm/drm_mm.h>
#include <drm/drm_os_linux.h>
#include <drm/drm_sarea.h>
#include <drm/drm_drv.h>
#include <drm/drm_prime.h>
#include <drm/drm_pci.h>
#include <drm/drm_file.h>
struct module;
struct drm_device;
struct drm_agp_head;
struct drm_local_map;
struct drm_device_dma;
struct drm_gem_object;
struct drm_master;
struct drm_vblank_crtc;
struct drm_vma_offset_manager;
struct device_node;
struct videomode;
struct reservation_object;
struct dma_buf_attachment;
struct pci_dev;
struct pci_controller;
/*
* The following categories are defined:
*
* CORE: Used in the generic drm code: drm_ioctl.c, drm_mm.c, drm_memory.c, ...
* This is the category used by the DRM_DEBUG() macro.
*
* DRIVER: Used in the vendor specific part of the driver: i915, radeon, ...
* This is the category used by the DRM_DEBUG_DRIVER() macro.
*
* KMS: used in the modesetting code.
* This is the category used by the DRM_DEBUG_KMS() macro.
*
* PRIME: used in the prime code.
* This is the category used by the DRM_DEBUG_PRIME() macro.
*
* ATOMIC: used in the atomic code.
* This is the category used by the DRM_DEBUG_ATOMIC() macro.
*
* VBL: used for verbose debug message in the vblank code
* This is the category used by the DRM_DEBUG_VBL() macro.
*
* Enabling verbose debug messages is done through the drm.debug parameter,
* each category being enabled by a bit.
*
* drm.debug=0x1 will enable CORE messages
* drm.debug=0x2 will enable DRIVER messages
* drm.debug=0x3 will enable CORE and DRIVER messages
* ...
* drm.debug=0x3f will enable all messages
*
* An interesting feature is that it's possible to enable verbose logging at
* run-time by echoing the debug value in its sysfs node:
* # echo 0xf > /sys/module/drm/parameters/debug
*/
#define DRM_UT_NONE 0x00
#define DRM_UT_CORE 0x01
#define DRM_UT_DRIVER 0x02
#define DRM_UT_KMS 0x04
#define DRM_UT_PRIME 0x08
#define DRM_UT_ATOMIC 0x10
#define DRM_UT_VBL 0x20
#define DRM_UT_STATE 0x40
2009-06-02 14:09:47 +08:00
/***********************************************************************/
/** \name DRM template customization defaults */
/*@{*/
/***********************************************************************/
/** \name Macros to make printk easier */
/*@{*/
#define _DRM_PRINTK(once, level, fmt, ...) \
do { \
printk##once(KERN_##level "[" DRM_NAME "] " fmt, \
##__VA_ARGS__); \
} while (0)
#define DRM_INFO(fmt, ...) \
_DRM_PRINTK(, INFO, fmt, ##__VA_ARGS__)
#define DRM_NOTE(fmt, ...) \
_DRM_PRINTK(, NOTICE, fmt, ##__VA_ARGS__)
#define DRM_WARN(fmt, ...) \
_DRM_PRINTK(, WARNING, fmt, ##__VA_ARGS__)
#define DRM_INFO_ONCE(fmt, ...) \
_DRM_PRINTK(_once, INFO, fmt, ##__VA_ARGS__)
#define DRM_NOTE_ONCE(fmt, ...) \
_DRM_PRINTK(_once, NOTICE, fmt, ##__VA_ARGS__)
#define DRM_WARN_ONCE(fmt, ...) \
_DRM_PRINTK(_once, WARNING, fmt, ##__VA_ARGS__)
/**
* Error output.
*
* \param fmt printf() like format string.
* \param arg arguments
*/
#define DRM_DEV_ERROR(dev, fmt, ...) \
drm_dev_printk(dev, KERN_ERR, DRM_UT_NONE, __func__, " *ERROR*",\
fmt, ##__VA_ARGS__)
#define DRM_ERROR(fmt, ...) \
drm_printk(KERN_ERR, DRM_UT_NONE, fmt, ##__VA_ARGS__)
/**
* Rate limited error output. Like DRM_ERROR() but won't flood the log.
*
* \param fmt printf() like format string.
* \param arg arguments
*/
#define DRM_DEV_ERROR_RATELIMITED(dev, fmt, ...) \
({ \
static DEFINE_RATELIMIT_STATE(_rs, \
DEFAULT_RATELIMIT_INTERVAL, \
DEFAULT_RATELIMIT_BURST); \
\
if (__ratelimit(&_rs)) \
DRM_DEV_ERROR(dev, fmt, ##__VA_ARGS__); \
})
#define DRM_ERROR_RATELIMITED(fmt, ...) \
DRM_DEV_ERROR_RATELIMITED(NULL, fmt, ##__VA_ARGS__)
#define DRM_DEV_INFO(dev, fmt, ...) \
drm_dev_printk(dev, KERN_INFO, DRM_UT_NONE, __func__, "", fmt, \
##__VA_ARGS__)
#define DRM_DEV_INFO_ONCE(dev, fmt, ...) \
({ \
static bool __print_once __read_mostly; \
if (!__print_once) { \
__print_once = true; \
DRM_DEV_INFO(dev, fmt, ##__VA_ARGS__); \
} \
})
/**
* Debug output.
*
* \param fmt printf() like format string.
* \param arg arguments
*/
#define DRM_DEV_DEBUG(dev, fmt, args...) \
drm_dev_printk(dev, KERN_DEBUG, DRM_UT_CORE, __func__, "", fmt, \
##args)
#define DRM_DEBUG(fmt, ...) \
drm_printk(KERN_DEBUG, DRM_UT_CORE, fmt, ##__VA_ARGS__)
2009-06-02 14:09:47 +08:00
#define DRM_DEV_DEBUG_DRIVER(dev, fmt, args...) \
drm_dev_printk(dev, KERN_DEBUG, DRM_UT_DRIVER, __func__, "", \
fmt, ##args)
#define DRM_DEBUG_DRIVER(fmt, ...) \
drm_printk(KERN_DEBUG, DRM_UT_DRIVER, fmt, ##__VA_ARGS__)
#define DRM_DEV_DEBUG_KMS(dev, fmt, args...) \
drm_dev_printk(dev, KERN_DEBUG, DRM_UT_KMS, __func__, "", fmt, \
##args)
#define DRM_DEBUG_KMS(fmt, ...) \
drm_printk(KERN_DEBUG, DRM_UT_KMS, fmt, ##__VA_ARGS__)
#define DRM_DEV_DEBUG_PRIME(dev, fmt, args...) \
drm_dev_printk(dev, KERN_DEBUG, DRM_UT_PRIME, __func__, "", \
fmt, ##args)
#define DRM_DEBUG_PRIME(fmt, ...) \
drm_printk(KERN_DEBUG, DRM_UT_PRIME, fmt, ##__VA_ARGS__)
#define DRM_DEV_DEBUG_ATOMIC(dev, fmt, args...) \
drm_dev_printk(dev, KERN_DEBUG, DRM_UT_ATOMIC, __func__, "", \
fmt, ##args)
#define DRM_DEBUG_ATOMIC(fmt, ...) \
drm_printk(KERN_DEBUG, DRM_UT_ATOMIC, fmt, ##__VA_ARGS__)
#define DRM_DEV_DEBUG_VBL(dev, fmt, args...) \
drm_dev_printk(dev, KERN_DEBUG, DRM_UT_VBL, __func__, "", fmt, \
##args)
#define DRM_DEBUG_VBL(fmt, ...) \
drm_printk(KERN_DEBUG, DRM_UT_VBL, fmt, ##__VA_ARGS__)
#define _DRM_DEV_DEFINE_DEBUG_RATELIMITED(dev, level, fmt, args...) \
({ \
static DEFINE_RATELIMIT_STATE(_rs, \
DEFAULT_RATELIMIT_INTERVAL, \
DEFAULT_RATELIMIT_BURST); \
if (__ratelimit(&_rs)) \
drm_dev_printk(dev, KERN_DEBUG, DRM_UT_ ## level, \
__func__, "", fmt, ##args); \
})
/**
* Rate limited debug output. Like DRM_DEBUG() but won't flood the log.
*
* \param fmt printf() like format string.
* \param arg arguments
*/
#define DRM_DEV_DEBUG_RATELIMITED(dev, fmt, args...) \
DEV__DRM_DEFINE_DEBUG_RATELIMITED(dev, CORE, fmt, ##args)
#define DRM_DEBUG_RATELIMITED(fmt, args...) \
DRM_DEV_DEBUG_RATELIMITED(NULL, fmt, ##args)
#define DRM_DEV_DEBUG_DRIVER_RATELIMITED(dev, fmt, args...) \
_DRM_DEV_DEFINE_DEBUG_RATELIMITED(dev, DRIVER, fmt, ##args)
#define DRM_DEBUG_DRIVER_RATELIMITED(fmt, args...) \
DRM_DEV_DEBUG_DRIVER_RATELIMITED(NULL, fmt, ##args)
#define DRM_DEV_DEBUG_KMS_RATELIMITED(dev, fmt, args...) \
_DRM_DEV_DEFINE_DEBUG_RATELIMITED(dev, KMS, fmt, ##args)
#define DRM_DEBUG_KMS_RATELIMITED(fmt, args...) \
DRM_DEV_DEBUG_KMS_RATELIMITED(NULL, fmt, ##args)
#define DRM_DEV_DEBUG_PRIME_RATELIMITED(dev, fmt, args...) \
_DRM_DEV_DEFINE_DEBUG_RATELIMITED(dev, PRIME, fmt, ##args)
#define DRM_DEBUG_PRIME_RATELIMITED(fmt, args...) \
DRM_DEV_DEBUG_PRIME_RATELIMITED(NULL, fmt, ##args)
/* Format strings and argument splitters to simplify printing
* various "complex" objects
*/
#define DRM_MODE_FMT "%d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x"
#define DRM_MODE_ARG(m) \
(m)->base.id, (m)->name, (m)->vrefresh, (m)->clock, \
(m)->hdisplay, (m)->hsync_start, (m)->hsync_end, (m)->htotal, \
(m)->vdisplay, (m)->vsync_start, (m)->vsync_end, (m)->vtotal, \
(m)->type, (m)->flags
#define DRM_RECT_FMT "%dx%d%+d%+d"
#define DRM_RECT_ARG(r) drm_rect_width(r), drm_rect_height(r), (r)->x1, (r)->y1
/* for rect's in fixed-point format: */
#define DRM_RECT_FP_FMT "%d.%06ux%d.%06u%+d.%06u%+d.%06u"
#define DRM_RECT_FP_ARG(r) \
drm_rect_width(r) >> 16, ((drm_rect_width(r) & 0xffff) * 15625) >> 10, \
drm_rect_height(r) >> 16, ((drm_rect_height(r) & 0xffff) * 15625) >> 10, \
(r)->x1 >> 16, (((r)->x1 & 0xffff) * 15625) >> 10, \
(r)->y1 >> 16, (((r)->y1 & 0xffff) * 15625) >> 10
/*@}*/
/***********************************************************************/
/** \name Internal types and structures */
/*@{*/
#define DRM_IF_VERSION(maj, min) (maj << 16 | min)
/**
* Ioctl function type.
*
* \param inode device inode.
* \param file_priv DRM file private pointer.
* \param cmd command.
* \param arg argument.
*/
typedef int drm_ioctl_t(struct drm_device *dev, void *data,
struct drm_file *file_priv);
drm: 32/64-bit DRM ioctl compatibility patch The patch is against a 2.6.11 kernel tree. I am running this with a 32-bit X server (compiled up from X.org CVS as of a couple of weeks ago) and 32-bit DRI libraries and clients. All the userland stuff is identical to what I am using under a 32-bit kernel on my G4 powerbook (which is a 32-bit machine of course). I haven't tried compiling up a 64-bit X server or clients yet. In the compatibility routines I have assumed that the kernel can safely access user addresses after set_fs(KERNEL_DS). That is, where an ioctl argument structure contains pointers to other structures, and those other structures are already compatible between the 32-bit and 64-bit ABIs (i.e. they only contain things like chars, shorts or ints), I just check the address with access_ok() and then pass it through to the 64-bit ioctl code. I believe this approach may not work on sparc64, but it does work on ppc64 and x86_64 at least. One tricky area which may need to be revisited is the question of how to handle the handles which we pass back to userspace to identify mappings. These handles are generated in the ADDMAP ioctl and then passed in as the offset value to mmap. However, offset values for mmap seem to be generated in other ways as well, particularly for AGP mappings. The approach I have ended up with is to generate a fake 32-bit handle only for _DRM_SHM mappings. The handles for other mappings (AGP, REG, FB) are physical addresses which are already limited to 32 bits, and generating fake handles for them created all sorts of problems in the mmap/nopage code. This patch has been updated to use the new compatibility ioctls. From: Paul Mackerras <paulus@samba.org> Signed-off-by: Dave Airlie <airlied@linux.ie>
2005-06-23 19:29:18 +08:00
typedef int drm_ioctl_compat_t(struct file *filp, unsigned int cmd,
unsigned long arg);
#define DRM_IOCTL_NR(n) _IOC_NR(n)
#define DRM_MAJOR 226
#define DRM_AUTH 0x1
#define DRM_MASTER 0x2
#define DRM_ROOT_ONLY 0x4
#define DRM_CONTROL_ALLOW 0x8
#define DRM_UNLOCKED 0x10
drm: implement experimental render nodes Render nodes provide an API for userspace to use non-privileged GPU commands without any running DRM-Master. It is useful for offscreen rendering, GPGPU clients, and normal render clients which do not perform modesetting. Compared to legacy clients, render clients no longer need any authentication to perform client ioctls. Instead, user-space controls render/client access to GPUs via filesystem access-modes on the render-node. Once a render-node was opened, a client has full access to the client/render operations on the GPU. However, no modesetting or ioctls that affect global state are allowed on render nodes. To prevent privilege-escalation, drivers must explicitly state that they support render nodes. They must mark their render-only ioctls as DRM_RENDER_ALLOW so render clients can use them. Furthermore, they must support clients without any attached master. If filesystem access-modes are not enough for fine-grained access control to render nodes (very unlikely, considering the versaitlity of FS-ACLs), you may still fall-back to fd-passing from server to client (which allows arbitrary access-control). However, note that revoking access is currently impossible and unlikely to get implemented. Note: Render clients no longer have any associated DRM-Master as they are supposed to be independent of any server state. DRM core highly depends on file_priv->master to be non-NULL for modesetting/ctx/etc. commands. Therefore, drivers must be very careful to not require DRM-Master if they support DRIVER_RENDER. So far render-nodes are protected by "drm_rnodes". As long as this module-parameter is not set to 1, a driver will not create render nodes. This allows us to experiment with the API a bit before we stabilize it. v2: drop insecure GEM_FLINK to force use of dmabuf Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-08-26 00:29:00 +08:00
#define DRM_RENDER_ALLOW 0x20
struct drm_ioctl_desc {
unsigned int cmd;
int flags;
drm_ioctl_t *func;
drm: Use names of ioctls in debug traces The intention here is to make the output of dmesg with full verbosity a bit easier for a human to parse. This commit transforms: [drm:drm_ioctl], pid=699, cmd=0x6458, nr=0x58, dev 0xe200, auth=1 [drm:drm_ioctl], pid=699, cmd=0xc010645b, nr=0x5b, dev 0xe200, auth=1 [drm:drm_ioctl], pid=699, cmd=0xc0106461, nr=0x61, dev 0xe200, auth=1 [drm:drm_ioctl], pid=699, cmd=0xc01c64ae, nr=0xae, dev 0xe200, auth=1 [drm:drm_mode_addfb], [FB:32] [drm:drm_ioctl], pid=699, cmd=0xc0106464, nr=0x64, dev 0xe200, auth=1 [drm:drm_vm_open_locked], 0x7fd9302fe000,0x00a00000 [drm:drm_ioctl], pid=699, cmd=0x400c645f, nr=0x5f, dev 0xe200, auth=1 [drm:drm_ioctl], pid=699, cmd=0xc00464af, nr=0xaf, dev 0xe200, auth=1 [drm:intel_crtc_set_config], [CRTC:3] [NOFB] into: [drm:drm_ioctl], pid=699, dev=0xe200, auth=1, I915_GEM_THROTTLE [drm:drm_ioctl], pid=699, dev=0xe200, auth=1, I915_GEM_CREATE [drm:drm_ioctl], pid=699, dev=0xe200, auth=1, I915_GEM_SET_TILING [drm:drm_ioctl], pid=699, dev=0xe200, auth=1, IOCTL_MODE_ADDFB [drm:drm_mode_addfb], [FB:32] [drm:drm_ioctl], pid=699, dev=0xe200, auth=1, I915_GEM_MMAP_GTT [drm:drm_vm_open_locked], 0x7fd9302fe000,0x00a00000 [drm:drm_ioctl], pid=699, dev=0xe200, auth=1, I915_GEM_SET_DOMAIN [drm:drm_ioctl], pid=699, dev=0xe200, auth=1, DRM_IOCTL_MODE_RMFB [drm:intel_crtc_set_config], [CRTC:3] [NOFB] v2: drm_ioctls is now a constant (Ville Syrjälä) Signed-off-by: Chris Cummins <christopher.e.cummins@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-05-09 21:20:40 +08:00
const char *name;
};
/**
* Creates a driver or general drm_ioctl_desc array entry for the given
* ioctl, for use by drm_ioctl().
*/
#define DRM_IOCTL_DEF_DRV(ioctl, _func, _flags) \
[DRM_IOCTL_NR(DRM_IOCTL_##ioctl) - DRM_COMMAND_BASE] = { \
.cmd = DRM_IOCTL_##ioctl, \
.func = _func, \
.flags = _flags, \
.name = #ioctl \
}
drm/vblank: Add support for precise vblank timestamping. The DRI2 swap & sync implementation needs precise vblank counts and precise timestamps corresponding to those vblank counts. For conformance to the OpenML OML_sync_control extension specification the DRM timestamp associated with a vblank count should correspond to the start of video scanout of the first scanline of the video frame following the vblank interval for that vblank count. Therefore we need to carry around precise timestamps for vblanks. Currently the DRM and KMS drivers generate timestamps ad-hoc via do_gettimeofday() in some places. The resulting timestamps are sometimes not very precise due to interrupt handling delays, they don't conform to OML_sync_control and some are wrong, as they aren't taken synchronized to the vblank. This patch implements support inside the drm core for precise and robust timestamping. It consists of the following interrelated pieces. 1. Vblank timestamp caching: A per-crtc ringbuffer stores the most recent vblank timestamps corresponding to vblank counts. The ringbuffer can be read out lock-free via the accessor function: struct timeval timestamp; vblankcount = drm_vblank_count_and_time(dev, crtcid, &timestamp). The function returns the current vblank count and the corresponding timestamp for start of video scanout following the vblank interval. It can be used anywhere between enclosing drm_vblank_get(dev, crtcid) and drm_vblank_put(dev,crtcid) statements. It is used inside the drmWaitVblank ioctl and in the vblank event queueing and handling. It should be used by kms drivers for timestamping of bufferswap completion. The timestamp ringbuffer is reinitialized each time vblank irq's get reenabled in drm_vblank_get()/ drm_update_vblank_count(). It is invalidated when vblank irq's get disabled. The ringbuffer is updated inside drm_handle_vblank() at each vblank irq. 2. Calculation of precise vblank timestamps: drm_get_last_vbltimestamp() is used to compute the timestamp for the end of the most recent vblank (if inside active scanout), or the expected end of the current vblank interval (if called inside a vblank interval). The function calls into a new optional kms driver entry point dev->driver->get_vblank_timestamp() which is supposed to provide the precise timestamp. If a kms driver doesn't implement the entry point or if the call fails, a simple do_gettimeofday() timestamp is returned as crude approximation of the true vblank time. A new drm module parameter drm.timestamp_precision_usec allows to disable high precision timestamps (if set to zero) or to specify the maximum acceptable error in the timestamps in microseconds. Kms drivers could implement their get_vblank_timestamp() function in a gpu specific way, as long as returned timestamps conform to OML_sync_control, e.g., by use of gpu specific hardware timestamps. Optionally, kms drivers can simply wrap and use the new utility function drm_calc_vbltimestamp_from_scanoutpos(). This function calls a new optional kms driver function dev->driver->get_scanout_position() which returns the current horizontal and vertical video scanout position of the crtc. The scanout position together with the drm_display_timing of the current video mode is used to calculate elapsed time relative to start of active scanout for the current video frame. This elapsed time is subtracted from the current do_gettimeofday() time to get the timestamp corresponding to start of video scanout. Currently non-interlaced, non-doublescan video modes, with or without panel scaling are handled correctly. Interlaced/ doublescan modes are tbd in a future patch. 3. Filtering of redundant vblank irq's and removal of some race-conditions in the vblank irq enable/disable path: Some gpu's (e.g., Radeon R500/R600) send spurious vblank irq's outside the vblank if vblank irq's get reenabled. These get detected by use of the vblank timestamps and filtered out to avoid miscounting of vblanks. Some race-conditions between the vblank irq enable/disable functions, the vblank irq handler and the gpu itself (updating its hardware vblank counter in the "wrong" moment) are fixed inside vblank_disable_and_save() and drm_update_vblank_count() by use of the vblank timestamps and a new spinlock dev->vblank_time_lock. The time until vblank irq disable is now configurable via a new drm module parameter drm.vblankoffdelay to allow experimentation with timeouts that are much shorter than the current 5 seconds and should allow longer vblank off periods for better power savings. Followup patches will use these new functions to implement precise timestamping for the intel and radeon kms drivers. Signed-off-by: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Signed-off-by: Dave Airlie <airlied@redhat.com>
2010-10-23 10:20:23 +08:00
/* Flags and return codes for get_vblank_timestamp() driver function. */
#define DRM_CALLED_FROM_VBLIRQ 1
#define DRM_VBLANKTIME_SCANOUTPOS_METHOD (1 << 0)
#define DRM_VBLANKTIME_IN_VBLANK (1 << 1)
drm/vblank: Add support for precise vblank timestamping. The DRI2 swap & sync implementation needs precise vblank counts and precise timestamps corresponding to those vblank counts. For conformance to the OpenML OML_sync_control extension specification the DRM timestamp associated with a vblank count should correspond to the start of video scanout of the first scanline of the video frame following the vblank interval for that vblank count. Therefore we need to carry around precise timestamps for vblanks. Currently the DRM and KMS drivers generate timestamps ad-hoc via do_gettimeofday() in some places. The resulting timestamps are sometimes not very precise due to interrupt handling delays, they don't conform to OML_sync_control and some are wrong, as they aren't taken synchronized to the vblank. This patch implements support inside the drm core for precise and robust timestamping. It consists of the following interrelated pieces. 1. Vblank timestamp caching: A per-crtc ringbuffer stores the most recent vblank timestamps corresponding to vblank counts. The ringbuffer can be read out lock-free via the accessor function: struct timeval timestamp; vblankcount = drm_vblank_count_and_time(dev, crtcid, &timestamp). The function returns the current vblank count and the corresponding timestamp for start of video scanout following the vblank interval. It can be used anywhere between enclosing drm_vblank_get(dev, crtcid) and drm_vblank_put(dev,crtcid) statements. It is used inside the drmWaitVblank ioctl and in the vblank event queueing and handling. It should be used by kms drivers for timestamping of bufferswap completion. The timestamp ringbuffer is reinitialized each time vblank irq's get reenabled in drm_vblank_get()/ drm_update_vblank_count(). It is invalidated when vblank irq's get disabled. The ringbuffer is updated inside drm_handle_vblank() at each vblank irq. 2. Calculation of precise vblank timestamps: drm_get_last_vbltimestamp() is used to compute the timestamp for the end of the most recent vblank (if inside active scanout), or the expected end of the current vblank interval (if called inside a vblank interval). The function calls into a new optional kms driver entry point dev->driver->get_vblank_timestamp() which is supposed to provide the precise timestamp. If a kms driver doesn't implement the entry point or if the call fails, a simple do_gettimeofday() timestamp is returned as crude approximation of the true vblank time. A new drm module parameter drm.timestamp_precision_usec allows to disable high precision timestamps (if set to zero) or to specify the maximum acceptable error in the timestamps in microseconds. Kms drivers could implement their get_vblank_timestamp() function in a gpu specific way, as long as returned timestamps conform to OML_sync_control, e.g., by use of gpu specific hardware timestamps. Optionally, kms drivers can simply wrap and use the new utility function drm_calc_vbltimestamp_from_scanoutpos(). This function calls a new optional kms driver function dev->driver->get_scanout_position() which returns the current horizontal and vertical video scanout position of the crtc. The scanout position together with the drm_display_timing of the current video mode is used to calculate elapsed time relative to start of active scanout for the current video frame. This elapsed time is subtracted from the current do_gettimeofday() time to get the timestamp corresponding to start of video scanout. Currently non-interlaced, non-doublescan video modes, with or without panel scaling are handled correctly. Interlaced/ doublescan modes are tbd in a future patch. 3. Filtering of redundant vblank irq's and removal of some race-conditions in the vblank irq enable/disable path: Some gpu's (e.g., Radeon R500/R600) send spurious vblank irq's outside the vblank if vblank irq's get reenabled. These get detected by use of the vblank timestamps and filtered out to avoid miscounting of vblanks. Some race-conditions between the vblank irq enable/disable functions, the vblank irq handler and the gpu itself (updating its hardware vblank counter in the "wrong" moment) are fixed inside vblank_disable_and_save() and drm_update_vblank_count() by use of the vblank timestamps and a new spinlock dev->vblank_time_lock. The time until vblank irq disable is now configurable via a new drm module parameter drm.vblankoffdelay to allow experimentation with timeouts that are much shorter than the current 5 seconds and should allow longer vblank off periods for better power savings. Followup patches will use these new functions to implement precise timestamping for the intel and radeon kms drivers. Signed-off-by: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Signed-off-by: Dave Airlie <airlied@redhat.com>
2010-10-23 10:20:23 +08:00
/* get_scanout_position() return flags */
#define DRM_SCANOUTPOS_VALID (1 << 0)
#define DRM_SCANOUTPOS_IN_VBLANK (1 << 1)
drm/vblank: Add support for precise vblank timestamping. The DRI2 swap & sync implementation needs precise vblank counts and precise timestamps corresponding to those vblank counts. For conformance to the OpenML OML_sync_control extension specification the DRM timestamp associated with a vblank count should correspond to the start of video scanout of the first scanline of the video frame following the vblank interval for that vblank count. Therefore we need to carry around precise timestamps for vblanks. Currently the DRM and KMS drivers generate timestamps ad-hoc via do_gettimeofday() in some places. The resulting timestamps are sometimes not very precise due to interrupt handling delays, they don't conform to OML_sync_control and some are wrong, as they aren't taken synchronized to the vblank. This patch implements support inside the drm core for precise and robust timestamping. It consists of the following interrelated pieces. 1. Vblank timestamp caching: A per-crtc ringbuffer stores the most recent vblank timestamps corresponding to vblank counts. The ringbuffer can be read out lock-free via the accessor function: struct timeval timestamp; vblankcount = drm_vblank_count_and_time(dev, crtcid, &timestamp). The function returns the current vblank count and the corresponding timestamp for start of video scanout following the vblank interval. It can be used anywhere between enclosing drm_vblank_get(dev, crtcid) and drm_vblank_put(dev,crtcid) statements. It is used inside the drmWaitVblank ioctl and in the vblank event queueing and handling. It should be used by kms drivers for timestamping of bufferswap completion. The timestamp ringbuffer is reinitialized each time vblank irq's get reenabled in drm_vblank_get()/ drm_update_vblank_count(). It is invalidated when vblank irq's get disabled. The ringbuffer is updated inside drm_handle_vblank() at each vblank irq. 2. Calculation of precise vblank timestamps: drm_get_last_vbltimestamp() is used to compute the timestamp for the end of the most recent vblank (if inside active scanout), or the expected end of the current vblank interval (if called inside a vblank interval). The function calls into a new optional kms driver entry point dev->driver->get_vblank_timestamp() which is supposed to provide the precise timestamp. If a kms driver doesn't implement the entry point or if the call fails, a simple do_gettimeofday() timestamp is returned as crude approximation of the true vblank time. A new drm module parameter drm.timestamp_precision_usec allows to disable high precision timestamps (if set to zero) or to specify the maximum acceptable error in the timestamps in microseconds. Kms drivers could implement their get_vblank_timestamp() function in a gpu specific way, as long as returned timestamps conform to OML_sync_control, e.g., by use of gpu specific hardware timestamps. Optionally, kms drivers can simply wrap and use the new utility function drm_calc_vbltimestamp_from_scanoutpos(). This function calls a new optional kms driver function dev->driver->get_scanout_position() which returns the current horizontal and vertical video scanout position of the crtc. The scanout position together with the drm_display_timing of the current video mode is used to calculate elapsed time relative to start of active scanout for the current video frame. This elapsed time is subtracted from the current do_gettimeofday() time to get the timestamp corresponding to start of video scanout. Currently non-interlaced, non-doublescan video modes, with or without panel scaling are handled correctly. Interlaced/ doublescan modes are tbd in a future patch. 3. Filtering of redundant vblank irq's and removal of some race-conditions in the vblank irq enable/disable path: Some gpu's (e.g., Radeon R500/R600) send spurious vblank irq's outside the vblank if vblank irq's get reenabled. These get detected by use of the vblank timestamps and filtered out to avoid miscounting of vblanks. Some race-conditions between the vblank irq enable/disable functions, the vblank irq handler and the gpu itself (updating its hardware vblank counter in the "wrong" moment) are fixed inside vblank_disable_and_save() and drm_update_vblank_count() by use of the vblank timestamps and a new spinlock dev->vblank_time_lock. The time until vblank irq disable is now configurable via a new drm module parameter drm.vblankoffdelay to allow experimentation with timeouts that are much shorter than the current 5 seconds and should allow longer vblank off periods for better power savings. Followup patches will use these new functions to implement precise timestamping for the intel and radeon kms drivers. Signed-off-by: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Signed-off-by: Dave Airlie <airlied@redhat.com>
2010-10-23 10:20:23 +08:00
#define DRM_SCANOUTPOS_ACCURATE (1 << 2)
/**
* Info file list entry. This structure represents a debugfs or proc file to
* be created by the drm core
*/
struct drm_info_list {
const char *name; /** file name */
int (*show)(struct seq_file*, void*); /** show callback */
u32 driver_features; /**< Required driver features for this entry */
void *data;
};
/**
* debugfs node structure. This structure represents a debugfs file.
*/
struct drm_info_node {
struct list_head list;
struct drm_minor *minor;
const struct drm_info_list *info_ent;
struct dentry *dent;
};
/**
* DRM device structure. This structure represent a complete card that
* may contain multiple heads.
*/
struct drm_device {
struct list_head legacy_dev_list;/**< list of devices per driver for stealth attach cleanup */
int if_version; /**< Highest interface version set */
/** \name Lifetime Management */
/*@{ */
struct kref ref; /**< Object ref-count */
struct device *dev; /**< Device structure of bus-device */
struct drm_driver *driver; /**< DRM driver managing the device */
void *dev_private; /**< DRM driver private data */
struct drm_minor *control; /**< Control node */
struct drm_minor *primary; /**< Primary node */
struct drm_minor *render; /**< Render node */
bool registered;
2016-06-21 16:54:12 +08:00
/* currently active master for this device. Protected by master_mutex */
struct drm_master *master;
atomic_t unplugged; /**< Flag whether dev is dead */
struct inode *anon_inode; /**< inode for private address-space */
char *unique; /**< unique name of the device */
/*@} */
/** \name Locks */
/*@{ */
struct mutex struct_mutex; /**< For others */
struct mutex master_mutex; /**< For drm_minor::master and drm_file::is_master */
/*@} */
/** \name Usage Counters */
/*@{ */
drm: Rip out totally bogus vga_switcheroo->can_switch locking So I just wanted to add a new field to struct drm_device and accidentally stumbled over something. According to comments dev->open_count is protected by dev->count_lock, but that's totally not the case. It's protected by drm_global_mutex. Unfortunately the vga switcheroo callbacks took this comment at face value. The problem is that we can't just take the drm_global_mutex because: - It would lead to a locking inversion with the driver load/unload paths. - It wouldn't actually protect anything, for that we'd need to wrap the entire vga switcheroo code in the drm_global_mutex. And I'm not sure whether that would actually solve anything. What we probably want is a try_to_grab_switcheroo reference kind of thing which is used in the driver's ->open callback. Then we could move all that ->can_switch madness into the vga switcheroo core where it really belongs. But since that would amount to real work take the easy way out and just add a comment. It's definitely not going to make anything worse since doing switcheroo state changes while restarting X just isn't recommended. Even though the delayed switching code does exactly that. v2: - Simplify the ->can_switch implementations more (Thierry) - Fix comment about the dev->open_count locking (Thierry) Cc: Thierry Reding <treding@nvidia.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> (v1) Reviewed-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-11-04 03:46:34 +08:00
int open_count; /**< Outstanding files open, protected by drm_global_mutex. */
spinlock_t buf_lock; /**< For drm_device::buf_use and a few other things. */
int buf_use; /**< Buffers in use -- cannot alloc */
atomic_t buf_alloc; /**< Buffer allocation in progress */
/*@} */
struct mutex filelist_mutex;
struct list_head filelist;
/** \name Memory management */
/*@{ */
struct list_head maplist; /**< Linked list of regions */
struct drm_open_hash map_hash; /**< User token hash table for maps */
/** \name Context handle management */
/*@{ */
struct list_head ctxlist; /**< Linked list of context handles */
struct mutex ctxlist_mutex; /**< For ctxlist */
struct idr ctx_idr;
struct list_head vmalist; /**< List of vmas (for debugging) */
/*@} */
/** \name DMA support */
/*@{ */
struct drm_device_dma *dma; /**< Optional pointer for DMA support */
/*@} */
/** \name Context support */
/*@{ */
__volatile__ long context_flag; /**< Context swapping flag */
int last_context; /**< Last current context */
/*@} */
/** \name VBLANK IRQ support */
/*@{ */
bool irq_enabled;
int irq;
/*
* If true, vblank interrupt will be disabled immediately when the
* refcount drops to zero, as opposed to via the vblank disable
* timer.
* This can be set to true it the hardware has a working vblank
* counter and the driver uses drm_vblank_on() and drm_vblank_off()
* appropriately.
*/
bool vblank_disable_immediate;
/* array of size num_crtcs */
struct drm_vblank_crtc *vblank;
drm/vblank: Add support for precise vblank timestamping. The DRI2 swap & sync implementation needs precise vblank counts and precise timestamps corresponding to those vblank counts. For conformance to the OpenML OML_sync_control extension specification the DRM timestamp associated with a vblank count should correspond to the start of video scanout of the first scanline of the video frame following the vblank interval for that vblank count. Therefore we need to carry around precise timestamps for vblanks. Currently the DRM and KMS drivers generate timestamps ad-hoc via do_gettimeofday() in some places. The resulting timestamps are sometimes not very precise due to interrupt handling delays, they don't conform to OML_sync_control and some are wrong, as they aren't taken synchronized to the vblank. This patch implements support inside the drm core for precise and robust timestamping. It consists of the following interrelated pieces. 1. Vblank timestamp caching: A per-crtc ringbuffer stores the most recent vblank timestamps corresponding to vblank counts. The ringbuffer can be read out lock-free via the accessor function: struct timeval timestamp; vblankcount = drm_vblank_count_and_time(dev, crtcid, &timestamp). The function returns the current vblank count and the corresponding timestamp for start of video scanout following the vblank interval. It can be used anywhere between enclosing drm_vblank_get(dev, crtcid) and drm_vblank_put(dev,crtcid) statements. It is used inside the drmWaitVblank ioctl and in the vblank event queueing and handling. It should be used by kms drivers for timestamping of bufferswap completion. The timestamp ringbuffer is reinitialized each time vblank irq's get reenabled in drm_vblank_get()/ drm_update_vblank_count(). It is invalidated when vblank irq's get disabled. The ringbuffer is updated inside drm_handle_vblank() at each vblank irq. 2. Calculation of precise vblank timestamps: drm_get_last_vbltimestamp() is used to compute the timestamp for the end of the most recent vblank (if inside active scanout), or the expected end of the current vblank interval (if called inside a vblank interval). The function calls into a new optional kms driver entry point dev->driver->get_vblank_timestamp() which is supposed to provide the precise timestamp. If a kms driver doesn't implement the entry point or if the call fails, a simple do_gettimeofday() timestamp is returned as crude approximation of the true vblank time. A new drm module parameter drm.timestamp_precision_usec allows to disable high precision timestamps (if set to zero) or to specify the maximum acceptable error in the timestamps in microseconds. Kms drivers could implement their get_vblank_timestamp() function in a gpu specific way, as long as returned timestamps conform to OML_sync_control, e.g., by use of gpu specific hardware timestamps. Optionally, kms drivers can simply wrap and use the new utility function drm_calc_vbltimestamp_from_scanoutpos(). This function calls a new optional kms driver function dev->driver->get_scanout_position() which returns the current horizontal and vertical video scanout position of the crtc. The scanout position together with the drm_display_timing of the current video mode is used to calculate elapsed time relative to start of active scanout for the current video frame. This elapsed time is subtracted from the current do_gettimeofday() time to get the timestamp corresponding to start of video scanout. Currently non-interlaced, non-doublescan video modes, with or without panel scaling are handled correctly. Interlaced/ doublescan modes are tbd in a future patch. 3. Filtering of redundant vblank irq's and removal of some race-conditions in the vblank irq enable/disable path: Some gpu's (e.g., Radeon R500/R600) send spurious vblank irq's outside the vblank if vblank irq's get reenabled. These get detected by use of the vblank timestamps and filtered out to avoid miscounting of vblanks. Some race-conditions between the vblank irq enable/disable functions, the vblank irq handler and the gpu itself (updating its hardware vblank counter in the "wrong" moment) are fixed inside vblank_disable_and_save() and drm_update_vblank_count() by use of the vblank timestamps and a new spinlock dev->vblank_time_lock. The time until vblank irq disable is now configurable via a new drm module parameter drm.vblankoffdelay to allow experimentation with timeouts that are much shorter than the current 5 seconds and should allow longer vblank off periods for better power savings. Followup patches will use these new functions to implement precise timestamping for the intel and radeon kms drivers. Signed-off-by: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Signed-off-by: Dave Airlie <airlied@redhat.com>
2010-10-23 10:20:23 +08:00
spinlock_t vblank_time_lock; /**< Protects vblank count and time updates during vblank enable/disable */
spinlock_t vbl_lock;
u32 max_vblank_count; /**< size of vblank counter register */
/**
* List of events
*/
struct list_head vblank_event_list;
spinlock_t event_lock;
/*@} */
struct drm_agp_head *agp; /**< AGP data */
struct pci_dev *pdev; /**< PCI device structure */
#ifdef __alpha__
struct pci_controller *hose;
#endif
struct platform_device *platformdev; /**< Platform device struture */
struct virtio_device *virtdev;
struct drm_sg_mem *sg; /**< Scatter gather memory */
unsigned int num_crtcs; /**< Number of CRTCs on this device */
struct {
int context;
struct drm_hw_lock *lock;
} sigdata;
struct drm_local_map *agp_buffer_map;
unsigned int agp_buffer_token;
struct drm_mode_config mode_config; /**< Current mode config */
/** \name GEM information */
/*@{ */
struct mutex object_name_lock;
struct idr object_name_idr;
struct drm_vma_offset_manager *vma_offset_manager;
/*@} */
int switch_power_state;
};
/**
* drm_drv_uses_atomic_modeset - check if the driver implements
* atomic_commit()
* @dev: DRM device
*
* This check is useful if drivers do not have DRIVER_ATOMIC set but
* have atomic modesetting internally implemented.
*/
static inline bool drm_drv_uses_atomic_modeset(struct drm_device *dev)
{
return dev->mode_config.funcs->atomic_commit != NULL;
}
#include <drm/drm_irq.h>
#define DRM_SWITCH_POWER_ON 0
#define DRM_SWITCH_POWER_OFF 1
#define DRM_SWITCH_POWER_CHANGING 2
#define DRM_SWITCH_POWER_DYNAMIC_OFF 3
static __inline__ int drm_core_check_feature(struct drm_device *dev,
int feature)
{
return ((dev->driver->driver_features & feature) ? 1 : 0);
}
static inline void drm_device_set_unplugged(struct drm_device *dev)
{
smp_wmb();
atomic_set(&dev->unplugged, 1);
}
static inline int drm_device_is_unplugged(struct drm_device *dev)
{
int ret = atomic_read(&dev->unplugged);
smp_rmb();
return ret;
}
/******************************************************************/
/** \name Internal function definitions */
/*@{*/
/* Driver support (drm_drv.h) */
extern int drm_ioctl_permit(u32 flags, struct drm_file *file_priv);
extern long drm_ioctl(struct file *filp,
unsigned int cmd, unsigned long arg);
#ifdef CONFIG_COMPAT
extern long drm_compat_ioctl(struct file *filp,
unsigned int cmd, unsigned long arg);
#else
/* Let drm_compat_ioctl be assigned to .compat_ioctl unconditionally */
#define drm_compat_ioctl NULL
#endif
extern bool drm_ioctl_flags(unsigned int nr, unsigned int *flags);
/* Misc. IOCTL support (drm_ioctl.c) */
int drm_noop(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int drm_invalid_op(struct drm_device *dev, void *data,
struct drm_file *file_priv);
/*
* These are exported to drivers so that they can implement fencing using
* DMA quiscent + idle. DMA quiescent usually requires the hardware lock.
*/
/* Debugfs support */
#if defined(CONFIG_DEBUG_FS)
extern int drm_debugfs_create_files(const struct drm_info_list *files,
int count, struct dentry *root,
struct drm_minor *minor);
extern int drm_debugfs_remove_files(const struct drm_info_list *files,
int count, struct drm_minor *minor);
#else
static inline int drm_debugfs_create_files(const struct drm_info_list *files,
int count, struct dentry *root,
struct drm_minor *minor)
{
return 0;
}
static inline int drm_debugfs_remove_files(const struct drm_info_list *files,
int count, struct drm_minor *minor)
{
return 0;
}
#endif
/* sysfs support (drm_sysfs.c) */
extern void drm_sysfs_hotplug_event(struct drm_device *dev);
/*@}*/
/* returns true if currently okay to sleep */
static __inline__ bool drm_can_sleep(void)
{
if (in_atomic() || in_dbg_master() || irqs_disabled())
return false;
return true;
}
/* helper for handling conditionals in various for_each macros */
#define for_each_if(condition) if (!(condition)) {} else
#endif