linux/drivers/gpu/drm/i915/i915_debugfs.c

3912 lines
101 KiB
C
Raw Normal View History

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/seq_file.h>
#include <linux/circ_buf.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/list_sort.h>
#include <asm/msr-index.h>
#include <drm/drmP.h>
#include "intel_drv.h"
#include "intel_ringbuffer.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
enum {
ACTIVE_LIST,
INACTIVE_LIST,
PINNED_LIST,
};
static const char *yesno(int v)
{
return v ? "yes" : "no";
}
/* As the drm_debugfs_init() routines are called before dev->dev_private is
* allocated we need to hook into the minor for release. */
static int
drm_add_fake_info_node(struct drm_minor *minor,
struct dentry *ent,
const void *key)
{
struct drm_info_node *node;
node = kmalloc(sizeof(*node), GFP_KERNEL);
if (node == NULL) {
debugfs_remove(ent);
return -ENOMEM;
}
node->minor = minor;
node->dent = ent;
node->info_ent = (void *) key;
mutex_lock(&minor->debugfs_lock);
list_add(&node->list, &minor->debugfs_list);
mutex_unlock(&minor->debugfs_lock);
return 0;
}
static int i915_capabilities(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
const struct intel_device_info *info = INTEL_INFO(dev);
seq_printf(m, "gen: %d\n", info->gen);
seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
#define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
#define SEP_SEMICOLON ;
DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
#undef PRINT_FLAG
#undef SEP_SEMICOLON
return 0;
}
static const char *get_pin_flag(struct drm_i915_gem_object *obj)
{
if (obj->user_pin_count > 0)
return "P";
else if (i915_gem_obj_is_pinned(obj))
return "p";
else
return " ";
}
static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
{
switch (obj->tiling_mode) {
default:
case I915_TILING_NONE: return " ";
case I915_TILING_X: return "X";
case I915_TILING_Y: return "Y";
}
}
static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
{
return obj->has_global_gtt_mapping ? "g" : " ";
}
static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
struct i915_vma *vma;
int pin_count = 0;
seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
&obj->base,
get_pin_flag(obj),
get_tiling_flag(obj),
get_global_flag(obj),
obj->base.size / 1024,
obj->base.read_domains,
obj->base.write_domain,
obj->last_read_seqno,
obj->last_write_seqno,
obj->last_fenced_seqno,
i915_cache_level_str(obj->cache_level),
obj->dirty ? " dirty" : "",
obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
if (obj->base.name)
seq_printf(m, " (name: %d)", obj->base.name);
list_for_each_entry(vma, &obj->vma_list, vma_link)
if (vma->pin_count > 0)
pin_count++;
seq_printf(m, " (pinned x %d)", pin_count);
if (obj->pin_display)
seq_printf(m, " (display)");
if (obj->fence_reg != I915_FENCE_REG_NONE)
seq_printf(m, " (fence: %d)", obj->fence_reg);
list_for_each_entry(vma, &obj->vma_list, vma_link) {
if (!i915_is_ggtt(vma->vm))
seq_puts(m, " (pp");
else
seq_puts(m, " (g");
seq_printf(m, "gtt offset: %08lx, size: %08lx)",
vma->node.start, vma->node.size);
}
if (obj->stolen)
seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
if (obj->pin_mappable || obj->fault_mappable) {
char s[3], *t = s;
if (obj->pin_mappable)
*t++ = 'p';
if (obj->fault_mappable)
*t++ = 'f';
*t = '\0';
seq_printf(m, " (%s mappable)", s);
}
if (obj->ring != NULL)
seq_printf(m, " (%s)", obj->ring->name);
}
drm/i915: Do remaps for all contexts On both Ivybridge and Haswell, row remapping information is saved and restored with context. This means, we never actually properly supported the l3 remapping because our sysfs interface is asynchronous (and not tied to any context), and the known faulty HW would be reused by the next context to run. Not that due to the asynchronous nature of the sysfs entry, there is no point modifying the registers for the existing context. Instead we set a flag for all contexts to load the correct remapping information on the next run. Interested clients can use debugfs to determine whether or not the row has been remapped. One could propose at this point that we just do the remapping in the kernel. I guess since we have to maintain the sysfs interface anyway, I'm not sure how useful it is, and I do like keeping the policy in userspace; (it wasn't my original decision to make the interface the way it is, so I'm not attached). v2: Force a context switch when we have a remap on the next switch. (Ville) Don't let userspace use the interface with disabled contexts. v3: Don't force a context switch, just let it nop Improper context slice remap initialization, 1<<1 instead of 1<<i, but I rewrote it to avoid a second round of confusion. Error print moved to error path (All Ville) Added a comment on why the slice remap initialization happens. CC: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-19 10:03:18 +08:00
static void describe_ctx(struct seq_file *m, struct i915_hw_context *ctx)
{
seq_putc(m, ctx->is_initialized ? 'I' : 'i');
seq_putc(m, ctx->remap_slice ? 'R' : 'r');
seq_putc(m, ' ');
}
static int i915_gem_object_list_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
uintptr_t list = (uintptr_t) node->info_ent->data;
struct list_head *head;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_address_space *vm = &dev_priv->gtt.base;
2013-08-01 08:00:14 +08:00
struct i915_vma *vma;
size_t total_obj_size, total_gtt_size;
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
2013-08-01 08:00:14 +08:00
/* FIXME: the user of this interface might want more than just GGTT */
switch (list) {
case ACTIVE_LIST:
seq_puts(m, "Active:\n");
head = &vm->active_list;
break;
case INACTIVE_LIST:
seq_puts(m, "Inactive:\n");
head = &vm->inactive_list;
break;
default:
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
total_obj_size = total_gtt_size = count = 0;
2013-08-01 08:00:14 +08:00
list_for_each_entry(vma, head, mm_list) {
seq_printf(m, " ");
describe_obj(m, vma->obj);
seq_printf(m, "\n");
total_obj_size += vma->obj->base.size;
total_gtt_size += vma->node.size;
count++;
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
static int obj_rank_by_stolen(void *priv,
struct list_head *A, struct list_head *B)
{
struct drm_i915_gem_object *a =
container_of(A, struct drm_i915_gem_object, obj_exec_link);
struct drm_i915_gem_object *b =
container_of(B, struct drm_i915_gem_object, obj_exec_link);
return a->stolen->start - b->stolen->start;
}
static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
size_t total_obj_size, total_gtt_size;
LIST_HEAD(stolen);
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (obj->stolen == NULL)
continue;
list_add(&obj->obj_exec_link, &stolen);
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_ggtt_size(obj);
count++;
}
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
if (obj->stolen == NULL)
continue;
list_add(&obj->obj_exec_link, &stolen);
total_obj_size += obj->base.size;
count++;
}
list_sort(NULL, &stolen, obj_rank_by_stolen);
seq_puts(m, "Stolen:\n");
while (!list_empty(&stolen)) {
obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
list_del_init(&obj->obj_exec_link);
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
#define count_objects(list, member) do { \
list_for_each_entry(obj, list, member) { \
size += i915_gem_obj_ggtt_size(obj); \
++count; \
if (obj->map_and_fenceable) { \
mappable_size += i915_gem_obj_ggtt_size(obj); \
++mappable_count; \
} \
} \
} while (0)
struct file_stats {
struct drm_i915_file_private *file_priv;
int count;
size_t total, unbound;
size_t global, shared;
size_t active, inactive;
};
static int per_file_stats(int id, void *ptr, void *data)
{
struct drm_i915_gem_object *obj = ptr;
struct file_stats *stats = data;
struct i915_vma *vma;
stats->count++;
stats->total += obj->base.size;
if (obj->base.name || obj->base.dma_buf)
stats->shared += obj->base.size;
if (USES_FULL_PPGTT(obj->base.dev)) {
list_for_each_entry(vma, &obj->vma_list, vma_link) {
struct i915_hw_ppgtt *ppgtt;
if (!drm_mm_node_allocated(&vma->node))
continue;
if (i915_is_ggtt(vma->vm)) {
stats->global += obj->base.size;
continue;
}
ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
if (ppgtt->ctx && ppgtt->ctx->file_priv != stats->file_priv)
continue;
if (obj->ring) /* XXX per-vma statistic */
stats->active += obj->base.size;
else
stats->inactive += obj->base.size;
return 0;
}
} else {
if (i915_gem_obj_ggtt_bound(obj)) {
stats->global += obj->base.size;
if (obj->ring)
stats->active += obj->base.size;
else
stats->inactive += obj->base.size;
return 0;
}
}
if (!list_empty(&obj->global_list))
stats->unbound += obj->base.size;
return 0;
}
2013-08-01 08:00:14 +08:00
#define count_vmas(list, member) do { \
list_for_each_entry(vma, list, member) { \
size += i915_gem_obj_ggtt_size(vma->obj); \
++count; \
if (vma->obj->map_and_fenceable) { \
mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
++mappable_count; \
} \
} \
} while (0)
static int i915_gem_object_info(struct seq_file *m, void* data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 count, mappable_count, purgeable_count;
size_t size, mappable_size, purgeable_size;
struct drm_i915_gem_object *obj;
struct i915_address_space *vm = &dev_priv->gtt.base;
struct drm_file *file;
2013-08-01 08:00:14 +08:00
struct i915_vma *vma;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "%u objects, %zu bytes\n",
dev_priv->mm.object_count,
dev_priv->mm.object_memory);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.bound_list, global_list);
seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
2013-08-01 08:00:14 +08:00
count_vmas(&vm->active_list, mm_list);
seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
2013-08-01 08:00:14 +08:00
count_vmas(&vm->inactive_list, mm_list);
seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = purgeable_size = purgeable_count = 0;
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
drm/i915: Track unbound pages When dealing with a working set larger than the GATT, or even the mappable aperture when touching through the GTT, we end up with evicting objects only to rebind them at a new offset again later. Moving an object into and out of the GTT requires clflushing the pages, thus causing a double-clflush penalty for rebinding. To avoid having to clflush on rebinding, we can track the pages as they are evicted from the GTT and only relinquish those pages on memory pressure. As usual, if it were not for the handling of out-of-memory condition and having to manually shrink our own bo caches, it would be a net reduction of code. Alas. Note: The patch also contains a few changes to the last-hope evict_everything logic in i916_gem_execbuffer.c - we no longer try to only evict the purgeable stuff in a first try (since that's superflous and only helps in OOM corner-cases, not fragmented-gtt trashing situations). Also, the extraction of the get_pages retry loop from bind_to_gtt (and other callsites) to get_pages should imo have been a separate patch. v2: Ditch the newly added put_pages (for unbound objects only) in i915_gem_reset. A quick irc discussion hasn't revealed any important reason for this, so if we need this, I'd like to have a git blame'able explanation for it. v3: Undo the s/drm_malloc_ab/kmalloc/ in get_pages that Chris noticed. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Split out code movements and rant a bit in the commit message with a few Notes. Done v2] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-08-20 17:40:46 +08:00
size += obj->base.size, ++count;
if (obj->madv == I915_MADV_DONTNEED)
purgeable_size += obj->base.size, ++purgeable_count;
}
drm/i915: Track unbound pages When dealing with a working set larger than the GATT, or even the mappable aperture when touching through the GTT, we end up with evicting objects only to rebind them at a new offset again later. Moving an object into and out of the GTT requires clflushing the pages, thus causing a double-clflush penalty for rebinding. To avoid having to clflush on rebinding, we can track the pages as they are evicted from the GTT and only relinquish those pages on memory pressure. As usual, if it were not for the handling of out-of-memory condition and having to manually shrink our own bo caches, it would be a net reduction of code. Alas. Note: The patch also contains a few changes to the last-hope evict_everything logic in i916_gem_execbuffer.c - we no longer try to only evict the purgeable stuff in a first try (since that's superflous and only helps in OOM corner-cases, not fragmented-gtt trashing situations). Also, the extraction of the get_pages retry loop from bind_to_gtt (and other callsites) to get_pages should imo have been a separate patch. v2: Ditch the newly added put_pages (for unbound objects only) in i915_gem_reset. A quick irc discussion hasn't revealed any important reason for this, so if we need this, I'd like to have a git blame'able explanation for it. v3: Undo the s/drm_malloc_ab/kmalloc/ in get_pages that Chris noticed. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Split out code movements and rant a bit in the commit message with a few Notes. Done v2] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-08-20 17:40:46 +08:00
seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
size = count = mappable_size = mappable_count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (obj->fault_mappable) {
size += i915_gem_obj_ggtt_size(obj);
++count;
}
if (obj->pin_mappable) {
mappable_size += i915_gem_obj_ggtt_size(obj);
++mappable_count;
}
if (obj->madv == I915_MADV_DONTNEED) {
purgeable_size += obj->base.size;
++purgeable_count;
}
}
seq_printf(m, "%u purgeable objects, %zu bytes\n",
purgeable_count, purgeable_size);
seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
mappable_count, mappable_size);
seq_printf(m, "%u fault mappable objects, %zu bytes\n",
count, size);
seq_printf(m, "%zu [%lu] gtt total\n",
dev_priv->gtt.base.total,
dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
seq_putc(m, '\n');
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct file_stats stats;
struct task_struct *task;
memset(&stats, 0, sizeof(stats));
stats.file_priv = file->driver_priv;
idr_for_each(&file->object_idr, per_file_stats, &stats);
/*
* Although we have a valid reference on file->pid, that does
* not guarantee that the task_struct who called get_pid() is
* still alive (e.g. get_pid(current) => fork() => exit()).
* Therefore, we need to protect this ->comm access using RCU.
*/
rcu_read_lock();
task = pid_task(file->pid, PIDTYPE_PID);
seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
task ? task->comm : "<unknown>",
stats.count,
stats.total,
stats.active,
stats.inactive,
stats.global,
stats.shared,
stats.unbound);
rcu_read_unlock();
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_gem_gtt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
uintptr_t list = (uintptr_t) node->info_ent->data;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
size_t total_obj_size, total_gtt_size;
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
continue;
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_ggtt_size(obj);
count++;
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
static int i915_gem_pageflip_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
unsigned long flags;
struct intel_crtc *crtc;
for_each_intel_crtc(dev, crtc) {
const char pipe = pipe_name(crtc->pipe);
const char plane = plane_name(crtc->plane);
struct intel_unpin_work *work;
spin_lock_irqsave(&dev->event_lock, flags);
work = crtc->unpin_work;
if (work == NULL) {
seq_printf(m, "No flip due on pipe %c (plane %c)\n",
pipe, plane);
} else {
if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
pipe, plane);
} else {
seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
pipe, plane);
}
if (work->enable_stall_check)
seq_puts(m, "Stall check enabled, ");
else
seq_puts(m, "Stall check waiting for page flip ioctl, ");
seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
if (work->old_fb_obj) {
struct drm_i915_gem_object *obj = work->old_fb_obj;
if (obj)
seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
i915_gem_obj_ggtt_offset(obj));
}
if (work->pending_flip_obj) {
struct drm_i915_gem_object *obj = work->pending_flip_obj;
if (obj)
seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
i915_gem_obj_ggtt_offset(obj));
}
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
return 0;
}
static int i915_gem_request_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
struct drm_i915_gem_request *gem_request;
int ret, count, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
count = 0;
for_each_ring(ring, dev_priv, i) {
if (list_empty(&ring->request_list))
continue;
seq_printf(m, "%s requests:\n", ring->name);
list_for_each_entry(gem_request,
&ring->request_list,
list) {
seq_printf(m, " %d @ %d\n",
gem_request->seqno,
(int) (jiffies - gem_request->emitted_jiffies));
}
count++;
}
mutex_unlock(&dev->struct_mutex);
if (count == 0)
seq_puts(m, "No requests\n");
return 0;
}
static void i915_ring_seqno_info(struct seq_file *m,
struct intel_ring_buffer *ring)
{
if (ring->get_seqno) {
seq_printf(m, "Current sequence (%s): %u\n",
ring->name, ring->get_seqno(ring, false));
}
}
static int i915_gem_seqno_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
for_each_ring(ring, dev_priv, i)
i915_ring_seqno_info(m, ring);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_interrupt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i, pipe;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
if (IS_CHERRYVIEW(dev)) {
int i;
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(pipe)
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
} else if (INTEL_INFO(dev)->gen >= 8) {
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
for_each_pipe(pipe) {
seq_printf(m, "Pipe %c IMR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IMR(pipe)));
seq_printf(m, "Pipe %c IIR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IIR(pipe)));
seq_printf(m, "Pipe %c IER:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IER(pipe)));
}
seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_PORT_IMR));
seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_PORT_IIR));
seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_PORT_IER));
seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_MISC_IMR));
seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_MISC_IIR));
seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_MISC_IER));
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
} else if (IS_VALLEYVIEW(dev)) {
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(pipe)
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
seq_printf(m, "Master IER:\t%08x\n",
I915_READ(VLV_MASTER_IER));
seq_printf(m, "Render IER:\t%08x\n",
I915_READ(GTIER));
seq_printf(m, "Render IIR:\t%08x\n",
I915_READ(GTIIR));
seq_printf(m, "Render IMR:\t%08x\n",
I915_READ(GTIMR));
seq_printf(m, "PM IER:\t\t%08x\n",
I915_READ(GEN6_PMIER));
seq_printf(m, "PM IIR:\t\t%08x\n",
I915_READ(GEN6_PMIIR));
seq_printf(m, "PM IMR:\t\t%08x\n",
I915_READ(GEN6_PMIMR));
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
} else if (!HAS_PCH_SPLIT(dev)) {
seq_printf(m, "Interrupt enable: %08x\n",
I915_READ(IER));
seq_printf(m, "Interrupt identity: %08x\n",
I915_READ(IIR));
seq_printf(m, "Interrupt mask: %08x\n",
I915_READ(IMR));
for_each_pipe(pipe)
seq_printf(m, "Pipe %c stat: %08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
} else {
seq_printf(m, "North Display Interrupt enable: %08x\n",
I915_READ(DEIER));
seq_printf(m, "North Display Interrupt identity: %08x\n",
I915_READ(DEIIR));
seq_printf(m, "North Display Interrupt mask: %08x\n",
I915_READ(DEIMR));
seq_printf(m, "South Display Interrupt enable: %08x\n",
I915_READ(SDEIER));
seq_printf(m, "South Display Interrupt identity: %08x\n",
I915_READ(SDEIIR));
seq_printf(m, "South Display Interrupt mask: %08x\n",
I915_READ(SDEIMR));
seq_printf(m, "Graphics Interrupt enable: %08x\n",
I915_READ(GTIER));
seq_printf(m, "Graphics Interrupt identity: %08x\n",
I915_READ(GTIIR));
seq_printf(m, "Graphics Interrupt mask: %08x\n",
I915_READ(GTIMR));
}
for_each_ring(ring, dev_priv, i) {
if (INTEL_INFO(dev)->gen >= 6) {
seq_printf(m,
"Graphics Interrupt mask (%s): %08x\n",
ring->name, I915_READ_IMR(ring));
}
i915_ring_seqno_info(m, ring);
}
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int i, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
drm/i915: Track unbound pages When dealing with a working set larger than the GATT, or even the mappable aperture when touching through the GTT, we end up with evicting objects only to rebind them at a new offset again later. Moving an object into and out of the GTT requires clflushing the pages, thus causing a double-clflush penalty for rebinding. To avoid having to clflush on rebinding, we can track the pages as they are evicted from the GTT and only relinquish those pages on memory pressure. As usual, if it were not for the handling of out-of-memory condition and having to manually shrink our own bo caches, it would be a net reduction of code. Alas. Note: The patch also contains a few changes to the last-hope evict_everything logic in i916_gem_execbuffer.c - we no longer try to only evict the purgeable stuff in a first try (since that's superflous and only helps in OOM corner-cases, not fragmented-gtt trashing situations). Also, the extraction of the get_pages retry loop from bind_to_gtt (and other callsites) to get_pages should imo have been a separate patch. v2: Ditch the newly added put_pages (for unbound objects only) in i915_gem_reset. A quick irc discussion hasn't revealed any important reason for this, so if we need this, I'd like to have a git blame'able explanation for it. v3: Undo the s/drm_malloc_ab/kmalloc/ in get_pages that Chris noticed. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Split out code movements and rant a bit in the commit message with a few Notes. Done v2] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-08-20 17:40:46 +08:00
seq_printf(m, "Fence %d, pin count = %d, object = ",
i, dev_priv->fence_regs[i].pin_count);
if (obj == NULL)
seq_puts(m, "unused");
else
describe_obj(m, obj);
seq_putc(m, '\n');
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_hws_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
const u32 *hws;
int i;
ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
hws = ring->status_page.page_addr;
if (hws == NULL)
return 0;
for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
i * 4,
hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
}
return 0;
}
static ssize_t
i915_error_state_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct i915_error_state_file_priv *error_priv = filp->private_data;
struct drm_device *dev = error_priv->dev;
int ret;
DRM_DEBUG_DRIVER("Resetting error state\n");
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
i915_destroy_error_state(dev);
mutex_unlock(&dev->struct_mutex);
return cnt;
}
static int i915_error_state_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct i915_error_state_file_priv *error_priv;
error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
if (!error_priv)
return -ENOMEM;
error_priv->dev = dev;
i915_error_state_get(dev, error_priv);
file->private_data = error_priv;
return 0;
}
static int i915_error_state_release(struct inode *inode, struct file *file)
{
struct i915_error_state_file_priv *error_priv = file->private_data;
i915_error_state_put(error_priv);
kfree(error_priv);
return 0;
}
static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
size_t count, loff_t *pos)
{
struct i915_error_state_file_priv *error_priv = file->private_data;
struct drm_i915_error_state_buf error_str;
loff_t tmp_pos = 0;
ssize_t ret_count = 0;
int ret;
ret = i915_error_state_buf_init(&error_str, count, *pos);
if (ret)
return ret;
ret = i915_error_state_to_str(&error_str, error_priv);
if (ret)
goto out;
ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
error_str.buf,
error_str.bytes);
if (ret_count < 0)
ret = ret_count;
else
*pos = error_str.start + ret_count;
out:
i915_error_state_buf_release(&error_str);
return ret ?: ret_count;
}
static const struct file_operations i915_error_state_fops = {
.owner = THIS_MODULE,
.open = i915_error_state_open,
.read = i915_error_state_read,
.write = i915_error_state_write,
.llseek = default_llseek,
.release = i915_error_state_release,
};
static int
i915_next_seqno_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
*val = dev_priv->next_seqno;
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int
i915_next_seqno_set(void *data, u64 val)
{
struct drm_device *dev = data;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
ret = i915_gem_set_seqno(dev, val);
mutex_unlock(&dev->struct_mutex);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
i915_next_seqno_get, i915_next_seqno_set,
"0x%llx\n");
static int i915_rstdby_delays(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u16 crstanddelay;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
crstanddelay = I915_READ16(CRSTANDVID);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
return 0;
}
static int i915_frequency_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = 0;
intel_runtime_pm_get(dev_priv);
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
if (IS_GEN5(dev)) {
u16 rgvswctl = I915_READ16(MEMSWCTL);
u16 rgvstat = I915_READ16(MEMSTAT_ILK);
seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
MEMSTAT_VID_SHIFT);
seq_printf(m, "Current P-state: %d\n",
(rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
u32 rpmodectl, rpinclimit, rpdeclimit;
u32 rpstat, cagf, reqf;
u32 rpupei, rpcurup, rpprevup;
u32 rpdownei, rpcurdown, rpprevdown;
int max_freq;
/* RPSTAT1 is in the GT power well */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
reqf = I915_READ(GEN6_RPNSWREQ);
reqf &= ~GEN6_TURBO_DISABLE;
if (IS_HASWELL(dev))
reqf >>= 24;
else
reqf >>= 25;
reqf *= GT_FREQUENCY_MULTIPLIER;
rpmodectl = I915_READ(GEN6_RP_CONTROL);
rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
rpstat = I915_READ(GEN6_RPSTAT1);
rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
rpcurup = I915_READ(GEN6_RP_CUR_UP);
rpprevup = I915_READ(GEN6_RP_PREV_UP);
rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
if (IS_HASWELL(dev))
cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
else
cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
cagf *= GT_FREQUENCY_MULTIPLIER;
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
I915_READ(GEN6_PMIER),
I915_READ(GEN6_PMIMR),
I915_READ(GEN6_PMISR),
I915_READ(GEN6_PMIIR),
I915_READ(GEN6_PMINTRMSK));
seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
seq_printf(m, "Render p-state ratio: %d\n",
(gt_perf_status & 0xff00) >> 8);
seq_printf(m, "Render p-state VID: %d\n",
gt_perf_status & 0xff);
seq_printf(m, "Render p-state limit: %d\n",
rp_state_limits & 0xff);
seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
seq_printf(m, "CAGF: %dMHz\n", cagf);
seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
GEN6_CURICONT_MASK);
seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
GEN6_CURBSYTAVG_MASK);
seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
GEN6_CURBSYTAVG_MASK);
seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
GEN6_CURIAVG_MASK);
seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
GEN6_CURBSYTAVG_MASK);
seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
GEN6_CURBSYTAVG_MASK);
max_freq = (rp_state_cap & 0xff0000) >> 16;
seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
max_freq * GT_FREQUENCY_MULTIPLIER);
max_freq = (rp_state_cap & 0xff00) >> 8;
seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
max_freq * GT_FREQUENCY_MULTIPLIER);
max_freq = rp_state_cap & 0xff;
seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
max_freq * GT_FREQUENCY_MULTIPLIER);
seq_printf(m, "Max overclocked frequency: %dMHz\n",
dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
} else if (IS_VALLEYVIEW(dev)) {
u32 freq_sts, val;
mutex_lock(&dev_priv->rps.hw_lock);
freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
val = valleyview_rps_max_freq(dev_priv);
seq_printf(m, "max GPU freq: %d MHz\n",
vlv_gpu_freq(dev_priv, val));
val = valleyview_rps_min_freq(dev_priv);
seq_printf(m, "min GPU freq: %d MHz\n",
vlv_gpu_freq(dev_priv, val));
seq_printf(m, "current GPU freq: %d MHz\n",
vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
mutex_unlock(&dev_priv->rps.hw_lock);
} else {
seq_puts(m, "no P-state info available\n");
}
out:
intel_runtime_pm_put(dev_priv);
return ret;
}
static int i915_delayfreq_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 delayfreq;
int ret, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
for (i = 0; i < 16; i++) {
delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
(delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
}
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static inline int MAP_TO_MV(int map)
{
return 1250 - (map * 25);
}
static int i915_inttoext_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 inttoext;
int ret, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
for (i = 1; i <= 32; i++) {
inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
}
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int ironlake_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rgvmodectl, rstdbyctl;
u16 crstandvid;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
rgvmodectl = I915_READ(MEMMODECTL);
rstdbyctl = I915_READ(RSTDBYCTL);
crstandvid = I915_READ16(CRSTANDVID);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
"yes" : "no");
seq_printf(m, "Boost freq: %d\n",
(rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
MEMMODE_BOOST_FREQ_SHIFT);
seq_printf(m, "HW control enabled: %s\n",
rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
seq_printf(m, "SW control enabled: %s\n",
rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
seq_printf(m, "Gated voltage change: %s\n",
rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
seq_printf(m, "Starting frequency: P%d\n",
(rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
seq_printf(m, "Max P-state: P%d\n",
(rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
seq_printf(m, "Render standby enabled: %s\n",
(rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
seq_puts(m, "Current RS state: ");
switch (rstdbyctl & RSX_STATUS_MASK) {
case RSX_STATUS_ON:
seq_puts(m, "on\n");
break;
case RSX_STATUS_RC1:
seq_puts(m, "RC1\n");
break;
case RSX_STATUS_RC1E:
seq_puts(m, "RC1E\n");
break;
case RSX_STATUS_RS1:
seq_puts(m, "RS1\n");
break;
case RSX_STATUS_RS2:
seq_puts(m, "RS2 (RC6)\n");
break;
case RSX_STATUS_RS3:
seq_puts(m, "RC3 (RC6+)\n");
break;
default:
seq_puts(m, "unknown\n");
break;
}
return 0;
}
static int vlv_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rpmodectl1, rcctl1;
unsigned fw_rendercount = 0, fw_mediacount = 0;
intel_runtime_pm_get(dev_priv);
rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
intel_runtime_pm_put(dev_priv);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "Turbo enabled: %s\n",
yesno(rpmodectl1 & GEN6_RP_ENABLE));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl1 & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
GEN6_RC_CTL_EI_MODE(1))));
seq_printf(m, "Render Power Well: %s\n",
(I915_READ(VLV_GTLC_PW_STATUS) &
VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Media Power Well: %s\n",
(I915_READ(VLV_GTLC_PW_STATUS) &
VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Render RC6 residency since boot: %u\n",
I915_READ(VLV_GT_RENDER_RC6));
seq_printf(m, "Media RC6 residency since boot: %u\n",
I915_READ(VLV_GT_MEDIA_RC6));
spin_lock_irq(&dev_priv->uncore.lock);
fw_rendercount = dev_priv->uncore.fw_rendercount;
fw_mediacount = dev_priv->uncore.fw_mediacount;
spin_unlock_irq(&dev_priv->uncore.lock);
seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
return 0;
}
static int gen6_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
unsigned forcewake_count;
int count = 0, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
spin_lock_irq(&dev_priv->uncore.lock);
forcewake_count = dev_priv->uncore.forcewake_count;
spin_unlock_irq(&dev_priv->uncore.lock);
if (forcewake_count) {
seq_puts(m, "RC information inaccurate because somebody "
"holds a forcewake reference \n");
} else {
/* NB: we cannot use forcewake, else we read the wrong values */
while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
udelay(10);
seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
}
gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
mutex_unlock(&dev->struct_mutex);
mutex_lock(&dev_priv->rps.hw_lock);
sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
mutex_unlock(&dev_priv->rps.hw_lock);
intel_runtime_pm_put(dev_priv);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl1 & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
seq_printf(m, "RC1e Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
seq_printf(m, "Deep RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
seq_printf(m, "Deepest RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
seq_puts(m, "Current RC state: ");
switch (gt_core_status & GEN6_RCn_MASK) {
case GEN6_RC0:
if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
seq_puts(m, "Core Power Down\n");
else
seq_puts(m, "on\n");
break;
case GEN6_RC3:
seq_puts(m, "RC3\n");
break;
case GEN6_RC6:
seq_puts(m, "RC6\n");
break;
case GEN6_RC7:
seq_puts(m, "RC7\n");
break;
default:
seq_puts(m, "Unknown\n");
break;
}
seq_printf(m, "Core Power Down: %s\n",
yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
/* Not exactly sure what this is */
seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6_LOCKED));
seq_printf(m, "RC6 residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6));
seq_printf(m, "RC6+ residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6p));
seq_printf(m, "RC6++ residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6pp));
seq_printf(m, "RC6 voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
seq_printf(m, "RC6+ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
seq_printf(m, "RC6++ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
return 0;
}
static int i915_drpc_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
if (IS_VALLEYVIEW(dev))
return vlv_drpc_info(m);
else if (IS_GEN6(dev) || IS_GEN7(dev))
return gen6_drpc_info(m);
else
return ironlake_drpc_info(m);
}
static int i915_fbc_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!HAS_FBC(dev)) {
seq_puts(m, "FBC unsupported on this chipset\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
if (intel_fbc_enabled(dev)) {
seq_puts(m, "FBC enabled\n");
} else {
seq_puts(m, "FBC disabled: ");
switch (dev_priv->fbc.no_fbc_reason) {
case FBC_OK:
seq_puts(m, "FBC actived, but currently disabled in hardware");
break;
case FBC_UNSUPPORTED:
seq_puts(m, "unsupported by this chipset");
break;
case FBC_NO_OUTPUT:
seq_puts(m, "no outputs");
break;
case FBC_STOLEN_TOO_SMALL:
seq_puts(m, "not enough stolen memory");
break;
case FBC_UNSUPPORTED_MODE:
seq_puts(m, "mode not supported");
break;
case FBC_MODE_TOO_LARGE:
seq_puts(m, "mode too large");
break;
case FBC_BAD_PLANE:
seq_puts(m, "FBC unsupported on plane");
break;
case FBC_NOT_TILED:
seq_puts(m, "scanout buffer not tiled");
break;
case FBC_MULTIPLE_PIPES:
seq_puts(m, "multiple pipes are enabled");
break;
case FBC_MODULE_PARAM:
seq_puts(m, "disabled per module param (default off)");
break;
case FBC_CHIP_DEFAULT:
seq_puts(m, "disabled per chip default");
break;
default:
seq_puts(m, "unknown reason");
}
seq_putc(m, '\n');
}
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_ips_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!HAS_IPS(dev)) {
seq_puts(m, "not supported\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
seq_puts(m, "enabled\n");
else
seq_puts(m, "disabled\n");
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_sr_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool sr_enabled = false;
intel_runtime_pm_get(dev_priv);
if (HAS_PCH_SPLIT(dev))
sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
else if (IS_I915GM(dev))
sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
else if (IS_PINEVIEW(dev))
sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
intel_runtime_pm_put(dev_priv);
seq_printf(m, "self-refresh: %s\n",
sr_enabled ? "enabled" : "disabled");
return 0;
}
static int i915_emon_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long temp, chipset, gfx;
int ret;
if (!IS_GEN5(dev))
return -ENODEV;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
temp = i915_mch_val(dev_priv);
chipset = i915_chipset_val(dev_priv);
gfx = i915_gfx_val(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "GMCH temp: %ld\n", temp);
seq_printf(m, "Chipset power: %ld\n", chipset);
seq_printf(m, "GFX power: %ld\n", gfx);
seq_printf(m, "Total power: %ld\n", chipset + gfx);
return 0;
}
static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = 0;
int gpu_freq, ia_freq;
if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
seq_puts(m, "unsupported on this chipset\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
goto out;
seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
for (gpu_freq = dev_priv->rps.min_freq_softlimit;
gpu_freq <= dev_priv->rps.max_freq_softlimit;
gpu_freq++) {
ia_freq = gpu_freq;
sandybridge_pcode_read(dev_priv,
GEN6_PCODE_READ_MIN_FREQ_TABLE,
&ia_freq);
seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
gpu_freq * GT_FREQUENCY_MULTIPLIER,
((ia_freq >> 0) & 0xff) * 100,
((ia_freq >> 8) & 0xff) * 100);
}
mutex_unlock(&dev_priv->rps.hw_lock);
out:
intel_runtime_pm_put(dev_priv);
return ret;
}
static int i915_gfxec(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_opregion(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_opregion *opregion = &dev_priv->opregion;
void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
int ret;
if (data == NULL)
return -ENOMEM;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
if (opregion->header) {
memcpy_fromio(data, opregion->header, OPREGION_SIZE);
seq_write(m, data, OPREGION_SIZE);
}
mutex_unlock(&dev->struct_mutex);
out:
kfree(data);
return 0;
}
static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct intel_fbdev *ifbdev = NULL;
struct intel_framebuffer *fb;
#ifdef CONFIG_DRM_I915_FBDEV
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
if (ret)
return ret;
ifbdev = dev_priv->fbdev;
fb = to_intel_framebuffer(ifbdev->helper.fb);
seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
fb->base.width,
fb->base.height,
fb->base.depth,
fb->base.bits_per_pixel,
atomic_read(&fb->base.refcount.refcount));
describe_obj(m, fb->obj);
seq_putc(m, '\n');
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_unlock(&dev->mode_config.mutex);
#endif
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_lock(&dev->mode_config.fb_lock);
list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
if (ifbdev && &fb->base == ifbdev->helper.fb)
continue;
seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
fb->base.width,
fb->base.height,
fb->base.depth,
fb->base.bits_per_pixel,
atomic_read(&fb->base.refcount.refcount));
describe_obj(m, fb->obj);
seq_putc(m, '\n');
}
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_unlock(&dev->mode_config.fb_lock);
return 0;
}
static int i915_context_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
struct i915_hw_context *ctx;
int ret, i;
ret = mutex_lock_interruptible(&dev->mode_config.mutex);
if (ret)
return ret;
if (dev_priv->ips.pwrctx) {
seq_puts(m, "power context ");
describe_obj(m, dev_priv->ips.pwrctx);
seq_putc(m, '\n');
}
if (dev_priv->ips.renderctx) {
seq_puts(m, "render context ");
describe_obj(m, dev_priv->ips.renderctx);
seq_putc(m, '\n');
}
list_for_each_entry(ctx, &dev_priv->context_list, link) {
if (ctx->obj == NULL)
continue;
seq_puts(m, "HW context ");
drm/i915: Do remaps for all contexts On both Ivybridge and Haswell, row remapping information is saved and restored with context. This means, we never actually properly supported the l3 remapping because our sysfs interface is asynchronous (and not tied to any context), and the known faulty HW would be reused by the next context to run. Not that due to the asynchronous nature of the sysfs entry, there is no point modifying the registers for the existing context. Instead we set a flag for all contexts to load the correct remapping information on the next run. Interested clients can use debugfs to determine whether or not the row has been remapped. One could propose at this point that we just do the remapping in the kernel. I guess since we have to maintain the sysfs interface anyway, I'm not sure how useful it is, and I do like keeping the policy in userspace; (it wasn't my original decision to make the interface the way it is, so I'm not attached). v2: Force a context switch when we have a remap on the next switch. (Ville) Don't let userspace use the interface with disabled contexts. v3: Don't force a context switch, just let it nop Improper context slice remap initialization, 1<<1 instead of 1<<i, but I rewrote it to avoid a second round of confusion. Error print moved to error path (All Ville) Added a comment on why the slice remap initialization happens. CC: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-19 10:03:18 +08:00
describe_ctx(m, ctx);
for_each_ring(ring, dev_priv, i)
if (ring->default_context == ctx)
seq_printf(m, "(default context %s) ", ring->name);
describe_obj(m, ctx->obj);
seq_putc(m, '\n');
}
mutex_unlock(&dev->mode_config.mutex);
return 0;
}
static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
spin_lock_irq(&dev_priv->uncore.lock);
if (IS_VALLEYVIEW(dev)) {
fw_rendercount = dev_priv->uncore.fw_rendercount;
fw_mediacount = dev_priv->uncore.fw_mediacount;
} else
forcewake_count = dev_priv->uncore.forcewake_count;
spin_unlock_irq(&dev_priv->uncore.lock);
if (IS_VALLEYVIEW(dev)) {
seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
} else
seq_printf(m, "forcewake count = %u\n", forcewake_count);
return 0;
}
static const char *swizzle_string(unsigned swizzle)
{
switch (swizzle) {
case I915_BIT_6_SWIZZLE_NONE:
return "none";
case I915_BIT_6_SWIZZLE_9:
return "bit9";
case I915_BIT_6_SWIZZLE_9_10:
return "bit9/bit10";
case I915_BIT_6_SWIZZLE_9_11:
return "bit9/bit11";
case I915_BIT_6_SWIZZLE_9_10_11:
return "bit9/bit10/bit11";
case I915_BIT_6_SWIZZLE_9_17:
return "bit9/bit17";
case I915_BIT_6_SWIZZLE_9_10_17:
return "bit9/bit10/bit17";
case I915_BIT_6_SWIZZLE_UNKNOWN:
return "unknown";
}
return "bug";
}
static int i915_swizzle_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_x));
seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_y));
if (IS_GEN3(dev) || IS_GEN4(dev)) {
seq_printf(m, "DDC = 0x%08x\n",
I915_READ(DCC));
seq_printf(m, "C0DRB3 = 0x%04x\n",
I915_READ16(C0DRB3));
seq_printf(m, "C1DRB3 = 0x%04x\n",
I915_READ16(C1DRB3));
} else if (INTEL_INFO(dev)->gen >= 6) {
seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
I915_READ(MAD_DIMM_C0));
seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
I915_READ(MAD_DIMM_C1));
seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
I915_READ(MAD_DIMM_C2));
seq_printf(m, "TILECTL = 0x%08x\n",
I915_READ(TILECTL));
if (IS_GEN8(dev))
seq_printf(m, "GAMTARBMODE = 0x%08x\n",
I915_READ(GAMTARBMODE));
else
seq_printf(m, "ARB_MODE = 0x%08x\n",
I915_READ(ARB_MODE));
seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
I915_READ(DISP_ARB_CTL));
}
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int per_file_ctx(int id, void *ptr, void *data)
{
struct i915_hw_context *ctx = ptr;
struct seq_file *m = data;
struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
ppgtt->debug_dump(ppgtt, m);
return 0;
}
static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
int unused, i;
if (!ppgtt)
return;
seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
for_each_ring(ring, dev_priv, unused) {
seq_printf(m, "%s\n", ring->name);
for (i = 0; i < 4; i++) {
u32 offset = 0x270 + i * 8;
u64 pdp = I915_READ(ring->mmio_base + offset + 4);
pdp <<= 32;
pdp |= I915_READ(ring->mmio_base + offset);
seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
}
}
}
static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
struct drm_file *file;
int i;
if (INTEL_INFO(dev)->gen == 6)
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
for_each_ring(ring, dev_priv, i) {
seq_printf(m, "%s\n", ring->name);
if (INTEL_INFO(dev)->gen == 7)
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
}
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
seq_puts(m, "aliasing PPGTT:\n");
seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
ppgtt->debug_dump(ppgtt, m);
} else
return;
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_hw_ppgtt *pvt_ppgtt;
pvt_ppgtt = ctx_to_ppgtt(file_priv->private_default_ctx);
seq_printf(m, "proc: %s\n",
get_pid_task(file->pid, PIDTYPE_PID)->comm);
seq_puts(m, " default context:\n");
idr_for_each(&file_priv->context_idr, per_file_ctx, m);
}
seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
}
static int i915_ppgtt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
if (INTEL_INFO(dev)->gen >= 8)
gen8_ppgtt_info(m, dev);
else if (INTEL_INFO(dev)->gen >= 6)
gen6_ppgtt_info(m, dev);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_llc(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
/* Size calculation for LLC is a bit of a pain. Ignore for now. */
seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
return 0;
}
static int i915_edp_psr_status(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 psrperf = 0;
bool enabled = false;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
enabled = HAS_PSR(dev) &&
I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
seq_printf(m, "Enabled: %s\n", yesno(enabled));
if (HAS_PSR(dev))
psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
EDP_PSR_PERF_CNT_MASK;
seq_printf(m, "Performance_Counter: %u\n", psrperf);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_sink_crc(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct intel_encoder *encoder;
struct intel_connector *connector;
struct intel_dp *intel_dp = NULL;
int ret;
u8 crc[6];
drm_modeset_lock_all(dev);
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->base.dpms != DRM_MODE_DPMS_ON)
continue;
drm/i915: don't reference null pointer at i915_sink_crc Reproducible by runtime suspending a Haswell machine with eDP + HDMI outputs connected. [ 209.600086] [drm:i915_runtime_suspend], Suspending device [ 209.688435] BUG: unable to handle kernel NULL pointer dereference at 0000000000000060 [ 209.688500] IP: [<ffffffffa0109d4e>] i915_sink_crc+0x6e/0xf0 [i915] [ 209.688577] PGD 36aba067 PUD 35d7f067 PMD 0 [ 209.688613] Oops: 0000 [#1] SMP [ 209.688641] Modules linked in: fuse ip6table_filter ip6_tables ebtable_nat ebtables iTCO_wdt iTCO_vendor_support x86_pkg_temp_thermal coretemp microcode serio_raw e1000e pcspkr i2c_i801 ptp mei_me mei lpc_ich mfd_core pps_core dm_crypt i915 i2c_algo_bit crc32_pclmul drm_kms_helper crc32c_intel drm ghash_clmulni_intel video [ 209.688893] CPU: 1 PID: 1797 Comm: pm_pc8 Not tainted 3.13.0+ #118 [ 209.688937] Hardware name: Intel Corporation Shark Bay Client platform/WhiteTip Mountain 1, BIOS HSWLPTU1.86C.0133.R00.1309172123 09/17/2013 [ 209.689023] task: ffff88007fb4b690 ti: ffff88007d9d2000 task.ti: ffff88007d9d2000 [ 209.689074] RIP: 0010:[<ffffffffa0109d4e>] [<ffffffffa0109d4e>] i915_sink_crc+0x6e/0xf0 [i915] [ 209.689169] RSP: 0018:ffff88007d9d3e68 EFLAGS: 00010246 [ 209.689205] RAX: 0000000000000000 RBX: ffff880036a03478 RCX: ffff8800366c9770 [ 209.689252] RDX: ffff88014325cf38 RSI: ffff88007fb4bd08 RDI: ffff88007fb4b690 [ 209.689299] RBP: ffff88007d9d3e98 R08: 0000000000000000 R09: 0000000000000000 [ 209.689346] R10: 0000000000000001 R11: 0000000000000000 R12: ffff8800366c9148 [ 209.689393] R13: 00000000ffffffed R14: ffff88007d9d3f50 R15: ffff880036a03478 [ 209.689441] FS: 00007f5a74bc29c0(0000) GS:ffff88014f240000(0000) knlGS:0000000000000000 [ 209.689494] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 209.689533] CR2: 0000000000000060 CR3: 0000000079d7e000 CR4: 00000000001407e0 [ 209.689580] Stack: [ 209.689594] 0000000000001000 ffff880146083980 ffff880146083980 0000000000000000 [ 209.689649] ffff880146083980 0000000000000001 ffff88007d9d3f00 ffffffff811d0744 [ 209.689702] 0000000000000046 00007fff7949fe20 ffff880036a034b8 0000000000000080 [ 209.689756] Call Trace: [ 209.689778] [<ffffffff811d0744>] seq_read+0x164/0x3e0 [ 209.689816] [<ffffffff811ab165>] vfs_read+0x95/0x160 [ 209.689851] [<ffffffff811abc79>] SyS_read+0x49/0xa0 [ 209.689888] [<ffffffff810ef64c>] ? __audit_syscall_entry+0x9c/0xf0 [ 209.689933] [<ffffffff81659412>] system_call_fastpath+0x16/0x1b Testcase: igt/pm_pc8 (do a full run, it will fail at the debugfs-read subtest) Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com> [danvet: Flip around NULL check for robustness.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-02-14 03:51:33 +08:00
if (!connector->base.encoder)
continue;
encoder = to_intel_encoder(connector->base.encoder);
if (encoder->type != INTEL_OUTPUT_EDP)
continue;
intel_dp = enc_to_intel_dp(&encoder->base);
ret = intel_dp_sink_crc(intel_dp, crc);
if (ret)
goto out;
seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
crc[0], crc[1], crc[2],
crc[3], crc[4], crc[5]);
goto out;
}
ret = -ENODEV;
out:
drm_modeset_unlock_all(dev);
return ret;
}
static int i915_energy_uJ(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u64 power;
u32 units;
if (INTEL_INFO(dev)->gen < 6)
return -ENODEV;
intel_runtime_pm_get(dev_priv);
rdmsrl(MSR_RAPL_POWER_UNIT, power);
power = (power & 0x1f00) >> 8;
units = 1000000 / (1 << power); /* convert to uJ */
power = I915_READ(MCH_SECP_NRG_STTS);
power *= units;
intel_runtime_pm_put(dev_priv);
seq_printf(m, "%llu", (long long unsigned)power);
return 0;
}
static int i915_pc8_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
seq_puts(m, "not supported\n");
return 0;
}
seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
seq_printf(m, "IRQs disabled: %s\n",
yesno(dev_priv->pm.irqs_disabled));
return 0;
}
static const char *power_domain_str(enum intel_display_power_domain domain)
{
switch (domain) {
case POWER_DOMAIN_PIPE_A:
return "PIPE_A";
case POWER_DOMAIN_PIPE_B:
return "PIPE_B";
case POWER_DOMAIN_PIPE_C:
return "PIPE_C";
case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
return "PIPE_A_PANEL_FITTER";
case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
return "PIPE_B_PANEL_FITTER";
case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
return "PIPE_C_PANEL_FITTER";
case POWER_DOMAIN_TRANSCODER_A:
return "TRANSCODER_A";
case POWER_DOMAIN_TRANSCODER_B:
return "TRANSCODER_B";
case POWER_DOMAIN_TRANSCODER_C:
return "TRANSCODER_C";
case POWER_DOMAIN_TRANSCODER_EDP:
return "TRANSCODER_EDP";
case POWER_DOMAIN_PORT_DDI_A_2_LANES:
return "PORT_DDI_A_2_LANES";
case POWER_DOMAIN_PORT_DDI_A_4_LANES:
return "PORT_DDI_A_4_LANES";
case POWER_DOMAIN_PORT_DDI_B_2_LANES:
return "PORT_DDI_B_2_LANES";
case POWER_DOMAIN_PORT_DDI_B_4_LANES:
return "PORT_DDI_B_4_LANES";
case POWER_DOMAIN_PORT_DDI_C_2_LANES:
return "PORT_DDI_C_2_LANES";
case POWER_DOMAIN_PORT_DDI_C_4_LANES:
return "PORT_DDI_C_4_LANES";
case POWER_DOMAIN_PORT_DDI_D_2_LANES:
return "PORT_DDI_D_2_LANES";
case POWER_DOMAIN_PORT_DDI_D_4_LANES:
return "PORT_DDI_D_4_LANES";
case POWER_DOMAIN_PORT_DSI:
return "PORT_DSI";
case POWER_DOMAIN_PORT_CRT:
return "PORT_CRT";
case POWER_DOMAIN_PORT_OTHER:
return "PORT_OTHER";
case POWER_DOMAIN_VGA:
return "VGA";
case POWER_DOMAIN_AUDIO:
return "AUDIO";
case POWER_DOMAIN_INIT:
return "INIT";
default:
WARN_ON(1);
return "?";
}
}
static int i915_power_domain_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_power_domains *power_domains = &dev_priv->power_domains;
int i;
mutex_lock(&power_domains->lock);
seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
for (i = 0; i < power_domains->power_well_count; i++) {
struct i915_power_well *power_well;
enum intel_display_power_domain power_domain;
power_well = &power_domains->power_wells[i];
seq_printf(m, "%-25s %d\n", power_well->name,
power_well->count);
for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
power_domain++) {
if (!(BIT(power_domain) & power_well->domains))
continue;
seq_printf(m, " %-23s %d\n",
power_domain_str(power_domain),
power_domains->domain_use_count[power_domain]);
}
}
mutex_unlock(&power_domains->lock);
return 0;
}
static void intel_seq_print_mode(struct seq_file *m, int tabs,
struct drm_display_mode *mode)
{
int i;
for (i = 0; i < tabs; i++)
seq_putc(m, '\t');
seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
mode->base.id, mode->name,
mode->vrefresh, mode->clock,
mode->hdisplay, mode->hsync_start,
mode->hsync_end, mode->htotal,
mode->vdisplay, mode->vsync_start,
mode->vsync_end, mode->vtotal,
mode->type, mode->flags);
}
static void intel_encoder_info(struct seq_file *m,
struct intel_crtc *intel_crtc,
struct intel_encoder *intel_encoder)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_crtc *crtc = &intel_crtc->base;
struct intel_connector *intel_connector;
struct drm_encoder *encoder;
encoder = &intel_encoder->base;
seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
encoder->base.id, drm_get_encoder_name(encoder));
for_each_connector_on_encoder(dev, encoder, intel_connector) {
struct drm_connector *connector = &intel_connector->base;
seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
connector->base.id,
drm_get_connector_name(connector),
drm_get_connector_status_name(connector->status));
if (connector->status == connector_status_connected) {
struct drm_display_mode *mode = &crtc->mode;
seq_printf(m, ", mode:\n");
intel_seq_print_mode(m, 2, mode);
} else {
seq_putc(m, '\n');
}
}
}
static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_crtc *crtc = &intel_crtc->base;
struct intel_encoder *intel_encoder;
seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
crtc->primary->fb->base.id, crtc->x, crtc->y,
crtc->primary->fb->width, crtc->primary->fb->height);
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
intel_encoder_info(m, intel_crtc, intel_encoder);
}
static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
{
struct drm_display_mode *mode = panel->fixed_mode;
seq_printf(m, "\tfixed mode:\n");
intel_seq_print_mode(m, 2, mode);
}
static void intel_dp_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
"no");
if (intel_encoder->type == INTEL_OUTPUT_EDP)
intel_panel_info(m, &intel_connector->panel);
}
static void intel_hdmi_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
"no");
}
static void intel_lvds_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
intel_panel_info(m, &intel_connector->panel);
}
static void intel_connector_info(struct seq_file *m,
struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct drm_display_mode *mode;
seq_printf(m, "connector %d: type %s, status: %s\n",
connector->base.id, drm_get_connector_name(connector),
drm_get_connector_status_name(connector->status));
if (connector->status == connector_status_connected) {
seq_printf(m, "\tname: %s\n", connector->display_info.name);
seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
connector->display_info.width_mm,
connector->display_info.height_mm);
seq_printf(m, "\tsubpixel order: %s\n",
drm_get_subpixel_order_name(connector->display_info.subpixel_order));
seq_printf(m, "\tCEA rev: %d\n",
connector->display_info.cea_rev);
}
if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
intel_encoder->type == INTEL_OUTPUT_EDP)
intel_dp_info(m, intel_connector);
else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
intel_hdmi_info(m, intel_connector);
else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
intel_lvds_info(m, intel_connector);
seq_printf(m, "\tmodes:\n");
list_for_each_entry(mode, &connector->modes, head)
intel_seq_print_mode(m, 2, mode);
}
static bool cursor_active(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 state;
if (IS_845G(dev) || IS_I865G(dev))
state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
else
state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
return state;
}
static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pos;
if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
pos = I915_READ(CURPOS_IVB(pipe));
else
pos = I915_READ(CURPOS(pipe));
*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
*x = -*x;
*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
*y = -*y;
return cursor_active(dev, pipe);
}
static int i915_display_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
struct drm_connector *connector;
intel_runtime_pm_get(dev_priv);
drm_modeset_lock_all(dev);
seq_printf(m, "CRTC info\n");
seq_printf(m, "---------\n");
for_each_intel_crtc(dev, crtc) {
bool active;
int x, y;
seq_printf(m, "CRTC %d: pipe: %c, active: %s\n",
crtc->base.base.id, pipe_name(crtc->pipe),
yesno(crtc->active));
if (crtc->active) {
intel_crtc_info(m, crtc);
active = cursor_position(dev, crtc->pipe, &x, &y);
seq_printf(m, "\tcursor visible? %s, position (%d, %d), addr 0x%08x, active? %s\n",
yesno(crtc->cursor_visible),
x, y, crtc->cursor_addr,
yesno(active));
}
}
seq_printf(m, "\n");
seq_printf(m, "Connector info\n");
seq_printf(m, "--------------\n");
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
intel_connector_info(m, connector);
}
drm_modeset_unlock_all(dev);
intel_runtime_pm_put(dev_priv);
return 0;
}
struct pipe_crc_info {
const char *name;
struct drm_device *dev;
enum pipe pipe;
};
static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
{
struct pipe_crc_info *info = inode->i_private;
struct drm_i915_private *dev_priv = info->dev->dev_private;
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
return -ENODEV;
spin_lock_irq(&pipe_crc->lock);
if (pipe_crc->opened) {
spin_unlock_irq(&pipe_crc->lock);
return -EBUSY; /* already open */
}
pipe_crc->opened = true;
filep->private_data = inode->i_private;
spin_unlock_irq(&pipe_crc->lock);
return 0;
}
static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
{
struct pipe_crc_info *info = inode->i_private;
struct drm_i915_private *dev_priv = info->dev->dev_private;
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
spin_lock_irq(&pipe_crc->lock);
pipe_crc->opened = false;
spin_unlock_irq(&pipe_crc->lock);
return 0;
}
/* (6 fields, 8 chars each, space separated (5) + '\n') */
#define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
/* account for \'0' */
#define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
{
assert_spin_locked(&pipe_crc->lock);
return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
INTEL_PIPE_CRC_ENTRIES_NR);
}
static ssize_t
i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
loff_t *pos)
{
struct pipe_crc_info *info = filep->private_data;
struct drm_device *dev = info->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
char buf[PIPE_CRC_BUFFER_LEN];
int head, tail, n_entries, n;
ssize_t bytes_read;
/*
* Don't allow user space to provide buffers not big enough to hold
* a line of data.
*/
if (count < PIPE_CRC_LINE_LEN)
return -EINVAL;
if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
return 0;
/* nothing to read */
spin_lock_irq(&pipe_crc->lock);
while (pipe_crc_data_count(pipe_crc) == 0) {
int ret;
if (filep->f_flags & O_NONBLOCK) {
spin_unlock_irq(&pipe_crc->lock);
return -EAGAIN;
}
ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
pipe_crc_data_count(pipe_crc), pipe_crc->lock);
if (ret) {
spin_unlock_irq(&pipe_crc->lock);
return ret;
}
}
/* We now have one or more entries to read */
head = pipe_crc->head;
tail = pipe_crc->tail;
n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
count / PIPE_CRC_LINE_LEN);
spin_unlock_irq(&pipe_crc->lock);
bytes_read = 0;
n = 0;
do {
struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
int ret;
bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
"%8u %8x %8x %8x %8x %8x\n",
entry->frame, entry->crc[0],
entry->crc[1], entry->crc[2],
entry->crc[3], entry->crc[4]);
ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
buf, PIPE_CRC_LINE_LEN);
if (ret == PIPE_CRC_LINE_LEN)
return -EFAULT;
BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
n++;
} while (--n_entries);
spin_lock_irq(&pipe_crc->lock);
pipe_crc->tail = tail;
spin_unlock_irq(&pipe_crc->lock);
return bytes_read;
}
static const struct file_operations i915_pipe_crc_fops = {
.owner = THIS_MODULE,
.open = i915_pipe_crc_open,
.read = i915_pipe_crc_read,
.release = i915_pipe_crc_release,
};
static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
{
.name = "i915_pipe_A_crc",
.pipe = PIPE_A,
},
{
.name = "i915_pipe_B_crc",
.pipe = PIPE_B,
},
{
.name = "i915_pipe_C_crc",
.pipe = PIPE_C,
},
};
static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
enum pipe pipe)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
info->dev = dev;
ent = debugfs_create_file(info->name, S_IRUGO, root, info,
&i915_pipe_crc_fops);
if (!ent)
return -ENOMEM;
return drm_add_fake_info_node(minor, ent, info);
}
static const char * const pipe_crc_sources[] = {
"none",
"plane1",
"plane2",
"pf",
"pipe",
"TV",
"DP-B",
"DP-C",
"DP-D",
"auto",
};
static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
{
BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
return pipe_crc_sources[source];
}
static int display_crc_ctl_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < I915_MAX_PIPES; i++)
seq_printf(m, "%c %s\n", pipe_name(i),
pipe_crc_source_name(dev_priv->pipe_crc[i].source));
return 0;
}
static int display_crc_ctl_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
return single_open(file, display_crc_ctl_show, dev);
}
static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
uint32_t *val)
{
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
*source = INTEL_PIPE_CRC_SOURCE_PIPE;
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
enum intel_pipe_crc_source *source)
{
struct intel_encoder *encoder;
struct intel_crtc *crtc;
struct intel_digital_port *dig_port;
int ret = 0;
*source = INTEL_PIPE_CRC_SOURCE_PIPE;
mutex_lock(&dev->mode_config.mutex);
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
if (!encoder->base.crtc)
continue;
crtc = to_intel_crtc(encoder->base.crtc);
if (crtc->pipe != pipe)
continue;
switch (encoder->type) {
case INTEL_OUTPUT_TVOUT:
*source = INTEL_PIPE_CRC_SOURCE_TV;
break;
case INTEL_OUTPUT_DISPLAYPORT:
case INTEL_OUTPUT_EDP:
dig_port = enc_to_dig_port(&encoder->base);
switch (dig_port->port) {
case PORT_B:
*source = INTEL_PIPE_CRC_SOURCE_DP_B;
break;
case PORT_C:
*source = INTEL_PIPE_CRC_SOURCE_DP_C;
break;
case PORT_D:
*source = INTEL_PIPE_CRC_SOURCE_DP_D;
break;
default:
WARN(1, "nonexisting DP port %c\n",
port_name(dig_port->port));
break;
}
break;
}
}
mutex_unlock(&dev->mode_config.mutex);
return ret;
}
static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
enum pipe pipe,
enum intel_pipe_crc_source *source,
uint32_t *val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
bool need_stable_symbols = false;
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
if (ret)
return ret;
}
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
break;
case INTEL_PIPE_CRC_SOURCE_DP_B:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_DP_C:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
/*
* When the pipe CRC tap point is after the transcoders we need
* to tweak symbol-level features to produce a deterministic series of
* symbols for a given frame. We need to reset those features only once
* a frame (instead of every nth symbol):
* - DC-balance: used to ensure a better clock recovery from the data
* link (SDVO)
* - DisplayPort scrambling: used for EMI reduction
*/
if (need_stable_symbols) {
uint32_t tmp = I915_READ(PORT_DFT2_G4X);
tmp |= DC_BALANCE_RESET_VLV;
if (pipe == PIPE_A)
tmp |= PIPE_A_SCRAMBLE_RESET;
else
tmp |= PIPE_B_SCRAMBLE_RESET;
I915_WRITE(PORT_DFT2_G4X, tmp);
}
return 0;
}
static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
enum pipe pipe,
enum intel_pipe_crc_source *source,
uint32_t *val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
bool need_stable_symbols = false;
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
if (ret)
return ret;
}
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
break;
case INTEL_PIPE_CRC_SOURCE_TV:
if (!SUPPORTS_TV(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
break;
case INTEL_PIPE_CRC_SOURCE_DP_B:
if (!IS_G4X(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_DP_C:
if (!IS_G4X(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_DP_D:
if (!IS_G4X(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
need_stable_symbols = true;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
/*
* When the pipe CRC tap point is after the transcoders we need
* to tweak symbol-level features to produce a deterministic series of
* symbols for a given frame. We need to reset those features only once
* a frame (instead of every nth symbol):
* - DC-balance: used to ensure a better clock recovery from the data
* link (SDVO)
* - DisplayPort scrambling: used for EMI reduction
*/
if (need_stable_symbols) {
uint32_t tmp = I915_READ(PORT_DFT2_G4X);
WARN_ON(!IS_G4X(dev));
I915_WRITE(PORT_DFT_I9XX,
I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
if (pipe == PIPE_A)
tmp |= PIPE_A_SCRAMBLE_RESET;
else
tmp |= PIPE_B_SCRAMBLE_RESET;
I915_WRITE(PORT_DFT2_G4X, tmp);
}
return 0;
}
static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp = I915_READ(PORT_DFT2_G4X);
if (pipe == PIPE_A)
tmp &= ~PIPE_A_SCRAMBLE_RESET;
else
tmp &= ~PIPE_B_SCRAMBLE_RESET;
if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
tmp &= ~DC_BALANCE_RESET_VLV;
I915_WRITE(PORT_DFT2_G4X, tmp);
}
static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp = I915_READ(PORT_DFT2_G4X);
if (pipe == PIPE_A)
tmp &= ~PIPE_A_SCRAMBLE_RESET;
else
tmp &= ~PIPE_B_SCRAMBLE_RESET;
I915_WRITE(PORT_DFT2_G4X, tmp);
if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
I915_WRITE(PORT_DFT_I9XX,
I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
}
}
static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
uint32_t *val)
{
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
*source = INTEL_PIPE_CRC_SOURCE_PIPE;
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PLANE1:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
break;
case INTEL_PIPE_CRC_SOURCE_PLANE2:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
break;
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
uint32_t *val)
{
if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
*source = INTEL_PIPE_CRC_SOURCE_PF;
switch (*source) {
case INTEL_PIPE_CRC_SOURCE_PLANE1:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
break;
case INTEL_PIPE_CRC_SOURCE_PLANE2:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
break;
case INTEL_PIPE_CRC_SOURCE_PF:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
enum intel_pipe_crc_source source)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
u32 val = 0; /* shut up gcc */
int ret;
if (pipe_crc->source == source)
return 0;
/* forbid changing the source without going back to 'none' */
if (pipe_crc->source && source)
return -EINVAL;
if (IS_GEN2(dev))
ret = i8xx_pipe_crc_ctl_reg(&source, &val);
else if (INTEL_INFO(dev)->gen < 5)
ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
else if (IS_VALLEYVIEW(dev))
ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
else if (IS_GEN5(dev) || IS_GEN6(dev))
ret = ilk_pipe_crc_ctl_reg(&source, &val);
else
ret = ivb_pipe_crc_ctl_reg(&source, &val);
if (ret != 0)
return ret;
/* none -> real source transition */
if (source) {
DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
pipe_name(pipe), pipe_crc_source_name(source));
pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
INTEL_PIPE_CRC_ENTRIES_NR,
GFP_KERNEL);
if (!pipe_crc->entries)
return -ENOMEM;
spin_lock_irq(&pipe_crc->lock);
pipe_crc->head = 0;
pipe_crc->tail = 0;
spin_unlock_irq(&pipe_crc->lock);
}
pipe_crc->source = source;
I915_WRITE(PIPE_CRC_CTL(pipe), val);
POSTING_READ(PIPE_CRC_CTL(pipe));
/* real source -> none transition */
if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
struct intel_pipe_crc_entry *entries;
DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
pipe_name(pipe));
intel_wait_for_vblank(dev, pipe);
spin_lock_irq(&pipe_crc->lock);
entries = pipe_crc->entries;
pipe_crc->entries = NULL;
spin_unlock_irq(&pipe_crc->lock);
kfree(entries);
if (IS_G4X(dev))
g4x_undo_pipe_scramble_reset(dev, pipe);
else if (IS_VALLEYVIEW(dev))
vlv_undo_pipe_scramble_reset(dev, pipe);
}
return 0;
}
/*
* Parse pipe CRC command strings:
* command: wsp* object wsp+ name wsp+ source wsp*
* object: 'pipe'
* name: (A | B | C)
* source: (none | plane1 | plane2 | pf)
* wsp: (#0x20 | #0x9 | #0xA)+
*
* eg.:
* "pipe A plane1" -> Start CRC computations on plane1 of pipe A
* "pipe A none" -> Stop CRC
*/
static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
{
int n_words = 0;
while (*buf) {
char *end;
/* skip leading white space */
buf = skip_spaces(buf);
if (!*buf)
break; /* end of buffer */
/* find end of word */
for (end = buf; *end && !isspace(*end); end++)
;
if (n_words == max_words) {
DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
max_words);
return -EINVAL; /* ran out of words[] before bytes */
}
if (*end)
*end++ = '\0';
words[n_words++] = buf;
buf = end;
}
return n_words;
}
enum intel_pipe_crc_object {
PIPE_CRC_OBJECT_PIPE,
};
static const char * const pipe_crc_objects[] = {
"pipe",
};
static int
display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
{
int i;
for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
if (!strcmp(buf, pipe_crc_objects[i])) {
*o = i;
return 0;
}
return -EINVAL;
}
static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
{
const char name = buf[0];
if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
return -EINVAL;
*pipe = name - 'A';
return 0;
}
static int
display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
if (!strcmp(buf, pipe_crc_sources[i])) {
*s = i;
return 0;
}
return -EINVAL;
}
static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
{
#define N_WORDS 3
int n_words;
char *words[N_WORDS];
enum pipe pipe;
enum intel_pipe_crc_object object;
enum intel_pipe_crc_source source;
n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
if (n_words != N_WORDS) {
DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
N_WORDS);
return -EINVAL;
}
if (display_crc_ctl_parse_object(words[0], &object) < 0) {
DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
return -EINVAL;
}
if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
return -EINVAL;
}
if (display_crc_ctl_parse_source(words[2], &source) < 0) {
DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
return -EINVAL;
}
return pipe_crc_set_source(dev, pipe, source);
}
static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
char *tmpbuf;
int ret;
if (len == 0)
return 0;
if (len > PAGE_SIZE - 1) {
DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
PAGE_SIZE);
return -E2BIG;
}
tmpbuf = kmalloc(len + 1, GFP_KERNEL);
if (!tmpbuf)
return -ENOMEM;
if (copy_from_user(tmpbuf, ubuf, len)) {
ret = -EFAULT;
goto out;
}
tmpbuf[len] = '\0';
ret = display_crc_ctl_parse(dev, tmpbuf, len);
out:
kfree(tmpbuf);
if (ret < 0)
return ret;
*offp += len;
return len;
}
static const struct file_operations i915_display_crc_ctl_fops = {
.owner = THIS_MODULE,
.open = display_crc_ctl_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = display_crc_ctl_write
};
static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
{
struct drm_device *dev = m->private;
int num_levels = ilk_wm_max_level(dev) + 1;
int level;
drm_modeset_lock_all(dev);
for (level = 0; level < num_levels; level++) {
unsigned int latency = wm[level];
/* WM1+ latency values in 0.5us units */
if (level > 0)
latency *= 5;
seq_printf(m, "WM%d %u (%u.%u usec)\n",
level, wm[level],
latency / 10, latency % 10);
}
drm_modeset_unlock_all(dev);
}
static int pri_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
wm_latency_show(m, to_i915(dev)->wm.pri_latency);
return 0;
}
static int spr_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
wm_latency_show(m, to_i915(dev)->wm.spr_latency);
return 0;
}
static int cur_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
wm_latency_show(m, to_i915(dev)->wm.cur_latency);
return 0;
}
static int pri_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
if (!HAS_PCH_SPLIT(dev))
return -ENODEV;
return single_open(file, pri_wm_latency_show, dev);
}
static int spr_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
if (!HAS_PCH_SPLIT(dev))
return -ENODEV;
return single_open(file, spr_wm_latency_show, dev);
}
static int cur_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
if (!HAS_PCH_SPLIT(dev))
return -ENODEV;
return single_open(file, cur_wm_latency_show, dev);
}
static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp, uint16_t wm[5])
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
uint16_t new[5] = { 0 };
int num_levels = ilk_wm_max_level(dev) + 1;
int level;
int ret;
char tmp[32];
if (len >= sizeof(tmp))
return -EINVAL;
if (copy_from_user(tmp, ubuf, len))
return -EFAULT;
tmp[len] = '\0';
ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
if (ret != num_levels)
return -EINVAL;
drm_modeset_lock_all(dev);
for (level = 0; level < num_levels; level++)
wm[level] = new[level];
drm_modeset_unlock_all(dev);
return len;
}
static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
}
static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
}
static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
}
static const struct file_operations i915_pri_wm_latency_fops = {
.owner = THIS_MODULE,
.open = pri_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = pri_wm_latency_write
};
static const struct file_operations i915_spr_wm_latency_fops = {
.owner = THIS_MODULE,
.open = spr_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = spr_wm_latency_write
};
static const struct file_operations i915_cur_wm_latency_fops = {
.owner = THIS_MODULE,
.open = cur_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = cur_wm_latency_write
};
static int
i915_wedged_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
*val = atomic_read(&dev_priv->gpu_error.reset_counter);
return 0;
}
static int
i915_wedged_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_runtime_pm_get(dev_priv);
i915_handle_error(dev, val,
"Manually setting wedged to %llu", val);
intel_runtime_pm_put(dev_priv);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
i915_wedged_get, i915_wedged_set,
"%llu\n");
static int
i915_ring_stop_get(void *data, u64 *val)
2012-05-03 20:48:16 +08:00
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
2012-05-03 20:48:16 +08:00
*val = dev_priv->gpu_error.stop_rings;
2012-05-03 20:48:16 +08:00
return 0;
2012-05-03 20:48:16 +08:00
}
static int
i915_ring_stop_set(void *data, u64 val)
2012-05-03 20:48:16 +08:00
{
struct drm_device *dev = data;
2012-05-03 20:48:16 +08:00
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
2012-05-03 20:48:16 +08:00
DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
2012-05-03 20:48:16 +08:00
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
dev_priv->gpu_error.stop_rings = val;
2012-05-03 20:48:16 +08:00
mutex_unlock(&dev->struct_mutex);
return 0;
2012-05-03 20:48:16 +08:00
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
i915_ring_stop_get, i915_ring_stop_set,
"0x%08llx\n");
static int
i915_ring_missed_irq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
*val = dev_priv->gpu_error.missed_irq_rings;
return 0;
}
static int
i915_ring_missed_irq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
/* Lock against concurrent debugfs callers */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
dev_priv->gpu_error.missed_irq_rings = val;
mutex_unlock(&dev->struct_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
i915_ring_missed_irq_get, i915_ring_missed_irq_set,
"0x%08llx\n");
static int
i915_ring_test_irq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
*val = dev_priv->gpu_error.test_irq_rings;
return 0;
}
static int
i915_ring_test_irq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
/* Lock against concurrent debugfs callers */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
dev_priv->gpu_error.test_irq_rings = val;
mutex_unlock(&dev->struct_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
i915_ring_test_irq_get, i915_ring_test_irq_set,
"0x%08llx\n");
#define DROP_UNBOUND 0x1
#define DROP_BOUND 0x2
#define DROP_RETIRE 0x4
#define DROP_ACTIVE 0x8
#define DROP_ALL (DROP_UNBOUND | \
DROP_BOUND | \
DROP_RETIRE | \
DROP_ACTIVE)
static int
i915_drop_caches_get(void *data, u64 *val)
{
*val = DROP_ALL;
return 0;
}
static int
i915_drop_caches_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj, *next;
2013-08-01 08:00:14 +08:00
struct i915_address_space *vm;
struct i915_vma *vma, *x;
int ret;
DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
/* No need to check and wait for gpu resets, only libdrm auto-restarts
* on ioctls on -EAGAIN. */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (val & DROP_ACTIVE) {
ret = i915_gpu_idle(dev);
if (ret)
goto unlock;
}
if (val & (DROP_RETIRE | DROP_ACTIVE))
i915_gem_retire_requests(dev);
if (val & DROP_BOUND) {
2013-08-01 08:00:14 +08:00
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
list_for_each_entry_safe(vma, x, &vm->inactive_list,
mm_list) {
if (vma->pin_count)
2013-08-01 08:00:14 +08:00
continue;
ret = i915_vma_unbind(vma);
if (ret)
goto unlock;
}
}
}
if (val & DROP_UNBOUND) {
list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
global_list)
if (obj->pages_pin_count == 0) {
ret = i915_gem_object_put_pages(obj);
if (ret)
goto unlock;
}
}
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
i915_drop_caches_get, i915_drop_caches_set,
"0x%08llx\n");
static int
i915_max_freq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
if (IS_VALLEYVIEW(dev))
*val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
else
*val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
static int
i915_max_freq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rp_state_cap, hw_max, hw_min;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
/*
* Turbo will still be enabled, but won't go above the set value.
*/
if (IS_VALLEYVIEW(dev)) {
val = vlv_freq_opcode(dev_priv, val);
hw_max = valleyview_rps_max_freq(dev_priv);
hw_min = valleyview_rps_min_freq(dev_priv);
} else {
do_div(val, GT_FREQUENCY_MULTIPLIER);
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
hw_max = dev_priv->rps.max_freq;
hw_min = (rp_state_cap >> 16) & 0xff;
}
if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
mutex_unlock(&dev_priv->rps.hw_lock);
return -EINVAL;
}
dev_priv->rps.max_freq_softlimit = val;
if (IS_VALLEYVIEW(dev))
valleyview_set_rps(dev, val);
else
gen6_set_rps(dev, val);
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
i915_max_freq_get, i915_max_freq_set,
"%llu\n");
static int
i915_min_freq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
if (IS_VALLEYVIEW(dev))
*val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
else
*val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
static int
i915_min_freq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rp_state_cap, hw_max, hw_min;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
/*
* Turbo will still be enabled, but won't go below the set value.
*/
if (IS_VALLEYVIEW(dev)) {
val = vlv_freq_opcode(dev_priv, val);
hw_max = valleyview_rps_max_freq(dev_priv);
hw_min = valleyview_rps_min_freq(dev_priv);
} else {
do_div(val, GT_FREQUENCY_MULTIPLIER);
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
hw_max = dev_priv->rps.max_freq;
hw_min = (rp_state_cap >> 16) & 0xff;
}
if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
mutex_unlock(&dev_priv->rps.hw_lock);
return -EINVAL;
}
dev_priv->rps.min_freq_softlimit = val;
if (IS_VALLEYVIEW(dev))
valleyview_set_rps(dev, val);
else
gen6_set_rps(dev, val);
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
i915_min_freq_get, i915_min_freq_set,
"%llu\n");
static int
i915_cache_sharing_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 snpcr;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev_priv->dev->struct_mutex);
*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
return 0;
}
static int
i915_cache_sharing_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 snpcr;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
if (val > 3)
return -EINVAL;
intel_runtime_pm_get(dev_priv);
DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
/* Update the cache sharing policy here as well */
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
intel_runtime_pm_put(dev_priv);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
i915_cache_sharing_get, i915_cache_sharing_set,
"%llu\n");
static int i915_forcewake_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 6)
return 0;
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
return 0;
}
static int i915_forcewake_release(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 6)
return 0;
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
return 0;
}
static const struct file_operations i915_forcewake_fops = {
.owner = THIS_MODULE,
.open = i915_forcewake_open,
.release = i915_forcewake_release,
};
static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
ent = debugfs_create_file("i915_forcewake_user",
S_IRUSR,
root, dev,
&i915_forcewake_fops);
if (!ent)
return -ENOMEM;
return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
}
static int i915_debugfs_create(struct dentry *root,
struct drm_minor *minor,
const char *name,
const struct file_operations *fops)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
ent = debugfs_create_file(name,
S_IRUGO | S_IWUSR,
root, dev,
fops);
if (!ent)
return -ENOMEM;
return drm_add_fake_info_node(minor, ent, fops);
}
static const struct drm_info_list i915_debugfs_list[] = {
{"i915_capabilities", i915_capabilities, 0},
{"i915_gem_objects", i915_gem_object_info, 0},
{"i915_gem_gtt", i915_gem_gtt_info, 0},
{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
{"i915_gem_stolen", i915_gem_stolen_list_info },
{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
{"i915_gem_request", i915_gem_request_info, 0},
{"i915_gem_seqno", i915_gem_seqno_info, 0},
{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
{"i915_gem_interrupt", i915_interrupt_info, 0},
{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
{"i915_rstdby_delays", i915_rstdby_delays, 0},
{"i915_frequency_info", i915_frequency_info, 0},
{"i915_delayfreq_table", i915_delayfreq_table, 0},
{"i915_inttoext_table", i915_inttoext_table, 0},
{"i915_drpc_info", i915_drpc_info, 0},
{"i915_emon_status", i915_emon_status, 0},
{"i915_ring_freq_table", i915_ring_freq_table, 0},
{"i915_gfxec", i915_gfxec, 0},
{"i915_fbc_status", i915_fbc_status, 0},
{"i915_ips_status", i915_ips_status, 0},
{"i915_sr_status", i915_sr_status, 0},
{"i915_opregion", i915_opregion, 0},
{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
{"i915_context_status", i915_context_status, 0},
{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
{"i915_swizzle_info", i915_swizzle_info, 0},
{"i915_ppgtt_info", i915_ppgtt_info, 0},
{"i915_llc", i915_llc, 0},
{"i915_edp_psr_status", i915_edp_psr_status, 0},
{"i915_sink_crc_eDP1", i915_sink_crc, 0},
{"i915_energy_uJ", i915_energy_uJ, 0},
{"i915_pc8_status", i915_pc8_status, 0},
{"i915_power_domain_info", i915_power_domain_info, 0},
{"i915_display_info", i915_display_info, 0},
};
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
static const struct i915_debugfs_files {
const char *name;
const struct file_operations *fops;
} i915_debugfs_files[] = {
{"i915_wedged", &i915_wedged_fops},
{"i915_max_freq", &i915_max_freq_fops},
{"i915_min_freq", &i915_min_freq_fops},
{"i915_cache_sharing", &i915_cache_sharing_fops},
{"i915_ring_stop", &i915_ring_stop_fops},
{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
{"i915_ring_test_irq", &i915_ring_test_irq_fops},
{"i915_gem_drop_caches", &i915_drop_caches_fops},
{"i915_error_state", &i915_error_state_fops},
{"i915_next_seqno", &i915_next_seqno_fops},
{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
};
void intel_display_crc_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
for_each_pipe(pipe) {
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
pipe_crc->opened = false;
spin_lock_init(&pipe_crc->lock);
init_waitqueue_head(&pipe_crc->wq);
}
}
int i915_debugfs_init(struct drm_minor *minor)
{
int ret, i;
ret = i915_forcewake_create(minor->debugfs_root, minor);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
if (ret)
return ret;
}
for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
ret = i915_debugfs_create(minor->debugfs_root, minor,
i915_debugfs_files[i].name,
i915_debugfs_files[i].fops);
if (ret)
return ret;
}
return drm_debugfs_create_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES,
minor->debugfs_root, minor);
}
void i915_debugfs_cleanup(struct drm_minor *minor)
{
int i;
drm_debugfs_remove_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
1, minor);
for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
struct drm_info_list *info_list =
(struct drm_info_list *)&i915_pipe_crc_data[i];
drm_debugfs_remove_files(info_list, 1, minor);
}
for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
struct drm_info_list *info_list =
(struct drm_info_list *) i915_debugfs_files[i].fops;
drm_debugfs_remove_files(info_list, 1, minor);
}
}