mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-13 22:14:20 +08:00
314 lines
7.5 KiB
C
314 lines
7.5 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
|
||
|
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
|
||
|
* Copyright (C) 2018-2020 Linaro Ltd.
|
||
|
*/
|
||
|
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/interconnect.h>
|
||
|
|
||
|
#include "ipa.h"
|
||
|
#include "ipa_clock.h"
|
||
|
#include "ipa_modem.h"
|
||
|
|
||
|
/**
|
||
|
* DOC: IPA Clocking
|
||
|
*
|
||
|
* The "IPA Clock" manages both the IPA core clock and the interconnects
|
||
|
* (buses) the IPA depends on as a single logical entity. A reference count
|
||
|
* is incremented by "get" operations and decremented by "put" operations.
|
||
|
* Transitions of that count from 0 to 1 result in the clock and interconnects
|
||
|
* being enabled, and transitions of the count from 1 to 0 cause them to be
|
||
|
* disabled. We currently operate the core clock at a fixed clock rate, and
|
||
|
* all buses at a fixed average and peak bandwidth. As more advanced IPA
|
||
|
* features are enabled, we can make better use of clock and bus scaling.
|
||
|
*
|
||
|
* An IPA clock reference must be held for any access to IPA hardware.
|
||
|
*/
|
||
|
|
||
|
#define IPA_CORE_CLOCK_RATE (75UL * 1000 * 1000) /* Hz */
|
||
|
|
||
|
/* Interconnect path bandwidths (each times 1000 bytes per second) */
|
||
|
#define IPA_MEMORY_AVG (80 * 1000) /* 80 MBps */
|
||
|
#define IPA_MEMORY_PEAK (600 * 1000)
|
||
|
|
||
|
#define IPA_IMEM_AVG (80 * 1000)
|
||
|
#define IPA_IMEM_PEAK (350 * 1000)
|
||
|
|
||
|
#define IPA_CONFIG_AVG (40 * 1000)
|
||
|
#define IPA_CONFIG_PEAK (40 * 1000)
|
||
|
|
||
|
/**
|
||
|
* struct ipa_clock - IPA clocking information
|
||
|
* @count: Clocking reference count
|
||
|
* @mutex; Protects clock enable/disable
|
||
|
* @core: IPA core clock
|
||
|
* @memory_path: Memory interconnect
|
||
|
* @imem_path: Internal memory interconnect
|
||
|
* @config_path: Configuration space interconnect
|
||
|
*/
|
||
|
struct ipa_clock {
|
||
|
atomic_t count;
|
||
|
struct mutex mutex; /* protects clock enable/disable */
|
||
|
struct clk *core;
|
||
|
struct icc_path *memory_path;
|
||
|
struct icc_path *imem_path;
|
||
|
struct icc_path *config_path;
|
||
|
};
|
||
|
|
||
|
static struct icc_path *
|
||
|
ipa_interconnect_init_one(struct device *dev, const char *name)
|
||
|
{
|
||
|
struct icc_path *path;
|
||
|
|
||
|
path = of_icc_get(dev, name);
|
||
|
if (IS_ERR(path))
|
||
|
dev_err(dev, "error %ld getting memory interconnect\n",
|
||
|
PTR_ERR(path));
|
||
|
|
||
|
return path;
|
||
|
}
|
||
|
|
||
|
/* Initialize interconnects required for IPA operation */
|
||
|
static int ipa_interconnect_init(struct ipa_clock *clock, struct device *dev)
|
||
|
{
|
||
|
struct icc_path *path;
|
||
|
|
||
|
path = ipa_interconnect_init_one(dev, "memory");
|
||
|
if (IS_ERR(path))
|
||
|
goto err_return;
|
||
|
clock->memory_path = path;
|
||
|
|
||
|
path = ipa_interconnect_init_one(dev, "imem");
|
||
|
if (IS_ERR(path))
|
||
|
goto err_memory_path_put;
|
||
|
clock->imem_path = path;
|
||
|
|
||
|
path = ipa_interconnect_init_one(dev, "config");
|
||
|
if (IS_ERR(path))
|
||
|
goto err_imem_path_put;
|
||
|
clock->config_path = path;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_imem_path_put:
|
||
|
icc_put(clock->imem_path);
|
||
|
err_memory_path_put:
|
||
|
icc_put(clock->memory_path);
|
||
|
err_return:
|
||
|
return PTR_ERR(path);
|
||
|
}
|
||
|
|
||
|
/* Inverse of ipa_interconnect_init() */
|
||
|
static void ipa_interconnect_exit(struct ipa_clock *clock)
|
||
|
{
|
||
|
icc_put(clock->config_path);
|
||
|
icc_put(clock->imem_path);
|
||
|
icc_put(clock->memory_path);
|
||
|
}
|
||
|
|
||
|
/* Currently we only use one bandwidth level, so just "enable" interconnects */
|
||
|
static int ipa_interconnect_enable(struct ipa *ipa)
|
||
|
{
|
||
|
struct ipa_clock *clock = ipa->clock;
|
||
|
int ret;
|
||
|
|
||
|
ret = icc_set_bw(clock->memory_path, IPA_MEMORY_AVG, IPA_MEMORY_PEAK);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = icc_set_bw(clock->imem_path, IPA_IMEM_AVG, IPA_IMEM_PEAK);
|
||
|
if (ret)
|
||
|
goto err_memory_path_disable;
|
||
|
|
||
|
ret = icc_set_bw(clock->config_path, IPA_CONFIG_AVG, IPA_CONFIG_PEAK);
|
||
|
if (ret)
|
||
|
goto err_imem_path_disable;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_imem_path_disable:
|
||
|
(void)icc_set_bw(clock->imem_path, 0, 0);
|
||
|
err_memory_path_disable:
|
||
|
(void)icc_set_bw(clock->memory_path, 0, 0);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* To disable an interconnect, we just its bandwidth to 0 */
|
||
|
static int ipa_interconnect_disable(struct ipa *ipa)
|
||
|
{
|
||
|
struct ipa_clock *clock = ipa->clock;
|
||
|
int ret;
|
||
|
|
||
|
ret = icc_set_bw(clock->memory_path, 0, 0);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = icc_set_bw(clock->imem_path, 0, 0);
|
||
|
if (ret)
|
||
|
goto err_memory_path_reenable;
|
||
|
|
||
|
ret = icc_set_bw(clock->config_path, 0, 0);
|
||
|
if (ret)
|
||
|
goto err_imem_path_reenable;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_imem_path_reenable:
|
||
|
(void)icc_set_bw(clock->imem_path, IPA_IMEM_AVG, IPA_IMEM_PEAK);
|
||
|
err_memory_path_reenable:
|
||
|
(void)icc_set_bw(clock->memory_path, IPA_MEMORY_AVG, IPA_MEMORY_PEAK);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Turn on IPA clocks, including interconnects */
|
||
|
static int ipa_clock_enable(struct ipa *ipa)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = ipa_interconnect_enable(ipa);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = clk_prepare_enable(ipa->clock->core);
|
||
|
if (ret)
|
||
|
ipa_interconnect_disable(ipa);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Inverse of ipa_clock_enable() */
|
||
|
static void ipa_clock_disable(struct ipa *ipa)
|
||
|
{
|
||
|
clk_disable_unprepare(ipa->clock->core);
|
||
|
(void)ipa_interconnect_disable(ipa);
|
||
|
}
|
||
|
|
||
|
/* Get an IPA clock reference, but only if the reference count is
|
||
|
* already non-zero. Returns true if the additional reference was
|
||
|
* added successfully, or false otherwise.
|
||
|
*/
|
||
|
bool ipa_clock_get_additional(struct ipa *ipa)
|
||
|
{
|
||
|
return !!atomic_inc_not_zero(&ipa->clock->count);
|
||
|
}
|
||
|
|
||
|
/* Get an IPA clock reference. If the reference count is non-zero, it is
|
||
|
* incremented and return is immediate. Otherwise it is checked again
|
||
|
* under protection of the mutex, and if appropriate the clock (and
|
||
|
* interconnects) are enabled suspended endpoints (if any) are resumed
|
||
|
* before returning.
|
||
|
*
|
||
|
* Incrementing the reference count is intentionally deferred until
|
||
|
* after the clock is running and endpoints are resumed.
|
||
|
*/
|
||
|
void ipa_clock_get(struct ipa *ipa)
|
||
|
{
|
||
|
struct ipa_clock *clock = ipa->clock;
|
||
|
int ret;
|
||
|
|
||
|
/* If the clock is running, just bump the reference count */
|
||
|
if (ipa_clock_get_additional(ipa))
|
||
|
return;
|
||
|
|
||
|
/* Otherwise get the mutex and check again */
|
||
|
mutex_lock(&clock->mutex);
|
||
|
|
||
|
/* A reference might have been added before we got the mutex. */
|
||
|
if (ipa_clock_get_additional(ipa))
|
||
|
goto out_mutex_unlock;
|
||
|
|
||
|
ret = ipa_clock_enable(ipa);
|
||
|
if (ret) {
|
||
|
dev_err(&ipa->pdev->dev, "error %d enabling IPA clock\n", ret);
|
||
|
goto out_mutex_unlock;
|
||
|
}
|
||
|
|
||
|
ipa_endpoint_resume(ipa);
|
||
|
|
||
|
atomic_inc(&clock->count);
|
||
|
|
||
|
out_mutex_unlock:
|
||
|
mutex_unlock(&clock->mutex);
|
||
|
}
|
||
|
|
||
|
/* Attempt to remove an IPA clock reference. If this represents the last
|
||
|
* reference, suspend endpoints and disable the clock (and interconnects)
|
||
|
* under protection of a mutex.
|
||
|
*/
|
||
|
void ipa_clock_put(struct ipa *ipa)
|
||
|
{
|
||
|
struct ipa_clock *clock = ipa->clock;
|
||
|
|
||
|
/* If this is not the last reference there's nothing more to do */
|
||
|
if (!atomic_dec_and_mutex_lock(&clock->count, &clock->mutex))
|
||
|
return;
|
||
|
|
||
|
ipa_endpoint_suspend(ipa);
|
||
|
|
||
|
ipa_clock_disable(ipa);
|
||
|
|
||
|
mutex_unlock(&clock->mutex);
|
||
|
}
|
||
|
|
||
|
/* Initialize IPA clocking */
|
||
|
struct ipa_clock *ipa_clock_init(struct device *dev)
|
||
|
{
|
||
|
struct ipa_clock *clock;
|
||
|
struct clk *clk;
|
||
|
int ret;
|
||
|
|
||
|
clk = clk_get(dev, "core");
|
||
|
if (IS_ERR(clk)) {
|
||
|
dev_err(dev, "error %ld getting core clock\n", PTR_ERR(clk));
|
||
|
return ERR_CAST(clk);
|
||
|
}
|
||
|
|
||
|
ret = clk_set_rate(clk, IPA_CORE_CLOCK_RATE);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "error %d setting core clock rate to %lu\n",
|
||
|
ret, IPA_CORE_CLOCK_RATE);
|
||
|
goto err_clk_put;
|
||
|
}
|
||
|
|
||
|
clock = kzalloc(sizeof(*clock), GFP_KERNEL);
|
||
|
if (!clock) {
|
||
|
ret = -ENOMEM;
|
||
|
goto err_clk_put;
|
||
|
}
|
||
|
clock->core = clk;
|
||
|
|
||
|
ret = ipa_interconnect_init(clock, dev);
|
||
|
if (ret)
|
||
|
goto err_kfree;
|
||
|
|
||
|
mutex_init(&clock->mutex);
|
||
|
atomic_set(&clock->count, 0);
|
||
|
|
||
|
return clock;
|
||
|
|
||
|
err_kfree:
|
||
|
kfree(clock);
|
||
|
err_clk_put:
|
||
|
clk_put(clk);
|
||
|
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
/* Inverse of ipa_clock_init() */
|
||
|
void ipa_clock_exit(struct ipa_clock *clock)
|
||
|
{
|
||
|
struct clk *clk = clock->core;
|
||
|
|
||
|
WARN_ON(atomic_read(&clock->count) != 0);
|
||
|
mutex_destroy(&clock->mutex);
|
||
|
ipa_interconnect_exit(clock);
|
||
|
kfree(clock);
|
||
|
clk_put(clk);
|
||
|
}
|