linux/fs/bcachefs/fs-io.c

3757 lines
90 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#ifndef NO_BCACHEFS_FS
#include "bcachefs.h"
#include "alloc_foreground.h"
#include "bkey_buf.h"
#include "btree_update.h"
#include "buckets.h"
#include "clock.h"
#include "error.h"
#include "extents.h"
#include "extent_update.h"
#include "fs.h"
#include "fs-io.h"
#include "fsck.h"
#include "inode.h"
#include "journal.h"
#include "io.h"
#include "keylist.h"
#include "quota.h"
#include "reflink.h"
#include "trace.h"
#include <linux/aio.h>
#include <linux/backing-dev.h>
#include <linux/falloc.h>
#include <linux/migrate.h>
#include <linux/mmu_context.h>
#include <linux/pagevec.h>
#include <linux/rmap.h>
#include <linux/sched/signal.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/uio.h>
#include <linux/writeback.h>
#include <trace/events/writeback.h>
static inline loff_t folio_end_pos(struct folio *folio)
{
return folio_pos(folio) + folio_size(folio);
}
static inline size_t folio_sectors(struct folio *folio)
{
return PAGE_SECTORS << folio_order(folio);
}
static inline loff_t folio_sector(struct folio *folio)
{
return folio_pos(folio) >> 9;
}
static inline loff_t folio_end_sector(struct folio *folio)
{
return folio_end_pos(folio) >> 9;
}
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
struct nocow_flush {
struct closure *cl;
struct bch_dev *ca;
struct bio bio;
};
static void nocow_flush_endio(struct bio *_bio)
{
struct nocow_flush *bio = container_of(_bio, struct nocow_flush, bio);
closure_put(bio->cl);
percpu_ref_put(&bio->ca->io_ref);
bio_put(&bio->bio);
}
static void bch2_inode_flush_nocow_writes_async(struct bch_fs *c,
struct bch_inode_info *inode,
struct closure *cl)
{
struct nocow_flush *bio;
struct bch_dev *ca;
struct bch_devs_mask devs;
unsigned dev;
dev = find_first_bit(inode->ei_devs_need_flush.d, BCH_SB_MEMBERS_MAX);
if (dev == BCH_SB_MEMBERS_MAX)
return;
devs = inode->ei_devs_need_flush;
memset(&inode->ei_devs_need_flush, 0, sizeof(inode->ei_devs_need_flush));
for_each_set_bit(dev, devs.d, BCH_SB_MEMBERS_MAX) {
rcu_read_lock();
ca = rcu_dereference(c->devs[dev]);
if (ca && !percpu_ref_tryget(&ca->io_ref))
ca = NULL;
rcu_read_unlock();
if (!ca)
continue;
bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev, 0,
REQ_OP_FLUSH,
GFP_KERNEL,
&c->nocow_flush_bioset),
struct nocow_flush, bio);
bio->cl = cl;
bio->ca = ca;
bio->bio.bi_end_io = nocow_flush_endio;
closure_bio_submit(&bio->bio, cl);
}
}
static int bch2_inode_flush_nocow_writes(struct bch_fs *c,
struct bch_inode_info *inode)
{
struct closure cl;
closure_init_stack(&cl);
bch2_inode_flush_nocow_writes_async(c, inode, &cl);
closure_sync(&cl);
return 0;
}
static inline bool bio_full(struct bio *bio, unsigned len)
{
if (bio->bi_vcnt >= bio->bi_max_vecs)
return true;
if (bio->bi_iter.bi_size > UINT_MAX - len)
return true;
return false;
}
static inline struct address_space *faults_disabled_mapping(void)
{
return (void *) (((unsigned long) current->faults_disabled_mapping) & ~1UL);
}
static inline void set_fdm_dropped_locks(void)
{
current->faults_disabled_mapping =
(void *) (((unsigned long) current->faults_disabled_mapping)|1);
}
static inline bool fdm_dropped_locks(void)
{
return ((unsigned long) current->faults_disabled_mapping) & 1;
}
struct quota_res {
u64 sectors;
};
struct bch_writepage_io {
struct bch_inode_info *inode;
/* must be last: */
struct bch_write_op op;
};
struct dio_write {
struct kiocb *req;
struct address_space *mapping;
struct bch_inode_info *inode;
struct mm_struct *mm;
unsigned loop:1,
extending:1,
sync:1,
flush:1,
free_iov:1;
struct quota_res quota_res;
u64 written;
struct iov_iter iter;
struct iovec inline_vecs[2];
/* must be last: */
struct bch_write_op op;
};
struct dio_read {
struct closure cl;
struct kiocb *req;
long ret;
bool should_dirty;
struct bch_read_bio rbio;
};
/* pagecache_block must be held */
static noinline int write_invalidate_inode_pages_range(struct address_space *mapping,
loff_t start, loff_t end)
{
int ret;
/*
* XXX: the way this is currently implemented, we can spin if a process
* is continually redirtying a specific page
*/
do {
if (!mapping->nrpages)
return 0;
ret = filemap_write_and_wait_range(mapping, start, end);
if (ret)
break;
if (!mapping->nrpages)
return 0;
ret = invalidate_inode_pages2_range(mapping,
start >> PAGE_SHIFT,
end >> PAGE_SHIFT);
} while (ret == -EBUSY);
return ret;
}
/* quotas */
#ifdef CONFIG_BCACHEFS_QUOTA
static void __bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res)
{
BUG_ON(res->sectors > inode->ei_quota_reserved);
bch2_quota_acct(c, inode->ei_qid, Q_SPC,
-((s64) res->sectors), KEY_TYPE_QUOTA_PREALLOC);
inode->ei_quota_reserved -= res->sectors;
res->sectors = 0;
}
static void bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res)
{
if (res->sectors) {
mutex_lock(&inode->ei_quota_lock);
__bch2_quota_reservation_put(c, inode, res);
mutex_unlock(&inode->ei_quota_lock);
}
}
static int bch2_quota_reservation_add(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res,
u64 sectors,
bool check_enospc)
{
int ret;
mutex_lock(&inode->ei_quota_lock);
ret = bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors,
check_enospc ? KEY_TYPE_QUOTA_PREALLOC : KEY_TYPE_QUOTA_NOCHECK);
if (likely(!ret)) {
inode->ei_quota_reserved += sectors;
res->sectors += sectors;
}
mutex_unlock(&inode->ei_quota_lock);
return ret;
}
#else
static void __bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res) {}
static void bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res) {}
static int bch2_quota_reservation_add(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res,
unsigned sectors,
bool check_enospc)
{
return 0;
}
#endif
/* i_size updates: */
struct inode_new_size {
loff_t new_size;
u64 now;
unsigned fields;
};
static int inode_set_size(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct inode_new_size *s = p;
bi->bi_size = s->new_size;
if (s->fields & ATTR_ATIME)
bi->bi_atime = s->now;
if (s->fields & ATTR_MTIME)
bi->bi_mtime = s->now;
if (s->fields & ATTR_CTIME)
bi->bi_ctime = s->now;
return 0;
}
int __must_check bch2_write_inode_size(struct bch_fs *c,
struct bch_inode_info *inode,
loff_t new_size, unsigned fields)
{
struct inode_new_size s = {
.new_size = new_size,
.now = bch2_current_time(c),
.fields = fields,
};
return bch2_write_inode(c, inode, inode_set_size, &s, fields);
}
static void __i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode,
struct quota_res *quota_res, s64 sectors)
{
bch2_fs_inconsistent_on((s64) inode->v.i_blocks + sectors < 0, c,
"inode %lu i_blocks underflow: %llu + %lli < 0 (ondisk %lli)",
inode->v.i_ino, (u64) inode->v.i_blocks, sectors,
inode->ei_inode.bi_sectors);
inode->v.i_blocks += sectors;
#ifdef CONFIG_BCACHEFS_QUOTA
if (quota_res && sectors > 0) {
BUG_ON(sectors > quota_res->sectors);
BUG_ON(sectors > inode->ei_quota_reserved);
quota_res->sectors -= sectors;
inode->ei_quota_reserved -= sectors;
} else {
bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, KEY_TYPE_QUOTA_WARN);
}
#endif
}
static void i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode,
struct quota_res *quota_res, s64 sectors)
{
if (sectors) {
mutex_lock(&inode->ei_quota_lock);
__i_sectors_acct(c, inode, quota_res, sectors);
mutex_unlock(&inode->ei_quota_lock);
}
}
/* page state: */
/* stored in page->private: */
struct bch_folio_sector {
/* Uncompressed, fully allocated replicas (or on disk reservation): */
unsigned nr_replicas:4;
/* Owns PAGE_SECTORS * replicas_reserved sized in memory reservation: */
unsigned replicas_reserved:4;
/* i_sectors: */
enum {
SECTOR_UNALLOCATED,
SECTOR_RESERVED,
SECTOR_DIRTY,
SECTOR_DIRTY_RESERVED,
SECTOR_ALLOCATED,
} state:8;
};
struct bch_folio {
spinlock_t lock;
atomic_t write_count;
/*
* Is the sector state up to date with the btree?
* (Not the data itself)
*/
bool uptodate;
struct bch_folio_sector s[PAGE_SECTORS];
};
static inline struct bch_folio *__bch2_folio(struct folio *folio)
{
return folio_has_private(folio)
? (struct bch_folio *) folio_get_private(folio)
: NULL;
}
static inline struct bch_folio *bch2_folio(struct folio *folio)
{
EBUG_ON(!folio_test_locked(folio));
return __bch2_folio(folio);
}
/* for newly allocated folios: */
static void __bch2_folio_release(struct folio *folio)
{
kfree(folio_detach_private(folio));
}
static void bch2_folio_release(struct folio *folio)
{
EBUG_ON(!folio_test_locked(folio));
__bch2_folio_release(folio);
}
/* for newly allocated folios: */
static struct bch_folio *__bch2_folio_create(struct folio *folio, gfp_t gfp)
{
struct bch_folio *s;
s = kzalloc(sizeof(*s), GFP_NOFS|gfp);
if (!s)
return NULL;
spin_lock_init(&s->lock);
folio_attach_private(folio, s);
return s;
}
static struct bch_folio *bch2_folio_create(struct folio *folio, gfp_t gfp)
{
return bch2_folio(folio) ?: __bch2_folio_create(folio, gfp);
}
static unsigned bkey_to_sector_state(struct bkey_s_c k)
{
if (bkey_extent_is_reservation(k))
return SECTOR_RESERVED;
if (bkey_extent_is_allocation(k.k))
return SECTOR_ALLOCATED;
return SECTOR_UNALLOCATED;
}
static void __bch2_folio_set(struct folio *folio,
unsigned pg_offset, unsigned pg_len,
unsigned nr_ptrs, unsigned state)
{
struct bch_folio *s = bch2_folio_create(folio, __GFP_NOFAIL);
unsigned i;
BUG_ON(pg_offset >= PAGE_SECTORS);
BUG_ON(pg_offset + pg_len > PAGE_SECTORS);
spin_lock(&s->lock);
for (i = pg_offset; i < pg_offset + pg_len; i++) {
s->s[i].nr_replicas = nr_ptrs;
s->s[i].state = state;
}
if (i == PAGE_SECTORS)
s->uptodate = true;
spin_unlock(&s->lock);
}
/*
* Initialize bch_folio state (allocated/unallocated, nr_replicas) from the
* extents btree:
*/
static int bch2_folio_set(struct bch_fs *c, subvol_inum inum,
struct folio **folios, unsigned nr_folios)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
u64 offset = folio_sector(folios[0]);
unsigned folio_idx = 0;
u32 snapshot;
int ret;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot);
if (ret)
goto err;
for_each_btree_key_norestart(&trans, iter, BTREE_ID_extents,
SPOS(inum.inum, offset, snapshot),
BTREE_ITER_SLOTS, k, ret) {
unsigned nr_ptrs = bch2_bkey_nr_ptrs_fully_allocated(k);
unsigned state = bkey_to_sector_state(k);
while (folio_idx < nr_folios) {
struct folio *folio = folios[folio_idx];
u64 folio_start = folio_sector(folio);
u64 folio_end = folio_end_sector(folio);
unsigned folio_offset = max(bkey_start_offset(k.k), folio_start) - folio_start;
unsigned folio_len = min(k.k->p.offset, folio_end) - folio_offset - folio_start;
BUG_ON(k.k->p.offset < folio_start);
BUG_ON(bkey_start_offset(k.k) > folio_end);
if (!bch2_folio_create(folio, __GFP_NOFAIL)->uptodate)
__bch2_folio_set(folio, folio_offset, folio_len, nr_ptrs, state);
if (k.k->p.offset < folio_end)
break;
folio_idx++;
}
if (folio_idx == nr_folios)
break;
}
offset = iter.pos.offset;
bch2_trans_iter_exit(&trans, &iter);
err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_exit(&trans);
return ret;
}
static void bch2_bio_page_state_set(struct bio *bio, struct bkey_s_c k)
{
struct bvec_iter iter;
struct bio_vec bv;
unsigned nr_ptrs = k.k->type == KEY_TYPE_reflink_v
? 0 : bch2_bkey_nr_ptrs_fully_allocated(k);
unsigned state = bkey_to_sector_state(k);
bio_for_each_segment(bv, bio, iter)
__bch2_folio_set(page_folio(bv.bv_page), bv.bv_offset >> 9,
bv.bv_len >> 9, nr_ptrs, state);
}
static void mark_pagecache_unallocated(struct bch_inode_info *inode,
u64 start, u64 end)
{
pgoff_t index = start >> PAGE_SECTORS_SHIFT;
pgoff_t end_index = (end - 1) >> PAGE_SECTORS_SHIFT;
struct folio_batch fbatch;
unsigned i, j;
if (end <= start)
return;
folio_batch_init(&fbatch);
while (filemap_get_folios(inode->v.i_mapping,
&index, end_index, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
u64 folio_start = folio->index << PAGE_SECTORS_SHIFT;
u64 folio_end = (folio->index + 1) << PAGE_SECTORS_SHIFT;
unsigned folio_offset = max(start, folio_start) - folio_start;
unsigned folio_len = min(end, folio_end) - folio_offset - folio_start;
struct bch_folio *s;
BUG_ON(end <= folio_start);
BUG_ON(folio_offset >= PAGE_SECTORS);
BUG_ON(folio_offset + folio_len > PAGE_SECTORS);
folio_lock(folio);
s = bch2_folio(folio);
if (s) {
spin_lock(&s->lock);
for (j = folio_offset; j < folio_offset + folio_len; j++)
s->s[j].nr_replicas = 0;
spin_unlock(&s->lock);
}
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
}
}
static void mark_pagecache_reserved(struct bch_inode_info *inode,
u64 start, u64 end)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
pgoff_t index = start >> PAGE_SECTORS_SHIFT;
pgoff_t end_index = (end - 1) >> PAGE_SECTORS_SHIFT;
struct folio_batch fbatch;
s64 i_sectors_delta = 0;
unsigned i, j;
if (end <= start)
return;
folio_batch_init(&fbatch);
while (filemap_get_folios(inode->v.i_mapping,
&index, end_index, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
u64 folio_start = folio->index << PAGE_SECTORS_SHIFT;
u64 folio_end = (folio->index + 1) << PAGE_SECTORS_SHIFT;
unsigned folio_offset = max(start, folio_start) - folio_start;
unsigned folio_len = min(end, folio_end) - folio_offset - folio_start;
struct bch_folio *s;
BUG_ON(end <= folio_start);
BUG_ON(folio_offset >= PAGE_SECTORS);
BUG_ON(folio_offset + folio_len > PAGE_SECTORS);
folio_lock(folio);
s = bch2_folio(folio);
if (s) {
spin_lock(&s->lock);
for (j = folio_offset; j < folio_offset + folio_len; j++)
switch (s->s[j].state) {
case SECTOR_UNALLOCATED:
s->s[j].state = SECTOR_RESERVED;
break;
case SECTOR_DIRTY:
s->s[j].state = SECTOR_DIRTY_RESERVED;
i_sectors_delta--;
break;
default:
break;
}
spin_unlock(&s->lock);
}
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
}
i_sectors_acct(c, inode, NULL, i_sectors_delta);
}
static inline unsigned inode_nr_replicas(struct bch_fs *c, struct bch_inode_info *inode)
{
/* XXX: this should not be open coded */
return inode->ei_inode.bi_data_replicas
? inode->ei_inode.bi_data_replicas - 1
: c->opts.data_replicas;
}
static inline unsigned sectors_to_reserve(struct bch_folio_sector *s,
unsigned nr_replicas)
{
return max(0, (int) nr_replicas -
s->nr_replicas -
s->replicas_reserved);
}
static int bch2_get_folio_disk_reservation(struct bch_fs *c,
struct bch_inode_info *inode,
struct folio *folio, bool check_enospc)
{
struct bch_folio *s = bch2_folio_create(folio, 0);
unsigned nr_replicas = inode_nr_replicas(c, inode);
struct disk_reservation disk_res = { 0 };
unsigned i, disk_res_sectors = 0;
int ret;
if (!s)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(s->s); i++)
disk_res_sectors += sectors_to_reserve(&s->s[i], nr_replicas);
if (!disk_res_sectors)
return 0;
ret = bch2_disk_reservation_get(c, &disk_res,
disk_res_sectors, 1,
!check_enospc
? BCH_DISK_RESERVATION_NOFAIL
: 0);
if (unlikely(ret))
return ret;
for (i = 0; i < ARRAY_SIZE(s->s); i++)
s->s[i].replicas_reserved +=
sectors_to_reserve(&s->s[i], nr_replicas);
return 0;
}
struct bch2_folio_reservation {
struct disk_reservation disk;
struct quota_res quota;
};
static void bch2_folio_reservation_init(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch2_folio_reservation *res)
{
memset(res, 0, sizeof(*res));
res->disk.nr_replicas = inode_nr_replicas(c, inode);
}
static void bch2_folio_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch2_folio_reservation *res)
{
bch2_disk_reservation_put(c, &res->disk);
bch2_quota_reservation_put(c, inode, &res->quota);
}
static int bch2_folio_reservation_get(struct bch_fs *c,
struct bch_inode_info *inode,
struct folio *folio,
struct bch2_folio_reservation *res,
unsigned offset, unsigned len)
{
struct bch_folio *s = bch2_folio_create(folio, 0);
unsigned i, disk_sectors = 0, quota_sectors = 0;
int ret;
if (!s)
return -ENOMEM;
BUG_ON(!s->uptodate);
for (i = round_down(offset, block_bytes(c)) >> 9;
i < round_up(offset + len, block_bytes(c)) >> 9;
i++) {
disk_sectors += sectors_to_reserve(&s->s[i],
res->disk.nr_replicas);
quota_sectors += s->s[i].state == SECTOR_UNALLOCATED;
}
if (disk_sectors) {
ret = bch2_disk_reservation_add(c, &res->disk, disk_sectors, 0);
if (unlikely(ret))
return ret;
}
if (quota_sectors) {
ret = bch2_quota_reservation_add(c, inode, &res->quota,
quota_sectors, true);
if (unlikely(ret)) {
struct disk_reservation tmp = {
.sectors = disk_sectors
};
bch2_disk_reservation_put(c, &tmp);
res->disk.sectors -= disk_sectors;
return ret;
}
}
return 0;
}
static void bch2_clear_folio_bits(struct folio *folio)
{
struct bch_inode_info *inode = to_bch_ei(folio->mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_folio *s = bch2_folio(folio);
struct disk_reservation disk_res = { 0 };
int i, dirty_sectors = 0;
if (!s)
return;
EBUG_ON(!folio_test_locked(folio));
EBUG_ON(folio_test_writeback(folio));
for (i = 0; i < ARRAY_SIZE(s->s); i++) {
disk_res.sectors += s->s[i].replicas_reserved;
s->s[i].replicas_reserved = 0;
switch (s->s[i].state) {
case SECTOR_DIRTY:
s->s[i].state = SECTOR_UNALLOCATED;
--dirty_sectors;
break;
case SECTOR_DIRTY_RESERVED:
s->s[i].state = SECTOR_RESERVED;
break;
default:
break;
}
}
bch2_disk_reservation_put(c, &disk_res);
i_sectors_acct(c, inode, NULL, dirty_sectors);
bch2_folio_release(folio);
}
static void bch2_set_folio_dirty(struct bch_fs *c,
struct bch_inode_info *inode,
struct folio *folio,
struct bch2_folio_reservation *res,
unsigned offset, unsigned len)
{
struct bch_folio *s = bch2_folio(folio);
unsigned i, dirty_sectors = 0;
WARN_ON((u64) folio_pos(folio) + offset + len >
round_up((u64) i_size_read(&inode->v), block_bytes(c)));
spin_lock(&s->lock);
for (i = round_down(offset, block_bytes(c)) >> 9;
i < round_up(offset + len, block_bytes(c)) >> 9;
i++) {
unsigned sectors = sectors_to_reserve(&s->s[i],
res->disk.nr_replicas);
/*
* This can happen if we race with the error path in
* bch2_writepage_io_done():
*/
sectors = min_t(unsigned, sectors, res->disk.sectors);
s->s[i].replicas_reserved += sectors;
res->disk.sectors -= sectors;
switch (s->s[i].state) {
case SECTOR_UNALLOCATED:
s->s[i].state = SECTOR_DIRTY;
dirty_sectors++;
break;
case SECTOR_RESERVED:
s->s[i].state = SECTOR_DIRTY_RESERVED;
break;
default:
break;
}
}
spin_unlock(&s->lock);
i_sectors_acct(c, inode, &res->quota, dirty_sectors);
if (!folio_test_dirty(folio))
filemap_dirty_folio(inode->v.i_mapping, folio);
}
vm_fault_t bch2_page_fault(struct vm_fault *vmf)
{
struct file *file = vmf->vma->vm_file;
struct address_space *mapping = file->f_mapping;
struct address_space *fdm = faults_disabled_mapping();
struct bch_inode_info *inode = file_bch_inode(file);
int ret;
if (fdm == mapping)
return VM_FAULT_SIGBUS;
/* Lock ordering: */
if (fdm > mapping) {
struct bch_inode_info *fdm_host = to_bch_ei(fdm->host);
if (bch2_pagecache_add_tryget(inode))
goto got_lock;
bch2_pagecache_block_put(fdm_host);
bch2_pagecache_add_get(inode);
bch2_pagecache_add_put(inode);
bch2_pagecache_block_get(fdm_host);
/* Signal that lock has been dropped: */
set_fdm_dropped_locks();
return VM_FAULT_SIGBUS;
}
bch2_pagecache_add_get(inode);
got_lock:
ret = filemap_fault(vmf);
bch2_pagecache_add_put(inode);
return ret;
}
vm_fault_t bch2_page_mkwrite(struct vm_fault *vmf)
{
struct folio *folio = page_folio(vmf->page);
struct file *file = vmf->vma->vm_file;
struct bch_inode_info *inode = file_bch_inode(file);
struct address_space *mapping = file->f_mapping;
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch2_folio_reservation res;
unsigned len;
loff_t isize;
int ret;
bch2_folio_reservation_init(c, inode, &res);
sb_start_pagefault(inode->v.i_sb);
file_update_time(file);
/*
* Not strictly necessary, but helps avoid dio writes livelocking in
* write_invalidate_inode_pages_range() - can drop this if/when we get
* a write_invalidate_inode_pages_range() that works without dropping
* page lock before invalidating page
*/
bch2_pagecache_add_get(inode);
folio_lock(folio);
isize = i_size_read(&inode->v);
if (folio->mapping != mapping || folio_pos(folio) >= isize) {
folio_unlock(folio);
ret = VM_FAULT_NOPAGE;
goto out;
}
len = min_t(loff_t, PAGE_SIZE, isize - folio_pos(folio));
if (!bch2_folio_create(folio, __GFP_NOFAIL)->uptodate) {
if (bch2_folio_set(c, inode_inum(inode), &folio, 1)) {
folio_unlock(folio);
ret = VM_FAULT_SIGBUS;
goto out;
}
}
if (bch2_folio_reservation_get(c, inode, folio, &res, 0, len)) {
folio_unlock(folio);
ret = VM_FAULT_SIGBUS;
goto out;
}
bch2_set_folio_dirty(c, inode, folio, &res, 0, len);
bch2_folio_reservation_put(c, inode, &res);
folio_wait_stable(folio);
ret = VM_FAULT_LOCKED;
out:
bch2_pagecache_add_put(inode);
sb_end_pagefault(inode->v.i_sb);
return ret;
}
void bch2_invalidate_folio(struct folio *folio, size_t offset, size_t length)
{
if (offset || length < folio_size(folio))
return;
bch2_clear_folio_bits(folio);
}
bool bch2_release_folio(struct folio *folio, gfp_t gfp_mask)
{
if (folio_test_dirty(folio) || folio_test_writeback(folio))
return false;
bch2_clear_folio_bits(folio);
return true;
}
/* readpage(s): */
static void bch2_readpages_end_io(struct bio *bio)
{
struct folio_iter fi;
bio_for_each_folio_all(fi, bio) {
if (!bio->bi_status) {
folio_mark_uptodate(fi.folio);
} else {
folio_clear_uptodate(fi.folio);
folio_set_error(fi.folio);
}
folio_unlock(fi.folio);
}
bio_put(bio);
}
struct readpages_iter {
struct address_space *mapping;
struct page **pages;
unsigned nr_pages;
unsigned idx;
pgoff_t offset;
};
static int readpages_iter_init(struct readpages_iter *iter,
struct readahead_control *ractl)
{
unsigned i, nr_pages = readahead_count(ractl);
memset(iter, 0, sizeof(*iter));
iter->mapping = ractl->mapping;
iter->offset = readahead_index(ractl);
iter->nr_pages = nr_pages;
iter->pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS);
if (!iter->pages)
return -ENOMEM;
nr_pages = __readahead_batch(ractl, iter->pages, nr_pages);
for (i = 0; i < nr_pages; i++) {
__bch2_folio_create(page_folio(iter->pages[i]), __GFP_NOFAIL);
put_page(iter->pages[i]);
}
return 0;
}
static inline struct folio *readpage_iter_next(struct readpages_iter *iter)
{
if (iter->idx >= iter->nr_pages)
return NULL;
EBUG_ON(iter->pages[iter->idx]->index != iter->offset + iter->idx);
return page_folio(iter->pages[iter->idx]);
}
static bool extent_partial_reads_expensive(struct bkey_s_c k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
struct bch_extent_crc_unpacked crc;
const union bch_extent_entry *i;
bkey_for_each_crc(k.k, ptrs, crc, i)
if (crc.csum_type || crc.compression_type)
return true;
return false;
}
static void readpage_bio_extend(struct readpages_iter *iter,
struct bio *bio,
unsigned sectors_this_extent,
bool get_more)
{
while (bio_sectors(bio) < sectors_this_extent &&
bio->bi_vcnt < bio->bi_max_vecs) {
pgoff_t folio_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT;
struct folio *folio = readpage_iter_next(iter);
int ret;
if (folio) {
if (iter->offset + iter->idx != folio_offset)
break;
iter->idx++;
} else {
if (!get_more)
break;
folio = xa_load(&iter->mapping->i_pages, folio_offset);
if (folio && !xa_is_value(folio))
break;
folio = filemap_alloc_folio(readahead_gfp_mask(iter->mapping), 0);
if (!folio)
break;
if (!__bch2_folio_create(folio, 0)) {
folio_put(folio);
break;
}
ret = filemap_add_folio(iter->mapping, folio, folio_offset, GFP_NOFS);
if (ret) {
__bch2_folio_release(folio);
folio_put(folio);
break;
}
folio_put(folio);
}
BUG_ON(!bio_add_folio(bio, folio, folio_size(folio), 0));
}
}
static void bchfs_read(struct btree_trans *trans,
struct bch_read_bio *rbio,
subvol_inum inum,
struct readpages_iter *readpages_iter)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct bkey_buf sk;
int flags = BCH_READ_RETRY_IF_STALE|
BCH_READ_MAY_PROMOTE;
u32 snapshot;
int ret = 0;
rbio->c = c;
rbio->start_time = local_clock();
rbio->subvol = inum.subvol;
bch2_bkey_buf_init(&sk);
retry:
bch2_trans_begin(trans);
iter = (struct btree_iter) { NULL };
ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot);
if (ret)
goto err;
bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
SPOS(inum.inum, rbio->bio.bi_iter.bi_sector, snapshot),
BTREE_ITER_SLOTS);
while (1) {
struct bkey_s_c k;
unsigned bytes, sectors, offset_into_extent;
enum btree_id data_btree = BTREE_ID_extents;
/*
* read_extent -> io_time_reset may cause a transaction restart
* without returning an error, we need to check for that here:
*/
ret = bch2_trans_relock(trans);
if (ret)
break;
bch2_btree_iter_set_pos(&iter,
POS(inum.inum, rbio->bio.bi_iter.bi_sector));
k = bch2_btree_iter_peek_slot(&iter);
ret = bkey_err(k);
if (ret)
break;
offset_into_extent = iter.pos.offset -
bkey_start_offset(k.k);
sectors = k.k->size - offset_into_extent;
bch2_bkey_buf_reassemble(&sk, c, k);
ret = bch2_read_indirect_extent(trans, &data_btree,
&offset_into_extent, &sk);
if (ret)
break;
k = bkey_i_to_s_c(sk.k);
sectors = min(sectors, k.k->size - offset_into_extent);
if (readpages_iter)
readpage_bio_extend(readpages_iter, &rbio->bio, sectors,
extent_partial_reads_expensive(k));
bytes = min(sectors, bio_sectors(&rbio->bio)) << 9;
swap(rbio->bio.bi_iter.bi_size, bytes);
if (rbio->bio.bi_iter.bi_size == bytes)
flags |= BCH_READ_LAST_FRAGMENT;
bch2_bio_page_state_set(&rbio->bio, k);
bch2_read_extent(trans, rbio, iter.pos,
data_btree, k, offset_into_extent, flags);
if (flags & BCH_READ_LAST_FRAGMENT)
break;
swap(rbio->bio.bi_iter.bi_size, bytes);
bio_advance(&rbio->bio, bytes);
ret = btree_trans_too_many_iters(trans);
if (ret)
break;
}
err:
bch2_trans_iter_exit(trans, &iter);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
if (ret) {
bch_err_inum_offset_ratelimited(c,
iter.pos.inode,
iter.pos.offset << 9,
"read error %i from btree lookup", ret);
rbio->bio.bi_status = BLK_STS_IOERR;
bio_endio(&rbio->bio);
}
bch2_bkey_buf_exit(&sk, c);
}
void bch2_readahead(struct readahead_control *ractl)
{
struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_io_opts opts;
struct btree_trans trans;
struct folio *folio;
struct readpages_iter readpages_iter;
int ret;
bch2_inode_opts_get(&opts, c, &inode->ei_inode);
ret = readpages_iter_init(&readpages_iter, ractl);
BUG_ON(ret);
bch2_trans_init(&trans, c, 0, 0);
bch2_pagecache_add_get(inode);
while ((folio = readpage_iter_next(&readpages_iter))) {
pgoff_t index = readpages_iter.offset + readpages_iter.idx;
unsigned n = min_t(unsigned,
readpages_iter.nr_pages -
readpages_iter.idx,
BIO_MAX_VECS);
struct bch_read_bio *rbio =
rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ,
GFP_NOFS, &c->bio_read),
opts);
readpages_iter.idx++;
rbio->bio.bi_iter.bi_sector = (sector_t) index << PAGE_SECTORS_SHIFT;
rbio->bio.bi_end_io = bch2_readpages_end_io;
BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
bchfs_read(&trans, rbio, inode_inum(inode),
&readpages_iter);
}
bch2_pagecache_add_put(inode);
bch2_trans_exit(&trans);
kfree(readpages_iter.pages);
}
static void __bchfs_readfolio(struct bch_fs *c, struct bch_read_bio *rbio,
subvol_inum inum, struct folio *folio)
{
struct btree_trans trans;
bch2_folio_create(folio, __GFP_NOFAIL);
rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC;
rbio->bio.bi_iter.bi_sector = folio_sector(folio);
BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
bch2_trans_init(&trans, c, 0, 0);
bchfs_read(&trans, rbio, inum, NULL);
bch2_trans_exit(&trans);
}
static void bch2_read_single_folio_end_io(struct bio *bio)
{
complete(bio->bi_private);
}
static int bch2_read_single_folio(struct folio *folio,
struct address_space *mapping)
{
struct bch_inode_info *inode = to_bch_ei(mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_read_bio *rbio;
struct bch_io_opts opts;
int ret;
DECLARE_COMPLETION_ONSTACK(done);
bch2_inode_opts_get(&opts, c, &inode->ei_inode);
rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, &c->bio_read),
opts);
rbio->bio.bi_private = &done;
rbio->bio.bi_end_io = bch2_read_single_folio_end_io;
__bchfs_readfolio(c, rbio, inode_inum(inode), folio);
wait_for_completion(&done);
ret = blk_status_to_errno(rbio->bio.bi_status);
bio_put(&rbio->bio);
if (ret < 0)
return ret;
folio_mark_uptodate(folio);
return 0;
}
int bch2_read_folio(struct file *file, struct folio *folio)
{
int ret;
ret = bch2_read_single_folio(folio, folio->mapping);
folio_unlock(folio);
return bch2_err_class(ret);
}
/* writepages: */
struct bch_writepage_state {
struct bch_writepage_io *io;
struct bch_io_opts opts;
};
static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c,
struct bch_inode_info *inode)
{
struct bch_writepage_state ret = { 0 };
bch2_inode_opts_get(&ret.opts, c, &inode->ei_inode);
return ret;
}
static void bch2_writepage_io_done(struct bch_write_op *op)
{
struct bch_writepage_io *io =
container_of(op, struct bch_writepage_io, op);
struct bch_fs *c = io->op.c;
struct bio *bio = &io->op.wbio.bio;
struct folio_iter fi;
unsigned i;
if (io->op.error) {
set_bit(EI_INODE_ERROR, &io->inode->ei_flags);
bio_for_each_folio_all(fi, bio) {
struct bch_folio *s;
folio_set_error(fi.folio);
mapping_set_error(fi.folio->mapping, -EIO);
s = __bch2_folio(fi.folio);
spin_lock(&s->lock);
for (i = 0; i < folio_sectors(fi.folio); i++)
s->s[i].nr_replicas = 0;
spin_unlock(&s->lock);
}
}
if (io->op.flags & BCH_WRITE_WROTE_DATA_INLINE) {
bio_for_each_folio_all(fi, bio) {
struct bch_folio *s;
s = __bch2_folio(fi.folio);
spin_lock(&s->lock);
for (i = 0; i < folio_sectors(fi.folio); i++)
s->s[i].nr_replicas = 0;
spin_unlock(&s->lock);
}
}
/*
* racing with fallocate can cause us to add fewer sectors than
* expected - but we shouldn't add more sectors than expected:
*/
WARN_ON_ONCE(io->op.i_sectors_delta > 0);
/*
* (error (due to going RO) halfway through a page can screw that up
* slightly)
* XXX wtf?
BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS);
*/
/*
* PageWriteback is effectively our ref on the inode - fixup i_blocks
* before calling end_page_writeback:
*/
i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta);
bio_for_each_folio_all(fi, bio) {
struct bch_folio *s = __bch2_folio(fi.folio);
if (atomic_dec_and_test(&s->write_count))
folio_end_writeback(fi.folio);
}
bio_put(&io->op.wbio.bio);
}
static void bch2_writepage_do_io(struct bch_writepage_state *w)
{
struct bch_writepage_io *io = w->io;
w->io = NULL;
closure_call(&io->op.cl, bch2_write, NULL, NULL);
}
/*
* Get a bch_writepage_io and add @page to it - appending to an existing one if
* possible, else allocating a new one:
*/
static void bch2_writepage_io_alloc(struct bch_fs *c,
struct writeback_control *wbc,
struct bch_writepage_state *w,
struct bch_inode_info *inode,
u64 sector,
unsigned nr_replicas)
{
struct bch_write_op *op;
w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS,
REQ_OP_WRITE,
GFP_NOFS,
&c->writepage_bioset),
struct bch_writepage_io, op.wbio.bio);
w->io->inode = inode;
op = &w->io->op;
bch2_write_op_init(op, c, w->opts);
op->target = w->opts.foreground_target;
op->nr_replicas = nr_replicas;
op->res.nr_replicas = nr_replicas;
op->write_point = writepoint_hashed(inode->ei_last_dirtied);
op->subvol = inode->ei_subvol;
op->pos = POS(inode->v.i_ino, sector);
op->end_io = bch2_writepage_io_done;
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
op->devs_need_flush = &inode->ei_devs_need_flush;
op->wbio.bio.bi_iter.bi_sector = sector;
op->wbio.bio.bi_opf = wbc_to_write_flags(wbc);
}
static int __bch2_writepage(struct folio *folio,
struct writeback_control *wbc,
void *data)
{
struct bch_inode_info *inode = to_bch_ei(folio->mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_writepage_state *w = data;
struct bch_folio *s, orig;
unsigned i, offset, f_sectors, nr_replicas_this_write = U32_MAX;
loff_t i_size = i_size_read(&inode->v);
pgoff_t end_index = i_size >> PAGE_SHIFT;
int ret;
EBUG_ON(!folio_test_uptodate(folio));
/* Is the folio fully inside i_size? */
if (folio->index < end_index)
goto do_io;
/* Is the folio fully outside i_size? (truncate in progress) */
offset = i_size & (PAGE_SIZE - 1);
if (folio->index > end_index || !offset) {
folio_unlock(folio);
return 0;
}
/*
* The folio straddles i_size. It must be zeroed out on each and every
* writepage invocation because it may be mmapped. "A file is mapped
* in multiples of the folio size. For a file that is not a multiple of
* the folio size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
folio_zero_segment(folio, offset, folio_size(folio));
do_io:
f_sectors = folio_sectors(folio);
s = bch2_folio_create(folio, __GFP_NOFAIL);
/*
* Things get really hairy with errors during writeback:
*/
ret = bch2_get_folio_disk_reservation(c, inode, folio, false);
BUG_ON(ret);
/* Before unlocking the page, get copy of reservations: */
spin_lock(&s->lock);
orig = *s;
spin_unlock(&s->lock);
for (i = 0; i < f_sectors; i++) {
if (s->s[i].state < SECTOR_DIRTY)
continue;
nr_replicas_this_write =
min_t(unsigned, nr_replicas_this_write,
s->s[i].nr_replicas +
s->s[i].replicas_reserved);
}
for (i = 0; i < f_sectors; i++) {
if (s->s[i].state < SECTOR_DIRTY)
continue;
s->s[i].nr_replicas = w->opts.compression
? 0 : nr_replicas_this_write;
s->s[i].replicas_reserved = 0;
s->s[i].state = SECTOR_ALLOCATED;
}
BUG_ON(atomic_read(&s->write_count));
atomic_set(&s->write_count, 1);
BUG_ON(folio_test_writeback(folio));
folio_start_writeback(folio);
folio_unlock(folio);
offset = 0;
while (1) {
unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0;
u64 sector;
while (offset < f_sectors &&
orig.s[offset].state < SECTOR_DIRTY)
offset++;
if (offset == f_sectors)
break;
while (offset + sectors < f_sectors &&
orig.s[offset + sectors].state >= SECTOR_DIRTY) {
reserved_sectors += orig.s[offset + sectors].replicas_reserved;
dirty_sectors += orig.s[offset + sectors].state == SECTOR_DIRTY;
sectors++;
}
BUG_ON(!sectors);
sector = folio_sector(folio) + offset;
if (w->io &&
(w->io->op.res.nr_replicas != nr_replicas_this_write ||
bio_full(&w->io->op.wbio.bio, PAGE_SIZE) ||
w->io->op.wbio.bio.bi_iter.bi_size + (sectors << 9) >=
(BIO_MAX_VECS * PAGE_SIZE) ||
bio_end_sector(&w->io->op.wbio.bio) != sector))
bch2_writepage_do_io(w);
if (!w->io)
bch2_writepage_io_alloc(c, wbc, w, inode, sector,
nr_replicas_this_write);
atomic_inc(&s->write_count);
BUG_ON(inode != w->io->inode);
BUG_ON(!bio_add_folio(&w->io->op.wbio.bio, folio,
sectors << 9, offset << 9));
/* Check for writing past i_size: */
WARN_ONCE((bio_end_sector(&w->io->op.wbio.bio) << 9) >
round_up(i_size, block_bytes(c)) &&
!test_bit(BCH_FS_EMERGENCY_RO, &c->flags),
"writing past i_size: %llu > %llu (unrounded %llu)\n",
bio_end_sector(&w->io->op.wbio.bio) << 9,
round_up(i_size, block_bytes(c)),
i_size);
w->io->op.res.sectors += reserved_sectors;
w->io->op.i_sectors_delta -= dirty_sectors;
w->io->op.new_i_size = i_size;
offset += sectors;
}
if (atomic_dec_and_test(&s->write_count))
folio_end_writeback(folio);
return 0;
}
int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
struct bch_fs *c = mapping->host->i_sb->s_fs_info;
struct bch_writepage_state w =
bch_writepage_state_init(c, to_bch_ei(mapping->host));
struct blk_plug plug;
int ret;
blk_start_plug(&plug);
ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w);
if (w.io)
bch2_writepage_do_io(&w);
blk_finish_plug(&plug);
return bch2_err_class(ret);
}
/* buffered writes: */
int bch2_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len,
struct page **pagep, void **fsdata)
{
struct bch_inode_info *inode = to_bch_ei(mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch2_folio_reservation *res;
pgoff_t index = pos >> PAGE_SHIFT;
unsigned offset = pos & (PAGE_SIZE - 1);
struct folio *folio;
int ret = -ENOMEM;
res = kmalloc(sizeof(*res), GFP_KERNEL);
if (!res)
return -ENOMEM;
bch2_folio_reservation_init(c, inode, res);
*fsdata = res;
bch2_pagecache_add_get(inode);
folio = __filemap_get_folio(mapping, index,
FGP_LOCK|FGP_WRITE|FGP_CREAT|FGP_STABLE,
mapping_gfp_mask(mapping));
if (!folio)
goto err_unlock;
if (folio_test_uptodate(folio))
goto out;
/* If we're writing entire folio, don't need to read it in first: */
if (len == folio_size(folio))
goto out;
if (!offset && pos + len >= inode->v.i_size) {
folio_zero_segment(folio, len, folio_size(folio));
flush_dcache_folio(folio);
goto out;
}
if (index > inode->v.i_size >> PAGE_SHIFT) {
folio_zero_segments(folio, 0, offset, offset + len, folio_size(folio));
flush_dcache_folio(folio);
goto out;
}
readpage:
ret = bch2_read_single_folio(folio, mapping);
if (ret)
goto err;
out:
if (!bch2_folio_create(folio, __GFP_NOFAIL)->uptodate) {
ret = bch2_folio_set(c, inode_inum(inode), &folio, 1);
if (ret)
goto err;
}
ret = bch2_folio_reservation_get(c, inode, folio, res, offset, len);
if (ret) {
if (!folio_test_uptodate(folio)) {
/*
* If the folio hasn't been read in, we won't know if we
* actually need a reservation - we don't actually need
* to read here, we just need to check if the folio is
* fully backed by uncompressed data:
*/
goto readpage;
}
goto err;
}
*pagep = &folio->page;
return 0;
err:
folio_unlock(folio);
folio_put(folio);
*pagep = NULL;
err_unlock:
bch2_pagecache_add_put(inode);
kfree(res);
*fsdata = NULL;
return bch2_err_class(ret);
}
int bch2_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct bch_inode_info *inode = to_bch_ei(mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch2_folio_reservation *res = fsdata;
struct folio *folio = page_folio(page);
unsigned offset = pos & (PAGE_SIZE - 1);
lockdep_assert_held(&inode->v.i_rwsem);
if (unlikely(copied < len && !folio_test_uptodate(folio))) {
/*
* The folio needs to be read in, but that would destroy
* our partial write - simplest thing is to just force
* userspace to redo the write:
*/
folio_zero_range(folio, 0, folio_size(folio));
flush_dcache_folio(folio);
copied = 0;
}
spin_lock(&inode->v.i_lock);
if (pos + copied > inode->v.i_size)
i_size_write(&inode->v, pos + copied);
spin_unlock(&inode->v.i_lock);
if (copied) {
if (!folio_test_uptodate(folio))
folio_mark_uptodate(folio);
bch2_set_folio_dirty(c, inode, folio, res, offset, copied);
inode->ei_last_dirtied = (unsigned long) current;
}
folio_unlock(folio);
folio_put(folio);
bch2_pagecache_add_put(inode);
bch2_folio_reservation_put(c, inode, res);
kfree(res);
return copied;
}
#define WRITE_BATCH_PAGES 32
static int __bch2_buffered_write(struct bch_inode_info *inode,
struct address_space *mapping,
struct iov_iter *iter,
loff_t pos, unsigned len)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct folio *folios[WRITE_BATCH_PAGES];
struct bch2_folio_reservation res;
unsigned long index = pos >> PAGE_SHIFT;
unsigned offset = pos & (PAGE_SIZE - 1);
unsigned nr_folios = DIV_ROUND_UP(offset + len, PAGE_SIZE);
unsigned i, reserved = 0, set_dirty = 0;
unsigned copied = 0, nr_folios_copied = 0;
int ret = 0;
BUG_ON(!len);
BUG_ON(nr_folios > ARRAY_SIZE(folios));
bch2_folio_reservation_init(c, inode, &res);
for (i = 0; i < nr_folios; i++) {
folios[i] = __filemap_get_folio(mapping, index + i,
FGP_LOCK|FGP_WRITE|FGP_CREAT|FGP_STABLE,
mapping_gfp_mask(mapping));
if (!folios[i]) {
nr_folios = i;
if (!i) {
ret = -ENOMEM;
goto out;
}
len = min_t(unsigned, len,
nr_folios * PAGE_SIZE - offset);
break;
}
}
if (offset && !folio_test_uptodate(folios[0])) {
ret = bch2_read_single_folio(folios[0], mapping);
if (ret)
goto out;
}
if ((pos + len) & (PAGE_SIZE - 1) &&
!folio_test_uptodate(folios[nr_folios - 1])) {
if ((index + nr_folios - 1) << PAGE_SHIFT >= inode->v.i_size) {
folio_zero_range(folios[nr_folios - 1], 0,
folio_size(folios[nr_folios - 1]));
} else {
ret = bch2_read_single_folio(folios[nr_folios - 1], mapping);
if (ret)
goto out;
}
}
while (reserved < len) {
unsigned i = (offset + reserved) >> PAGE_SHIFT;
struct folio *folio = folios[i];
unsigned folio_offset = (offset + reserved) & (PAGE_SIZE - 1);
unsigned folio_len = min_t(unsigned, len - reserved,
PAGE_SIZE - folio_offset);
if (!bch2_folio_create(folio, __GFP_NOFAIL)->uptodate) {
ret = bch2_folio_set(c, inode_inum(inode),
folios + i, nr_folios - i);
if (ret)
goto out;
}
/*
* XXX: per POSIX and fstests generic/275, on -ENOSPC we're
* supposed to write as much as we have disk space for.
*
* On failure here we should still write out a partial page if
* we aren't completely out of disk space - we don't do that
* yet:
*/
ret = bch2_folio_reservation_get(c, inode, folio, &res,
folio_offset, folio_len);
if (unlikely(ret)) {
if (!reserved)
goto out;
break;
}
reserved += folio_len;
}
if (mapping_writably_mapped(mapping))
for (i = 0; i < nr_folios; i++)
flush_dcache_folio(folios[i]);
while (copied < reserved) {
struct folio *folio = folios[(offset + copied) >> PAGE_SHIFT];
unsigned folio_offset = (offset + copied) & (PAGE_SIZE - 1);
unsigned folio_len = min_t(unsigned, reserved - copied,
PAGE_SIZE - folio_offset);
unsigned folio_copied = copy_page_from_iter_atomic(&folio->page,
folio_offset, folio_len, iter);
if (!folio_copied)
break;
if (!folio_test_uptodate(folio) &&
folio_copied != PAGE_SIZE &&
pos + copied + folio_copied < inode->v.i_size) {
folio_zero_range(folio, 0, folio_size(folio));
break;
}
flush_dcache_folio(folio);
copied += folio_copied;
if (folio_copied != folio_len)
break;
}
if (!copied)
goto out;
spin_lock(&inode->v.i_lock);
if (pos + copied > inode->v.i_size)
i_size_write(&inode->v, pos + copied);
spin_unlock(&inode->v.i_lock);
while (set_dirty < copied) {
struct folio *folio = folios[(offset + set_dirty) >> PAGE_SHIFT];
unsigned folio_offset = (offset + set_dirty) & (PAGE_SIZE - 1);
unsigned folio_len = min_t(unsigned, copied - set_dirty,
PAGE_SIZE - folio_offset);
if (!folio_test_uptodate(folio))
folio_mark_uptodate(folio);
bch2_set_folio_dirty(c, inode, folio, &res, folio_offset, folio_len);
folio_unlock(folio);
folio_put(folio);
set_dirty += folio_len;
}
nr_folios_copied = DIV_ROUND_UP(offset + copied, PAGE_SIZE);
inode->ei_last_dirtied = (unsigned long) current;
out:
for (i = nr_folios_copied; i < nr_folios; i++) {
folio_unlock(folios[i]);
folio_put(folios[i]);
}
bch2_folio_reservation_put(c, inode, &res);
return copied ?: ret;
}
static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct bch_inode_info *inode = file_bch_inode(file);
loff_t pos = iocb->ki_pos;
ssize_t written = 0;
int ret = 0;
bch2_pagecache_add_get(inode);
do {
unsigned offset = pos & (PAGE_SIZE - 1);
unsigned bytes = min_t(unsigned long, iov_iter_count(iter),
PAGE_SIZE * WRITE_BATCH_PAGES - offset);
again:
/*
* Bring in the user page that we will copy from _first_.
* Otherwise there's a nasty deadlock on copying from the
* same page as we're writing to, without it being marked
* up-to-date.
*
* Not only is this an optimisation, but it is also required
* to check that the address is actually valid, when atomic
* usercopies are used, below.
*/
if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
bytes = min_t(unsigned long, iov_iter_count(iter),
PAGE_SIZE - offset);
if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
ret = -EFAULT;
break;
}
}
if (unlikely(fatal_signal_pending(current))) {
ret = -EINTR;
break;
}
ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes);
if (unlikely(ret < 0))
break;
cond_resched();
if (unlikely(ret == 0)) {
/*
* If we were unable to copy any data at all, we must
* fall back to a single segment length write.
*
* If we didn't fallback here, we could livelock
* because not all segments in the iov can be copied at
* once without a pagefault.
*/
bytes = min_t(unsigned long, PAGE_SIZE - offset,
iov_iter_single_seg_count(iter));
goto again;
}
pos += ret;
written += ret;
ret = 0;
balance_dirty_pages_ratelimited(mapping);
} while (iov_iter_count(iter));
bch2_pagecache_add_put(inode);
return written ? written : ret;
}
/* O_DIRECT reads */
static void bio_check_or_release(struct bio *bio, bool check_dirty)
{
if (check_dirty) {
bio_check_pages_dirty(bio);
} else {
bio_release_pages(bio, false);
bio_put(bio);
}
}
static void bch2_dio_read_complete(struct closure *cl)
{
struct dio_read *dio = container_of(cl, struct dio_read, cl);
dio->req->ki_complete(dio->req, dio->ret);
bio_check_or_release(&dio->rbio.bio, dio->should_dirty);
}
static void bch2_direct_IO_read_endio(struct bio *bio)
{
struct dio_read *dio = bio->bi_private;
if (bio->bi_status)
dio->ret = blk_status_to_errno(bio->bi_status);
closure_put(&dio->cl);
}
static void bch2_direct_IO_read_split_endio(struct bio *bio)
{
struct dio_read *dio = bio->bi_private;
bool should_dirty = dio->should_dirty;
bch2_direct_IO_read_endio(bio);
bio_check_or_release(bio, should_dirty);
}
static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter)
{
struct file *file = req->ki_filp;
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_io_opts opts;
struct dio_read *dio;
struct bio *bio;
loff_t offset = req->ki_pos;
bool sync = is_sync_kiocb(req);
size_t shorten;
ssize_t ret;
bch2_inode_opts_get(&opts, c, &inode->ei_inode);
if ((offset|iter->count) & (block_bytes(c) - 1))
return -EINVAL;
ret = min_t(loff_t, iter->count,
max_t(loff_t, 0, i_size_read(&inode->v) - offset));
if (!ret)
return ret;
shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c));
iter->count -= shorten;
bio = bio_alloc_bioset(NULL,
bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS),
REQ_OP_READ,
GFP_KERNEL,
&c->dio_read_bioset);
bio->bi_end_io = bch2_direct_IO_read_endio;
dio = container_of(bio, struct dio_read, rbio.bio);
closure_init(&dio->cl, NULL);
/*
* this is a _really_ horrible hack just to avoid an atomic sub at the
* end:
*/
if (!sync) {
set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL);
atomic_set(&dio->cl.remaining,
CLOSURE_REMAINING_INITIALIZER -
CLOSURE_RUNNING +
CLOSURE_DESTRUCTOR);
} else {
atomic_set(&dio->cl.remaining,
CLOSURE_REMAINING_INITIALIZER + 1);
}
dio->req = req;
dio->ret = ret;
/*
* This is one of the sketchier things I've encountered: we have to skip
* the dirtying of requests that are internal from the kernel (i.e. from
* loopback), because we'll deadlock on page_lock.
*/
dio->should_dirty = iter_is_iovec(iter);
goto start;
while (iter->count) {
bio = bio_alloc_bioset(NULL,
bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS),
REQ_OP_READ,
GFP_KERNEL,
&c->bio_read);
bio->bi_end_io = bch2_direct_IO_read_split_endio;
start:
bio->bi_opf = REQ_OP_READ|REQ_SYNC;
bio->bi_iter.bi_sector = offset >> 9;
bio->bi_private = dio;
ret = bio_iov_iter_get_pages(bio, iter);
if (ret < 0) {
/* XXX: fault inject this path */
bio->bi_status = BLK_STS_RESOURCE;
bio_endio(bio);
break;
}
offset += bio->bi_iter.bi_size;
if (dio->should_dirty)
bio_set_pages_dirty(bio);
if (iter->count)
closure_get(&dio->cl);
bch2_read(c, rbio_init(bio, opts), inode_inum(inode));
}
iter->count += shorten;
if (sync) {
closure_sync(&dio->cl);
closure_debug_destroy(&dio->cl);
ret = dio->ret;
bio_check_or_release(&dio->rbio.bio, dio->should_dirty);
return ret;
} else {
return -EIOCBQUEUED;
}
}
ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct bch_inode_info *inode = file_bch_inode(file);
struct address_space *mapping = file->f_mapping;
size_t count = iov_iter_count(iter);
ssize_t ret;
if (!count)
return 0; /* skip atime */
if (iocb->ki_flags & IOCB_DIRECT) {
struct blk_plug plug;
if (unlikely(mapping->nrpages)) {
ret = filemap_write_and_wait_range(mapping,
iocb->ki_pos,
iocb->ki_pos + count - 1);
if (ret < 0)
goto out;
}
file_accessed(file);
blk_start_plug(&plug);
ret = bch2_direct_IO_read(iocb, iter);
blk_finish_plug(&plug);
if (ret >= 0)
iocb->ki_pos += ret;
} else {
bch2_pagecache_add_get(inode);
ret = generic_file_read_iter(iocb, iter);
bch2_pagecache_add_put(inode);
}
out:
return bch2_err_class(ret);
}
/* O_DIRECT writes */
static bool bch2_check_range_allocated(struct bch_fs *c, subvol_inum inum,
u64 offset, u64 size,
unsigned nr_replicas, bool compressed)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
u64 end = offset + size;
u32 snapshot;
bool ret = true;
int err;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
err = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot);
if (err)
goto err;
for_each_btree_key_norestart(&trans, iter, BTREE_ID_extents,
SPOS(inum.inum, offset, snapshot),
BTREE_ITER_SLOTS, k, err) {
if (bkey_ge(bkey_start_pos(k.k), POS(inum.inum, end)))
break;
if (k.k->p.snapshot != snapshot ||
nr_replicas > bch2_bkey_replicas(c, k) ||
(!compressed && bch2_bkey_sectors_compressed(k))) {
ret = false;
break;
}
}
offset = iter.pos.offset;
bch2_trans_iter_exit(&trans, &iter);
err:
if (bch2_err_matches(err, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_exit(&trans);
return err ? false : ret;
}
static noinline bool bch2_dio_write_check_allocated(struct dio_write *dio)
{
struct bch_fs *c = dio->op.c;
struct bch_inode_info *inode = dio->inode;
struct bio *bio = &dio->op.wbio.bio;
return bch2_check_range_allocated(c, inode_inum(inode),
dio->op.pos.offset, bio_sectors(bio),
dio->op.opts.data_replicas,
dio->op.opts.compression != 0);
}
static void bch2_dio_write_loop_async(struct bch_write_op *);
static __always_inline long bch2_dio_write_done(struct dio_write *dio);
/*
* We're going to return -EIOCBQUEUED, but we haven't finished consuming the
* iov_iter yet, so we need to stash a copy of the iovec: it might be on the
* caller's stack, we're not guaranteed that it will live for the duration of
* the IO:
*/
static noinline int bch2_dio_write_copy_iov(struct dio_write *dio)
{
struct iovec *iov = dio->inline_vecs;
/*
* iov_iter has a single embedded iovec - nothing to do:
*/
if (iter_is_ubuf(&dio->iter))
return 0;
/*
* We don't currently handle non-iovec iov_iters here - return an error,
* and we'll fall back to doing the IO synchronously:
*/
if (!iter_is_iovec(&dio->iter))
return -1;
if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) {
iov = kmalloc_array(dio->iter.nr_segs, sizeof(*iov),
GFP_KERNEL);
if (unlikely(!iov))
return -ENOMEM;
dio->free_iov = true;
}
memcpy(iov, dio->iter.__iov, dio->iter.nr_segs * sizeof(*iov));
dio->iter.__iov = iov;
return 0;
}
static void bch2_dio_write_flush_done(struct closure *cl)
{
struct dio_write *dio = container_of(cl, struct dio_write, op.cl);
struct bch_fs *c = dio->op.c;
closure_debug_destroy(cl);
dio->op.error = bch2_journal_error(&c->journal);
bch2_dio_write_done(dio);
}
static noinline void bch2_dio_write_flush(struct dio_write *dio)
{
struct bch_fs *c = dio->op.c;
struct bch_inode_unpacked inode;
int ret;
dio->flush = 0;
closure_init(&dio->op.cl, NULL);
if (!dio->op.error) {
ret = bch2_inode_find_by_inum(c, inode_inum(dio->inode), &inode);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
if (ret) {
dio->op.error = ret;
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
} else {
bch2_journal_flush_seq_async(&c->journal, inode.bi_journal_seq, &dio->op.cl);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
bch2_inode_flush_nocow_writes_async(c, dio->inode, &dio->op.cl);
}
}
if (dio->sync) {
closure_sync(&dio->op.cl);
closure_debug_destroy(&dio->op.cl);
} else {
continue_at(&dio->op.cl, bch2_dio_write_flush_done, NULL);
}
}
static __always_inline long bch2_dio_write_done(struct dio_write *dio)
{
struct kiocb *req = dio->req;
struct bch_inode_info *inode = dio->inode;
bool sync = dio->sync;
long ret;
if (unlikely(dio->flush)) {
bch2_dio_write_flush(dio);
if (!sync)
return -EIOCBQUEUED;
}
bch2_pagecache_block_put(inode);
if (dio->free_iov)
kfree(dio->iter.__iov);
ret = dio->op.error ?: ((long) dio->written << 9);
bio_put(&dio->op.wbio.bio);
/* inode->i_dio_count is our ref on inode and thus bch_fs */
inode_dio_end(&inode->v);
if (ret < 0)
ret = bch2_err_class(ret);
if (!sync) {
req->ki_complete(req, ret);
ret = -EIOCBQUEUED;
}
return ret;
}
static __always_inline void bch2_dio_write_end(struct dio_write *dio)
{
struct bch_fs *c = dio->op.c;
struct kiocb *req = dio->req;
struct bch_inode_info *inode = dio->inode;
struct bio *bio = &dio->op.wbio.bio;
req->ki_pos += (u64) dio->op.written << 9;
dio->written += dio->op.written;
if (dio->extending) {
spin_lock(&inode->v.i_lock);
if (req->ki_pos > inode->v.i_size)
i_size_write(&inode->v, req->ki_pos);
spin_unlock(&inode->v.i_lock);
}
if (dio->op.i_sectors_delta || dio->quota_res.sectors) {
mutex_lock(&inode->ei_quota_lock);
__i_sectors_acct(c, inode, &dio->quota_res, dio->op.i_sectors_delta);
__bch2_quota_reservation_put(c, inode, &dio->quota_res);
mutex_unlock(&inode->ei_quota_lock);
}
bio_release_pages(bio, false);
if (unlikely(dio->op.error))
set_bit(EI_INODE_ERROR, &inode->ei_flags);
}
static __always_inline long bch2_dio_write_loop(struct dio_write *dio)
{
struct bch_fs *c = dio->op.c;
struct kiocb *req = dio->req;
struct address_space *mapping = dio->mapping;
struct bch_inode_info *inode = dio->inode;
struct bch_io_opts opts;
struct bio *bio = &dio->op.wbio.bio;
unsigned unaligned, iter_count;
bool sync = dio->sync, dropped_locks;
long ret;
bch2_inode_opts_get(&opts, c, &inode->ei_inode);
while (1) {
iter_count = dio->iter.count;
EBUG_ON(current->faults_disabled_mapping);
current->faults_disabled_mapping = mapping;
ret = bio_iov_iter_get_pages(bio, &dio->iter);
dropped_locks = fdm_dropped_locks();
current->faults_disabled_mapping = NULL;
/*
* If the fault handler returned an error but also signalled
* that it dropped & retook ei_pagecache_lock, we just need to
* re-shoot down the page cache and retry:
*/
if (dropped_locks && ret)
ret = 0;
if (unlikely(ret < 0))
goto err;
if (unlikely(dropped_locks)) {
ret = write_invalidate_inode_pages_range(mapping,
req->ki_pos,
req->ki_pos + iter_count - 1);
if (unlikely(ret))
goto err;
if (!bio->bi_iter.bi_size)
continue;
}
unaligned = bio->bi_iter.bi_size & (block_bytes(c) - 1);
bio->bi_iter.bi_size -= unaligned;
iov_iter_revert(&dio->iter, unaligned);
if (!bio->bi_iter.bi_size) {
/*
* bio_iov_iter_get_pages was only able to get <
* blocksize worth of pages:
*/
ret = -EFAULT;
goto err;
}
bch2_write_op_init(&dio->op, c, opts);
dio->op.end_io = sync
? NULL
: bch2_dio_write_loop_async;
dio->op.target = dio->op.opts.foreground_target;
dio->op.write_point = writepoint_hashed((unsigned long) current);
dio->op.nr_replicas = dio->op.opts.data_replicas;
dio->op.subvol = inode->ei_subvol;
dio->op.pos = POS(inode->v.i_ino, (u64) req->ki_pos >> 9);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
dio->op.devs_need_flush = &inode->ei_devs_need_flush;
if (sync)
dio->op.flags |= BCH_WRITE_SYNC;
dio->op.flags |= BCH_WRITE_CHECK_ENOSPC;
ret = bch2_quota_reservation_add(c, inode, &dio->quota_res,
bio_sectors(bio), true);
if (unlikely(ret))
goto err;
ret = bch2_disk_reservation_get(c, &dio->op.res, bio_sectors(bio),
dio->op.opts.data_replicas, 0);
if (unlikely(ret) &&
!bch2_dio_write_check_allocated(dio))
goto err;
task_io_account_write(bio->bi_iter.bi_size);
if (unlikely(dio->iter.count) &&
!dio->sync &&
!dio->loop &&
bch2_dio_write_copy_iov(dio))
dio->sync = sync = true;
dio->loop = true;
closure_call(&dio->op.cl, bch2_write, NULL, NULL);
if (!sync)
return -EIOCBQUEUED;
bch2_dio_write_end(dio);
if (likely(!dio->iter.count) || dio->op.error)
break;
bio_reset(bio, NULL, REQ_OP_WRITE);
}
out:
return bch2_dio_write_done(dio);
err:
dio->op.error = ret;
bio_release_pages(bio, false);
bch2_quota_reservation_put(c, inode, &dio->quota_res);
goto out;
}
static noinline __cold void bch2_dio_write_continue(struct dio_write *dio)
{
struct mm_struct *mm = dio->mm;
bio_reset(&dio->op.wbio.bio, NULL, REQ_OP_WRITE);
if (mm)
kthread_use_mm(mm);
bch2_dio_write_loop(dio);
if (mm)
kthread_unuse_mm(mm);
}
static void bch2_dio_write_loop_async(struct bch_write_op *op)
{
struct dio_write *dio = container_of(op, struct dio_write, op);
bch2_dio_write_end(dio);
if (likely(!dio->iter.count) || dio->op.error)
bch2_dio_write_done(dio);
else
bch2_dio_write_continue(dio);
}
static noinline
ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter)
{
struct file *file = req->ki_filp;
struct address_space *mapping = file->f_mapping;
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct dio_write *dio;
struct bio *bio;
bool locked = true, extending;
ssize_t ret;
prefetch(&c->opts);
prefetch((void *) &c->opts + 64);
prefetch(&inode->ei_inode);
prefetch((void *) &inode->ei_inode + 64);
inode_lock(&inode->v);
ret = generic_write_checks(req, iter);
if (unlikely(ret <= 0))
goto err;
ret = file_remove_privs(file);
if (unlikely(ret))
goto err;
ret = file_update_time(file);
if (unlikely(ret))
goto err;
if (unlikely((req->ki_pos|iter->count) & (block_bytes(c) - 1)))
goto err;
inode_dio_begin(&inode->v);
bch2_pagecache_block_get(inode);
extending = req->ki_pos + iter->count > inode->v.i_size;
if (!extending) {
inode_unlock(&inode->v);
locked = false;
}
bio = bio_alloc_bioset(NULL,
bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS),
REQ_OP_WRITE,
GFP_KERNEL,
&c->dio_write_bioset);
dio = container_of(bio, struct dio_write, op.wbio.bio);
dio->req = req;
dio->mapping = mapping;
dio->inode = inode;
dio->mm = current->mm;
dio->loop = false;
dio->extending = extending;
dio->sync = is_sync_kiocb(req) || extending;
dio->flush = iocb_is_dsync(req) && !c->opts.journal_flush_disabled;
dio->free_iov = false;
dio->quota_res.sectors = 0;
dio->written = 0;
dio->iter = *iter;
dio->op.c = c;
if (unlikely(mapping->nrpages)) {
ret = write_invalidate_inode_pages_range(mapping,
req->ki_pos,
req->ki_pos + iter->count - 1);
if (unlikely(ret))
goto err_put_bio;
}
ret = bch2_dio_write_loop(dio);
err:
if (locked)
inode_unlock(&inode->v);
return ret;
err_put_bio:
bch2_pagecache_block_put(inode);
bio_put(bio);
inode_dio_end(&inode->v);
goto err;
}
ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct bch_inode_info *inode = file_bch_inode(file);
ssize_t ret;
if (iocb->ki_flags & IOCB_DIRECT) {
ret = bch2_direct_write(iocb, from);
goto out;
}
inode_lock(&inode->v);
ret = generic_write_checks(iocb, from);
if (ret <= 0)
goto unlock;
ret = file_remove_privs(file);
if (ret)
goto unlock;
ret = file_update_time(file);
if (ret)
goto unlock;
ret = bch2_buffered_write(iocb, from);
if (likely(ret > 0))
iocb->ki_pos += ret;
unlock:
inode_unlock(&inode->v);
if (ret > 0)
ret = generic_write_sync(iocb, ret);
out:
return bch2_err_class(ret);
}
/* fsync: */
/*
* inode->ei_inode.bi_journal_seq won't be up to date since it's set in an
* insert trigger: look up the btree inode instead
*/
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
static int bch2_flush_inode(struct bch_fs *c,
struct bch_inode_info *inode)
{
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
struct bch_inode_unpacked u;
int ret;
if (c->opts.journal_flush_disabled)
return 0;
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
ret = bch2_inode_find_by_inum(c, inode_inum(inode), &u);
if (ret)
return ret;
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
return bch2_journal_flush_seq(&c->journal, u.bi_journal_seq) ?:
bch2_inode_flush_nocow_writes(c, inode);
}
int bch2_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
int ret, ret2, ret3;
ret = file_write_and_wait_range(file, start, end);
ret2 = sync_inode_metadata(&inode->v, 1);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
ret3 = bch2_flush_inode(c, inode);
return bch2_err_class(ret ?: ret2 ?: ret3);
}
/* truncate: */
static inline int range_has_data(struct bch_fs *c, u32 subvol,
struct bpos start,
struct bpos end)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
ret = bch2_subvolume_get_snapshot(&trans, subvol, &start.snapshot);
if (ret)
goto err;
for_each_btree_key_upto_norestart(&trans, iter, BTREE_ID_extents, start, end, 0, k, ret)
if (bkey_extent_is_data(k.k)) {
ret = 1;
break;
}
start = iter.pos;
bch2_trans_iter_exit(&trans, &iter);
err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_exit(&trans);
return ret;
}
static int __bch2_truncate_page(struct bch_inode_info *inode,
pgoff_t index, loff_t start, loff_t end)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct address_space *mapping = inode->v.i_mapping;
struct bch_folio *s;
unsigned start_offset = start & (PAGE_SIZE - 1);
unsigned end_offset = ((end - 1) & (PAGE_SIZE - 1)) + 1;
unsigned i;
struct folio *folio;
s64 i_sectors_delta = 0;
int ret = 0;
/* Page boundary? Nothing to do */
if (!((index == start >> PAGE_SHIFT && start_offset) ||
(index == end >> PAGE_SHIFT && end_offset != PAGE_SIZE)))
return 0;
/* Above i_size? */
if (index << PAGE_SHIFT >= inode->v.i_size)
return 0;
folio = filemap_lock_folio(mapping, index);
if (!folio) {
/*
* XXX: we're doing two index lookups when we end up reading the
* folio
*/
ret = range_has_data(c, inode->ei_subvol,
POS(inode->v.i_ino, (index << PAGE_SECTORS_SHIFT)),
POS(inode->v.i_ino, (index << PAGE_SECTORS_SHIFT) + PAGE_SECTORS));
if (ret <= 0)
return ret;
folio = __filemap_get_folio(mapping, index,
FGP_LOCK|FGP_CREAT, GFP_KERNEL);
if (unlikely(!folio)) {
ret = -ENOMEM;
goto out;
}
}
s = bch2_folio_create(folio, 0);
if (!s) {
ret = -ENOMEM;
goto unlock;
}
if (!folio_test_uptodate(folio)) {
ret = bch2_read_single_folio(folio, mapping);
if (ret)
goto unlock;
}
BUG_ON(!s->uptodate);
if (index != start >> PAGE_SHIFT)
start_offset = 0;
if (index != end >> PAGE_SHIFT)
end_offset = PAGE_SIZE;
for (i = round_up(start_offset, block_bytes(c)) >> 9;
i < round_down(end_offset, block_bytes(c)) >> 9;
i++) {
s->s[i].nr_replicas = 0;
if (s->s[i].state == SECTOR_DIRTY)
i_sectors_delta--;
s->s[i].state = SECTOR_UNALLOCATED;
}
i_sectors_acct(c, inode, NULL, i_sectors_delta);
/*
* Caller needs to know whether this folio will be written out by
* writeback - doing an i_size update if necessary - or whether it will
* be responsible for the i_size update:
*/
ret = s->s[(min_t(u64, inode->v.i_size - (index << PAGE_SHIFT),
PAGE_SIZE) - 1) >> 9].state >= SECTOR_DIRTY;
folio_zero_segment(folio, start_offset, end_offset);
/*
* Bit of a hack - we don't want truncate to fail due to -ENOSPC.
*
* XXX: because we aren't currently tracking whether the folio has actual
* data in it (vs. just 0s, or only partially written) this wrong. ick.
*/
BUG_ON(bch2_get_folio_disk_reservation(c, inode, folio, false));
/*
* This removes any writeable userspace mappings; we need to force
* .page_mkwrite to be called again before any mmapped writes, to
* redirty the full page:
*/
folio_mkclean(folio);
filemap_dirty_folio(mapping, folio);
unlock:
folio_unlock(folio);
folio_put(folio);
out:
return ret;
}
static int bch2_truncate_page(struct bch_inode_info *inode, loff_t from)
{
return __bch2_truncate_page(inode, from >> PAGE_SHIFT,
from, round_up(from, PAGE_SIZE));
}
static int bch2_truncate_pages(struct bch_inode_info *inode,
loff_t start, loff_t end)
{
int ret = __bch2_truncate_page(inode, start >> PAGE_SHIFT,
start, end);
if (ret >= 0 &&
start >> PAGE_SHIFT != end >> PAGE_SHIFT)
ret = __bch2_truncate_page(inode,
end >> PAGE_SHIFT,
start, end);
return ret;
}
static int bch2_extend(struct mnt_idmap *idmap,
struct bch_inode_info *inode,
struct bch_inode_unpacked *inode_u,
struct iattr *iattr)
{
struct address_space *mapping = inode->v.i_mapping;
int ret;
/*
* sync appends:
*
* this has to be done _before_ extending i_size:
*/
ret = filemap_write_and_wait_range(mapping, inode_u->bi_size, S64_MAX);
if (ret)
return ret;
truncate_setsize(&inode->v, iattr->ia_size);
return bch2_setattr_nonsize(idmap, inode, iattr);
}
static int bch2_truncate_finish_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
bi->bi_flags &= ~BCH_INODE_I_SIZE_DIRTY;
return 0;
}
static int bch2_truncate_start_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi, void *p)
{
u64 *new_i_size = p;
bi->bi_flags |= BCH_INODE_I_SIZE_DIRTY;
bi->bi_size = *new_i_size;
return 0;
}
int bch2_truncate(struct mnt_idmap *idmap,
struct bch_inode_info *inode, struct iattr *iattr)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct address_space *mapping = inode->v.i_mapping;
struct bch_inode_unpacked inode_u;
u64 new_i_size = iattr->ia_size;
s64 i_sectors_delta = 0;
int ret = 0;
/*
* If the truncate call with change the size of the file, the
* cmtimes should be updated. If the size will not change, we
* do not need to update the cmtimes.
*/
if (iattr->ia_size != inode->v.i_size) {
if (!(iattr->ia_valid & ATTR_MTIME))
ktime_get_coarse_real_ts64(&iattr->ia_mtime);
if (!(iattr->ia_valid & ATTR_CTIME))
ktime_get_coarse_real_ts64(&iattr->ia_ctime);
iattr->ia_valid |= ATTR_MTIME|ATTR_CTIME;
}
inode_dio_wait(&inode->v);
bch2_pagecache_block_get(inode);
ret = bch2_inode_find_by_inum(c, inode_inum(inode), &inode_u);
if (ret)
goto err;
/*
* check this before next assertion; on filesystem error our normal
* invariants are a bit broken (truncate has to truncate the page cache
* before the inode).
*/
ret = bch2_journal_error(&c->journal);
if (ret)
goto err;
WARN_ONCE(!test_bit(EI_INODE_ERROR, &inode->ei_flags) &&
inode->v.i_size < inode_u.bi_size,
"truncate spotted in mem i_size < btree i_size: %llu < %llu\n",
(u64) inode->v.i_size, inode_u.bi_size);
if (iattr->ia_size > inode->v.i_size) {
ret = bch2_extend(idmap, inode, &inode_u, iattr);
goto err;
}
iattr->ia_valid &= ~ATTR_SIZE;
ret = bch2_truncate_page(inode, iattr->ia_size);
if (unlikely(ret < 0))
goto err;
/*
* When extending, we're going to write the new i_size to disk
* immediately so we need to flush anything above the current on disk
* i_size first:
*
* Also, when extending we need to flush the page that i_size currently
* straddles - if it's mapped to userspace, we need to ensure that
* userspace has to redirty it and call .mkwrite -> set_page_dirty
* again to allocate the part of the page that was extended.
*/
if (iattr->ia_size > inode_u.bi_size)
ret = filemap_write_and_wait_range(mapping,
inode_u.bi_size,
iattr->ia_size - 1);
else if (iattr->ia_size & (PAGE_SIZE - 1))
ret = filemap_write_and_wait_range(mapping,
round_down(iattr->ia_size, PAGE_SIZE),
iattr->ia_size - 1);
if (ret)
goto err;
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode(c, inode, bch2_truncate_start_fn,
&new_i_size, 0);
mutex_unlock(&inode->ei_update_lock);
if (unlikely(ret))
goto err;
truncate_setsize(&inode->v, iattr->ia_size);
ret = bch2_fpunch(c, inode_inum(inode),
round_up(iattr->ia_size, block_bytes(c)) >> 9,
U64_MAX, &i_sectors_delta);
i_sectors_acct(c, inode, NULL, i_sectors_delta);
bch2_fs_inconsistent_on(!inode->v.i_size && inode->v.i_blocks &&
!bch2_journal_error(&c->journal), c,
"inode %lu truncated to 0 but i_blocks %llu (ondisk %lli)",
inode->v.i_ino, (u64) inode->v.i_blocks,
inode->ei_inode.bi_sectors);
if (unlikely(ret))
goto err;
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode(c, inode, bch2_truncate_finish_fn, NULL, 0);
mutex_unlock(&inode->ei_update_lock);
ret = bch2_setattr_nonsize(idmap, inode, iattr);
err:
bch2_pagecache_block_put(inode);
return bch2_err_class(ret);
}
/* fallocate: */
static int inode_update_times_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi, void *p)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
bi->bi_mtime = bi->bi_ctime = bch2_current_time(c);
return 0;
}
static long bchfs_fpunch(struct bch_inode_info *inode, loff_t offset, loff_t len)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
u64 end = offset + len;
u64 block_start = round_up(offset, block_bytes(c));
u64 block_end = round_down(end, block_bytes(c));
bool truncated_last_page;
int ret = 0;
ret = bch2_truncate_pages(inode, offset, end);
if (unlikely(ret < 0))
goto err;
truncated_last_page = ret;
truncate_pagecache_range(&inode->v, offset, end - 1);
if (block_start < block_end) {
s64 i_sectors_delta = 0;
ret = bch2_fpunch(c, inode_inum(inode),
block_start >> 9, block_end >> 9,
&i_sectors_delta);
i_sectors_acct(c, inode, NULL, i_sectors_delta);
}
mutex_lock(&inode->ei_update_lock);
if (end >= inode->v.i_size && !truncated_last_page) {
ret = bch2_write_inode_size(c, inode, inode->v.i_size,
ATTR_MTIME|ATTR_CTIME);
} else {
ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL,
ATTR_MTIME|ATTR_CTIME);
}
mutex_unlock(&inode->ei_update_lock);
err:
return ret;
}
static long bchfs_fcollapse_finsert(struct bch_inode_info *inode,
loff_t offset, loff_t len,
bool insert)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct address_space *mapping = inode->v.i_mapping;
struct bkey_buf copy;
struct btree_trans trans;
struct btree_iter src, dst, del;
loff_t shift, new_size;
u64 src_start;
int ret = 0;
if ((offset | len) & (block_bytes(c) - 1))
return -EINVAL;
if (insert) {
if (inode->v.i_sb->s_maxbytes - inode->v.i_size < len)
return -EFBIG;
if (offset >= inode->v.i_size)
return -EINVAL;
src_start = U64_MAX;
shift = len;
} else {
if (offset + len >= inode->v.i_size)
return -EINVAL;
src_start = offset + len;
shift = -len;
}
new_size = inode->v.i_size + shift;
ret = write_invalidate_inode_pages_range(mapping, offset, LLONG_MAX);
if (ret)
return ret;
if (insert) {
i_size_write(&inode->v, new_size);
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode_size(c, inode, new_size,
ATTR_MTIME|ATTR_CTIME);
mutex_unlock(&inode->ei_update_lock);
} else {
s64 i_sectors_delta = 0;
ret = bch2_fpunch(c, inode_inum(inode),
offset >> 9, (offset + len) >> 9,
&i_sectors_delta);
i_sectors_acct(c, inode, NULL, i_sectors_delta);
if (ret)
return ret;
}
bch2_bkey_buf_init(&copy);
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024);
bch2_trans_iter_init(&trans, &src, BTREE_ID_extents,
POS(inode->v.i_ino, src_start >> 9),
BTREE_ITER_INTENT);
bch2_trans_copy_iter(&dst, &src);
bch2_trans_copy_iter(&del, &src);
while (ret == 0 ||
bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
struct disk_reservation disk_res =
bch2_disk_reservation_init(c, 0);
struct bkey_i delete;
struct bkey_s_c k;
struct bpos next_pos;
struct bpos move_pos = POS(inode->v.i_ino, offset >> 9);
struct bpos atomic_end;
unsigned trigger_flags = 0;
u32 snapshot;
bch2_trans_begin(&trans);
ret = bch2_subvolume_get_snapshot(&trans,
inode->ei_subvol, &snapshot);
if (ret)
continue;
bch2_btree_iter_set_snapshot(&src, snapshot);
bch2_btree_iter_set_snapshot(&dst, snapshot);
bch2_btree_iter_set_snapshot(&del, snapshot);
bch2_trans_begin(&trans);
k = insert
? bch2_btree_iter_peek_prev(&src)
: bch2_btree_iter_peek_upto(&src, POS(inode->v.i_ino, U64_MAX));
if ((ret = bkey_err(k)))
continue;
if (!k.k || k.k->p.inode != inode->v.i_ino)
break;
if (insert &&
bkey_le(k.k->p, POS(inode->v.i_ino, offset >> 9)))
break;
reassemble:
bch2_bkey_buf_reassemble(&copy, c, k);
if (insert &&
bkey_lt(bkey_start_pos(k.k), move_pos))
bch2_cut_front(move_pos, copy.k);
copy.k->k.p.offset += shift >> 9;
bch2_btree_iter_set_pos(&dst, bkey_start_pos(&copy.k->k));
ret = bch2_extent_atomic_end(&trans, &dst, copy.k, &atomic_end);
if (ret)
continue;
if (!bkey_eq(atomic_end, copy.k->k.p)) {
if (insert) {
move_pos = atomic_end;
move_pos.offset -= shift >> 9;
goto reassemble;
} else {
bch2_cut_back(atomic_end, copy.k);
}
}
bkey_init(&delete.k);
delete.k.p = copy.k->k.p;
delete.k.size = copy.k->k.size;
delete.k.p.offset -= shift >> 9;
bch2_btree_iter_set_pos(&del, bkey_start_pos(&delete.k));
next_pos = insert ? bkey_start_pos(&delete.k) : delete.k.p;
if (copy.k->k.size != k.k->size) {
/* We might end up splitting compressed extents: */
unsigned nr_ptrs =
bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(copy.k));
ret = bch2_disk_reservation_get(c, &disk_res,
copy.k->k.size, nr_ptrs,
BCH_DISK_RESERVATION_NOFAIL);
BUG_ON(ret);
}
ret = bch2_btree_iter_traverse(&del) ?:
bch2_trans_update(&trans, &del, &delete, trigger_flags) ?:
bch2_trans_update(&trans, &dst, copy.k, trigger_flags) ?:
bch2_trans_commit(&trans, &disk_res, NULL,
BTREE_INSERT_NOFAIL);
bch2_disk_reservation_put(c, &disk_res);
if (!ret)
bch2_btree_iter_set_pos(&src, next_pos);
}
bch2_trans_iter_exit(&trans, &del);
bch2_trans_iter_exit(&trans, &dst);
bch2_trans_iter_exit(&trans, &src);
bch2_trans_exit(&trans);
bch2_bkey_buf_exit(&copy, c);
if (ret)
return ret;
mutex_lock(&inode->ei_update_lock);
if (!insert) {
i_size_write(&inode->v, new_size);
ret = bch2_write_inode_size(c, inode, new_size,
ATTR_MTIME|ATTR_CTIME);
} else {
/* We need an inode update to update bi_journal_seq for fsync: */
ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL,
ATTR_MTIME|ATTR_CTIME);
}
mutex_unlock(&inode->ei_update_lock);
return ret;
}
static int __bchfs_fallocate(struct bch_inode_info *inode, int mode,
u64 start_sector, u64 end_sector)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct btree_trans trans;
struct btree_iter iter;
struct bpos end_pos = POS(inode->v.i_ino, end_sector);
struct bch_io_opts opts;
int ret = 0;
bch2_inode_opts_get(&opts, c, &inode->ei_inode);
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 512);
bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents,
POS(inode->v.i_ino, start_sector),
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
while (!ret && bkey_lt(iter.pos, end_pos)) {
s64 i_sectors_delta = 0;
struct quota_res quota_res = { 0 };
struct bkey_s_c k;
unsigned sectors;
u32 snapshot;
bch2_trans_begin(&trans);
ret = bch2_subvolume_get_snapshot(&trans,
inode->ei_subvol, &snapshot);
if (ret)
goto bkey_err;
bch2_btree_iter_set_snapshot(&iter, snapshot);
k = bch2_btree_iter_peek_slot(&iter);
if ((ret = bkey_err(k)))
goto bkey_err;
/* already reserved */
if (bkey_extent_is_reservation(k) &&
bch2_bkey_nr_ptrs_fully_allocated(k) >= opts.data_replicas) {
bch2_btree_iter_advance(&iter);
continue;
}
if (bkey_extent_is_data(k.k) &&
!(mode & FALLOC_FL_ZERO_RANGE)) {
bch2_btree_iter_advance(&iter);
continue;
}
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
/*
* XXX: for nocow mode, we should promote shared extents to
* unshared here
*/
sectors = bpos_min(k.k->p, end_pos).offset - iter.pos.offset;
if (!bkey_extent_is_allocation(k.k)) {
ret = bch2_quota_reservation_add(c, inode,
&quota_res,
sectors, true);
if (unlikely(ret))
goto bkey_err;
}
ret = bch2_extent_fallocate(&trans, inode_inum(inode), &iter,
sectors, opts, &i_sectors_delta,
writepoint_hashed((unsigned long) current));
if (ret)
goto bkey_err;
i_sectors_acct(c, inode, &quota_res, i_sectors_delta);
bkey_err:
bch2_quota_reservation_put(c, inode, &quota_res);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
ret = 0;
}
bch2_trans_unlock(&trans); /* lock ordering, before taking pagecache locks: */
mark_pagecache_reserved(inode, start_sector, iter.pos.offset);
if (bch2_err_matches(ret, ENOSPC) && (mode & FALLOC_FL_ZERO_RANGE)) {
struct quota_res quota_res = { 0 };
s64 i_sectors_delta = 0;
bch2_fpunch_at(&trans, &iter, inode_inum(inode),
end_sector, &i_sectors_delta);
i_sectors_acct(c, inode, &quota_res, i_sectors_delta);
bch2_quota_reservation_put(c, inode, &quota_res);
}
bch2_trans_iter_exit(&trans, &iter);
bch2_trans_exit(&trans);
return ret;
}
static long bchfs_fallocate(struct bch_inode_info *inode, int mode,
loff_t offset, loff_t len)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
u64 end = offset + len;
u64 block_start = round_down(offset, block_bytes(c));
u64 block_end = round_up(end, block_bytes(c));
bool truncated_last_page = false;
int ret, ret2 = 0;
if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) {
ret = inode_newsize_ok(&inode->v, end);
if (ret)
return ret;
}
if (mode & FALLOC_FL_ZERO_RANGE) {
ret = bch2_truncate_pages(inode, offset, end);
if (unlikely(ret < 0))
return ret;
truncated_last_page = ret;
truncate_pagecache_range(&inode->v, offset, end - 1);
block_start = round_up(offset, block_bytes(c));
block_end = round_down(end, block_bytes(c));
}
ret = __bchfs_fallocate(inode, mode, block_start >> 9, block_end >> 9);
/*
* On -ENOSPC in ZERO_RANGE mode, we still want to do the inode update,
* so that the VFS cache i_size is consistent with the btree i_size:
*/
if (ret &&
!(bch2_err_matches(ret, ENOSPC) && (mode & FALLOC_FL_ZERO_RANGE)))
return ret;
if (mode & FALLOC_FL_KEEP_SIZE && end > inode->v.i_size)
end = inode->v.i_size;
if (end >= inode->v.i_size &&
(((mode & FALLOC_FL_ZERO_RANGE) && !truncated_last_page) ||
!(mode & FALLOC_FL_KEEP_SIZE))) {
spin_lock(&inode->v.i_lock);
i_size_write(&inode->v, end);
spin_unlock(&inode->v.i_lock);
mutex_lock(&inode->ei_update_lock);
ret2 = bch2_write_inode_size(c, inode, end, 0);
mutex_unlock(&inode->ei_update_lock);
}
return ret ?: ret2;
}
long bch2_fallocate_dispatch(struct file *file, int mode,
loff_t offset, loff_t len)
{
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
long ret;
if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_fallocate))
return -EROFS;
inode_lock(&inode->v);
inode_dio_wait(&inode->v);
bch2_pagecache_block_get(inode);
ret = file_modified(file);
if (ret)
goto err;
if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE)))
ret = bchfs_fallocate(inode, mode, offset, len);
else if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE))
ret = bchfs_fpunch(inode, offset, len);
else if (mode == FALLOC_FL_INSERT_RANGE)
ret = bchfs_fcollapse_finsert(inode, offset, len, true);
else if (mode == FALLOC_FL_COLLAPSE_RANGE)
ret = bchfs_fcollapse_finsert(inode, offset, len, false);
else
ret = -EOPNOTSUPP;
err:
bch2_pagecache_block_put(inode);
inode_unlock(&inode->v);
bch2_write_ref_put(c, BCH_WRITE_REF_fallocate);
return bch2_err_class(ret);
}
/*
* Take a quota reservation for unallocated blocks in a given file range
* Does not check pagecache
*/
static int quota_reserve_range(struct bch_inode_info *inode,
struct quota_res *res,
u64 start, u64 end)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
u32 snapshot;
u64 sectors = end - start;
u64 pos = start;
int ret;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
ret = bch2_subvolume_get_snapshot(&trans, inode->ei_subvol, &snapshot);
if (ret)
goto err;
bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents,
SPOS(inode->v.i_ino, pos, snapshot), 0);
while (!(ret = btree_trans_too_many_iters(&trans)) &&
(k = bch2_btree_iter_peek_upto(&iter, POS(inode->v.i_ino, end - 1))).k &&
!(ret = bkey_err(k))) {
if (bkey_extent_is_allocation(k.k)) {
u64 s = min(end, k.k->p.offset) -
max(start, bkey_start_offset(k.k));
BUG_ON(s > sectors);
sectors -= s;
}
bch2_btree_iter_advance(&iter);
}
pos = iter.pos.offset;
bch2_trans_iter_exit(&trans, &iter);
err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_exit(&trans);
if (ret)
return ret;
return bch2_quota_reservation_add(c, inode, res, sectors, true);
}
loff_t bch2_remap_file_range(struct file *file_src, loff_t pos_src,
struct file *file_dst, loff_t pos_dst,
loff_t len, unsigned remap_flags)
{
struct bch_inode_info *src = file_bch_inode(file_src);
struct bch_inode_info *dst = file_bch_inode(file_dst);
struct bch_fs *c = src->v.i_sb->s_fs_info;
struct quota_res quota_res = { 0 };
s64 i_sectors_delta = 0;
u64 aligned_len;
loff_t ret = 0;
if (remap_flags & ~(REMAP_FILE_DEDUP|REMAP_FILE_ADVISORY))
return -EINVAL;
if (remap_flags & REMAP_FILE_DEDUP)
return -EOPNOTSUPP;
if ((pos_src & (block_bytes(c) - 1)) ||
(pos_dst & (block_bytes(c) - 1)))
return -EINVAL;
if (src == dst &&
abs(pos_src - pos_dst) < len)
return -EINVAL;
bch2_lock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst);
inode_dio_wait(&src->v);
inode_dio_wait(&dst->v);
ret = generic_remap_file_range_prep(file_src, pos_src,
file_dst, pos_dst,
&len, remap_flags);
if (ret < 0 || len == 0)
goto err;
aligned_len = round_up((u64) len, block_bytes(c));
ret = write_invalidate_inode_pages_range(dst->v.i_mapping,
pos_dst, pos_dst + len - 1);
if (ret)
goto err;
ret = quota_reserve_range(dst, &quota_res, pos_dst >> 9,
(pos_dst + aligned_len) >> 9);
if (ret)
goto err;
file_update_time(file_dst);
mark_pagecache_unallocated(src, pos_src >> 9,
(pos_src + aligned_len) >> 9);
ret = bch2_remap_range(c,
inode_inum(dst), pos_dst >> 9,
inode_inum(src), pos_src >> 9,
aligned_len >> 9,
pos_dst + len, &i_sectors_delta);
if (ret < 0)
goto err;
/*
* due to alignment, we might have remapped slightly more than requsted
*/
ret = min((u64) ret << 9, (u64) len);
i_sectors_acct(c, dst, &quota_res, i_sectors_delta);
spin_lock(&dst->v.i_lock);
if (pos_dst + ret > dst->v.i_size)
i_size_write(&dst->v, pos_dst + ret);
spin_unlock(&dst->v.i_lock);
if ((file_dst->f_flags & (__O_SYNC | O_DSYNC)) ||
IS_SYNC(file_inode(file_dst)))
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
ret = bch2_flush_inode(c, dst);
err:
bch2_quota_reservation_put(c, dst, &quota_res);
bch2_unlock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst);
return bch2_err_class(ret);
}
/* fseek: */
static int folio_data_offset(struct folio *folio, unsigned offset)
{
struct bch_folio *s = bch2_folio(folio);
unsigned i, sectors = folio_sectors(folio);
if (s)
for (i = offset >> 9; i < sectors; i++)
if (s->s[i].state >= SECTOR_DIRTY)
return i << 9;
return -1;
}
static loff_t bch2_seek_pagecache_data(struct inode *vinode,
loff_t start_offset,
loff_t end_offset)
{
struct folio_batch fbatch;
pgoff_t start_index = start_offset >> PAGE_SHIFT;
pgoff_t end_index = end_offset >> PAGE_SHIFT;
pgoff_t index = start_index;
unsigned i;
loff_t ret;
int offset;
folio_batch_init(&fbatch);
while (filemap_get_folios(vinode->i_mapping,
&index, end_index, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
folio_lock(folio);
offset = folio_data_offset(folio,
max(folio_pos(folio), start_offset) -
folio_pos(folio));
if (offset >= 0) {
ret = clamp(folio_pos(folio) + offset,
start_offset, end_offset);
folio_unlock(folio);
folio_batch_release(&fbatch);
return ret;
}
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
}
return end_offset;
}
static loff_t bch2_seek_data(struct file *file, u64 offset)
{
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
subvol_inum inum = inode_inum(inode);
u64 isize, next_data = MAX_LFS_FILESIZE;
u32 snapshot;
int ret;
isize = i_size_read(&inode->v);
if (offset >= isize)
return -ENXIO;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot);
if (ret)
goto err;
for_each_btree_key_upto_norestart(&trans, iter, BTREE_ID_extents,
SPOS(inode->v.i_ino, offset >> 9, snapshot),
POS(inode->v.i_ino, U64_MAX),
0, k, ret) {
if (bkey_extent_is_data(k.k)) {
next_data = max(offset, bkey_start_offset(k.k) << 9);
break;
} else if (k.k->p.offset >> 9 > isize)
break;
}
bch2_trans_iter_exit(&trans, &iter);
err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_exit(&trans);
if (ret)
return ret;
if (next_data > offset)
next_data = bch2_seek_pagecache_data(&inode->v,
offset, next_data);
if (next_data >= isize)
return -ENXIO;
return vfs_setpos(file, next_data, MAX_LFS_FILESIZE);
}
static bool folio_hole_offset(struct address_space *mapping, loff_t *offset)
{
struct folio *folio;
struct bch_folio *s;
unsigned i, sectors, f_offset;
bool ret = true;
folio = filemap_lock_folio(mapping, *offset >> PAGE_SHIFT);
if (!folio)
return true;
s = bch2_folio(folio);
if (!s)
goto unlock;
sectors = folio_sectors(folio);
f_offset = *offset - folio_pos(folio);
for (i = f_offset >> 9; i < sectors; i++)
if (s->s[i].state < SECTOR_DIRTY) {
*offset = max(*offset, folio_pos(folio) + (i << 9));
goto unlock;
}
*offset = folio_end_pos(folio);
ret = false;
unlock:
folio_unlock(folio);
return ret;
}
static loff_t bch2_seek_pagecache_hole(struct inode *vinode,
loff_t start_offset,
loff_t end_offset)
{
struct address_space *mapping = vinode->i_mapping;
loff_t offset = start_offset;
while (offset < end_offset &&
!folio_hole_offset(mapping, &offset))
;
return min(offset, end_offset);
}
static loff_t bch2_seek_hole(struct file *file, u64 offset)
{
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
subvol_inum inum = inode_inum(inode);
u64 isize, next_hole = MAX_LFS_FILESIZE;
u32 snapshot;
int ret;
isize = i_size_read(&inode->v);
if (offset >= isize)
return -ENXIO;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot);
if (ret)
goto err;
for_each_btree_key_norestart(&trans, iter, BTREE_ID_extents,
SPOS(inode->v.i_ino, offset >> 9, snapshot),
BTREE_ITER_SLOTS, k, ret) {
if (k.k->p.inode != inode->v.i_ino) {
next_hole = bch2_seek_pagecache_hole(&inode->v,
offset, MAX_LFS_FILESIZE);
break;
} else if (!bkey_extent_is_data(k.k)) {
next_hole = bch2_seek_pagecache_hole(&inode->v,
max(offset, bkey_start_offset(k.k) << 9),
k.k->p.offset << 9);
if (next_hole < k.k->p.offset << 9)
break;
} else {
offset = max(offset, bkey_start_offset(k.k) << 9);
}
}
bch2_trans_iter_exit(&trans, &iter);
err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_exit(&trans);
if (ret)
return ret;
if (next_hole > isize)
next_hole = isize;
return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE);
}
loff_t bch2_llseek(struct file *file, loff_t offset, int whence)
{
loff_t ret;
switch (whence) {
case SEEK_SET:
case SEEK_CUR:
case SEEK_END:
ret = generic_file_llseek(file, offset, whence);
break;
case SEEK_DATA:
ret = bch2_seek_data(file, offset);
break;
case SEEK_HOLE:
ret = bch2_seek_hole(file, offset);
break;
default:
ret = -EINVAL;
break;
}
return bch2_err_class(ret);
}
void bch2_fs_fsio_exit(struct bch_fs *c)
{
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
bioset_exit(&c->nocow_flush_bioset);
bioset_exit(&c->dio_write_bioset);
bioset_exit(&c->dio_read_bioset);
bioset_exit(&c->writepage_bioset);
}
int bch2_fs_fsio_init(struct bch_fs *c)
{
int ret = 0;
pr_verbose_init(c->opts, "");
if (bioset_init(&c->writepage_bioset,
4, offsetof(struct bch_writepage_io, op.wbio.bio),
BIOSET_NEED_BVECS))
return -BCH_ERR_ENOMEM_writepage_bioset_init;
if (bioset_init(&c->dio_read_bioset,
4, offsetof(struct dio_read, rbio.bio),
BIOSET_NEED_BVECS))
return -BCH_ERR_ENOMEM_dio_read_bioset_init;
if (bioset_init(&c->dio_write_bioset,
4, offsetof(struct dio_write, op.wbio.bio),
BIOSET_NEED_BVECS))
return -BCH_ERR_ENOMEM_dio_write_bioset_init;
if (bioset_init(&c->nocow_flush_bioset,
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 05:12:00 +08:00
1, offsetof(struct nocow_flush, bio), 0))
return -BCH_ERR_ENOMEM_nocow_flush_bioset_init;
pr_verbose_init(c->opts, "ret %i", ret);
return ret;
}
#endif /* NO_BCACHEFS_FS */