linux/tools/testing/selftests/net/ipsec.c

2342 lines
55 KiB
C
Raw Normal View History

selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* ipsec.c - Check xfrm on veth inside a net-ns.
* Copyright (c) 2018 Dmitry Safonov
*/
#define _GNU_SOURCE
#include <arpa/inet.h>
#include <asm/types.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <linux/limits.h>
#include <linux/netlink.h>
#include <linux/random.h>
#include <linux/rtnetlink.h>
#include <linux/veth.h>
#include <linux/xfrm.h>
#include <netinet/in.h>
#include <net/if.h>
#include <sched.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include "../kselftest.h"
#define printk(fmt, ...) \
ksft_print_msg("%d[%u] " fmt "\n", getpid(), __LINE__, ##__VA_ARGS__)
#define pr_err(fmt, ...) printk(fmt ": %m", ##__VA_ARGS__)
#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
#define IPV4_STR_SZ 16 /* xxx.xxx.xxx.xxx is longest + \0 */
#define MAX_PAYLOAD 2048
#define XFRM_ALGO_KEY_BUF_SIZE 512
#define MAX_PROCESSES (1 << 14) /* /16 mask divided by /30 subnets */
#define INADDR_A ((in_addr_t) 0x0a000000) /* 10.0.0.0 */
#define INADDR_B ((in_addr_t) 0xc0a80000) /* 192.168.0.0 */
/* /30 mask for one veth connection */
#define PREFIX_LEN 30
#define child_ip(nr) (4*nr + 1)
#define grchild_ip(nr) (4*nr + 2)
#define VETH_FMT "ktst-%d"
#define VETH_LEN 12
#define XFRM_ALGO_NR_KEYS 29
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
static int nsfd_parent = -1;
static int nsfd_childa = -1;
static int nsfd_childb = -1;
static long page_size;
/*
* ksft_cnt is static in kselftest, so isn't shared with children.
* We have to send a test result back to parent and count there.
* results_fd is a pipe with test feedback from children.
*/
static int results_fd[2];
const unsigned int ping_delay_nsec = 50 * 1000 * 1000;
const unsigned int ping_timeout = 300;
const unsigned int ping_count = 100;
const unsigned int ping_success = 80;
struct xfrm_key_entry {
char algo_name[35];
int key_len;
};
struct xfrm_key_entry xfrm_key_entries[] = {
{"digest_null", 0},
{"ecb(cipher_null)", 0},
{"cbc(des)", 64},
{"hmac(md5)", 128},
{"cmac(aes)", 128},
{"xcbc(aes)", 128},
{"cbc(cast5)", 128},
{"cbc(serpent)", 128},
{"hmac(sha1)", 160},
{"hmac(rmd160)", 160},
{"cbc(des3_ede)", 192},
{"hmac(sha256)", 256},
{"cbc(aes)", 256},
{"cbc(camellia)", 256},
{"cbc(twofish)", 256},
{"rfc3686(ctr(aes))", 288},
{"hmac(sha384)", 384},
{"cbc(blowfish)", 448},
{"hmac(sha512)", 512},
{"rfc4106(gcm(aes))-128", 160},
{"rfc4543(gcm(aes))-128", 160},
{"rfc4309(ccm(aes))-128", 152},
{"rfc4106(gcm(aes))-192", 224},
{"rfc4543(gcm(aes))-192", 224},
{"rfc4309(ccm(aes))-192", 216},
{"rfc4106(gcm(aes))-256", 288},
{"rfc4543(gcm(aes))-256", 288},
{"rfc4309(ccm(aes))-256", 280},
{"rfc7539(chacha20,poly1305)-128", 0}
};
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
static void randomize_buffer(void *buf, size_t buflen)
{
int *p = (int *)buf;
size_t words = buflen / sizeof(int);
size_t leftover = buflen % sizeof(int);
if (!buflen)
return;
while (words--)
*p++ = rand();
if (leftover) {
int tmp = rand();
memcpy(buf + buflen - leftover, &tmp, leftover);
}
return;
}
static int unshare_open(void)
{
const char *netns_path = "/proc/self/ns/net";
int fd;
if (unshare(CLONE_NEWNET) != 0) {
pr_err("unshare()");
return -1;
}
fd = open(netns_path, O_RDONLY);
if (fd <= 0) {
pr_err("open(%s)", netns_path);
return -1;
}
return fd;
}
static int switch_ns(int fd)
{
if (setns(fd, CLONE_NEWNET)) {
pr_err("setns()");
return -1;
}
return 0;
}
/*
* Running the test inside a new parent net namespace to bother less
* about cleanup on error-path.
*/
static int init_namespaces(void)
{
nsfd_parent = unshare_open();
if (nsfd_parent <= 0)
return -1;
nsfd_childa = unshare_open();
if (nsfd_childa <= 0)
return -1;
if (switch_ns(nsfd_parent))
return -1;
nsfd_childb = unshare_open();
if (nsfd_childb <= 0)
return -1;
if (switch_ns(nsfd_parent))
return -1;
return 0;
}
static int netlink_sock(int *sock, uint32_t *seq_nr, int proto)
{
if (*sock > 0) {
seq_nr++;
return 0;
}
*sock = socket(AF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, proto);
if (*sock <= 0) {
pr_err("socket(AF_NETLINK)");
return -1;
}
randomize_buffer(seq_nr, sizeof(*seq_nr));
return 0;
}
static inline struct rtattr *rtattr_hdr(struct nlmsghdr *nh)
{
return (struct rtattr *)((char *)(nh) + RTA_ALIGN((nh)->nlmsg_len));
}
static int rtattr_pack(struct nlmsghdr *nh, size_t req_sz,
unsigned short rta_type, const void *payload, size_t size)
{
/* NLMSG_ALIGNTO == RTA_ALIGNTO, nlmsg_len already aligned */
struct rtattr *attr = rtattr_hdr(nh);
size_t nl_size = RTA_ALIGN(nh->nlmsg_len) + RTA_LENGTH(size);
if (req_sz < nl_size) {
printk("req buf is too small: %zu < %zu", req_sz, nl_size);
return -1;
}
nh->nlmsg_len = nl_size;
attr->rta_len = RTA_LENGTH(size);
attr->rta_type = rta_type;
memcpy(RTA_DATA(attr), payload, size);
return 0;
}
static struct rtattr *_rtattr_begin(struct nlmsghdr *nh, size_t req_sz,
unsigned short rta_type, const void *payload, size_t size)
{
struct rtattr *ret = rtattr_hdr(nh);
if (rtattr_pack(nh, req_sz, rta_type, payload, size))
return 0;
return ret;
}
static inline struct rtattr *rtattr_begin(struct nlmsghdr *nh, size_t req_sz,
unsigned short rta_type)
{
return _rtattr_begin(nh, req_sz, rta_type, 0, 0);
}
static inline void rtattr_end(struct nlmsghdr *nh, struct rtattr *attr)
{
char *nlmsg_end = (char *)nh + nh->nlmsg_len;
attr->rta_len = nlmsg_end - (char *)attr;
}
static int veth_pack_peerb(struct nlmsghdr *nh, size_t req_sz,
const char *peer, int ns)
{
struct ifinfomsg pi;
struct rtattr *peer_attr;
memset(&pi, 0, sizeof(pi));
pi.ifi_family = AF_UNSPEC;
pi.ifi_change = 0xFFFFFFFF;
peer_attr = _rtattr_begin(nh, req_sz, VETH_INFO_PEER, &pi, sizeof(pi));
if (!peer_attr)
return -1;
if (rtattr_pack(nh, req_sz, IFLA_IFNAME, peer, strlen(peer)))
return -1;
if (rtattr_pack(nh, req_sz, IFLA_NET_NS_FD, &ns, sizeof(ns)))
return -1;
rtattr_end(nh, peer_attr);
return 0;
}
static int netlink_check_answer(int sock)
{
struct nlmsgerror {
struct nlmsghdr hdr;
int error;
struct nlmsghdr orig_msg;
} answer;
if (recv(sock, &answer, sizeof(answer), 0) < 0) {
pr_err("recv()");
return -1;
} else if (answer.hdr.nlmsg_type != NLMSG_ERROR) {
printk("expected NLMSG_ERROR, got %d", (int)answer.hdr.nlmsg_type);
return -1;
} else if (answer.error) {
printk("NLMSG_ERROR: %d: %s",
answer.error, strerror(-answer.error));
return answer.error;
}
return 0;
}
static int veth_add(int sock, uint32_t seq, const char *peera, int ns_a,
const char *peerb, int ns_b)
{
uint16_t flags = NLM_F_REQUEST | NLM_F_ACK | NLM_F_EXCL | NLM_F_CREATE;
struct {
struct nlmsghdr nh;
struct ifinfomsg info;
char attrbuf[MAX_PAYLOAD];
} req;
const char veth_type[] = "veth";
struct rtattr *link_info, *info_data;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.info));
req.nh.nlmsg_type = RTM_NEWLINK;
req.nh.nlmsg_flags = flags;
req.nh.nlmsg_seq = seq;
req.info.ifi_family = AF_UNSPEC;
req.info.ifi_change = 0xFFFFFFFF;
if (rtattr_pack(&req.nh, sizeof(req), IFLA_IFNAME, peera, strlen(peera)))
return -1;
if (rtattr_pack(&req.nh, sizeof(req), IFLA_NET_NS_FD, &ns_a, sizeof(ns_a)))
return -1;
link_info = rtattr_begin(&req.nh, sizeof(req), IFLA_LINKINFO);
if (!link_info)
return -1;
if (rtattr_pack(&req.nh, sizeof(req), IFLA_INFO_KIND, veth_type, sizeof(veth_type)))
return -1;
info_data = rtattr_begin(&req.nh, sizeof(req), IFLA_INFO_DATA);
if (!info_data)
return -1;
if (veth_pack_peerb(&req.nh, sizeof(req), peerb, ns_b))
return -1;
rtattr_end(&req.nh, info_data);
rtattr_end(&req.nh, link_info);
if (send(sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
return netlink_check_answer(sock);
}
static int ip4_addr_set(int sock, uint32_t seq, const char *intf,
struct in_addr addr, uint8_t prefix)
{
uint16_t flags = NLM_F_REQUEST | NLM_F_ACK | NLM_F_EXCL | NLM_F_CREATE;
struct {
struct nlmsghdr nh;
struct ifaddrmsg info;
char attrbuf[MAX_PAYLOAD];
} req;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.info));
req.nh.nlmsg_type = RTM_NEWADDR;
req.nh.nlmsg_flags = flags;
req.nh.nlmsg_seq = seq;
req.info.ifa_family = AF_INET;
req.info.ifa_prefixlen = prefix;
req.info.ifa_index = if_nametoindex(intf);
#ifdef DEBUG
{
char addr_str[IPV4_STR_SZ] = {};
strncpy(addr_str, inet_ntoa(addr), IPV4_STR_SZ - 1);
printk("ip addr set %s", addr_str);
}
#endif
if (rtattr_pack(&req.nh, sizeof(req), IFA_LOCAL, &addr, sizeof(addr)))
return -1;
if (rtattr_pack(&req.nh, sizeof(req), IFA_ADDRESS, &addr, sizeof(addr)))
return -1;
if (send(sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
return netlink_check_answer(sock);
}
static int link_set_up(int sock, uint32_t seq, const char *intf)
{
struct {
struct nlmsghdr nh;
struct ifinfomsg info;
char attrbuf[MAX_PAYLOAD];
} req;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.info));
req.nh.nlmsg_type = RTM_NEWLINK;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nh.nlmsg_seq = seq;
req.info.ifi_family = AF_UNSPEC;
req.info.ifi_change = 0xFFFFFFFF;
req.info.ifi_index = if_nametoindex(intf);
req.info.ifi_flags = IFF_UP;
req.info.ifi_change = IFF_UP;
if (send(sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
return netlink_check_answer(sock);
}
static int ip4_route_set(int sock, uint32_t seq, const char *intf,
struct in_addr src, struct in_addr dst)
{
struct {
struct nlmsghdr nh;
struct rtmsg rt;
char attrbuf[MAX_PAYLOAD];
} req;
unsigned int index = if_nametoindex(intf);
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.rt));
req.nh.nlmsg_type = RTM_NEWROUTE;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | NLM_F_CREATE;
req.nh.nlmsg_seq = seq;
req.rt.rtm_family = AF_INET;
req.rt.rtm_dst_len = 32;
req.rt.rtm_table = RT_TABLE_MAIN;
req.rt.rtm_protocol = RTPROT_BOOT;
req.rt.rtm_scope = RT_SCOPE_LINK;
req.rt.rtm_type = RTN_UNICAST;
if (rtattr_pack(&req.nh, sizeof(req), RTA_DST, &dst, sizeof(dst)))
return -1;
if (rtattr_pack(&req.nh, sizeof(req), RTA_PREFSRC, &src, sizeof(src)))
return -1;
if (rtattr_pack(&req.nh, sizeof(req), RTA_OIF, &index, sizeof(index)))
return -1;
if (send(sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
return netlink_check_answer(sock);
}
static int tunnel_set_route(int route_sock, uint32_t *route_seq, char *veth,
struct in_addr tunsrc, struct in_addr tundst)
{
if (ip4_addr_set(route_sock, (*route_seq)++, "lo",
tunsrc, PREFIX_LEN)) {
printk("Failed to set ipv4 addr");
return -1;
}
if (ip4_route_set(route_sock, (*route_seq)++, veth, tunsrc, tundst)) {
printk("Failed to set ipv4 route");
return -1;
}
return 0;
}
static int init_child(int nsfd, char *veth, unsigned int src, unsigned int dst)
{
struct in_addr intsrc = inet_makeaddr(INADDR_B, src);
struct in_addr tunsrc = inet_makeaddr(INADDR_A, src);
struct in_addr tundst = inet_makeaddr(INADDR_A, dst);
int route_sock = -1, ret = -1;
uint32_t route_seq;
if (switch_ns(nsfd))
return -1;
if (netlink_sock(&route_sock, &route_seq, NETLINK_ROUTE)) {
printk("Failed to open netlink route socket in child");
return -1;
}
if (ip4_addr_set(route_sock, route_seq++, veth, intsrc, PREFIX_LEN)) {
printk("Failed to set ipv4 addr");
goto err;
}
if (link_set_up(route_sock, route_seq++, veth)) {
printk("Failed to bring up %s", veth);
goto err;
}
if (tunnel_set_route(route_sock, &route_seq, veth, tunsrc, tundst)) {
printk("Failed to add tunnel route on %s", veth);
goto err;
}
ret = 0;
err:
close(route_sock);
return ret;
}
#define ALGO_LEN 64
enum desc_type {
CREATE_TUNNEL = 0,
ALLOCATE_SPI,
MONITOR_ACQUIRE,
EXPIRE_STATE,
EXPIRE_POLICY,
SPDINFO_ATTRS,
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
};
const char *desc_name[] = {
"create tunnel",
"alloc spi",
"monitor acquire",
"expire state",
"expire policy",
"spdinfo attributes",
""
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
};
struct xfrm_desc {
enum desc_type type;
uint8_t proto;
char a_algo[ALGO_LEN];
char e_algo[ALGO_LEN];
char c_algo[ALGO_LEN];
char ae_algo[ALGO_LEN];
unsigned int icv_len;
/* unsigned key_len; */
};
enum msg_type {
MSG_ACK = 0,
MSG_EXIT,
MSG_PING,
MSG_XFRM_PREPARE,
MSG_XFRM_ADD,
MSG_XFRM_DEL,
MSG_XFRM_CLEANUP,
};
struct test_desc {
enum msg_type type;
union {
struct {
in_addr_t reply_ip;
unsigned int port;
} ping;
struct xfrm_desc xfrm_desc;
} body;
};
struct test_result {
struct xfrm_desc desc;
unsigned int res;
};
static void write_test_result(unsigned int res, struct xfrm_desc *d)
{
struct test_result tr = {};
ssize_t ret;
tr.desc = *d;
tr.res = res;
ret = write(results_fd[1], &tr, sizeof(tr));
if (ret != sizeof(tr))
pr_err("Failed to write the result in pipe %zd", ret);
}
static void write_msg(int fd, struct test_desc *msg, bool exit_of_fail)
{
ssize_t bytes = write(fd, msg, sizeof(*msg));
/* Make sure that write/read is atomic to a pipe */
BUILD_BUG_ON(sizeof(struct test_desc) > PIPE_BUF);
if (bytes < 0) {
pr_err("write()");
if (exit_of_fail)
exit(KSFT_FAIL);
}
if (bytes != sizeof(*msg)) {
pr_err("sent part of the message %zd/%zu", bytes, sizeof(*msg));
if (exit_of_fail)
exit(KSFT_FAIL);
}
}
static void read_msg(int fd, struct test_desc *msg, bool exit_of_fail)
{
ssize_t bytes = read(fd, msg, sizeof(*msg));
if (bytes < 0) {
pr_err("read()");
if (exit_of_fail)
exit(KSFT_FAIL);
}
if (bytes != sizeof(*msg)) {
pr_err("got incomplete message %zd/%zu", bytes, sizeof(*msg));
if (exit_of_fail)
exit(KSFT_FAIL);
}
}
static int udp_ping_init(struct in_addr listen_ip, unsigned int u_timeout,
unsigned int *server_port, int sock[2])
{
struct sockaddr_in server;
struct timeval t = { .tv_sec = 0, .tv_usec = u_timeout };
socklen_t s_len = sizeof(server);
sock[0] = socket(AF_INET, SOCK_DGRAM, 0);
if (sock[0] < 0) {
pr_err("socket()");
return -1;
}
server.sin_family = AF_INET;
server.sin_port = 0;
memcpy(&server.sin_addr.s_addr, &listen_ip, sizeof(struct in_addr));
if (bind(sock[0], (struct sockaddr *)&server, s_len)) {
pr_err("bind()");
goto err_close_server;
}
if (getsockname(sock[0], (struct sockaddr *)&server, &s_len)) {
pr_err("getsockname()");
goto err_close_server;
}
*server_port = ntohs(server.sin_port);
if (setsockopt(sock[0], SOL_SOCKET, SO_RCVTIMEO, (const char *)&t, sizeof t)) {
pr_err("setsockopt()");
goto err_close_server;
}
sock[1] = socket(AF_INET, SOCK_DGRAM, 0);
if (sock[1] < 0) {
pr_err("socket()");
goto err_close_server;
}
return 0;
err_close_server:
close(sock[0]);
return -1;
}
static int udp_ping_send(int sock[2], in_addr_t dest_ip, unsigned int port,
char *buf, size_t buf_len)
{
struct sockaddr_in server;
const struct sockaddr *dest_addr = (struct sockaddr *)&server;
char *sock_buf[buf_len];
ssize_t r_bytes, s_bytes;
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = dest_ip;
s_bytes = sendto(sock[1], buf, buf_len, 0, dest_addr, sizeof(server));
if (s_bytes < 0) {
pr_err("sendto()");
return -1;
} else if (s_bytes != buf_len) {
printk("send part of the message: %zd/%zu", s_bytes, sizeof(server));
return -1;
}
r_bytes = recv(sock[0], sock_buf, buf_len, 0);
if (r_bytes < 0) {
if (errno != EAGAIN)
pr_err("recv()");
return -1;
} else if (r_bytes == 0) { /* EOF */
printk("EOF on reply to ping");
return -1;
} else if (r_bytes != buf_len || memcmp(buf, sock_buf, buf_len)) {
printk("ping reply packet is corrupted %zd/%zu", r_bytes, buf_len);
return -1;
}
return 0;
}
static int udp_ping_reply(int sock[2], in_addr_t dest_ip, unsigned int port,
char *buf, size_t buf_len)
{
struct sockaddr_in server;
const struct sockaddr *dest_addr = (struct sockaddr *)&server;
char *sock_buf[buf_len];
ssize_t r_bytes, s_bytes;
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = dest_ip;
r_bytes = recv(sock[0], sock_buf, buf_len, 0);
if (r_bytes < 0) {
if (errno != EAGAIN)
pr_err("recv()");
return -1;
}
if (r_bytes == 0) { /* EOF */
printk("EOF on reply to ping");
return -1;
}
if (r_bytes != buf_len || memcmp(buf, sock_buf, buf_len)) {
printk("ping reply packet is corrupted %zd/%zu", r_bytes, buf_len);
return -1;
}
s_bytes = sendto(sock[1], buf, buf_len, 0, dest_addr, sizeof(server));
if (s_bytes < 0) {
pr_err("sendto()");
return -1;
} else if (s_bytes != buf_len) {
printk("send part of the message: %zd/%zu", s_bytes, sizeof(server));
return -1;
}
return 0;
}
typedef int (*ping_f)(int sock[2], in_addr_t dest_ip, unsigned int port,
char *buf, size_t buf_len);
static int do_ping(int cmd_fd, char *buf, size_t buf_len, struct in_addr from,
bool init_side, int d_port, in_addr_t to, ping_f func)
{
struct test_desc msg;
unsigned int s_port, i, ping_succeeded = 0;
int ping_sock[2];
char to_str[IPV4_STR_SZ] = {}, from_str[IPV4_STR_SZ] = {};
if (udp_ping_init(from, ping_timeout, &s_port, ping_sock)) {
printk("Failed to init ping");
return -1;
}
memset(&msg, 0, sizeof(msg));
msg.type = MSG_PING;
msg.body.ping.port = s_port;
memcpy(&msg.body.ping.reply_ip, &from, sizeof(from));
write_msg(cmd_fd, &msg, 0);
if (init_side) {
/* The other end sends ip to ping */
read_msg(cmd_fd, &msg, 0);
if (msg.type != MSG_PING)
return -1;
to = msg.body.ping.reply_ip;
d_port = msg.body.ping.port;
}
for (i = 0; i < ping_count ; i++) {
struct timespec sleep_time = {
.tv_sec = 0,
.tv_nsec = ping_delay_nsec,
};
ping_succeeded += !func(ping_sock, to, d_port, buf, page_size);
nanosleep(&sleep_time, 0);
}
close(ping_sock[0]);
close(ping_sock[1]);
strncpy(to_str, inet_ntoa(*(struct in_addr *)&to), IPV4_STR_SZ - 1);
strncpy(from_str, inet_ntoa(from), IPV4_STR_SZ - 1);
if (ping_succeeded < ping_success) {
printk("ping (%s) %s->%s failed %u/%u times",
init_side ? "send" : "reply", from_str, to_str,
ping_count - ping_succeeded, ping_count);
return -1;
}
#ifdef DEBUG
printk("ping (%s) %s->%s succeeded %u/%u times",
init_side ? "send" : "reply", from_str, to_str,
ping_succeeded, ping_count);
#endif
return 0;
}
static int xfrm_fill_key(char *name, char *buf,
size_t buf_len, unsigned int *key_len)
{
int i;
for (i = 0; i < XFRM_ALGO_NR_KEYS; i++) {
if (strncmp(name, xfrm_key_entries[i].algo_name, ALGO_LEN) == 0)
*key_len = xfrm_key_entries[i].key_len;
}
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
if (*key_len > buf_len) {
printk("Can't pack a key - too big for buffer");
return -1;
}
randomize_buffer(buf, *key_len);
return 0;
}
static int xfrm_state_pack_algo(struct nlmsghdr *nh, size_t req_sz,
struct xfrm_desc *desc)
{
struct {
union {
struct xfrm_algo alg;
struct xfrm_algo_aead aead;
struct xfrm_algo_auth auth;
} u;
char buf[XFRM_ALGO_KEY_BUF_SIZE];
} alg = {};
size_t alen, elen, clen, aelen;
unsigned short type;
alen = strlen(desc->a_algo);
elen = strlen(desc->e_algo);
clen = strlen(desc->c_algo);
aelen = strlen(desc->ae_algo);
/* Verify desc */
switch (desc->proto) {
case IPPROTO_AH:
if (!alen || elen || clen || aelen) {
printk("BUG: buggy ah desc");
return -1;
}
strncpy(alg.u.alg.alg_name, desc->a_algo, ALGO_LEN - 1);
if (xfrm_fill_key(desc->a_algo, alg.u.alg.alg_key,
sizeof(alg.buf), &alg.u.alg.alg_key_len))
return -1;
type = XFRMA_ALG_AUTH;
break;
case IPPROTO_COMP:
if (!clen || elen || alen || aelen) {
printk("BUG: buggy comp desc");
return -1;
}
strncpy(alg.u.alg.alg_name, desc->c_algo, ALGO_LEN - 1);
if (xfrm_fill_key(desc->c_algo, alg.u.alg.alg_key,
sizeof(alg.buf), &alg.u.alg.alg_key_len))
return -1;
type = XFRMA_ALG_COMP;
break;
case IPPROTO_ESP:
if (!((alen && elen) ^ aelen) || clen) {
printk("BUG: buggy esp desc");
return -1;
}
if (aelen) {
alg.u.aead.alg_icv_len = desc->icv_len;
strncpy(alg.u.aead.alg_name, desc->ae_algo, ALGO_LEN - 1);
if (xfrm_fill_key(desc->ae_algo, alg.u.aead.alg_key,
sizeof(alg.buf), &alg.u.aead.alg_key_len))
return -1;
type = XFRMA_ALG_AEAD;
} else {
strncpy(alg.u.alg.alg_name, desc->e_algo, ALGO_LEN - 1);
type = XFRMA_ALG_CRYPT;
if (xfrm_fill_key(desc->e_algo, alg.u.alg.alg_key,
sizeof(alg.buf), &alg.u.alg.alg_key_len))
return -1;
if (rtattr_pack(nh, req_sz, type, &alg, sizeof(alg)))
return -1;
strncpy(alg.u.alg.alg_name, desc->a_algo, ALGO_LEN);
type = XFRMA_ALG_AUTH;
if (xfrm_fill_key(desc->a_algo, alg.u.alg.alg_key,
sizeof(alg.buf), &alg.u.alg.alg_key_len))
return -1;
}
break;
default:
printk("BUG: unknown proto in desc");
return -1;
}
if (rtattr_pack(nh, req_sz, type, &alg, sizeof(alg)))
return -1;
return 0;
}
static inline uint32_t gen_spi(struct in_addr src)
{
return htonl(inet_lnaof(src));
}
static int xfrm_state_add(int xfrm_sock, uint32_t seq, uint32_t spi,
struct in_addr src, struct in_addr dst,
struct xfrm_desc *desc)
{
struct {
struct nlmsghdr nh;
struct xfrm_usersa_info info;
char attrbuf[MAX_PAYLOAD];
} req;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.info));
req.nh.nlmsg_type = XFRM_MSG_NEWSA;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nh.nlmsg_seq = seq;
/* Fill selector. */
memcpy(&req.info.sel.daddr, &dst, sizeof(dst));
memcpy(&req.info.sel.saddr, &src, sizeof(src));
req.info.sel.family = AF_INET;
req.info.sel.prefixlen_d = PREFIX_LEN;
req.info.sel.prefixlen_s = PREFIX_LEN;
/* Fill id */
memcpy(&req.info.id.daddr, &dst, sizeof(dst));
/* Note: zero-spi cannot be deleted */
req.info.id.spi = spi;
req.info.id.proto = desc->proto;
memcpy(&req.info.saddr, &src, sizeof(src));
/* Fill lifteme_cfg */
req.info.lft.soft_byte_limit = XFRM_INF;
req.info.lft.hard_byte_limit = XFRM_INF;
req.info.lft.soft_packet_limit = XFRM_INF;
req.info.lft.hard_packet_limit = XFRM_INF;
req.info.family = AF_INET;
req.info.mode = XFRM_MODE_TUNNEL;
if (xfrm_state_pack_algo(&req.nh, sizeof(req), desc))
return -1;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
return netlink_check_answer(xfrm_sock);
}
static bool xfrm_usersa_found(struct xfrm_usersa_info *info, uint32_t spi,
struct in_addr src, struct in_addr dst,
struct xfrm_desc *desc)
{
if (memcmp(&info->sel.daddr, &dst, sizeof(dst)))
return false;
if (memcmp(&info->sel.saddr, &src, sizeof(src)))
return false;
if (info->sel.family != AF_INET ||
info->sel.prefixlen_d != PREFIX_LEN ||
info->sel.prefixlen_s != PREFIX_LEN)
return false;
if (info->id.spi != spi || info->id.proto != desc->proto)
return false;
if (memcmp(&info->id.daddr, &dst, sizeof(dst)))
return false;
if (memcmp(&info->saddr, &src, sizeof(src)))
return false;
if (info->lft.soft_byte_limit != XFRM_INF ||
info->lft.hard_byte_limit != XFRM_INF ||
info->lft.soft_packet_limit != XFRM_INF ||
info->lft.hard_packet_limit != XFRM_INF)
return false;
if (info->family != AF_INET || info->mode != XFRM_MODE_TUNNEL)
return false;
/* XXX: check xfrm algo, see xfrm_state_pack_algo(). */
return true;
}
static int xfrm_state_check(int xfrm_sock, uint32_t seq, uint32_t spi,
struct in_addr src, struct in_addr dst,
struct xfrm_desc *desc)
{
struct {
struct nlmsghdr nh;
char attrbuf[MAX_PAYLOAD];
} req;
struct {
struct nlmsghdr nh;
union {
struct xfrm_usersa_info info;
int error;
};
char attrbuf[MAX_PAYLOAD];
} answer;
struct xfrm_address_filter filter = {};
bool found = false;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(0);
req.nh.nlmsg_type = XFRM_MSG_GETSA;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
req.nh.nlmsg_seq = seq;
/*
* Add dump filter by source address as there may be other tunnels
* in this netns (if tests run in parallel).
*/
filter.family = AF_INET;
filter.splen = 0x1f; /* 0xffffffff mask see addr_match() */
memcpy(&filter.saddr, &src, sizeof(src));
if (rtattr_pack(&req.nh, sizeof(req), XFRMA_ADDRESS_FILTER,
&filter, sizeof(filter)))
return -1;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
while (1) {
if (recv(xfrm_sock, &answer, sizeof(answer), 0) < 0) {
pr_err("recv()");
return -1;
}
if (answer.nh.nlmsg_type == NLMSG_ERROR) {
printk("NLMSG_ERROR: %d: %s",
answer.error, strerror(-answer.error));
return -1;
} else if (answer.nh.nlmsg_type == NLMSG_DONE) {
if (found)
return 0;
printk("didn't find allocated xfrm state in dump");
return -1;
} else if (answer.nh.nlmsg_type == XFRM_MSG_NEWSA) {
if (xfrm_usersa_found(&answer.info, spi, src, dst, desc))
found = true;
}
}
}
static int xfrm_set(int xfrm_sock, uint32_t *seq,
struct in_addr src, struct in_addr dst,
struct in_addr tunsrc, struct in_addr tundst,
struct xfrm_desc *desc)
{
int err;
err = xfrm_state_add(xfrm_sock, (*seq)++, gen_spi(src), src, dst, desc);
if (err) {
printk("Failed to add xfrm state");
return -1;
}
err = xfrm_state_add(xfrm_sock, (*seq)++, gen_spi(src), dst, src, desc);
if (err) {
printk("Failed to add xfrm state");
return -1;
}
/* Check dumps for XFRM_MSG_GETSA */
err = xfrm_state_check(xfrm_sock, (*seq)++, gen_spi(src), src, dst, desc);
err |= xfrm_state_check(xfrm_sock, (*seq)++, gen_spi(src), dst, src, desc);
if (err) {
printk("Failed to check xfrm state");
return -1;
}
return 0;
}
static int xfrm_policy_add(int xfrm_sock, uint32_t seq, uint32_t spi,
struct in_addr src, struct in_addr dst, uint8_t dir,
struct in_addr tunsrc, struct in_addr tundst, uint8_t proto)
{
struct {
struct nlmsghdr nh;
struct xfrm_userpolicy_info info;
char attrbuf[MAX_PAYLOAD];
} req;
struct xfrm_user_tmpl tmpl;
memset(&req, 0, sizeof(req));
memset(&tmpl, 0, sizeof(tmpl));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.info));
req.nh.nlmsg_type = XFRM_MSG_NEWPOLICY;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nh.nlmsg_seq = seq;
/* Fill selector. */
memcpy(&req.info.sel.daddr, &dst, sizeof(tundst));
memcpy(&req.info.sel.saddr, &src, sizeof(tunsrc));
req.info.sel.family = AF_INET;
req.info.sel.prefixlen_d = PREFIX_LEN;
req.info.sel.prefixlen_s = PREFIX_LEN;
/* Fill lifteme_cfg */
req.info.lft.soft_byte_limit = XFRM_INF;
req.info.lft.hard_byte_limit = XFRM_INF;
req.info.lft.soft_packet_limit = XFRM_INF;
req.info.lft.hard_packet_limit = XFRM_INF;
req.info.dir = dir;
/* Fill tmpl */
memcpy(&tmpl.id.daddr, &dst, sizeof(dst));
/* Note: zero-spi cannot be deleted */
tmpl.id.spi = spi;
tmpl.id.proto = proto;
tmpl.family = AF_INET;
memcpy(&tmpl.saddr, &src, sizeof(src));
tmpl.mode = XFRM_MODE_TUNNEL;
tmpl.aalgos = (~(uint32_t)0);
tmpl.ealgos = (~(uint32_t)0);
tmpl.calgos = (~(uint32_t)0);
if (rtattr_pack(&req.nh, sizeof(req), XFRMA_TMPL, &tmpl, sizeof(tmpl)))
return -1;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
return netlink_check_answer(xfrm_sock);
}
static int xfrm_prepare(int xfrm_sock, uint32_t *seq,
struct in_addr src, struct in_addr dst,
struct in_addr tunsrc, struct in_addr tundst, uint8_t proto)
{
if (xfrm_policy_add(xfrm_sock, (*seq)++, gen_spi(src), src, dst,
XFRM_POLICY_OUT, tunsrc, tundst, proto)) {
printk("Failed to add xfrm policy");
return -1;
}
if (xfrm_policy_add(xfrm_sock, (*seq)++, gen_spi(src), dst, src,
XFRM_POLICY_IN, tunsrc, tundst, proto)) {
printk("Failed to add xfrm policy");
return -1;
}
return 0;
}
static int xfrm_policy_del(int xfrm_sock, uint32_t seq,
struct in_addr src, struct in_addr dst, uint8_t dir,
struct in_addr tunsrc, struct in_addr tundst)
{
struct {
struct nlmsghdr nh;
struct xfrm_userpolicy_id id;
char attrbuf[MAX_PAYLOAD];
} req;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.id));
req.nh.nlmsg_type = XFRM_MSG_DELPOLICY;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nh.nlmsg_seq = seq;
/* Fill id */
memcpy(&req.id.sel.daddr, &dst, sizeof(tundst));
memcpy(&req.id.sel.saddr, &src, sizeof(tunsrc));
req.id.sel.family = AF_INET;
req.id.sel.prefixlen_d = PREFIX_LEN;
req.id.sel.prefixlen_s = PREFIX_LEN;
req.id.dir = dir;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
return netlink_check_answer(xfrm_sock);
}
static int xfrm_cleanup(int xfrm_sock, uint32_t *seq,
struct in_addr src, struct in_addr dst,
struct in_addr tunsrc, struct in_addr tundst)
{
if (xfrm_policy_del(xfrm_sock, (*seq)++, src, dst,
XFRM_POLICY_OUT, tunsrc, tundst)) {
printk("Failed to add xfrm policy");
return -1;
}
if (xfrm_policy_del(xfrm_sock, (*seq)++, dst, src,
XFRM_POLICY_IN, tunsrc, tundst)) {
printk("Failed to add xfrm policy");
return -1;
}
return 0;
}
static int xfrm_state_del(int xfrm_sock, uint32_t seq, uint32_t spi,
struct in_addr src, struct in_addr dst, uint8_t proto)
{
struct {
struct nlmsghdr nh;
struct xfrm_usersa_id id;
char attrbuf[MAX_PAYLOAD];
} req;
xfrm_address_t saddr = {};
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.id));
req.nh.nlmsg_type = XFRM_MSG_DELSA;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nh.nlmsg_seq = seq;
memcpy(&req.id.daddr, &dst, sizeof(dst));
req.id.family = AF_INET;
req.id.proto = proto;
/* Note: zero-spi cannot be deleted */
req.id.spi = spi;
memcpy(&saddr, &src, sizeof(src));
if (rtattr_pack(&req.nh, sizeof(req), XFRMA_SRCADDR, &saddr, sizeof(saddr)))
return -1;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
return netlink_check_answer(xfrm_sock);
}
static int xfrm_delete(int xfrm_sock, uint32_t *seq,
struct in_addr src, struct in_addr dst,
struct in_addr tunsrc, struct in_addr tundst, uint8_t proto)
{
if (xfrm_state_del(xfrm_sock, (*seq)++, gen_spi(src), src, dst, proto)) {
printk("Failed to remove xfrm state");
return -1;
}
if (xfrm_state_del(xfrm_sock, (*seq)++, gen_spi(src), dst, src, proto)) {
printk("Failed to remove xfrm state");
return -1;
}
return 0;
}
static int xfrm_state_allocspi(int xfrm_sock, uint32_t *seq,
uint32_t spi, uint8_t proto)
{
struct {
struct nlmsghdr nh;
struct xfrm_userspi_info spi;
} req;
struct {
struct nlmsghdr nh;
union {
struct xfrm_usersa_info info;
int error;
};
} answer;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.spi));
req.nh.nlmsg_type = XFRM_MSG_ALLOCSPI;
req.nh.nlmsg_flags = NLM_F_REQUEST;
req.nh.nlmsg_seq = (*seq)++;
req.spi.info.family = AF_INET;
req.spi.min = spi;
req.spi.max = spi;
req.spi.info.id.proto = proto;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return KSFT_FAIL;
}
if (recv(xfrm_sock, &answer, sizeof(answer), 0) < 0) {
pr_err("recv()");
return KSFT_FAIL;
} else if (answer.nh.nlmsg_type == XFRM_MSG_NEWSA) {
uint32_t new_spi = htonl(answer.info.id.spi);
if (new_spi != spi) {
printk("allocated spi is different from requested: %#x != %#x",
new_spi, spi);
return KSFT_FAIL;
}
return KSFT_PASS;
} else if (answer.nh.nlmsg_type != NLMSG_ERROR) {
printk("expected NLMSG_ERROR, got %d", (int)answer.nh.nlmsg_type);
return KSFT_FAIL;
}
printk("NLMSG_ERROR: %d: %s", answer.error, strerror(-answer.error));
return (answer.error) ? KSFT_FAIL : KSFT_PASS;
}
static int netlink_sock_bind(int *sock, uint32_t *seq, int proto, uint32_t groups)
{
struct sockaddr_nl snl = {};
socklen_t addr_len;
int ret = -1;
snl.nl_family = AF_NETLINK;
snl.nl_groups = groups;
if (netlink_sock(sock, seq, proto)) {
printk("Failed to open xfrm netlink socket");
return -1;
}
if (bind(*sock, (struct sockaddr *)&snl, sizeof(snl)) < 0) {
pr_err("bind()");
goto out_close;
}
addr_len = sizeof(snl);
if (getsockname(*sock, (struct sockaddr *)&snl, &addr_len) < 0) {
pr_err("getsockname()");
goto out_close;
}
if (addr_len != sizeof(snl)) {
printk("Wrong address length %d", addr_len);
goto out_close;
}
if (snl.nl_family != AF_NETLINK) {
printk("Wrong address family %d", snl.nl_family);
goto out_close;
}
return 0;
out_close:
close(*sock);
return ret;
}
static int xfrm_monitor_acquire(int xfrm_sock, uint32_t *seq, unsigned int nr)
{
struct {
struct nlmsghdr nh;
union {
struct xfrm_user_acquire acq;
int error;
};
char attrbuf[MAX_PAYLOAD];
} req;
struct xfrm_user_tmpl xfrm_tmpl = {};
int xfrm_listen = -1, ret = KSFT_FAIL;
uint32_t seq_listen;
if (netlink_sock_bind(&xfrm_listen, &seq_listen, NETLINK_XFRM, XFRMNLGRP_ACQUIRE))
return KSFT_FAIL;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.acq));
req.nh.nlmsg_type = XFRM_MSG_ACQUIRE;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nh.nlmsg_seq = (*seq)++;
req.acq.policy.sel.family = AF_INET;
req.acq.aalgos = 0xfeed;
req.acq.ealgos = 0xbaad;
req.acq.calgos = 0xbabe;
xfrm_tmpl.family = AF_INET;
xfrm_tmpl.id.proto = IPPROTO_ESP;
if (rtattr_pack(&req.nh, sizeof(req), XFRMA_TMPL, &xfrm_tmpl, sizeof(xfrm_tmpl)))
goto out_close;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
goto out_close;
}
if (recv(xfrm_sock, &req, sizeof(req), 0) < 0) {
pr_err("recv()");
goto out_close;
} else if (req.nh.nlmsg_type != NLMSG_ERROR) {
printk("expected NLMSG_ERROR, got %d", (int)req.nh.nlmsg_type);
goto out_close;
}
if (req.error) {
printk("NLMSG_ERROR: %d: %s", req.error, strerror(-req.error));
ret = req.error;
goto out_close;
}
if (recv(xfrm_listen, &req, sizeof(req), 0) < 0) {
pr_err("recv()");
goto out_close;
}
if (req.acq.aalgos != 0xfeed || req.acq.ealgos != 0xbaad
|| req.acq.calgos != 0xbabe) {
printk("xfrm_user_acquire has changed %x %x %x",
req.acq.aalgos, req.acq.ealgos, req.acq.calgos);
goto out_close;
}
ret = KSFT_PASS;
out_close:
close(xfrm_listen);
return ret;
}
static int xfrm_expire_state(int xfrm_sock, uint32_t *seq,
unsigned int nr, struct xfrm_desc *desc)
{
struct {
struct nlmsghdr nh;
union {
struct xfrm_user_expire expire;
int error;
};
} req;
struct in_addr src, dst;
int xfrm_listen = -1, ret = KSFT_FAIL;
uint32_t seq_listen;
src = inet_makeaddr(INADDR_B, child_ip(nr));
dst = inet_makeaddr(INADDR_B, grchild_ip(nr));
if (xfrm_state_add(xfrm_sock, (*seq)++, gen_spi(src), src, dst, desc)) {
printk("Failed to add xfrm state");
return KSFT_FAIL;
}
if (netlink_sock_bind(&xfrm_listen, &seq_listen, NETLINK_XFRM, XFRMNLGRP_EXPIRE))
return KSFT_FAIL;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.expire));
req.nh.nlmsg_type = XFRM_MSG_EXPIRE;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nh.nlmsg_seq = (*seq)++;
memcpy(&req.expire.state.id.daddr, &dst, sizeof(dst));
req.expire.state.id.spi = gen_spi(src);
req.expire.state.id.proto = desc->proto;
req.expire.state.family = AF_INET;
req.expire.hard = 0xff;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
goto out_close;
}
if (recv(xfrm_sock, &req, sizeof(req), 0) < 0) {
pr_err("recv()");
goto out_close;
} else if (req.nh.nlmsg_type != NLMSG_ERROR) {
printk("expected NLMSG_ERROR, got %d", (int)req.nh.nlmsg_type);
goto out_close;
}
if (req.error) {
printk("NLMSG_ERROR: %d: %s", req.error, strerror(-req.error));
ret = req.error;
goto out_close;
}
if (recv(xfrm_listen, &req, sizeof(req), 0) < 0) {
pr_err("recv()");
goto out_close;
}
if (req.expire.hard != 0x1) {
printk("expire.hard is not set: %x", req.expire.hard);
goto out_close;
}
ret = KSFT_PASS;
out_close:
close(xfrm_listen);
return ret;
}
static int xfrm_expire_policy(int xfrm_sock, uint32_t *seq,
unsigned int nr, struct xfrm_desc *desc)
{
struct {
struct nlmsghdr nh;
union {
struct xfrm_user_polexpire expire;
int error;
};
} req;
struct in_addr src, dst, tunsrc, tundst;
int xfrm_listen = -1, ret = KSFT_FAIL;
uint32_t seq_listen;
src = inet_makeaddr(INADDR_B, child_ip(nr));
dst = inet_makeaddr(INADDR_B, grchild_ip(nr));
tunsrc = inet_makeaddr(INADDR_A, child_ip(nr));
tundst = inet_makeaddr(INADDR_A, grchild_ip(nr));
if (xfrm_policy_add(xfrm_sock, (*seq)++, gen_spi(src), src, dst,
XFRM_POLICY_OUT, tunsrc, tundst, desc->proto)) {
printk("Failed to add xfrm policy");
return KSFT_FAIL;
}
if (netlink_sock_bind(&xfrm_listen, &seq_listen, NETLINK_XFRM, XFRMNLGRP_EXPIRE))
return KSFT_FAIL;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.expire));
req.nh.nlmsg_type = XFRM_MSG_POLEXPIRE;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nh.nlmsg_seq = (*seq)++;
/* Fill selector. */
memcpy(&req.expire.pol.sel.daddr, &dst, sizeof(tundst));
memcpy(&req.expire.pol.sel.saddr, &src, sizeof(tunsrc));
req.expire.pol.sel.family = AF_INET;
req.expire.pol.sel.prefixlen_d = PREFIX_LEN;
req.expire.pol.sel.prefixlen_s = PREFIX_LEN;
req.expire.pol.dir = XFRM_POLICY_OUT;
req.expire.hard = 0xff;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
goto out_close;
}
if (recv(xfrm_sock, &req, sizeof(req), 0) < 0) {
pr_err("recv()");
goto out_close;
} else if (req.nh.nlmsg_type != NLMSG_ERROR) {
printk("expected NLMSG_ERROR, got %d", (int)req.nh.nlmsg_type);
goto out_close;
}
if (req.error) {
printk("NLMSG_ERROR: %d: %s", req.error, strerror(-req.error));
ret = req.error;
goto out_close;
}
if (recv(xfrm_listen, &req, sizeof(req), 0) < 0) {
pr_err("recv()");
goto out_close;
}
if (req.expire.hard != 0x1) {
printk("expire.hard is not set: %x", req.expire.hard);
goto out_close;
}
ret = KSFT_PASS;
out_close:
close(xfrm_listen);
return ret;
}
static int xfrm_spdinfo_set_thresh(int xfrm_sock, uint32_t *seq,
unsigned thresh4_l, unsigned thresh4_r,
unsigned thresh6_l, unsigned thresh6_r,
bool add_bad_attr)
{
struct {
struct nlmsghdr nh;
union {
uint32_t unused;
int error;
};
char attrbuf[MAX_PAYLOAD];
} req;
struct xfrmu_spdhthresh thresh;
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.unused));
req.nh.nlmsg_type = XFRM_MSG_NEWSPDINFO;
req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nh.nlmsg_seq = (*seq)++;
thresh.lbits = thresh4_l;
thresh.rbits = thresh4_r;
if (rtattr_pack(&req.nh, sizeof(req), XFRMA_SPD_IPV4_HTHRESH, &thresh, sizeof(thresh)))
return -1;
thresh.lbits = thresh6_l;
thresh.rbits = thresh6_r;
if (rtattr_pack(&req.nh, sizeof(req), XFRMA_SPD_IPV6_HTHRESH, &thresh, sizeof(thresh)))
return -1;
if (add_bad_attr) {
BUILD_BUG_ON(XFRMA_IF_ID <= XFRMA_SPD_MAX + 1);
if (rtattr_pack(&req.nh, sizeof(req), XFRMA_IF_ID, NULL, 0)) {
pr_err("adding attribute failed: no space");
return -1;
}
}
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return -1;
}
if (recv(xfrm_sock, &req, sizeof(req), 0) < 0) {
pr_err("recv()");
return -1;
} else if (req.nh.nlmsg_type != NLMSG_ERROR) {
printk("expected NLMSG_ERROR, got %d", (int)req.nh.nlmsg_type);
return -1;
}
if (req.error) {
printk("NLMSG_ERROR: %d: %s", req.error, strerror(-req.error));
return -1;
}
return 0;
}
static int xfrm_spdinfo_attrs(int xfrm_sock, uint32_t *seq)
{
struct {
struct nlmsghdr nh;
union {
uint32_t unused;
int error;
};
char attrbuf[MAX_PAYLOAD];
} req;
if (xfrm_spdinfo_set_thresh(xfrm_sock, seq, 32, 31, 120, 16, false)) {
pr_err("Can't set SPD HTHRESH");
return KSFT_FAIL;
}
memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.unused));
req.nh.nlmsg_type = XFRM_MSG_GETSPDINFO;
req.nh.nlmsg_flags = NLM_F_REQUEST;
req.nh.nlmsg_seq = (*seq)++;
if (send(xfrm_sock, &req, req.nh.nlmsg_len, 0) < 0) {
pr_err("send()");
return KSFT_FAIL;
}
if (recv(xfrm_sock, &req, sizeof(req), 0) < 0) {
pr_err("recv()");
return KSFT_FAIL;
} else if (req.nh.nlmsg_type == XFRM_MSG_NEWSPDINFO) {
size_t len = NLMSG_PAYLOAD(&req.nh, sizeof(req.unused));
struct rtattr *attr = (void *)req.attrbuf;
int got_thresh = 0;
for (; RTA_OK(attr, len); attr = RTA_NEXT(attr, len)) {
if (attr->rta_type == XFRMA_SPD_IPV4_HTHRESH) {
struct xfrmu_spdhthresh *t = RTA_DATA(attr);
got_thresh++;
if (t->lbits != 32 || t->rbits != 31) {
pr_err("thresh differ: %u, %u",
t->lbits, t->rbits);
return KSFT_FAIL;
}
}
if (attr->rta_type == XFRMA_SPD_IPV6_HTHRESH) {
struct xfrmu_spdhthresh *t = RTA_DATA(attr);
got_thresh++;
if (t->lbits != 120 || t->rbits != 16) {
pr_err("thresh differ: %u, %u",
t->lbits, t->rbits);
return KSFT_FAIL;
}
}
}
if (got_thresh != 2) {
pr_err("only %d thresh returned by XFRM_MSG_GETSPDINFO", got_thresh);
return KSFT_FAIL;
}
} else if (req.nh.nlmsg_type != NLMSG_ERROR) {
printk("expected NLMSG_ERROR, got %d", (int)req.nh.nlmsg_type);
return KSFT_FAIL;
} else {
printk("NLMSG_ERROR: %d: %s", req.error, strerror(-req.error));
return -1;
}
/* Restore the default */
if (xfrm_spdinfo_set_thresh(xfrm_sock, seq, 32, 32, 128, 128, false)) {
pr_err("Can't restore SPD HTHRESH");
return KSFT_FAIL;
}
/*
* At this moment xfrm uses nlmsg_parse_deprecated(), which
* implies NL_VALIDATE_LIBERAL - ignoring attributes with
* (type > maxtype). nla_parse_depricated_strict() would enforce
* it. Or even stricter nla_parse().
* Right now it's not expected to fail, but to be ignored.
*/
if (xfrm_spdinfo_set_thresh(xfrm_sock, seq, 32, 32, 128, 128, true))
return KSFT_PASS;
return KSFT_PASS;
}
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
static int child_serv(int xfrm_sock, uint32_t *seq,
unsigned int nr, int cmd_fd, void *buf, struct xfrm_desc *desc)
{
struct in_addr src, dst, tunsrc, tundst;
struct test_desc msg;
int ret = KSFT_FAIL;
src = inet_makeaddr(INADDR_B, child_ip(nr));
dst = inet_makeaddr(INADDR_B, grchild_ip(nr));
tunsrc = inet_makeaddr(INADDR_A, child_ip(nr));
tundst = inet_makeaddr(INADDR_A, grchild_ip(nr));
/* UDP pinging without xfrm */
if (do_ping(cmd_fd, buf, page_size, src, true, 0, 0, udp_ping_send)) {
printk("ping failed before setting xfrm");
return KSFT_FAIL;
}
memset(&msg, 0, sizeof(msg));
msg.type = MSG_XFRM_PREPARE;
memcpy(&msg.body.xfrm_desc, desc, sizeof(*desc));
write_msg(cmd_fd, &msg, 1);
if (xfrm_prepare(xfrm_sock, seq, src, dst, tunsrc, tundst, desc->proto)) {
printk("failed to prepare xfrm");
goto cleanup;
}
memset(&msg, 0, sizeof(msg));
msg.type = MSG_XFRM_ADD;
memcpy(&msg.body.xfrm_desc, desc, sizeof(*desc));
write_msg(cmd_fd, &msg, 1);
if (xfrm_set(xfrm_sock, seq, src, dst, tunsrc, tundst, desc)) {
printk("failed to set xfrm");
goto delete;
}
/* UDP pinging with xfrm tunnel */
if (do_ping(cmd_fd, buf, page_size, tunsrc,
true, 0, 0, udp_ping_send)) {
printk("ping failed for xfrm");
goto delete;
}
ret = KSFT_PASS;
delete:
/* xfrm delete */
memset(&msg, 0, sizeof(msg));
msg.type = MSG_XFRM_DEL;
memcpy(&msg.body.xfrm_desc, desc, sizeof(*desc));
write_msg(cmd_fd, &msg, 1);
if (xfrm_delete(xfrm_sock, seq, src, dst, tunsrc, tundst, desc->proto)) {
printk("failed ping to remove xfrm");
ret = KSFT_FAIL;
}
cleanup:
memset(&msg, 0, sizeof(msg));
msg.type = MSG_XFRM_CLEANUP;
memcpy(&msg.body.xfrm_desc, desc, sizeof(*desc));
write_msg(cmd_fd, &msg, 1);
if (xfrm_cleanup(xfrm_sock, seq, src, dst, tunsrc, tundst)) {
printk("failed ping to cleanup xfrm");
ret = KSFT_FAIL;
}
return ret;
}
static int child_f(unsigned int nr, int test_desc_fd, int cmd_fd, void *buf)
{
struct xfrm_desc desc;
struct test_desc msg;
int xfrm_sock = -1;
uint32_t seq;
if (switch_ns(nsfd_childa))
exit(KSFT_FAIL);
if (netlink_sock(&xfrm_sock, &seq, NETLINK_XFRM)) {
printk("Failed to open xfrm netlink socket");
exit(KSFT_FAIL);
}
/* Check that seq sock is ready, just for sure. */
memset(&msg, 0, sizeof(msg));
msg.type = MSG_ACK;
write_msg(cmd_fd, &msg, 1);
read_msg(cmd_fd, &msg, 1);
if (msg.type != MSG_ACK) {
printk("Ack failed");
exit(KSFT_FAIL);
}
for (;;) {
ssize_t received = read(test_desc_fd, &desc, sizeof(desc));
int ret;
if (received == 0) /* EOF */
break;
if (received != sizeof(desc)) {
pr_err("read() returned %zd", received);
exit(KSFT_FAIL);
}
switch (desc.type) {
case CREATE_TUNNEL:
ret = child_serv(xfrm_sock, &seq, nr,
cmd_fd, buf, &desc);
break;
case ALLOCATE_SPI:
ret = xfrm_state_allocspi(xfrm_sock, &seq,
-1, desc.proto);
break;
case MONITOR_ACQUIRE:
ret = xfrm_monitor_acquire(xfrm_sock, &seq, nr);
break;
case EXPIRE_STATE:
ret = xfrm_expire_state(xfrm_sock, &seq, nr, &desc);
break;
case EXPIRE_POLICY:
ret = xfrm_expire_policy(xfrm_sock, &seq, nr, &desc);
break;
case SPDINFO_ATTRS:
ret = xfrm_spdinfo_attrs(xfrm_sock, &seq);
break;
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
default:
printk("Unknown desc type %d", desc.type);
exit(KSFT_FAIL);
}
write_test_result(ret, &desc);
}
close(xfrm_sock);
msg.type = MSG_EXIT;
write_msg(cmd_fd, &msg, 1);
exit(KSFT_PASS);
}
static void grand_child_serv(unsigned int nr, int cmd_fd, void *buf,
struct test_desc *msg, int xfrm_sock, uint32_t *seq)
{
struct in_addr src, dst, tunsrc, tundst;
bool tun_reply;
struct xfrm_desc *desc = &msg->body.xfrm_desc;
src = inet_makeaddr(INADDR_B, grchild_ip(nr));
dst = inet_makeaddr(INADDR_B, child_ip(nr));
tunsrc = inet_makeaddr(INADDR_A, grchild_ip(nr));
tundst = inet_makeaddr(INADDR_A, child_ip(nr));
switch (msg->type) {
case MSG_EXIT:
exit(KSFT_PASS);
case MSG_ACK:
write_msg(cmd_fd, msg, 1);
break;
case MSG_PING:
tun_reply = memcmp(&dst, &msg->body.ping.reply_ip, sizeof(in_addr_t));
/* UDP pinging without xfrm */
if (do_ping(cmd_fd, buf, page_size, tun_reply ? tunsrc : src,
false, msg->body.ping.port,
msg->body.ping.reply_ip, udp_ping_reply)) {
printk("ping failed before setting xfrm");
}
break;
case MSG_XFRM_PREPARE:
if (xfrm_prepare(xfrm_sock, seq, src, dst, tunsrc, tundst,
desc->proto)) {
xfrm_cleanup(xfrm_sock, seq, src, dst, tunsrc, tundst);
printk("failed to prepare xfrm");
}
break;
case MSG_XFRM_ADD:
if (xfrm_set(xfrm_sock, seq, src, dst, tunsrc, tundst, desc)) {
xfrm_cleanup(xfrm_sock, seq, src, dst, tunsrc, tundst);
printk("failed to set xfrm");
}
break;
case MSG_XFRM_DEL:
if (xfrm_delete(xfrm_sock, seq, src, dst, tunsrc, tundst,
desc->proto)) {
xfrm_cleanup(xfrm_sock, seq, src, dst, tunsrc, tundst);
printk("failed to remove xfrm");
}
break;
case MSG_XFRM_CLEANUP:
if (xfrm_cleanup(xfrm_sock, seq, src, dst, tunsrc, tundst)) {
printk("failed to cleanup xfrm");
}
break;
default:
printk("got unknown msg type %d", msg->type);
}
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
}
static int grand_child_f(unsigned int nr, int cmd_fd, void *buf)
{
struct test_desc msg;
int xfrm_sock = -1;
uint32_t seq;
if (switch_ns(nsfd_childb))
exit(KSFT_FAIL);
if (netlink_sock(&xfrm_sock, &seq, NETLINK_XFRM)) {
printk("Failed to open xfrm netlink socket");
exit(KSFT_FAIL);
}
do {
read_msg(cmd_fd, &msg, 1);
grand_child_serv(nr, cmd_fd, buf, &msg, xfrm_sock, &seq);
} while (1);
close(xfrm_sock);
exit(KSFT_FAIL);
}
static int start_child(unsigned int nr, char *veth, int test_desc_fd[2])
{
int cmd_sock[2];
void *data_map;
pid_t child;
if (init_child(nsfd_childa, veth, child_ip(nr), grchild_ip(nr)))
return -1;
if (init_child(nsfd_childb, veth, grchild_ip(nr), child_ip(nr)))
return -1;
child = fork();
if (child < 0) {
pr_err("fork()");
return -1;
} else if (child) {
/* in parent - selftest */
return switch_ns(nsfd_parent);
}
if (close(test_desc_fd[1])) {
pr_err("close()");
return -1;
}
/* child */
data_map = mmap(0, page_size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if (data_map == MAP_FAILED) {
pr_err("mmap()");
return -1;
}
randomize_buffer(data_map, page_size);
if (socketpair(PF_LOCAL, SOCK_SEQPACKET, 0, cmd_sock)) {
pr_err("socketpair()");
return -1;
}
child = fork();
if (child < 0) {
pr_err("fork()");
return -1;
} else if (child) {
if (close(cmd_sock[0])) {
pr_err("close()");
return -1;
}
return child_f(nr, test_desc_fd[0], cmd_sock[1], data_map);
}
if (close(cmd_sock[1])) {
pr_err("close()");
return -1;
}
return grand_child_f(nr, cmd_sock[0], data_map);
}
static void exit_usage(char **argv)
{
printk("Usage: %s [nr_process]", argv[0]);
exit(KSFT_FAIL);
}
static int __write_desc(int test_desc_fd, struct xfrm_desc *desc)
{
ssize_t ret;
ret = write(test_desc_fd, desc, sizeof(*desc));
if (ret == sizeof(*desc))
return 0;
pr_err("Writing test's desc failed %ld", ret);
return -1;
}
static int write_desc(int proto, int test_desc_fd,
char *a, char *e, char *c, char *ae)
{
struct xfrm_desc desc = {};
desc.type = CREATE_TUNNEL;
desc.proto = proto;
if (a)
strncpy(desc.a_algo, a, ALGO_LEN - 1);
if (e)
strncpy(desc.e_algo, e, ALGO_LEN - 1);
if (c)
strncpy(desc.c_algo, c, ALGO_LEN - 1);
if (ae)
strncpy(desc.ae_algo, ae, ALGO_LEN - 1);
return __write_desc(test_desc_fd, &desc);
}
int proto_list[] = { IPPROTO_AH, IPPROTO_COMP, IPPROTO_ESP };
char *ah_list[] = {
"digest_null", "hmac(md5)", "hmac(sha1)", "hmac(sha256)",
"hmac(sha384)", "hmac(sha512)", "hmac(rmd160)",
"xcbc(aes)", "cmac(aes)"
};
char *comp_list[] = {
"deflate",
#if 0
/* No compression backend realization */
"lzs", "lzjh"
#endif
};
char *e_list[] = {
"ecb(cipher_null)", "cbc(des)", "cbc(des3_ede)", "cbc(cast5)",
"cbc(blowfish)", "cbc(aes)", "cbc(serpent)", "cbc(camellia)",
"cbc(twofish)", "rfc3686(ctr(aes))"
};
char *ae_list[] = {
#if 0
/* not implemented */
"rfc4106(gcm(aes))", "rfc4309(ccm(aes))", "rfc4543(gcm(aes))",
"rfc7539esp(chacha20,poly1305)"
#endif
};
const unsigned int proto_plan = ARRAY_SIZE(ah_list) + ARRAY_SIZE(comp_list) \
+ (ARRAY_SIZE(ah_list) * ARRAY_SIZE(e_list)) \
+ ARRAY_SIZE(ae_list);
static int write_proto_plan(int fd, int proto)
{
unsigned int i;
switch (proto) {
case IPPROTO_AH:
for (i = 0; i < ARRAY_SIZE(ah_list); i++) {
if (write_desc(proto, fd, ah_list[i], 0, 0, 0))
return -1;
}
break;
case IPPROTO_COMP:
for (i = 0; i < ARRAY_SIZE(comp_list); i++) {
if (write_desc(proto, fd, 0, 0, comp_list[i], 0))
return -1;
}
break;
case IPPROTO_ESP:
for (i = 0; i < ARRAY_SIZE(ah_list); i++) {
int j;
for (j = 0; j < ARRAY_SIZE(e_list); j++) {
if (write_desc(proto, fd, ah_list[i],
e_list[j], 0, 0))
return -1;
}
}
for (i = 0; i < ARRAY_SIZE(ae_list); i++) {
if (write_desc(proto, fd, 0, 0, 0, ae_list[i]))
return -1;
}
break;
default:
printk("BUG: Specified unknown proto %d", proto);
return -1;
}
return 0;
}
/*
* Some structures in xfrm uapi header differ in size between
* 64-bit and 32-bit ABI:
*
* 32-bit UABI | 64-bit UABI
* -------------------------------------|-------------------------------------
* sizeof(xfrm_usersa_info) = 220 | sizeof(xfrm_usersa_info) = 224
* sizeof(xfrm_userpolicy_info) = 164 | sizeof(xfrm_userpolicy_info) = 168
* sizeof(xfrm_userspi_info) = 228 | sizeof(xfrm_userspi_info) = 232
* sizeof(xfrm_user_acquire) = 276 | sizeof(xfrm_user_acquire) = 280
* sizeof(xfrm_user_expire) = 224 | sizeof(xfrm_user_expire) = 232
* sizeof(xfrm_user_polexpire) = 168 | sizeof(xfrm_user_polexpire) = 176
*
* Check the affected by the UABI difference structures.
* Also, check translation for xfrm_set_spdinfo: it has it's own attributes
* which needs to be correctly copied, but not translated.
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
*/
const unsigned int compat_plan = 5;
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
static int write_compat_struct_tests(int test_desc_fd)
{
struct xfrm_desc desc = {};
desc.type = ALLOCATE_SPI;
desc.proto = IPPROTO_AH;
strncpy(desc.a_algo, ah_list[0], ALGO_LEN - 1);
if (__write_desc(test_desc_fd, &desc))
return -1;
desc.type = MONITOR_ACQUIRE;
if (__write_desc(test_desc_fd, &desc))
return -1;
desc.type = EXPIRE_STATE;
if (__write_desc(test_desc_fd, &desc))
return -1;
desc.type = EXPIRE_POLICY;
if (__write_desc(test_desc_fd, &desc))
return -1;
desc.type = SPDINFO_ATTRS;
if (__write_desc(test_desc_fd, &desc))
return -1;
selftest/net/xfrm: Add test for ipsec tunnel It's an exhaustive testing for ipsec: covering all encryption/ authentication/compression algorithms. The tests are run in two network namespaces, connected by veth interfaces. To make exhaustive testing less time-consuming, the tests are run in parallel tasks, specified by parameter to the selftest. As the patches set adds support for xfrm in compatible tasks, there are tests to check structures that differ in size between 64-bit and 32-bit applications. The selftest doesn't use libnl so that it can be easily compiled as compatible application and don't require compatible .so. Here is a diagram of the selftest: --------------- | selftest | | (parent) | --------------- | | | (pipe) | ---------- / | | \ /------------- / \ -------------\ | /----- -----\ | ---------|----------|----------------|----------|--------- | --------- --------- --------- --------- | | | child | | child | NS A | child | | child | | | --------- --------- --------- --------- | -------|------------|----------------|-------------|------ veth0 veth1 veth2 vethN ---------|------------|----------------|-------------|---------- | ------------ ------------ ------------ ------------ | | | gr.child | | gr.child | NS B | gr.child | | gr.child | | | ------------ ------------ ------------ ------------ | ---------------------------------------------------------------- The parent sends the description of a test (xfrm parameters) to the child, the child and grand child setup a tunnel over veth interface and test it by sending udp packets. Cc: Shuah Khan <shuah@kernel.org> Cc: linux-kselftest@vger.kernel.org Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-09-21 22:36:57 +08:00
return 0;
}
static int write_test_plan(int test_desc_fd)
{
unsigned int i;
pid_t child;
child = fork();
if (child < 0) {
pr_err("fork()");
return -1;
}
if (child) {
if (close(test_desc_fd))
printk("close(): %m");
return 0;
}
if (write_compat_struct_tests(test_desc_fd))
exit(KSFT_FAIL);
for (i = 0; i < ARRAY_SIZE(proto_list); i++) {
if (write_proto_plan(test_desc_fd, proto_list[i]))
exit(KSFT_FAIL);
}
exit(KSFT_PASS);
}
static int children_cleanup(void)
{
unsigned ret = KSFT_PASS;
while (1) {
int status;
pid_t p = wait(&status);
if ((p < 0) && errno == ECHILD)
break;
if (p < 0) {
pr_err("wait()");
return KSFT_FAIL;
}
if (!WIFEXITED(status)) {
ret = KSFT_FAIL;
continue;
}
if (WEXITSTATUS(status) == KSFT_FAIL)
ret = KSFT_FAIL;
}
return ret;
}
typedef void (*print_res)(const char *, ...);
static int check_results(void)
{
struct test_result tr = {};
struct xfrm_desc *d = &tr.desc;
int ret = KSFT_PASS;
while (1) {
ssize_t received = read(results_fd[0], &tr, sizeof(tr));
print_res result;
if (received == 0) /* EOF */
break;
if (received != sizeof(tr)) {
pr_err("read() returned %zd", received);
return KSFT_FAIL;
}
switch (tr.res) {
case KSFT_PASS:
result = ksft_test_result_pass;
break;
case KSFT_FAIL:
default:
result = ksft_test_result_fail;
ret = KSFT_FAIL;
}
result(" %s: [%u, '%s', '%s', '%s', '%s', %u]\n",
desc_name[d->type], (unsigned int)d->proto, d->a_algo,
d->e_algo, d->c_algo, d->ae_algo, d->icv_len);
}
return ret;
}
int main(int argc, char **argv)
{
unsigned int nr_process = 1;
int route_sock = -1, ret = KSFT_SKIP;
int test_desc_fd[2];
uint32_t route_seq;
unsigned int i;
if (argc > 2)
exit_usage(argv);
if (argc > 1) {
char *endptr;
errno = 0;
nr_process = strtol(argv[1], &endptr, 10);
if ((errno == ERANGE && (nr_process == LONG_MAX || nr_process == LONG_MIN))
|| (errno != 0 && nr_process == 0)
|| (endptr == argv[1]) || (*endptr != '\0')) {
printk("Failed to parse [nr_process]");
exit_usage(argv);
}
if (nr_process > MAX_PROCESSES || !nr_process) {
printk("nr_process should be between [1; %u]",
MAX_PROCESSES);
exit_usage(argv);
}
}
srand(time(NULL));
page_size = sysconf(_SC_PAGESIZE);
if (page_size < 1)
ksft_exit_skip("sysconf(): %m\n");
if (pipe2(test_desc_fd, O_DIRECT) < 0)
ksft_exit_skip("pipe(): %m\n");
if (pipe2(results_fd, O_DIRECT) < 0)
ksft_exit_skip("pipe(): %m\n");
if (init_namespaces())
ksft_exit_skip("Failed to create namespaces\n");
if (netlink_sock(&route_sock, &route_seq, NETLINK_ROUTE))
ksft_exit_skip("Failed to open netlink route socket\n");
for (i = 0; i < nr_process; i++) {
char veth[VETH_LEN];
snprintf(veth, VETH_LEN, VETH_FMT, i);
if (veth_add(route_sock, route_seq++, veth, nsfd_childa, veth, nsfd_childb)) {
close(route_sock);
ksft_exit_fail_msg("Failed to create veth device");
}
if (start_child(i, veth, test_desc_fd)) {
close(route_sock);
ksft_exit_fail_msg("Child %u failed to start", i);
}
}
if (close(route_sock) || close(test_desc_fd[0]) || close(results_fd[1]))
ksft_exit_fail_msg("close(): %m");
ksft_set_plan(proto_plan + compat_plan);
if (write_test_plan(test_desc_fd[1]))
ksft_exit_fail_msg("Failed to write test plan to pipe");
ret = check_results();
if (children_cleanup() == KSFT_FAIL)
exit(KSFT_FAIL);
exit(ret);
}