linux/net/core/devlink.c

9310 lines
237 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/core/devlink.c - Network physical/parent device Netlink interface
*
* Heavily inspired by net/wireless/
* Copyright (c) 2016 Mellanox Technologies. All rights reserved.
* Copyright (c) 2016 Jiri Pirko <jiri@mellanox.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/gfp.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/spinlock.h>
#include <linux/refcount.h>
#include <linux/workqueue.h>
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
#include <linux/u64_stats_sync.h>
#include <linux/timekeeping.h>
#include <rdma/ib_verbs.h>
#include <net/netlink.h>
#include <net/genetlink.h>
#include <net/rtnetlink.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/devlink.h>
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
#include <net/drop_monitor.h>
#define CREATE_TRACE_POINTS
#include <trace/events/devlink.h>
static struct devlink_dpipe_field devlink_dpipe_fields_ethernet[] = {
{
.name = "destination mac",
.id = DEVLINK_DPIPE_FIELD_ETHERNET_DST_MAC,
.bitwidth = 48,
},
};
struct devlink_dpipe_header devlink_dpipe_header_ethernet = {
.name = "ethernet",
.id = DEVLINK_DPIPE_HEADER_ETHERNET,
.fields = devlink_dpipe_fields_ethernet,
.fields_count = ARRAY_SIZE(devlink_dpipe_fields_ethernet),
.global = true,
};
EXPORT_SYMBOL(devlink_dpipe_header_ethernet);
static struct devlink_dpipe_field devlink_dpipe_fields_ipv4[] = {
{
.name = "destination ip",
.id = DEVLINK_DPIPE_FIELD_IPV4_DST_IP,
.bitwidth = 32,
},
};
struct devlink_dpipe_header devlink_dpipe_header_ipv4 = {
.name = "ipv4",
.id = DEVLINK_DPIPE_HEADER_IPV4,
.fields = devlink_dpipe_fields_ipv4,
.fields_count = ARRAY_SIZE(devlink_dpipe_fields_ipv4),
.global = true,
};
EXPORT_SYMBOL(devlink_dpipe_header_ipv4);
static struct devlink_dpipe_field devlink_dpipe_fields_ipv6[] = {
{
.name = "destination ip",
.id = DEVLINK_DPIPE_FIELD_IPV6_DST_IP,
.bitwidth = 128,
},
};
struct devlink_dpipe_header devlink_dpipe_header_ipv6 = {
.name = "ipv6",
.id = DEVLINK_DPIPE_HEADER_IPV6,
.fields = devlink_dpipe_fields_ipv6,
.fields_count = ARRAY_SIZE(devlink_dpipe_fields_ipv6),
.global = true,
};
EXPORT_SYMBOL(devlink_dpipe_header_ipv6);
EXPORT_TRACEPOINT_SYMBOL_GPL(devlink_hwmsg);
EXPORT_TRACEPOINT_SYMBOL_GPL(devlink_hwerr);
static LIST_HEAD(devlink_list);
/* devlink_mutex
*
* An overall lock guarding every operation coming from userspace.
* It also guards devlink devices list and it is taken when
* driver registers/unregisters it.
*/
static DEFINE_MUTEX(devlink_mutex);
struct net *devlink_net(const struct devlink *devlink)
{
return read_pnet(&devlink->_net);
}
EXPORT_SYMBOL_GPL(devlink_net);
static void __devlink_net_set(struct devlink *devlink, struct net *net)
{
write_pnet(&devlink->_net, net);
}
void devlink_net_set(struct devlink *devlink, struct net *net)
{
if (WARN_ON(devlink->registered))
return;
__devlink_net_set(devlink, net);
}
EXPORT_SYMBOL_GPL(devlink_net_set);
static struct devlink *devlink_get_from_attrs(struct net *net,
struct nlattr **attrs)
{
struct devlink *devlink;
char *busname;
char *devname;
if (!attrs[DEVLINK_ATTR_BUS_NAME] || !attrs[DEVLINK_ATTR_DEV_NAME])
return ERR_PTR(-EINVAL);
busname = nla_data(attrs[DEVLINK_ATTR_BUS_NAME]);
devname = nla_data(attrs[DEVLINK_ATTR_DEV_NAME]);
lockdep_assert_held(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (strcmp(devlink->dev->bus->name, busname) == 0 &&
strcmp(dev_name(devlink->dev), devname) == 0 &&
net_eq(devlink_net(devlink), net))
return devlink;
}
return ERR_PTR(-ENODEV);
}
static struct devlink *devlink_get_from_info(struct genl_info *info)
{
return devlink_get_from_attrs(genl_info_net(info), info->attrs);
}
static struct devlink_port *devlink_port_get_by_index(struct devlink *devlink,
unsigned int port_index)
{
struct devlink_port *devlink_port;
list_for_each_entry(devlink_port, &devlink->port_list, list) {
if (devlink_port->index == port_index)
return devlink_port;
}
return NULL;
}
static bool devlink_port_index_exists(struct devlink *devlink,
unsigned int port_index)
{
return devlink_port_get_by_index(devlink, port_index);
}
static struct devlink_port *devlink_port_get_from_attrs(struct devlink *devlink,
struct nlattr **attrs)
{
if (attrs[DEVLINK_ATTR_PORT_INDEX]) {
u32 port_index = nla_get_u32(attrs[DEVLINK_ATTR_PORT_INDEX]);
struct devlink_port *devlink_port;
devlink_port = devlink_port_get_by_index(devlink, port_index);
if (!devlink_port)
return ERR_PTR(-ENODEV);
return devlink_port;
}
return ERR_PTR(-EINVAL);
}
static struct devlink_port *devlink_port_get_from_info(struct devlink *devlink,
struct genl_info *info)
{
return devlink_port_get_from_attrs(devlink, info->attrs);
}
struct devlink_sb {
struct list_head list;
unsigned int index;
u32 size;
u16 ingress_pools_count;
u16 egress_pools_count;
u16 ingress_tc_count;
u16 egress_tc_count;
};
static u16 devlink_sb_pool_count(struct devlink_sb *devlink_sb)
{
return devlink_sb->ingress_pools_count + devlink_sb->egress_pools_count;
}
static struct devlink_sb *devlink_sb_get_by_index(struct devlink *devlink,
unsigned int sb_index)
{
struct devlink_sb *devlink_sb;
list_for_each_entry(devlink_sb, &devlink->sb_list, list) {
if (devlink_sb->index == sb_index)
return devlink_sb;
}
return NULL;
}
static bool devlink_sb_index_exists(struct devlink *devlink,
unsigned int sb_index)
{
return devlink_sb_get_by_index(devlink, sb_index);
}
static struct devlink_sb *devlink_sb_get_from_attrs(struct devlink *devlink,
struct nlattr **attrs)
{
if (attrs[DEVLINK_ATTR_SB_INDEX]) {
u32 sb_index = nla_get_u32(attrs[DEVLINK_ATTR_SB_INDEX]);
struct devlink_sb *devlink_sb;
devlink_sb = devlink_sb_get_by_index(devlink, sb_index);
if (!devlink_sb)
return ERR_PTR(-ENODEV);
return devlink_sb;
}
return ERR_PTR(-EINVAL);
}
static struct devlink_sb *devlink_sb_get_from_info(struct devlink *devlink,
struct genl_info *info)
{
return devlink_sb_get_from_attrs(devlink, info->attrs);
}
static int devlink_sb_pool_index_get_from_attrs(struct devlink_sb *devlink_sb,
struct nlattr **attrs,
u16 *p_pool_index)
{
u16 val;
if (!attrs[DEVLINK_ATTR_SB_POOL_INDEX])
return -EINVAL;
val = nla_get_u16(attrs[DEVLINK_ATTR_SB_POOL_INDEX]);
if (val >= devlink_sb_pool_count(devlink_sb))
return -EINVAL;
*p_pool_index = val;
return 0;
}
static int devlink_sb_pool_index_get_from_info(struct devlink_sb *devlink_sb,
struct genl_info *info,
u16 *p_pool_index)
{
return devlink_sb_pool_index_get_from_attrs(devlink_sb, info->attrs,
p_pool_index);
}
static int
devlink_sb_pool_type_get_from_attrs(struct nlattr **attrs,
enum devlink_sb_pool_type *p_pool_type)
{
u8 val;
if (!attrs[DEVLINK_ATTR_SB_POOL_TYPE])
return -EINVAL;
val = nla_get_u8(attrs[DEVLINK_ATTR_SB_POOL_TYPE]);
if (val != DEVLINK_SB_POOL_TYPE_INGRESS &&
val != DEVLINK_SB_POOL_TYPE_EGRESS)
return -EINVAL;
*p_pool_type = val;
return 0;
}
static int
devlink_sb_pool_type_get_from_info(struct genl_info *info,
enum devlink_sb_pool_type *p_pool_type)
{
return devlink_sb_pool_type_get_from_attrs(info->attrs, p_pool_type);
}
static int
devlink_sb_th_type_get_from_attrs(struct nlattr **attrs,
enum devlink_sb_threshold_type *p_th_type)
{
u8 val;
if (!attrs[DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE])
return -EINVAL;
val = nla_get_u8(attrs[DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE]);
if (val != DEVLINK_SB_THRESHOLD_TYPE_STATIC &&
val != DEVLINK_SB_THRESHOLD_TYPE_DYNAMIC)
return -EINVAL;
*p_th_type = val;
return 0;
}
static int
devlink_sb_th_type_get_from_info(struct genl_info *info,
enum devlink_sb_threshold_type *p_th_type)
{
return devlink_sb_th_type_get_from_attrs(info->attrs, p_th_type);
}
static int
devlink_sb_tc_index_get_from_attrs(struct devlink_sb *devlink_sb,
struct nlattr **attrs,
enum devlink_sb_pool_type pool_type,
u16 *p_tc_index)
{
u16 val;
if (!attrs[DEVLINK_ATTR_SB_TC_INDEX])
return -EINVAL;
val = nla_get_u16(attrs[DEVLINK_ATTR_SB_TC_INDEX]);
if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS &&
val >= devlink_sb->ingress_tc_count)
return -EINVAL;
if (pool_type == DEVLINK_SB_POOL_TYPE_EGRESS &&
val >= devlink_sb->egress_tc_count)
return -EINVAL;
*p_tc_index = val;
return 0;
}
static int
devlink_sb_tc_index_get_from_info(struct devlink_sb *devlink_sb,
struct genl_info *info,
enum devlink_sb_pool_type pool_type,
u16 *p_tc_index)
{
return devlink_sb_tc_index_get_from_attrs(devlink_sb, info->attrs,
pool_type, p_tc_index);
}
struct devlink_region {
struct devlink *devlink;
struct list_head list;
const struct devlink_region_ops *ops;
struct list_head snapshot_list;
u32 max_snapshots;
u32 cur_snapshots;
u64 size;
};
struct devlink_snapshot {
struct list_head list;
struct devlink_region *region;
u8 *data;
u32 id;
};
static struct devlink_region *
devlink_region_get_by_name(struct devlink *devlink, const char *region_name)
{
struct devlink_region *region;
list_for_each_entry(region, &devlink->region_list, list)
if (!strcmp(region->ops->name, region_name))
return region;
return NULL;
}
static struct devlink_snapshot *
devlink_region_snapshot_get_by_id(struct devlink_region *region, u32 id)
{
struct devlink_snapshot *snapshot;
list_for_each_entry(snapshot, &region->snapshot_list, list)
if (snapshot->id == id)
return snapshot;
return NULL;
}
#define DEVLINK_NL_FLAG_NEED_DEVLINK BIT(0)
#define DEVLINK_NL_FLAG_NEED_PORT BIT(1)
#define DEVLINK_NL_FLAG_NEED_SB BIT(2)
/* The per devlink instance lock is taken by default in the pre-doit
* operation, yet several commands do not require this. The global
* devlink lock is taken and protects from disruption by user-calls.
*/
#define DEVLINK_NL_FLAG_NO_LOCK BIT(3)
static int devlink_nl_pre_doit(const struct genl_ops *ops,
struct sk_buff *skb, struct genl_info *info)
{
struct devlink *devlink;
int err;
mutex_lock(&devlink_mutex);
devlink = devlink_get_from_info(info);
if (IS_ERR(devlink)) {
mutex_unlock(&devlink_mutex);
return PTR_ERR(devlink);
}
if (~ops->internal_flags & DEVLINK_NL_FLAG_NO_LOCK)
mutex_lock(&devlink->lock);
if (ops->internal_flags & DEVLINK_NL_FLAG_NEED_DEVLINK) {
info->user_ptr[0] = devlink;
} else if (ops->internal_flags & DEVLINK_NL_FLAG_NEED_PORT) {
struct devlink_port *devlink_port;
devlink_port = devlink_port_get_from_info(devlink, info);
if (IS_ERR(devlink_port)) {
err = PTR_ERR(devlink_port);
goto unlock;
}
info->user_ptr[0] = devlink_port;
}
if (ops->internal_flags & DEVLINK_NL_FLAG_NEED_SB) {
struct devlink_sb *devlink_sb;
devlink_sb = devlink_sb_get_from_info(devlink, info);
if (IS_ERR(devlink_sb)) {
err = PTR_ERR(devlink_sb);
goto unlock;
}
info->user_ptr[1] = devlink_sb;
}
return 0;
unlock:
if (~ops->internal_flags & DEVLINK_NL_FLAG_NO_LOCK)
mutex_unlock(&devlink->lock);
mutex_unlock(&devlink_mutex);
return err;
}
static void devlink_nl_post_doit(const struct genl_ops *ops,
struct sk_buff *skb, struct genl_info *info)
{
struct devlink *devlink;
/* When devlink changes netns, it would not be found
* by devlink_get_from_info(). So try if it is stored first.
*/
if (ops->internal_flags & DEVLINK_NL_FLAG_NEED_DEVLINK) {
devlink = info->user_ptr[0];
} else {
devlink = devlink_get_from_info(info);
WARN_ON(IS_ERR(devlink));
}
if (!IS_ERR(devlink) && ~ops->internal_flags & DEVLINK_NL_FLAG_NO_LOCK)
mutex_unlock(&devlink->lock);
mutex_unlock(&devlink_mutex);
}
static struct genl_family devlink_nl_family;
enum devlink_multicast_groups {
DEVLINK_MCGRP_CONFIG,
};
static const struct genl_multicast_group devlink_nl_mcgrps[] = {
[DEVLINK_MCGRP_CONFIG] = { .name = DEVLINK_GENL_MCGRP_CONFIG_NAME },
};
static int devlink_nl_put_handle(struct sk_buff *msg, struct devlink *devlink)
{
if (nla_put_string(msg, DEVLINK_ATTR_BUS_NAME, devlink->dev->bus->name))
return -EMSGSIZE;
if (nla_put_string(msg, DEVLINK_ATTR_DEV_NAME, dev_name(devlink->dev)))
return -EMSGSIZE;
return 0;
}
static int devlink_nl_fill(struct sk_buff *msg, struct devlink *devlink,
enum devlink_command cmd, u32 portid,
u32 seq, int flags)
{
void *hdr;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (nla_put_u8(msg, DEVLINK_ATTR_RELOAD_FAILED, devlink->reload_failed))
goto nla_put_failure;
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static void devlink_notify(struct devlink *devlink, enum devlink_command cmd)
{
struct sk_buff *msg;
int err;
WARN_ON(cmd != DEVLINK_CMD_NEW && cmd != DEVLINK_CMD_DEL);
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
err = devlink_nl_fill(msg, devlink, cmd, 0, 0, 0);
if (err) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(&devlink_nl_family, devlink_net(devlink),
msg, 0, DEVLINK_MCGRP_CONFIG, GFP_KERNEL);
}
static int devlink_nl_port_attrs_put(struct sk_buff *msg,
struct devlink_port *devlink_port)
{
struct devlink_port_attrs *attrs = &devlink_port->attrs;
if (!attrs->set)
return 0;
if (nla_put_u16(msg, DEVLINK_ATTR_PORT_FLAVOUR, attrs->flavour))
return -EMSGSIZE;
switch (devlink_port->attrs.flavour) {
case DEVLINK_PORT_FLAVOUR_PCI_PF:
if (nla_put_u16(msg, DEVLINK_ATTR_PORT_PCI_PF_NUMBER,
attrs->pci_pf.pf))
return -EMSGSIZE;
break;
case DEVLINK_PORT_FLAVOUR_PCI_VF:
if (nla_put_u16(msg, DEVLINK_ATTR_PORT_PCI_PF_NUMBER,
attrs->pci_vf.pf) ||
nla_put_u16(msg, DEVLINK_ATTR_PORT_PCI_VF_NUMBER,
attrs->pci_vf.vf))
return -EMSGSIZE;
break;
case DEVLINK_PORT_FLAVOUR_PHYSICAL:
case DEVLINK_PORT_FLAVOUR_CPU:
case DEVLINK_PORT_FLAVOUR_DSA:
case DEVLINK_PORT_FLAVOUR_VIRTUAL:
if (nla_put_u32(msg, DEVLINK_ATTR_PORT_NUMBER,
attrs->phys.port_number))
return -EMSGSIZE;
if (!attrs->split)
return 0;
if (nla_put_u32(msg, DEVLINK_ATTR_PORT_SPLIT_GROUP,
attrs->phys.port_number))
return -EMSGSIZE;
if (nla_put_u32(msg, DEVLINK_ATTR_PORT_SPLIT_SUBPORT_NUMBER,
attrs->phys.split_subport_number))
return -EMSGSIZE;
break;
default:
break;
}
return 0;
}
static int devlink_nl_port_fill(struct sk_buff *msg, struct devlink *devlink,
struct devlink_port *devlink_port,
enum devlink_command cmd, u32 portid,
u32 seq, int flags)
{
void *hdr;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, devlink_port->index))
goto nla_put_failure;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
spin_lock_bh(&devlink_port->type_lock);
if (nla_put_u16(msg, DEVLINK_ATTR_PORT_TYPE, devlink_port->type))
goto nla_put_failure_type_locked;
if (devlink_port->desired_type != DEVLINK_PORT_TYPE_NOTSET &&
nla_put_u16(msg, DEVLINK_ATTR_PORT_DESIRED_TYPE,
devlink_port->desired_type))
goto nla_put_failure_type_locked;
if (devlink_port->type == DEVLINK_PORT_TYPE_ETH) {
struct net_device *netdev = devlink_port->type_dev;
if (netdev &&
(nla_put_u32(msg, DEVLINK_ATTR_PORT_NETDEV_IFINDEX,
netdev->ifindex) ||
nla_put_string(msg, DEVLINK_ATTR_PORT_NETDEV_NAME,
netdev->name)))
goto nla_put_failure_type_locked;
}
if (devlink_port->type == DEVLINK_PORT_TYPE_IB) {
struct ib_device *ibdev = devlink_port->type_dev;
if (ibdev &&
nla_put_string(msg, DEVLINK_ATTR_PORT_IBDEV_NAME,
ibdev->name))
goto nla_put_failure_type_locked;
}
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
spin_unlock_bh(&devlink_port->type_lock);
if (devlink_nl_port_attrs_put(msg, devlink_port))
goto nla_put_failure;
genlmsg_end(msg, hdr);
return 0;
nla_put_failure_type_locked:
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
spin_unlock_bh(&devlink_port->type_lock);
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static void devlink_port_notify(struct devlink_port *devlink_port,
enum devlink_command cmd)
{
struct devlink *devlink = devlink_port->devlink;
struct sk_buff *msg;
int err;
if (!devlink_port->registered)
return;
WARN_ON(cmd != DEVLINK_CMD_PORT_NEW && cmd != DEVLINK_CMD_PORT_DEL);
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
err = devlink_nl_port_fill(msg, devlink, devlink_port, cmd, 0, 0, 0);
if (err) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(&devlink_nl_family, devlink_net(devlink),
msg, 0, DEVLINK_MCGRP_CONFIG, GFP_KERNEL);
}
static int devlink_nl_cmd_get_doit(struct sk_buff *skb, struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct sk_buff *msg;
int err;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_fill(msg, devlink, DEVLINK_CMD_NEW,
info->snd_portid, info->snd_seq, 0);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int devlink_nl_cmd_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink *devlink;
int start = cb->args[0];
int idx = 0;
int err;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_fill(msg, devlink, DEVLINK_CMD_NEW,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, NLM_F_MULTI);
if (err)
goto out;
idx++;
}
out:
mutex_unlock(&devlink_mutex);
cb->args[0] = idx;
return msg->len;
}
static int devlink_nl_cmd_port_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_port *devlink_port = info->user_ptr[0];
struct devlink *devlink = devlink_port->devlink;
struct sk_buff *msg;
int err;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_port_fill(msg, devlink, devlink_port,
DEVLINK_CMD_PORT_NEW,
info->snd_portid, info->snd_seq, 0);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int devlink_nl_cmd_port_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink *devlink;
struct devlink_port *devlink_port;
int start = cb->args[0];
int idx = 0;
int err;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(devlink_port, &devlink->port_list, list) {
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_port_fill(msg, devlink, devlink_port,
DEVLINK_CMD_NEW,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI);
if (err) {
mutex_unlock(&devlink->lock);
goto out;
}
idx++;
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
cb->args[0] = idx;
return msg->len;
}
static int devlink_port_type_set(struct devlink *devlink,
struct devlink_port *devlink_port,
enum devlink_port_type port_type)
{
int err;
if (devlink->ops->port_type_set) {
if (port_type == DEVLINK_PORT_TYPE_NOTSET)
return -EINVAL;
if (port_type == devlink_port->type)
return 0;
err = devlink->ops->port_type_set(devlink_port, port_type);
if (err)
return err;
devlink_port->desired_type = port_type;
devlink_port_notify(devlink_port, DEVLINK_CMD_PORT_NEW);
return 0;
}
return -EOPNOTSUPP;
}
static int devlink_nl_cmd_port_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_port *devlink_port = info->user_ptr[0];
struct devlink *devlink = devlink_port->devlink;
int err;
if (info->attrs[DEVLINK_ATTR_PORT_TYPE]) {
enum devlink_port_type port_type;
port_type = nla_get_u16(info->attrs[DEVLINK_ATTR_PORT_TYPE]);
err = devlink_port_type_set(devlink, devlink_port, port_type);
if (err)
return err;
}
return 0;
}
static int devlink_port_split(struct devlink *devlink, u32 port_index,
u32 count, struct netlink_ext_ack *extack)
{
if (devlink->ops->port_split)
return devlink->ops->port_split(devlink, port_index, count,
extack);
return -EOPNOTSUPP;
}
static int devlink_nl_cmd_port_split_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
u32 port_index;
u32 count;
if (!info->attrs[DEVLINK_ATTR_PORT_INDEX] ||
!info->attrs[DEVLINK_ATTR_PORT_SPLIT_COUNT])
return -EINVAL;
port_index = nla_get_u32(info->attrs[DEVLINK_ATTR_PORT_INDEX]);
count = nla_get_u32(info->attrs[DEVLINK_ATTR_PORT_SPLIT_COUNT]);
return devlink_port_split(devlink, port_index, count, info->extack);
}
static int devlink_port_unsplit(struct devlink *devlink, u32 port_index,
struct netlink_ext_ack *extack)
{
if (devlink->ops->port_unsplit)
return devlink->ops->port_unsplit(devlink, port_index, extack);
return -EOPNOTSUPP;
}
static int devlink_nl_cmd_port_unsplit_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
u32 port_index;
if (!info->attrs[DEVLINK_ATTR_PORT_INDEX])
return -EINVAL;
port_index = nla_get_u32(info->attrs[DEVLINK_ATTR_PORT_INDEX]);
return devlink_port_unsplit(devlink, port_index, info->extack);
}
static int devlink_nl_sb_fill(struct sk_buff *msg, struct devlink *devlink,
struct devlink_sb *devlink_sb,
enum devlink_command cmd, u32 portid,
u32 seq, int flags)
{
void *hdr;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_SIZE, devlink_sb->size))
goto nla_put_failure;
if (nla_put_u16(msg, DEVLINK_ATTR_SB_INGRESS_POOL_COUNT,
devlink_sb->ingress_pools_count))
goto nla_put_failure;
if (nla_put_u16(msg, DEVLINK_ATTR_SB_EGRESS_POOL_COUNT,
devlink_sb->egress_pools_count))
goto nla_put_failure;
if (nla_put_u16(msg, DEVLINK_ATTR_SB_INGRESS_TC_COUNT,
devlink_sb->ingress_tc_count))
goto nla_put_failure;
if (nla_put_u16(msg, DEVLINK_ATTR_SB_EGRESS_TC_COUNT,
devlink_sb->egress_tc_count))
goto nla_put_failure;
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int devlink_nl_cmd_sb_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_sb *devlink_sb = info->user_ptr[1];
struct sk_buff *msg;
int err;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_sb_fill(msg, devlink, devlink_sb,
DEVLINK_CMD_SB_NEW,
info->snd_portid, info->snd_seq, 0);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int devlink_nl_cmd_sb_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink *devlink;
struct devlink_sb *devlink_sb;
int start = cb->args[0];
int idx = 0;
int err;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(devlink_sb, &devlink->sb_list, list) {
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_sb_fill(msg, devlink, devlink_sb,
DEVLINK_CMD_SB_NEW,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI);
if (err) {
mutex_unlock(&devlink->lock);
goto out;
}
idx++;
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
cb->args[0] = idx;
return msg->len;
}
static int devlink_nl_sb_pool_fill(struct sk_buff *msg, struct devlink *devlink,
struct devlink_sb *devlink_sb,
u16 pool_index, enum devlink_command cmd,
u32 portid, u32 seq, int flags)
{
struct devlink_sb_pool_info pool_info;
void *hdr;
int err;
err = devlink->ops->sb_pool_get(devlink, devlink_sb->index,
pool_index, &pool_info);
if (err)
return err;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index))
goto nla_put_failure;
if (nla_put_u16(msg, DEVLINK_ATTR_SB_POOL_INDEX, pool_index))
goto nla_put_failure;
if (nla_put_u8(msg, DEVLINK_ATTR_SB_POOL_TYPE, pool_info.pool_type))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_POOL_SIZE, pool_info.size))
goto nla_put_failure;
if (nla_put_u8(msg, DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE,
pool_info.threshold_type))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_POOL_CELL_SIZE,
pool_info.cell_size))
goto nla_put_failure;
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int devlink_nl_cmd_sb_pool_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_sb *devlink_sb = info->user_ptr[1];
struct sk_buff *msg;
u16 pool_index;
int err;
err = devlink_sb_pool_index_get_from_info(devlink_sb, info,
&pool_index);
if (err)
return err;
if (!devlink->ops->sb_pool_get)
return -EOPNOTSUPP;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_sb_pool_fill(msg, devlink, devlink_sb, pool_index,
DEVLINK_CMD_SB_POOL_NEW,
info->snd_portid, info->snd_seq, 0);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int __sb_pool_get_dumpit(struct sk_buff *msg, int start, int *p_idx,
struct devlink *devlink,
struct devlink_sb *devlink_sb,
u32 portid, u32 seq)
{
u16 pool_count = devlink_sb_pool_count(devlink_sb);
u16 pool_index;
int err;
for (pool_index = 0; pool_index < pool_count; pool_index++) {
if (*p_idx < start) {
(*p_idx)++;
continue;
}
err = devlink_nl_sb_pool_fill(msg, devlink,
devlink_sb,
pool_index,
DEVLINK_CMD_SB_POOL_NEW,
portid, seq, NLM_F_MULTI);
if (err)
return err;
(*p_idx)++;
}
return 0;
}
static int devlink_nl_cmd_sb_pool_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink *devlink;
struct devlink_sb *devlink_sb;
int start = cb->args[0];
int idx = 0;
int err = 0;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)) ||
!devlink->ops->sb_pool_get)
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(devlink_sb, &devlink->sb_list, list) {
err = __sb_pool_get_dumpit(msg, start, &idx, devlink,
devlink_sb,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq);
if (err && err != -EOPNOTSUPP) {
mutex_unlock(&devlink->lock);
goto out;
}
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
if (err != -EMSGSIZE)
return err;
cb->args[0] = idx;
return msg->len;
}
static int devlink_sb_pool_set(struct devlink *devlink, unsigned int sb_index,
u16 pool_index, u32 size,
enum devlink_sb_threshold_type threshold_type,
struct netlink_ext_ack *extack)
{
const struct devlink_ops *ops = devlink->ops;
if (ops->sb_pool_set)
return ops->sb_pool_set(devlink, sb_index, pool_index,
size, threshold_type, extack);
return -EOPNOTSUPP;
}
static int devlink_nl_cmd_sb_pool_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_sb *devlink_sb = info->user_ptr[1];
enum devlink_sb_threshold_type threshold_type;
u16 pool_index;
u32 size;
int err;
err = devlink_sb_pool_index_get_from_info(devlink_sb, info,
&pool_index);
if (err)
return err;
err = devlink_sb_th_type_get_from_info(info, &threshold_type);
if (err)
return err;
if (!info->attrs[DEVLINK_ATTR_SB_POOL_SIZE])
return -EINVAL;
size = nla_get_u32(info->attrs[DEVLINK_ATTR_SB_POOL_SIZE]);
return devlink_sb_pool_set(devlink, devlink_sb->index,
pool_index, size, threshold_type,
info->extack);
}
static int devlink_nl_sb_port_pool_fill(struct sk_buff *msg,
struct devlink *devlink,
struct devlink_port *devlink_port,
struct devlink_sb *devlink_sb,
u16 pool_index,
enum devlink_command cmd,
u32 portid, u32 seq, int flags)
{
const struct devlink_ops *ops = devlink->ops;
u32 threshold;
void *hdr;
int err;
err = ops->sb_port_pool_get(devlink_port, devlink_sb->index,
pool_index, &threshold);
if (err)
return err;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, devlink_port->index))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index))
goto nla_put_failure;
if (nla_put_u16(msg, DEVLINK_ATTR_SB_POOL_INDEX, pool_index))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_THRESHOLD, threshold))
goto nla_put_failure;
if (ops->sb_occ_port_pool_get) {
u32 cur;
u32 max;
err = ops->sb_occ_port_pool_get(devlink_port, devlink_sb->index,
pool_index, &cur, &max);
if (err && err != -EOPNOTSUPP)
return err;
if (!err) {
if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_CUR, cur))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_MAX, max))
goto nla_put_failure;
}
}
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int devlink_nl_cmd_sb_port_pool_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_port *devlink_port = info->user_ptr[0];
struct devlink *devlink = devlink_port->devlink;
struct devlink_sb *devlink_sb = info->user_ptr[1];
struct sk_buff *msg;
u16 pool_index;
int err;
err = devlink_sb_pool_index_get_from_info(devlink_sb, info,
&pool_index);
if (err)
return err;
if (!devlink->ops->sb_port_pool_get)
return -EOPNOTSUPP;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_sb_port_pool_fill(msg, devlink, devlink_port,
devlink_sb, pool_index,
DEVLINK_CMD_SB_PORT_POOL_NEW,
info->snd_portid, info->snd_seq, 0);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int __sb_port_pool_get_dumpit(struct sk_buff *msg, int start, int *p_idx,
struct devlink *devlink,
struct devlink_sb *devlink_sb,
u32 portid, u32 seq)
{
struct devlink_port *devlink_port;
u16 pool_count = devlink_sb_pool_count(devlink_sb);
u16 pool_index;
int err;
list_for_each_entry(devlink_port, &devlink->port_list, list) {
for (pool_index = 0; pool_index < pool_count; pool_index++) {
if (*p_idx < start) {
(*p_idx)++;
continue;
}
err = devlink_nl_sb_port_pool_fill(msg, devlink,
devlink_port,
devlink_sb,
pool_index,
DEVLINK_CMD_SB_PORT_POOL_NEW,
portid, seq,
NLM_F_MULTI);
if (err)
return err;
(*p_idx)++;
}
}
return 0;
}
static int devlink_nl_cmd_sb_port_pool_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink *devlink;
struct devlink_sb *devlink_sb;
int start = cb->args[0];
int idx = 0;
int err = 0;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)) ||
!devlink->ops->sb_port_pool_get)
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(devlink_sb, &devlink->sb_list, list) {
err = __sb_port_pool_get_dumpit(msg, start, &idx,
devlink, devlink_sb,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq);
if (err && err != -EOPNOTSUPP) {
mutex_unlock(&devlink->lock);
goto out;
}
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
if (err != -EMSGSIZE)
return err;
cb->args[0] = idx;
return msg->len;
}
static int devlink_sb_port_pool_set(struct devlink_port *devlink_port,
unsigned int sb_index, u16 pool_index,
u32 threshold,
struct netlink_ext_ack *extack)
{
const struct devlink_ops *ops = devlink_port->devlink->ops;
if (ops->sb_port_pool_set)
return ops->sb_port_pool_set(devlink_port, sb_index,
pool_index, threshold, extack);
return -EOPNOTSUPP;
}
static int devlink_nl_cmd_sb_port_pool_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_port *devlink_port = info->user_ptr[0];
struct devlink_sb *devlink_sb = info->user_ptr[1];
u16 pool_index;
u32 threshold;
int err;
err = devlink_sb_pool_index_get_from_info(devlink_sb, info,
&pool_index);
if (err)
return err;
if (!info->attrs[DEVLINK_ATTR_SB_THRESHOLD])
return -EINVAL;
threshold = nla_get_u32(info->attrs[DEVLINK_ATTR_SB_THRESHOLD]);
return devlink_sb_port_pool_set(devlink_port, devlink_sb->index,
pool_index, threshold, info->extack);
}
static int
devlink_nl_sb_tc_pool_bind_fill(struct sk_buff *msg, struct devlink *devlink,
struct devlink_port *devlink_port,
struct devlink_sb *devlink_sb, u16 tc_index,
enum devlink_sb_pool_type pool_type,
enum devlink_command cmd,
u32 portid, u32 seq, int flags)
{
const struct devlink_ops *ops = devlink->ops;
u16 pool_index;
u32 threshold;
void *hdr;
int err;
err = ops->sb_tc_pool_bind_get(devlink_port, devlink_sb->index,
tc_index, pool_type,
&pool_index, &threshold);
if (err)
return err;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, devlink_port->index))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index))
goto nla_put_failure;
if (nla_put_u16(msg, DEVLINK_ATTR_SB_TC_INDEX, tc_index))
goto nla_put_failure;
if (nla_put_u8(msg, DEVLINK_ATTR_SB_POOL_TYPE, pool_type))
goto nla_put_failure;
if (nla_put_u16(msg, DEVLINK_ATTR_SB_POOL_INDEX, pool_index))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_THRESHOLD, threshold))
goto nla_put_failure;
if (ops->sb_occ_tc_port_bind_get) {
u32 cur;
u32 max;
err = ops->sb_occ_tc_port_bind_get(devlink_port,
devlink_sb->index,
tc_index, pool_type,
&cur, &max);
if (err && err != -EOPNOTSUPP)
return err;
if (!err) {
if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_CUR, cur))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_MAX, max))
goto nla_put_failure;
}
}
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int devlink_nl_cmd_sb_tc_pool_bind_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_port *devlink_port = info->user_ptr[0];
struct devlink *devlink = devlink_port->devlink;
struct devlink_sb *devlink_sb = info->user_ptr[1];
struct sk_buff *msg;
enum devlink_sb_pool_type pool_type;
u16 tc_index;
int err;
err = devlink_sb_pool_type_get_from_info(info, &pool_type);
if (err)
return err;
err = devlink_sb_tc_index_get_from_info(devlink_sb, info,
pool_type, &tc_index);
if (err)
return err;
if (!devlink->ops->sb_tc_pool_bind_get)
return -EOPNOTSUPP;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_sb_tc_pool_bind_fill(msg, devlink, devlink_port,
devlink_sb, tc_index, pool_type,
DEVLINK_CMD_SB_TC_POOL_BIND_NEW,
info->snd_portid,
info->snd_seq, 0);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int __sb_tc_pool_bind_get_dumpit(struct sk_buff *msg,
int start, int *p_idx,
struct devlink *devlink,
struct devlink_sb *devlink_sb,
u32 portid, u32 seq)
{
struct devlink_port *devlink_port;
u16 tc_index;
int err;
list_for_each_entry(devlink_port, &devlink->port_list, list) {
for (tc_index = 0;
tc_index < devlink_sb->ingress_tc_count; tc_index++) {
if (*p_idx < start) {
(*p_idx)++;
continue;
}
err = devlink_nl_sb_tc_pool_bind_fill(msg, devlink,
devlink_port,
devlink_sb,
tc_index,
DEVLINK_SB_POOL_TYPE_INGRESS,
DEVLINK_CMD_SB_TC_POOL_BIND_NEW,
portid, seq,
NLM_F_MULTI);
if (err)
return err;
(*p_idx)++;
}
for (tc_index = 0;
tc_index < devlink_sb->egress_tc_count; tc_index++) {
if (*p_idx < start) {
(*p_idx)++;
continue;
}
err = devlink_nl_sb_tc_pool_bind_fill(msg, devlink,
devlink_port,
devlink_sb,
tc_index,
DEVLINK_SB_POOL_TYPE_EGRESS,
DEVLINK_CMD_SB_TC_POOL_BIND_NEW,
portid, seq,
NLM_F_MULTI);
if (err)
return err;
(*p_idx)++;
}
}
return 0;
}
static int
devlink_nl_cmd_sb_tc_pool_bind_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink *devlink;
struct devlink_sb *devlink_sb;
int start = cb->args[0];
int idx = 0;
int err = 0;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)) ||
!devlink->ops->sb_tc_pool_bind_get)
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(devlink_sb, &devlink->sb_list, list) {
err = __sb_tc_pool_bind_get_dumpit(msg, start, &idx,
devlink,
devlink_sb,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq);
if (err && err != -EOPNOTSUPP) {
mutex_unlock(&devlink->lock);
goto out;
}
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
if (err != -EMSGSIZE)
return err;
cb->args[0] = idx;
return msg->len;
}
static int devlink_sb_tc_pool_bind_set(struct devlink_port *devlink_port,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u16 pool_index, u32 threshold,
struct netlink_ext_ack *extack)
{
const struct devlink_ops *ops = devlink_port->devlink->ops;
if (ops->sb_tc_pool_bind_set)
return ops->sb_tc_pool_bind_set(devlink_port, sb_index,
tc_index, pool_type,
pool_index, threshold, extack);
return -EOPNOTSUPP;
}
static int devlink_nl_cmd_sb_tc_pool_bind_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_port *devlink_port = info->user_ptr[0];
struct devlink_sb *devlink_sb = info->user_ptr[1];
enum devlink_sb_pool_type pool_type;
u16 tc_index;
u16 pool_index;
u32 threshold;
int err;
err = devlink_sb_pool_type_get_from_info(info, &pool_type);
if (err)
return err;
err = devlink_sb_tc_index_get_from_info(devlink_sb, info,
pool_type, &tc_index);
if (err)
return err;
err = devlink_sb_pool_index_get_from_info(devlink_sb, info,
&pool_index);
if (err)
return err;
if (!info->attrs[DEVLINK_ATTR_SB_THRESHOLD])
return -EINVAL;
threshold = nla_get_u32(info->attrs[DEVLINK_ATTR_SB_THRESHOLD]);
return devlink_sb_tc_pool_bind_set(devlink_port, devlink_sb->index,
tc_index, pool_type,
pool_index, threshold, info->extack);
}
static int devlink_nl_cmd_sb_occ_snapshot_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_sb *devlink_sb = info->user_ptr[1];
const struct devlink_ops *ops = devlink->ops;
if (ops->sb_occ_snapshot)
return ops->sb_occ_snapshot(devlink, devlink_sb->index);
return -EOPNOTSUPP;
}
static int devlink_nl_cmd_sb_occ_max_clear_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_sb *devlink_sb = info->user_ptr[1];
const struct devlink_ops *ops = devlink->ops;
if (ops->sb_occ_max_clear)
return ops->sb_occ_max_clear(devlink, devlink_sb->index);
return -EOPNOTSUPP;
}
static int devlink_nl_eswitch_fill(struct sk_buff *msg, struct devlink *devlink,
enum devlink_command cmd, u32 portid,
u32 seq, int flags)
{
const struct devlink_ops *ops = devlink->ops;
enum devlink_eswitch_encap_mode encap_mode;
u8 inline_mode;
void *hdr;
int err = 0;
u16 mode;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
err = devlink_nl_put_handle(msg, devlink);
if (err)
goto nla_put_failure;
if (ops->eswitch_mode_get) {
err = ops->eswitch_mode_get(devlink, &mode);
if (err)
goto nla_put_failure;
err = nla_put_u16(msg, DEVLINK_ATTR_ESWITCH_MODE, mode);
if (err)
goto nla_put_failure;
}
if (ops->eswitch_inline_mode_get) {
err = ops->eswitch_inline_mode_get(devlink, &inline_mode);
if (err)
goto nla_put_failure;
err = nla_put_u8(msg, DEVLINK_ATTR_ESWITCH_INLINE_MODE,
inline_mode);
if (err)
goto nla_put_failure;
}
if (ops->eswitch_encap_mode_get) {
err = ops->eswitch_encap_mode_get(devlink, &encap_mode);
if (err)
goto nla_put_failure;
err = nla_put_u8(msg, DEVLINK_ATTR_ESWITCH_ENCAP_MODE, encap_mode);
if (err)
goto nla_put_failure;
}
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return err;
}
static int devlink_nl_cmd_eswitch_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct sk_buff *msg;
int err;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_eswitch_fill(msg, devlink, DEVLINK_CMD_ESWITCH_GET,
info->snd_portid, info->snd_seq, 0);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int devlink_nl_cmd_eswitch_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
const struct devlink_ops *ops = devlink->ops;
enum devlink_eswitch_encap_mode encap_mode;
u8 inline_mode;
int err = 0;
u16 mode;
if (info->attrs[DEVLINK_ATTR_ESWITCH_MODE]) {
if (!ops->eswitch_mode_set)
return -EOPNOTSUPP;
mode = nla_get_u16(info->attrs[DEVLINK_ATTR_ESWITCH_MODE]);
err = ops->eswitch_mode_set(devlink, mode, info->extack);
if (err)
return err;
}
if (info->attrs[DEVLINK_ATTR_ESWITCH_INLINE_MODE]) {
if (!ops->eswitch_inline_mode_set)
return -EOPNOTSUPP;
inline_mode = nla_get_u8(
info->attrs[DEVLINK_ATTR_ESWITCH_INLINE_MODE]);
err = ops->eswitch_inline_mode_set(devlink, inline_mode,
info->extack);
if (err)
return err;
}
if (info->attrs[DEVLINK_ATTR_ESWITCH_ENCAP_MODE]) {
if (!ops->eswitch_encap_mode_set)
return -EOPNOTSUPP;
encap_mode = nla_get_u8(info->attrs[DEVLINK_ATTR_ESWITCH_ENCAP_MODE]);
err = ops->eswitch_encap_mode_set(devlink, encap_mode,
info->extack);
if (err)
return err;
}
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
return 0;
}
int devlink_dpipe_match_put(struct sk_buff *skb,
struct devlink_dpipe_match *match)
{
struct devlink_dpipe_header *header = match->header;
struct devlink_dpipe_field *field = &header->fields[match->field_id];
struct nlattr *match_attr;
match_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_MATCH);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!match_attr)
return -EMSGSIZE;
if (nla_put_u32(skb, DEVLINK_ATTR_DPIPE_MATCH_TYPE, match->type) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_INDEX, match->header_index) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_ID, header->id) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_ID, field->id) ||
nla_put_u8(skb, DEVLINK_ATTR_DPIPE_HEADER_GLOBAL, header->global))
goto nla_put_failure;
nla_nest_end(skb, match_attr);
return 0;
nla_put_failure:
nla_nest_cancel(skb, match_attr);
return -EMSGSIZE;
}
EXPORT_SYMBOL_GPL(devlink_dpipe_match_put);
static int devlink_dpipe_matches_put(struct devlink_dpipe_table *table,
struct sk_buff *skb)
{
struct nlattr *matches_attr;
matches_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_DPIPE_TABLE_MATCHES);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!matches_attr)
return -EMSGSIZE;
if (table->table_ops->matches_dump(table->priv, skb))
goto nla_put_failure;
nla_nest_end(skb, matches_attr);
return 0;
nla_put_failure:
nla_nest_cancel(skb, matches_attr);
return -EMSGSIZE;
}
int devlink_dpipe_action_put(struct sk_buff *skb,
struct devlink_dpipe_action *action)
{
struct devlink_dpipe_header *header = action->header;
struct devlink_dpipe_field *field = &header->fields[action->field_id];
struct nlattr *action_attr;
action_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_ACTION);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!action_attr)
return -EMSGSIZE;
if (nla_put_u32(skb, DEVLINK_ATTR_DPIPE_ACTION_TYPE, action->type) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_INDEX, action->header_index) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_ID, header->id) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_ID, field->id) ||
nla_put_u8(skb, DEVLINK_ATTR_DPIPE_HEADER_GLOBAL, header->global))
goto nla_put_failure;
nla_nest_end(skb, action_attr);
return 0;
nla_put_failure:
nla_nest_cancel(skb, action_attr);
return -EMSGSIZE;
}
EXPORT_SYMBOL_GPL(devlink_dpipe_action_put);
static int devlink_dpipe_actions_put(struct devlink_dpipe_table *table,
struct sk_buff *skb)
{
struct nlattr *actions_attr;
actions_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_DPIPE_TABLE_ACTIONS);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!actions_attr)
return -EMSGSIZE;
if (table->table_ops->actions_dump(table->priv, skb))
goto nla_put_failure;
nla_nest_end(skb, actions_attr);
return 0;
nla_put_failure:
nla_nest_cancel(skb, actions_attr);
return -EMSGSIZE;
}
static int devlink_dpipe_table_put(struct sk_buff *skb,
struct devlink_dpipe_table *table)
{
struct nlattr *table_attr;
u64 table_size;
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
table_size = table->table_ops->size_get(table->priv);
table_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_TABLE);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!table_attr)
return -EMSGSIZE;
if (nla_put_string(skb, DEVLINK_ATTR_DPIPE_TABLE_NAME, table->name) ||
nla_put_u64_64bit(skb, DEVLINK_ATTR_DPIPE_TABLE_SIZE, table_size,
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
DEVLINK_ATTR_PAD))
goto nla_put_failure;
if (nla_put_u8(skb, DEVLINK_ATTR_DPIPE_TABLE_COUNTERS_ENABLED,
table->counters_enabled))
goto nla_put_failure;
if (table->resource_valid) {
if (nla_put_u64_64bit(skb, DEVLINK_ATTR_DPIPE_TABLE_RESOURCE_ID,
table->resource_id, DEVLINK_ATTR_PAD) ||
nla_put_u64_64bit(skb, DEVLINK_ATTR_DPIPE_TABLE_RESOURCE_UNITS,
table->resource_units, DEVLINK_ATTR_PAD))
goto nla_put_failure;
}
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (devlink_dpipe_matches_put(table, skb))
goto nla_put_failure;
if (devlink_dpipe_actions_put(table, skb))
goto nla_put_failure;
nla_nest_end(skb, table_attr);
return 0;
nla_put_failure:
nla_nest_cancel(skb, table_attr);
return -EMSGSIZE;
}
static int devlink_dpipe_send_and_alloc_skb(struct sk_buff **pskb,
struct genl_info *info)
{
int err;
if (*pskb) {
err = genlmsg_reply(*pskb, info);
if (err)
return err;
}
*pskb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!*pskb)
return -ENOMEM;
return 0;
}
static int devlink_dpipe_tables_fill(struct genl_info *info,
enum devlink_command cmd, int flags,
struct list_head *dpipe_tables,
const char *table_name)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_dpipe_table *table;
struct nlattr *tables_attr;
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
bool incomplete;
void *hdr;
int i;
int err;
table = list_first_entry(dpipe_tables,
struct devlink_dpipe_table, list);
start_again:
err = devlink_dpipe_send_and_alloc_skb(&skb, info);
if (err)
return err;
hdr = genlmsg_put(skb, info->snd_portid, info->snd_seq,
&devlink_nl_family, NLM_F_MULTI, cmd);
if (!hdr) {
nlmsg_free(skb);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
return -EMSGSIZE;
}
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (devlink_nl_put_handle(skb, devlink))
goto nla_put_failure;
tables_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_TABLES);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!tables_attr)
goto nla_put_failure;
i = 0;
incomplete = false;
list_for_each_entry_from(table, dpipe_tables, list) {
if (!table_name) {
err = devlink_dpipe_table_put(skb, table);
if (err) {
if (!i)
goto err_table_put;
incomplete = true;
break;
}
} else {
if (!strcmp(table->name, table_name)) {
err = devlink_dpipe_table_put(skb, table);
if (err)
break;
}
}
i++;
}
nla_nest_end(skb, tables_attr);
genlmsg_end(skb, hdr);
if (incomplete)
goto start_again;
send_done:
nlh = nlmsg_put(skb, info->snd_portid, info->snd_seq,
NLMSG_DONE, 0, flags | NLM_F_MULTI);
if (!nlh) {
err = devlink_dpipe_send_and_alloc_skb(&skb, info);
if (err)
return err;
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
goto send_done;
}
return genlmsg_reply(skb, info);
nla_put_failure:
err = -EMSGSIZE;
err_table_put:
nlmsg_free(skb);
return err;
}
static int devlink_nl_cmd_dpipe_table_get(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
const char *table_name = NULL;
if (info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME])
table_name = nla_data(info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME]);
return devlink_dpipe_tables_fill(info, DEVLINK_CMD_DPIPE_TABLE_GET, 0,
&devlink->dpipe_table_list,
table_name);
}
static int devlink_dpipe_value_put(struct sk_buff *skb,
struct devlink_dpipe_value *value)
{
if (nla_put(skb, DEVLINK_ATTR_DPIPE_VALUE,
value->value_size, value->value))
return -EMSGSIZE;
if (value->mask)
if (nla_put(skb, DEVLINK_ATTR_DPIPE_VALUE_MASK,
value->value_size, value->mask))
return -EMSGSIZE;
if (value->mapping_valid)
if (nla_put_u32(skb, DEVLINK_ATTR_DPIPE_VALUE_MAPPING,
value->mapping_value))
return -EMSGSIZE;
return 0;
}
static int devlink_dpipe_action_value_put(struct sk_buff *skb,
struct devlink_dpipe_value *value)
{
if (!value->action)
return -EINVAL;
if (devlink_dpipe_action_put(skb, value->action))
return -EMSGSIZE;
if (devlink_dpipe_value_put(skb, value))
return -EMSGSIZE;
return 0;
}
static int devlink_dpipe_action_values_put(struct sk_buff *skb,
struct devlink_dpipe_value *values,
unsigned int values_count)
{
struct nlattr *action_attr;
int i;
int err;
for (i = 0; i < values_count; i++) {
action_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_DPIPE_ACTION_VALUE);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!action_attr)
return -EMSGSIZE;
err = devlink_dpipe_action_value_put(skb, &values[i]);
if (err)
goto err_action_value_put;
nla_nest_end(skb, action_attr);
}
return 0;
err_action_value_put:
nla_nest_cancel(skb, action_attr);
return err;
}
static int devlink_dpipe_match_value_put(struct sk_buff *skb,
struct devlink_dpipe_value *value)
{
if (!value->match)
return -EINVAL;
if (devlink_dpipe_match_put(skb, value->match))
return -EMSGSIZE;
if (devlink_dpipe_value_put(skb, value))
return -EMSGSIZE;
return 0;
}
static int devlink_dpipe_match_values_put(struct sk_buff *skb,
struct devlink_dpipe_value *values,
unsigned int values_count)
{
struct nlattr *match_attr;
int i;
int err;
for (i = 0; i < values_count; i++) {
match_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_DPIPE_MATCH_VALUE);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!match_attr)
return -EMSGSIZE;
err = devlink_dpipe_match_value_put(skb, &values[i]);
if (err)
goto err_match_value_put;
nla_nest_end(skb, match_attr);
}
return 0;
err_match_value_put:
nla_nest_cancel(skb, match_attr);
return err;
}
static int devlink_dpipe_entry_put(struct sk_buff *skb,
struct devlink_dpipe_entry *entry)
{
struct nlattr *entry_attr, *matches_attr, *actions_attr;
int err;
entry_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_ENTRY);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!entry_attr)
return -EMSGSIZE;
if (nla_put_u64_64bit(skb, DEVLINK_ATTR_DPIPE_ENTRY_INDEX, entry->index,
DEVLINK_ATTR_PAD))
goto nla_put_failure;
if (entry->counter_valid)
if (nla_put_u64_64bit(skb, DEVLINK_ATTR_DPIPE_ENTRY_COUNTER,
entry->counter, DEVLINK_ATTR_PAD))
goto nla_put_failure;
matches_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_DPIPE_ENTRY_MATCH_VALUES);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!matches_attr)
goto nla_put_failure;
err = devlink_dpipe_match_values_put(skb, entry->match_values,
entry->match_values_count);
if (err) {
nla_nest_cancel(skb, matches_attr);
goto err_match_values_put;
}
nla_nest_end(skb, matches_attr);
actions_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_DPIPE_ENTRY_ACTION_VALUES);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!actions_attr)
goto nla_put_failure;
err = devlink_dpipe_action_values_put(skb, entry->action_values,
entry->action_values_count);
if (err) {
nla_nest_cancel(skb, actions_attr);
goto err_action_values_put;
}
nla_nest_end(skb, actions_attr);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
nla_nest_end(skb, entry_attr);
return 0;
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
nla_put_failure:
err = -EMSGSIZE;
err_match_values_put:
err_action_values_put:
nla_nest_cancel(skb, entry_attr);
return err;
}
static struct devlink_dpipe_table *
devlink_dpipe_table_find(struct list_head *dpipe_tables,
const char *table_name, struct devlink *devlink)
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
{
struct devlink_dpipe_table *table;
list_for_each_entry_rcu(table, dpipe_tables, list,
lockdep_is_held(&devlink->lock)) {
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!strcmp(table->name, table_name))
return table;
}
return NULL;
}
int devlink_dpipe_entry_ctx_prepare(struct devlink_dpipe_dump_ctx *dump_ctx)
{
struct devlink *devlink;
int err;
err = devlink_dpipe_send_and_alloc_skb(&dump_ctx->skb,
dump_ctx->info);
if (err)
return err;
dump_ctx->hdr = genlmsg_put(dump_ctx->skb,
dump_ctx->info->snd_portid,
dump_ctx->info->snd_seq,
&devlink_nl_family, NLM_F_MULTI,
dump_ctx->cmd);
if (!dump_ctx->hdr)
goto nla_put_failure;
devlink = dump_ctx->info->user_ptr[0];
if (devlink_nl_put_handle(dump_ctx->skb, devlink))
goto nla_put_failure;
dump_ctx->nest = nla_nest_start_noflag(dump_ctx->skb,
DEVLINK_ATTR_DPIPE_ENTRIES);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!dump_ctx->nest)
goto nla_put_failure;
return 0;
nla_put_failure:
nlmsg_free(dump_ctx->skb);
return -EMSGSIZE;
}
EXPORT_SYMBOL_GPL(devlink_dpipe_entry_ctx_prepare);
int devlink_dpipe_entry_ctx_append(struct devlink_dpipe_dump_ctx *dump_ctx,
struct devlink_dpipe_entry *entry)
{
return devlink_dpipe_entry_put(dump_ctx->skb, entry);
}
EXPORT_SYMBOL_GPL(devlink_dpipe_entry_ctx_append);
int devlink_dpipe_entry_ctx_close(struct devlink_dpipe_dump_ctx *dump_ctx)
{
nla_nest_end(dump_ctx->skb, dump_ctx->nest);
genlmsg_end(dump_ctx->skb, dump_ctx->hdr);
return 0;
}
EXPORT_SYMBOL_GPL(devlink_dpipe_entry_ctx_close);
void devlink_dpipe_entry_clear(struct devlink_dpipe_entry *entry)
{
unsigned int value_count, value_index;
struct devlink_dpipe_value *value;
value = entry->action_values;
value_count = entry->action_values_count;
for (value_index = 0; value_index < value_count; value_index++) {
kfree(value[value_index].value);
kfree(value[value_index].mask);
}
value = entry->match_values;
value_count = entry->match_values_count;
for (value_index = 0; value_index < value_count; value_index++) {
kfree(value[value_index].value);
kfree(value[value_index].mask);
}
}
EXPORT_SYMBOL(devlink_dpipe_entry_clear);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
static int devlink_dpipe_entries_fill(struct genl_info *info,
enum devlink_command cmd, int flags,
struct devlink_dpipe_table *table)
{
struct devlink_dpipe_dump_ctx dump_ctx;
struct nlmsghdr *nlh;
int err;
dump_ctx.skb = NULL;
dump_ctx.cmd = cmd;
dump_ctx.info = info;
err = table->table_ops->entries_dump(table->priv,
table->counters_enabled,
&dump_ctx);
if (err)
return err;
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
send_done:
nlh = nlmsg_put(dump_ctx.skb, info->snd_portid, info->snd_seq,
NLMSG_DONE, 0, flags | NLM_F_MULTI);
if (!nlh) {
err = devlink_dpipe_send_and_alloc_skb(&dump_ctx.skb, info);
if (err)
return err;
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
goto send_done;
}
return genlmsg_reply(dump_ctx.skb, info);
}
static int devlink_nl_cmd_dpipe_entries_get(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_dpipe_table *table;
const char *table_name;
if (!info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME])
return -EINVAL;
table_name = nla_data(info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME]);
table = devlink_dpipe_table_find(&devlink->dpipe_table_list,
table_name, devlink);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!table)
return -EINVAL;
if (!table->table_ops->entries_dump)
return -EINVAL;
return devlink_dpipe_entries_fill(info, DEVLINK_CMD_DPIPE_ENTRIES_GET,
0, table);
}
static int devlink_dpipe_fields_put(struct sk_buff *skb,
const struct devlink_dpipe_header *header)
{
struct devlink_dpipe_field *field;
struct nlattr *field_attr;
int i;
for (i = 0; i < header->fields_count; i++) {
field = &header->fields[i];
field_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_DPIPE_FIELD);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!field_attr)
return -EMSGSIZE;
if (nla_put_string(skb, DEVLINK_ATTR_DPIPE_FIELD_NAME, field->name) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_ID, field->id) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_BITWIDTH, field->bitwidth) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_MAPPING_TYPE, field->mapping_type))
goto nla_put_failure;
nla_nest_end(skb, field_attr);
}
return 0;
nla_put_failure:
nla_nest_cancel(skb, field_attr);
return -EMSGSIZE;
}
static int devlink_dpipe_header_put(struct sk_buff *skb,
struct devlink_dpipe_header *header)
{
struct nlattr *fields_attr, *header_attr;
int err;
header_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_HEADER);
if (!header_attr)
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
return -EMSGSIZE;
if (nla_put_string(skb, DEVLINK_ATTR_DPIPE_HEADER_NAME, header->name) ||
nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_ID, header->id) ||
nla_put_u8(skb, DEVLINK_ATTR_DPIPE_HEADER_GLOBAL, header->global))
goto nla_put_failure;
fields_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_DPIPE_HEADER_FIELDS);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!fields_attr)
goto nla_put_failure;
err = devlink_dpipe_fields_put(skb, header);
if (err) {
nla_nest_cancel(skb, fields_attr);
goto nla_put_failure;
}
nla_nest_end(skb, fields_attr);
nla_nest_end(skb, header_attr);
return 0;
nla_put_failure:
err = -EMSGSIZE;
nla_nest_cancel(skb, header_attr);
return err;
}
static int devlink_dpipe_headers_fill(struct genl_info *info,
enum devlink_command cmd, int flags,
struct devlink_dpipe_headers *
dpipe_headers)
{
struct devlink *devlink = info->user_ptr[0];
struct nlattr *headers_attr;
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
void *hdr;
int i, j;
int err;
i = 0;
start_again:
err = devlink_dpipe_send_and_alloc_skb(&skb, info);
if (err)
return err;
hdr = genlmsg_put(skb, info->snd_portid, info->snd_seq,
&devlink_nl_family, NLM_F_MULTI, cmd);
if (!hdr) {
nlmsg_free(skb);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
return -EMSGSIZE;
}
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (devlink_nl_put_handle(skb, devlink))
goto nla_put_failure;
headers_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_HEADERS);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!headers_attr)
goto nla_put_failure;
j = 0;
for (; i < dpipe_headers->headers_count; i++) {
err = devlink_dpipe_header_put(skb, dpipe_headers->headers[i]);
if (err) {
if (!j)
goto err_table_put;
break;
}
j++;
}
nla_nest_end(skb, headers_attr);
genlmsg_end(skb, hdr);
if (i != dpipe_headers->headers_count)
goto start_again;
send_done:
nlh = nlmsg_put(skb, info->snd_portid, info->snd_seq,
NLMSG_DONE, 0, flags | NLM_F_MULTI);
if (!nlh) {
err = devlink_dpipe_send_and_alloc_skb(&skb, info);
if (err)
return err;
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
goto send_done;
}
return genlmsg_reply(skb, info);
nla_put_failure:
err = -EMSGSIZE;
err_table_put:
nlmsg_free(skb);
return err;
}
static int devlink_nl_cmd_dpipe_headers_get(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
if (!devlink->dpipe_headers)
return -EOPNOTSUPP;
return devlink_dpipe_headers_fill(info, DEVLINK_CMD_DPIPE_HEADERS_GET,
0, devlink->dpipe_headers);
}
static int devlink_dpipe_table_counters_set(struct devlink *devlink,
const char *table_name,
bool enable)
{
struct devlink_dpipe_table *table;
table = devlink_dpipe_table_find(&devlink->dpipe_table_list,
table_name, devlink);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!table)
return -EINVAL;
if (table->counter_control_extern)
return -EOPNOTSUPP;
if (!(table->counters_enabled ^ enable))
return 0;
table->counters_enabled = enable;
if (table->table_ops->counters_set_update)
table->table_ops->counters_set_update(table->priv, enable);
return 0;
}
static int devlink_nl_cmd_dpipe_table_counters_set(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
const char *table_name;
bool counters_enable;
if (!info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME] ||
!info->attrs[DEVLINK_ATTR_DPIPE_TABLE_COUNTERS_ENABLED])
return -EINVAL;
table_name = nla_data(info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME]);
counters_enable = !!nla_get_u8(info->attrs[DEVLINK_ATTR_DPIPE_TABLE_COUNTERS_ENABLED]);
return devlink_dpipe_table_counters_set(devlink, table_name,
counters_enable);
}
static struct devlink_resource *
devlink_resource_find(struct devlink *devlink,
struct devlink_resource *resource, u64 resource_id)
{
struct list_head *resource_list;
if (resource)
resource_list = &resource->resource_list;
else
resource_list = &devlink->resource_list;
list_for_each_entry(resource, resource_list, list) {
struct devlink_resource *child_resource;
if (resource->id == resource_id)
return resource;
child_resource = devlink_resource_find(devlink, resource,
resource_id);
if (child_resource)
return child_resource;
}
return NULL;
}
static void
devlink_resource_validate_children(struct devlink_resource *resource)
{
struct devlink_resource *child_resource;
bool size_valid = true;
u64 parts_size = 0;
if (list_empty(&resource->resource_list))
goto out;
list_for_each_entry(child_resource, &resource->resource_list, list)
parts_size += child_resource->size_new;
if (parts_size > resource->size_new)
size_valid = false;
out:
resource->size_valid = size_valid;
}
static int
devlink_resource_validate_size(struct devlink_resource *resource, u64 size,
struct netlink_ext_ack *extack)
{
u64 reminder;
int err = 0;
if (size > resource->size_params.size_max) {
NL_SET_ERR_MSG_MOD(extack, "Size larger than maximum");
err = -EINVAL;
}
if (size < resource->size_params.size_min) {
NL_SET_ERR_MSG_MOD(extack, "Size smaller than minimum");
err = -EINVAL;
}
div64_u64_rem(size, resource->size_params.size_granularity, &reminder);
if (reminder) {
NL_SET_ERR_MSG_MOD(extack, "Wrong granularity");
err = -EINVAL;
}
return err;
}
static int devlink_nl_cmd_resource_set(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_resource *resource;
u64 resource_id;
u64 size;
int err;
if (!info->attrs[DEVLINK_ATTR_RESOURCE_ID] ||
!info->attrs[DEVLINK_ATTR_RESOURCE_SIZE])
return -EINVAL;
resource_id = nla_get_u64(info->attrs[DEVLINK_ATTR_RESOURCE_ID]);
resource = devlink_resource_find(devlink, NULL, resource_id);
if (!resource)
return -EINVAL;
size = nla_get_u64(info->attrs[DEVLINK_ATTR_RESOURCE_SIZE]);
err = devlink_resource_validate_size(resource, size, info->extack);
if (err)
return err;
resource->size_new = size;
devlink_resource_validate_children(resource);
if (resource->parent)
devlink_resource_validate_children(resource->parent);
return 0;
}
static int
devlink_resource_size_params_put(struct devlink_resource *resource,
struct sk_buff *skb)
{
struct devlink_resource_size_params *size_params;
size_params = &resource->size_params;
if (nla_put_u64_64bit(skb, DEVLINK_ATTR_RESOURCE_SIZE_GRAN,
size_params->size_granularity, DEVLINK_ATTR_PAD) ||
nla_put_u64_64bit(skb, DEVLINK_ATTR_RESOURCE_SIZE_MAX,
size_params->size_max, DEVLINK_ATTR_PAD) ||
nla_put_u64_64bit(skb, DEVLINK_ATTR_RESOURCE_SIZE_MIN,
size_params->size_min, DEVLINK_ATTR_PAD) ||
nla_put_u8(skb, DEVLINK_ATTR_RESOURCE_UNIT, size_params->unit))
return -EMSGSIZE;
return 0;
}
static int devlink_resource_occ_put(struct devlink_resource *resource,
struct sk_buff *skb)
{
if (!resource->occ_get)
return 0;
return nla_put_u64_64bit(skb, DEVLINK_ATTR_RESOURCE_OCC,
resource->occ_get(resource->occ_get_priv),
DEVLINK_ATTR_PAD);
}
static int devlink_resource_put(struct devlink *devlink, struct sk_buff *skb,
struct devlink_resource *resource)
{
struct devlink_resource *child_resource;
struct nlattr *child_resource_attr;
struct nlattr *resource_attr;
resource_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_RESOURCE);
if (!resource_attr)
return -EMSGSIZE;
if (nla_put_string(skb, DEVLINK_ATTR_RESOURCE_NAME, resource->name) ||
nla_put_u64_64bit(skb, DEVLINK_ATTR_RESOURCE_SIZE, resource->size,
DEVLINK_ATTR_PAD) ||
nla_put_u64_64bit(skb, DEVLINK_ATTR_RESOURCE_ID, resource->id,
DEVLINK_ATTR_PAD))
goto nla_put_failure;
if (resource->size != resource->size_new)
nla_put_u64_64bit(skb, DEVLINK_ATTR_RESOURCE_SIZE_NEW,
resource->size_new, DEVLINK_ATTR_PAD);
if (devlink_resource_occ_put(resource, skb))
goto nla_put_failure;
if (devlink_resource_size_params_put(resource, skb))
goto nla_put_failure;
if (list_empty(&resource->resource_list))
goto out;
if (nla_put_u8(skb, DEVLINK_ATTR_RESOURCE_SIZE_VALID,
resource->size_valid))
goto nla_put_failure;
child_resource_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_RESOURCE_LIST);
if (!child_resource_attr)
goto nla_put_failure;
list_for_each_entry(child_resource, &resource->resource_list, list) {
if (devlink_resource_put(devlink, skb, child_resource))
goto resource_put_failure;
}
nla_nest_end(skb, child_resource_attr);
out:
nla_nest_end(skb, resource_attr);
return 0;
resource_put_failure:
nla_nest_cancel(skb, child_resource_attr);
nla_put_failure:
nla_nest_cancel(skb, resource_attr);
return -EMSGSIZE;
}
static int devlink_resource_fill(struct genl_info *info,
enum devlink_command cmd, int flags)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_resource *resource;
struct nlattr *resources_attr;
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
bool incomplete;
void *hdr;
int i;
int err;
resource = list_first_entry(&devlink->resource_list,
struct devlink_resource, list);
start_again:
err = devlink_dpipe_send_and_alloc_skb(&skb, info);
if (err)
return err;
hdr = genlmsg_put(skb, info->snd_portid, info->snd_seq,
&devlink_nl_family, NLM_F_MULTI, cmd);
if (!hdr) {
nlmsg_free(skb);
return -EMSGSIZE;
}
if (devlink_nl_put_handle(skb, devlink))
goto nla_put_failure;
resources_attr = nla_nest_start_noflag(skb,
DEVLINK_ATTR_RESOURCE_LIST);
if (!resources_attr)
goto nla_put_failure;
incomplete = false;
i = 0;
list_for_each_entry_from(resource, &devlink->resource_list, list) {
err = devlink_resource_put(devlink, skb, resource);
if (err) {
if (!i)
goto err_resource_put;
incomplete = true;
break;
}
i++;
}
nla_nest_end(skb, resources_attr);
genlmsg_end(skb, hdr);
if (incomplete)
goto start_again;
send_done:
nlh = nlmsg_put(skb, info->snd_portid, info->snd_seq,
NLMSG_DONE, 0, flags | NLM_F_MULTI);
if (!nlh) {
err = devlink_dpipe_send_and_alloc_skb(&skb, info);
if (err)
return err;
goto send_done;
}
return genlmsg_reply(skb, info);
nla_put_failure:
err = -EMSGSIZE;
err_resource_put:
nlmsg_free(skb);
return err;
}
static int devlink_nl_cmd_resource_dump(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
if (list_empty(&devlink->resource_list))
return -EOPNOTSUPP;
return devlink_resource_fill(info, DEVLINK_CMD_RESOURCE_DUMP, 0);
}
static int
devlink_resources_validate(struct devlink *devlink,
struct devlink_resource *resource,
struct genl_info *info)
{
struct list_head *resource_list;
int err = 0;
if (resource)
resource_list = &resource->resource_list;
else
resource_list = &devlink->resource_list;
list_for_each_entry(resource, resource_list, list) {
if (!resource->size_valid)
return -EINVAL;
err = devlink_resources_validate(devlink, resource, info);
if (err)
return err;
}
return err;
}
static struct net *devlink_netns_get(struct sk_buff *skb,
struct genl_info *info)
{
struct nlattr *netns_pid_attr = info->attrs[DEVLINK_ATTR_NETNS_PID];
struct nlattr *netns_fd_attr = info->attrs[DEVLINK_ATTR_NETNS_FD];
struct nlattr *netns_id_attr = info->attrs[DEVLINK_ATTR_NETNS_ID];
struct net *net;
if (!!netns_pid_attr + !!netns_fd_attr + !!netns_id_attr > 1) {
NL_SET_ERR_MSG_MOD(info->extack, "multiple netns identifying attributes specified");
return ERR_PTR(-EINVAL);
}
if (netns_pid_attr) {
net = get_net_ns_by_pid(nla_get_u32(netns_pid_attr));
} else if (netns_fd_attr) {
net = get_net_ns_by_fd(nla_get_u32(netns_fd_attr));
} else if (netns_id_attr) {
net = get_net_ns_by_id(sock_net(skb->sk),
nla_get_u32(netns_id_attr));
if (!net)
net = ERR_PTR(-EINVAL);
} else {
WARN_ON(1);
net = ERR_PTR(-EINVAL);
}
if (IS_ERR(net)) {
NL_SET_ERR_MSG_MOD(info->extack, "Unknown network namespace");
return ERR_PTR(-EINVAL);
}
if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
put_net(net);
return ERR_PTR(-EPERM);
}
return net;
}
static void devlink_param_notify(struct devlink *devlink,
unsigned int port_index,
struct devlink_param_item *param_item,
enum devlink_command cmd);
static void devlink_reload_netns_change(struct devlink *devlink,
struct net *dest_net)
{
struct devlink_param_item *param_item;
/* Userspace needs to be notified about devlink objects
* removed from original and entering new network namespace.
* The rest of the devlink objects are re-created during
* reload process so the notifications are generated separatelly.
*/
list_for_each_entry(param_item, &devlink->param_list, list)
devlink_param_notify(devlink, 0, param_item,
DEVLINK_CMD_PARAM_DEL);
devlink_notify(devlink, DEVLINK_CMD_DEL);
__devlink_net_set(devlink, dest_net);
devlink_notify(devlink, DEVLINK_CMD_NEW);
list_for_each_entry(param_item, &devlink->param_list, list)
devlink_param_notify(devlink, 0, param_item,
DEVLINK_CMD_PARAM_NEW);
}
static bool devlink_reload_supported(struct devlink *devlink)
{
return devlink->ops->reload_down && devlink->ops->reload_up;
}
static void devlink_reload_failed_set(struct devlink *devlink,
bool reload_failed)
{
if (devlink->reload_failed == reload_failed)
return;
devlink->reload_failed = reload_failed;
devlink_notify(devlink, DEVLINK_CMD_NEW);
}
bool devlink_is_reload_failed(const struct devlink *devlink)
{
return devlink->reload_failed;
}
EXPORT_SYMBOL_GPL(devlink_is_reload_failed);
static int devlink_reload(struct devlink *devlink, struct net *dest_net,
struct netlink_ext_ack *extack)
{
int err;
if (!devlink->reload_enabled)
return -EOPNOTSUPP;
err = devlink->ops->reload_down(devlink, !!dest_net, extack);
if (err)
return err;
if (dest_net && !net_eq(dest_net, devlink_net(devlink)))
devlink_reload_netns_change(devlink, dest_net);
err = devlink->ops->reload_up(devlink, extack);
devlink_reload_failed_set(devlink, !!err);
return err;
}
static int devlink_nl_cmd_reload(struct sk_buff *skb, struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct net *dest_net = NULL;
int err;
if (!devlink_reload_supported(devlink) || !devlink->reload_enabled)
return -EOPNOTSUPP;
err = devlink_resources_validate(devlink, NULL, info);
if (err) {
NL_SET_ERR_MSG_MOD(info->extack, "resources size validation failed");
return err;
}
if (info->attrs[DEVLINK_ATTR_NETNS_PID] ||
info->attrs[DEVLINK_ATTR_NETNS_FD] ||
info->attrs[DEVLINK_ATTR_NETNS_ID]) {
dest_net = devlink_netns_get(skb, info);
if (IS_ERR(dest_net))
return PTR_ERR(dest_net);
}
err = devlink_reload(devlink, dest_net, info->extack);
if (dest_net)
put_net(dest_net);
return err;
}
static int devlink_nl_flash_update_fill(struct sk_buff *msg,
struct devlink *devlink,
enum devlink_command cmd,
const char *status_msg,
const char *component,
unsigned long done, unsigned long total)
{
void *hdr;
hdr = genlmsg_put(msg, 0, 0, &devlink_nl_family, 0, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (cmd != DEVLINK_CMD_FLASH_UPDATE_STATUS)
goto out;
if (status_msg &&
nla_put_string(msg, DEVLINK_ATTR_FLASH_UPDATE_STATUS_MSG,
status_msg))
goto nla_put_failure;
if (component &&
nla_put_string(msg, DEVLINK_ATTR_FLASH_UPDATE_COMPONENT,
component))
goto nla_put_failure;
if (nla_put_u64_64bit(msg, DEVLINK_ATTR_FLASH_UPDATE_STATUS_DONE,
done, DEVLINK_ATTR_PAD))
goto nla_put_failure;
if (nla_put_u64_64bit(msg, DEVLINK_ATTR_FLASH_UPDATE_STATUS_TOTAL,
total, DEVLINK_ATTR_PAD))
goto nla_put_failure;
out:
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static void __devlink_flash_update_notify(struct devlink *devlink,
enum devlink_command cmd,
const char *status_msg,
const char *component,
unsigned long done,
unsigned long total)
{
struct sk_buff *msg;
int err;
WARN_ON(cmd != DEVLINK_CMD_FLASH_UPDATE &&
cmd != DEVLINK_CMD_FLASH_UPDATE_END &&
cmd != DEVLINK_CMD_FLASH_UPDATE_STATUS);
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
err = devlink_nl_flash_update_fill(msg, devlink, cmd, status_msg,
component, done, total);
if (err)
goto out_free_msg;
genlmsg_multicast_netns(&devlink_nl_family, devlink_net(devlink),
msg, 0, DEVLINK_MCGRP_CONFIG, GFP_KERNEL);
return;
out_free_msg:
nlmsg_free(msg);
}
void devlink_flash_update_begin_notify(struct devlink *devlink)
{
__devlink_flash_update_notify(devlink,
DEVLINK_CMD_FLASH_UPDATE,
NULL, NULL, 0, 0);
}
EXPORT_SYMBOL_GPL(devlink_flash_update_begin_notify);
void devlink_flash_update_end_notify(struct devlink *devlink)
{
__devlink_flash_update_notify(devlink,
DEVLINK_CMD_FLASH_UPDATE_END,
NULL, NULL, 0, 0);
}
EXPORT_SYMBOL_GPL(devlink_flash_update_end_notify);
void devlink_flash_update_status_notify(struct devlink *devlink,
const char *status_msg,
const char *component,
unsigned long done,
unsigned long total)
{
__devlink_flash_update_notify(devlink,
DEVLINK_CMD_FLASH_UPDATE_STATUS,
status_msg, component, done, total);
}
EXPORT_SYMBOL_GPL(devlink_flash_update_status_notify);
static int devlink_nl_cmd_flash_update(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
const char *file_name, *component;
struct nlattr *nla_component;
if (!devlink->ops->flash_update)
return -EOPNOTSUPP;
if (!info->attrs[DEVLINK_ATTR_FLASH_UPDATE_FILE_NAME])
return -EINVAL;
file_name = nla_data(info->attrs[DEVLINK_ATTR_FLASH_UPDATE_FILE_NAME]);
nla_component = info->attrs[DEVLINK_ATTR_FLASH_UPDATE_COMPONENT];
component = nla_component ? nla_data(nla_component) : NULL;
return devlink->ops->flash_update(devlink, file_name, component,
info->extack);
}
static const struct devlink_param devlink_param_generic[] = {
{
.id = DEVLINK_PARAM_GENERIC_ID_INT_ERR_RESET,
.name = DEVLINK_PARAM_GENERIC_INT_ERR_RESET_NAME,
.type = DEVLINK_PARAM_GENERIC_INT_ERR_RESET_TYPE,
},
{
.id = DEVLINK_PARAM_GENERIC_ID_MAX_MACS,
.name = DEVLINK_PARAM_GENERIC_MAX_MACS_NAME,
.type = DEVLINK_PARAM_GENERIC_MAX_MACS_TYPE,
},
{
.id = DEVLINK_PARAM_GENERIC_ID_ENABLE_SRIOV,
.name = DEVLINK_PARAM_GENERIC_ENABLE_SRIOV_NAME,
.type = DEVLINK_PARAM_GENERIC_ENABLE_SRIOV_TYPE,
},
{
.id = DEVLINK_PARAM_GENERIC_ID_REGION_SNAPSHOT,
.name = DEVLINK_PARAM_GENERIC_REGION_SNAPSHOT_NAME,
.type = DEVLINK_PARAM_GENERIC_REGION_SNAPSHOT_TYPE,
},
{
.id = DEVLINK_PARAM_GENERIC_ID_IGNORE_ARI,
.name = DEVLINK_PARAM_GENERIC_IGNORE_ARI_NAME,
.type = DEVLINK_PARAM_GENERIC_IGNORE_ARI_TYPE,
},
{
.id = DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MAX,
.name = DEVLINK_PARAM_GENERIC_MSIX_VEC_PER_PF_MAX_NAME,
.type = DEVLINK_PARAM_GENERIC_MSIX_VEC_PER_PF_MAX_TYPE,
},
{
.id = DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MIN,
.name = DEVLINK_PARAM_GENERIC_MSIX_VEC_PER_PF_MIN_NAME,
.type = DEVLINK_PARAM_GENERIC_MSIX_VEC_PER_PF_MIN_TYPE,
},
{
.id = DEVLINK_PARAM_GENERIC_ID_FW_LOAD_POLICY,
.name = DEVLINK_PARAM_GENERIC_FW_LOAD_POLICY_NAME,
.type = DEVLINK_PARAM_GENERIC_FW_LOAD_POLICY_TYPE,
},
{
.id = DEVLINK_PARAM_GENERIC_ID_RESET_DEV_ON_DRV_PROBE,
.name = DEVLINK_PARAM_GENERIC_RESET_DEV_ON_DRV_PROBE_NAME,
.type = DEVLINK_PARAM_GENERIC_RESET_DEV_ON_DRV_PROBE_TYPE,
},
{
.id = DEVLINK_PARAM_GENERIC_ID_ENABLE_ROCE,
.name = DEVLINK_PARAM_GENERIC_ENABLE_ROCE_NAME,
.type = DEVLINK_PARAM_GENERIC_ENABLE_ROCE_TYPE,
},
};
static int devlink_param_generic_verify(const struct devlink_param *param)
{
/* verify it match generic parameter by id and name */
if (param->id > DEVLINK_PARAM_GENERIC_ID_MAX)
return -EINVAL;
if (strcmp(param->name, devlink_param_generic[param->id].name))
return -ENOENT;
WARN_ON(param->type != devlink_param_generic[param->id].type);
return 0;
}
static int devlink_param_driver_verify(const struct devlink_param *param)
{
int i;
if (param->id <= DEVLINK_PARAM_GENERIC_ID_MAX)
return -EINVAL;
/* verify no such name in generic params */
for (i = 0; i <= DEVLINK_PARAM_GENERIC_ID_MAX; i++)
if (!strcmp(param->name, devlink_param_generic[i].name))
return -EEXIST;
return 0;
}
static struct devlink_param_item *
devlink_param_find_by_name(struct list_head *param_list,
const char *param_name)
{
struct devlink_param_item *param_item;
list_for_each_entry(param_item, param_list, list)
if (!strcmp(param_item->param->name, param_name))
return param_item;
return NULL;
}
static struct devlink_param_item *
devlink_param_find_by_id(struct list_head *param_list, u32 param_id)
{
struct devlink_param_item *param_item;
list_for_each_entry(param_item, param_list, list)
if (param_item->param->id == param_id)
return param_item;
return NULL;
}
static bool
devlink_param_cmode_is_supported(const struct devlink_param *param,
enum devlink_param_cmode cmode)
{
return test_bit(cmode, &param->supported_cmodes);
}
static int devlink_param_get(struct devlink *devlink,
const struct devlink_param *param,
struct devlink_param_gset_ctx *ctx)
{
if (!param->get)
return -EOPNOTSUPP;
return param->get(devlink, param->id, ctx);
}
static int devlink_param_set(struct devlink *devlink,
const struct devlink_param *param,
struct devlink_param_gset_ctx *ctx)
{
if (!param->set)
return -EOPNOTSUPP;
return param->set(devlink, param->id, ctx);
}
static int
devlink_param_type_to_nla_type(enum devlink_param_type param_type)
{
switch (param_type) {
case DEVLINK_PARAM_TYPE_U8:
return NLA_U8;
case DEVLINK_PARAM_TYPE_U16:
return NLA_U16;
case DEVLINK_PARAM_TYPE_U32:
return NLA_U32;
case DEVLINK_PARAM_TYPE_STRING:
return NLA_STRING;
case DEVLINK_PARAM_TYPE_BOOL:
return NLA_FLAG;
default:
return -EINVAL;
}
}
static int
devlink_nl_param_value_fill_one(struct sk_buff *msg,
enum devlink_param_type type,
enum devlink_param_cmode cmode,
union devlink_param_value val)
{
struct nlattr *param_value_attr;
param_value_attr = nla_nest_start_noflag(msg,
DEVLINK_ATTR_PARAM_VALUE);
if (!param_value_attr)
goto nla_put_failure;
if (nla_put_u8(msg, DEVLINK_ATTR_PARAM_VALUE_CMODE, cmode))
goto value_nest_cancel;
switch (type) {
case DEVLINK_PARAM_TYPE_U8:
if (nla_put_u8(msg, DEVLINK_ATTR_PARAM_VALUE_DATA, val.vu8))
goto value_nest_cancel;
break;
case DEVLINK_PARAM_TYPE_U16:
if (nla_put_u16(msg, DEVLINK_ATTR_PARAM_VALUE_DATA, val.vu16))
goto value_nest_cancel;
break;
case DEVLINK_PARAM_TYPE_U32:
if (nla_put_u32(msg, DEVLINK_ATTR_PARAM_VALUE_DATA, val.vu32))
goto value_nest_cancel;
break;
case DEVLINK_PARAM_TYPE_STRING:
if (nla_put_string(msg, DEVLINK_ATTR_PARAM_VALUE_DATA,
val.vstr))
goto value_nest_cancel;
break;
case DEVLINK_PARAM_TYPE_BOOL:
if (val.vbool &&
nla_put_flag(msg, DEVLINK_ATTR_PARAM_VALUE_DATA))
goto value_nest_cancel;
break;
}
nla_nest_end(msg, param_value_attr);
return 0;
value_nest_cancel:
nla_nest_cancel(msg, param_value_attr);
nla_put_failure:
return -EMSGSIZE;
}
static int devlink_nl_param_fill(struct sk_buff *msg, struct devlink *devlink,
unsigned int port_index,
struct devlink_param_item *param_item,
enum devlink_command cmd,
u32 portid, u32 seq, int flags)
{
union devlink_param_value param_value[DEVLINK_PARAM_CMODE_MAX + 1];
bool param_value_set[DEVLINK_PARAM_CMODE_MAX + 1] = {};
const struct devlink_param *param = param_item->param;
struct devlink_param_gset_ctx ctx;
struct nlattr *param_values_list;
struct nlattr *param_attr;
int nla_type;
void *hdr;
int err;
int i;
/* Get value from driver part to driverinit configuration mode */
for (i = 0; i <= DEVLINK_PARAM_CMODE_MAX; i++) {
if (!devlink_param_cmode_is_supported(param, i))
continue;
if (i == DEVLINK_PARAM_CMODE_DRIVERINIT) {
if (!param_item->driverinit_value_valid)
return -EOPNOTSUPP;
param_value[i] = param_item->driverinit_value;
} else {
if (!param_item->published)
continue;
ctx.cmode = i;
err = devlink_param_get(devlink, param, &ctx);
if (err)
return err;
param_value[i] = ctx.val;
}
param_value_set[i] = true;
}
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto genlmsg_cancel;
if (cmd == DEVLINK_CMD_PORT_PARAM_GET ||
cmd == DEVLINK_CMD_PORT_PARAM_NEW ||
cmd == DEVLINK_CMD_PORT_PARAM_DEL)
if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, port_index))
goto genlmsg_cancel;
param_attr = nla_nest_start_noflag(msg, DEVLINK_ATTR_PARAM);
if (!param_attr)
goto genlmsg_cancel;
if (nla_put_string(msg, DEVLINK_ATTR_PARAM_NAME, param->name))
goto param_nest_cancel;
if (param->generic && nla_put_flag(msg, DEVLINK_ATTR_PARAM_GENERIC))
goto param_nest_cancel;
nla_type = devlink_param_type_to_nla_type(param->type);
if (nla_type < 0)
goto param_nest_cancel;
if (nla_put_u8(msg, DEVLINK_ATTR_PARAM_TYPE, nla_type))
goto param_nest_cancel;
param_values_list = nla_nest_start_noflag(msg,
DEVLINK_ATTR_PARAM_VALUES_LIST);
if (!param_values_list)
goto param_nest_cancel;
for (i = 0; i <= DEVLINK_PARAM_CMODE_MAX; i++) {
if (!param_value_set[i])
continue;
err = devlink_nl_param_value_fill_one(msg, param->type,
i, param_value[i]);
if (err)
goto values_list_nest_cancel;
}
nla_nest_end(msg, param_values_list);
nla_nest_end(msg, param_attr);
genlmsg_end(msg, hdr);
return 0;
values_list_nest_cancel:
nla_nest_end(msg, param_values_list);
param_nest_cancel:
nla_nest_cancel(msg, param_attr);
genlmsg_cancel:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static void devlink_param_notify(struct devlink *devlink,
unsigned int port_index,
struct devlink_param_item *param_item,
enum devlink_command cmd)
{
struct sk_buff *msg;
int err;
WARN_ON(cmd != DEVLINK_CMD_PARAM_NEW && cmd != DEVLINK_CMD_PARAM_DEL &&
cmd != DEVLINK_CMD_PORT_PARAM_NEW &&
cmd != DEVLINK_CMD_PORT_PARAM_DEL);
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
err = devlink_nl_param_fill(msg, devlink, port_index, param_item, cmd,
0, 0, 0);
if (err) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(&devlink_nl_family, devlink_net(devlink),
msg, 0, DEVLINK_MCGRP_CONFIG, GFP_KERNEL);
}
static int devlink_nl_cmd_param_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink_param_item *param_item;
struct devlink *devlink;
int start = cb->args[0];
int idx = 0;
int err = 0;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(param_item, &devlink->param_list, list) {
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_param_fill(msg, devlink, 0, param_item,
DEVLINK_CMD_PARAM_GET,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI);
if (err && err != -EOPNOTSUPP) {
mutex_unlock(&devlink->lock);
goto out;
}
idx++;
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
if (err != -EMSGSIZE)
return err;
cb->args[0] = idx;
return msg->len;
}
static int
devlink_param_type_get_from_info(struct genl_info *info,
enum devlink_param_type *param_type)
{
if (!info->attrs[DEVLINK_ATTR_PARAM_TYPE])
return -EINVAL;
switch (nla_get_u8(info->attrs[DEVLINK_ATTR_PARAM_TYPE])) {
case NLA_U8:
*param_type = DEVLINK_PARAM_TYPE_U8;
break;
case NLA_U16:
*param_type = DEVLINK_PARAM_TYPE_U16;
break;
case NLA_U32:
*param_type = DEVLINK_PARAM_TYPE_U32;
break;
case NLA_STRING:
*param_type = DEVLINK_PARAM_TYPE_STRING;
break;
case NLA_FLAG:
*param_type = DEVLINK_PARAM_TYPE_BOOL;
break;
default:
return -EINVAL;
}
return 0;
}
static int
devlink_param_value_get_from_info(const struct devlink_param *param,
struct genl_info *info,
union devlink_param_value *value)
{
struct nlattr *param_data;
int len;
param_data = info->attrs[DEVLINK_ATTR_PARAM_VALUE_DATA];
if (param->type != DEVLINK_PARAM_TYPE_BOOL && !param_data)
return -EINVAL;
switch (param->type) {
case DEVLINK_PARAM_TYPE_U8:
if (nla_len(param_data) != sizeof(u8))
return -EINVAL;
value->vu8 = nla_get_u8(param_data);
break;
case DEVLINK_PARAM_TYPE_U16:
if (nla_len(param_data) != sizeof(u16))
return -EINVAL;
value->vu16 = nla_get_u16(param_data);
break;
case DEVLINK_PARAM_TYPE_U32:
if (nla_len(param_data) != sizeof(u32))
return -EINVAL;
value->vu32 = nla_get_u32(param_data);
break;
case DEVLINK_PARAM_TYPE_STRING:
len = strnlen(nla_data(param_data), nla_len(param_data));
if (len == nla_len(param_data) ||
len >= __DEVLINK_PARAM_MAX_STRING_VALUE)
return -EINVAL;
strcpy(value->vstr, nla_data(param_data));
break;
case DEVLINK_PARAM_TYPE_BOOL:
if (param_data && nla_len(param_data))
return -EINVAL;
value->vbool = nla_get_flag(param_data);
break;
}
return 0;
}
static struct devlink_param_item *
devlink_param_get_from_info(struct list_head *param_list,
struct genl_info *info)
{
char *param_name;
if (!info->attrs[DEVLINK_ATTR_PARAM_NAME])
return NULL;
param_name = nla_data(info->attrs[DEVLINK_ATTR_PARAM_NAME]);
return devlink_param_find_by_name(param_list, param_name);
}
static int devlink_nl_cmd_param_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_param_item *param_item;
struct sk_buff *msg;
int err;
param_item = devlink_param_get_from_info(&devlink->param_list, info);
if (!param_item)
return -EINVAL;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_param_fill(msg, devlink, 0, param_item,
DEVLINK_CMD_PARAM_GET,
info->snd_portid, info->snd_seq, 0);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int __devlink_nl_cmd_param_set_doit(struct devlink *devlink,
unsigned int port_index,
struct list_head *param_list,
struct genl_info *info,
enum devlink_command cmd)
{
enum devlink_param_type param_type;
struct devlink_param_gset_ctx ctx;
enum devlink_param_cmode cmode;
struct devlink_param_item *param_item;
const struct devlink_param *param;
union devlink_param_value value;
int err = 0;
param_item = devlink_param_get_from_info(param_list, info);
if (!param_item)
return -EINVAL;
param = param_item->param;
err = devlink_param_type_get_from_info(info, &param_type);
if (err)
return err;
if (param_type != param->type)
return -EINVAL;
err = devlink_param_value_get_from_info(param, info, &value);
if (err)
return err;
if (param->validate) {
err = param->validate(devlink, param->id, value, info->extack);
if (err)
return err;
}
if (!info->attrs[DEVLINK_ATTR_PARAM_VALUE_CMODE])
return -EINVAL;
cmode = nla_get_u8(info->attrs[DEVLINK_ATTR_PARAM_VALUE_CMODE]);
if (!devlink_param_cmode_is_supported(param, cmode))
return -EOPNOTSUPP;
if (cmode == DEVLINK_PARAM_CMODE_DRIVERINIT) {
if (param->type == DEVLINK_PARAM_TYPE_STRING)
strcpy(param_item->driverinit_value.vstr, value.vstr);
else
param_item->driverinit_value = value;
param_item->driverinit_value_valid = true;
} else {
if (!param->set)
return -EOPNOTSUPP;
ctx.val = value;
ctx.cmode = cmode;
err = devlink_param_set(devlink, param, &ctx);
if (err)
return err;
}
devlink_param_notify(devlink, port_index, param_item, cmd);
return 0;
}
static int devlink_nl_cmd_param_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
return __devlink_nl_cmd_param_set_doit(devlink, 0, &devlink->param_list,
info, DEVLINK_CMD_PARAM_NEW);
}
static int devlink_param_register_one(struct devlink *devlink,
unsigned int port_index,
struct list_head *param_list,
const struct devlink_param *param,
enum devlink_command cmd)
{
struct devlink_param_item *param_item;
if (devlink_param_find_by_name(param_list, param->name))
return -EEXIST;
if (param->supported_cmodes == BIT(DEVLINK_PARAM_CMODE_DRIVERINIT))
WARN_ON(param->get || param->set);
else
WARN_ON(!param->get || !param->set);
param_item = kzalloc(sizeof(*param_item), GFP_KERNEL);
if (!param_item)
return -ENOMEM;
param_item->param = param;
list_add_tail(&param_item->list, param_list);
devlink_param_notify(devlink, port_index, param_item, cmd);
return 0;
}
static void devlink_param_unregister_one(struct devlink *devlink,
unsigned int port_index,
struct list_head *param_list,
const struct devlink_param *param,
enum devlink_command cmd)
{
struct devlink_param_item *param_item;
param_item = devlink_param_find_by_name(param_list, param->name);
WARN_ON(!param_item);
devlink_param_notify(devlink, port_index, param_item, cmd);
list_del(&param_item->list);
kfree(param_item);
}
static int devlink_nl_cmd_port_param_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink_param_item *param_item;
struct devlink_port *devlink_port;
struct devlink *devlink;
int start = cb->args[0];
int idx = 0;
int err = 0;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(devlink_port, &devlink->port_list, list) {
list_for_each_entry(param_item,
&devlink_port->param_list, list) {
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_param_fill(msg,
devlink_port->devlink,
devlink_port->index, param_item,
DEVLINK_CMD_PORT_PARAM_GET,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI);
if (err && err != -EOPNOTSUPP) {
mutex_unlock(&devlink->lock);
goto out;
}
idx++;
}
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
if (err != -EMSGSIZE)
return err;
cb->args[0] = idx;
return msg->len;
}
static int devlink_nl_cmd_port_param_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_port *devlink_port = info->user_ptr[0];
struct devlink_param_item *param_item;
struct sk_buff *msg;
int err;
param_item = devlink_param_get_from_info(&devlink_port->param_list,
info);
if (!param_item)
return -EINVAL;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_param_fill(msg, devlink_port->devlink,
devlink_port->index, param_item,
DEVLINK_CMD_PORT_PARAM_GET,
info->snd_portid, info->snd_seq, 0);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int devlink_nl_cmd_port_param_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_port *devlink_port = info->user_ptr[0];
return __devlink_nl_cmd_param_set_doit(devlink_port->devlink,
devlink_port->index,
&devlink_port->param_list, info,
DEVLINK_CMD_PORT_PARAM_NEW);
}
static int devlink_nl_region_snapshot_id_put(struct sk_buff *msg,
struct devlink *devlink,
struct devlink_snapshot *snapshot)
{
struct nlattr *snap_attr;
int err;
snap_attr = nla_nest_start_noflag(msg, DEVLINK_ATTR_REGION_SNAPSHOT);
if (!snap_attr)
return -EINVAL;
err = nla_put_u32(msg, DEVLINK_ATTR_REGION_SNAPSHOT_ID, snapshot->id);
if (err)
goto nla_put_failure;
nla_nest_end(msg, snap_attr);
return 0;
nla_put_failure:
nla_nest_cancel(msg, snap_attr);
return err;
}
static int devlink_nl_region_snapshots_id_put(struct sk_buff *msg,
struct devlink *devlink,
struct devlink_region *region)
{
struct devlink_snapshot *snapshot;
struct nlattr *snapshots_attr;
int err;
snapshots_attr = nla_nest_start_noflag(msg,
DEVLINK_ATTR_REGION_SNAPSHOTS);
if (!snapshots_attr)
return -EINVAL;
list_for_each_entry(snapshot, &region->snapshot_list, list) {
err = devlink_nl_region_snapshot_id_put(msg, devlink, snapshot);
if (err)
goto nla_put_failure;
}
nla_nest_end(msg, snapshots_attr);
return 0;
nla_put_failure:
nla_nest_cancel(msg, snapshots_attr);
return err;
}
static int devlink_nl_region_fill(struct sk_buff *msg, struct devlink *devlink,
enum devlink_command cmd, u32 portid,
u32 seq, int flags,
struct devlink_region *region)
{
void *hdr;
int err;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
err = devlink_nl_put_handle(msg, devlink);
if (err)
goto nla_put_failure;
err = nla_put_string(msg, DEVLINK_ATTR_REGION_NAME, region->ops->name);
if (err)
goto nla_put_failure;
err = nla_put_u64_64bit(msg, DEVLINK_ATTR_REGION_SIZE,
region->size,
DEVLINK_ATTR_PAD);
if (err)
goto nla_put_failure;
err = devlink_nl_region_snapshots_id_put(msg, devlink, region);
if (err)
goto nla_put_failure;
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return err;
}
static struct sk_buff *
devlink_nl_region_notify_build(struct devlink_region *region,
struct devlink_snapshot *snapshot,
enum devlink_command cmd, u32 portid, u32 seq)
{
struct devlink *devlink = region->devlink;
struct sk_buff *msg;
void *hdr;
int err;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return ERR_PTR(-ENOMEM);
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, 0, cmd);
if (!hdr) {
err = -EMSGSIZE;
goto out_free_msg;
}
err = devlink_nl_put_handle(msg, devlink);
if (err)
goto out_cancel_msg;
err = nla_put_string(msg, DEVLINK_ATTR_REGION_NAME,
region->ops->name);
if (err)
goto out_cancel_msg;
if (snapshot) {
err = nla_put_u32(msg, DEVLINK_ATTR_REGION_SNAPSHOT_ID,
snapshot->id);
if (err)
goto out_cancel_msg;
} else {
err = nla_put_u64_64bit(msg, DEVLINK_ATTR_REGION_SIZE,
region->size, DEVLINK_ATTR_PAD);
if (err)
goto out_cancel_msg;
}
genlmsg_end(msg, hdr);
return msg;
out_cancel_msg:
genlmsg_cancel(msg, hdr);
out_free_msg:
nlmsg_free(msg);
return ERR_PTR(err);
}
static void devlink_nl_region_notify(struct devlink_region *region,
struct devlink_snapshot *snapshot,
enum devlink_command cmd)
{
struct devlink *devlink = region->devlink;
struct sk_buff *msg;
WARN_ON(cmd != DEVLINK_CMD_REGION_NEW && cmd != DEVLINK_CMD_REGION_DEL);
msg = devlink_nl_region_notify_build(region, snapshot, cmd, 0, 0);
if (IS_ERR(msg))
return;
genlmsg_multicast_netns(&devlink_nl_family, devlink_net(devlink),
msg, 0, DEVLINK_MCGRP_CONFIG, GFP_KERNEL);
}
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
/**
* __devlink_snapshot_id_increment - Increment number of snapshots using an id
* @devlink: devlink instance
* @id: the snapshot id
*
* Track when a new snapshot begins using an id. Load the count for the
* given id from the snapshot xarray, increment it, and store it back.
*
* Called when a new snapshot is created with the given id.
*
* The id *must* have been previously allocated by
* devlink_region_snapshot_id_get().
*
* Returns 0 on success, or an error on failure.
*/
static int __devlink_snapshot_id_increment(struct devlink *devlink, u32 id)
{
unsigned long count;
void *p;
lockdep_assert_held(&devlink->lock);
p = xa_load(&devlink->snapshot_ids, id);
if (WARN_ON(!p))
return -EINVAL;
if (WARN_ON(!xa_is_value(p)))
return -EINVAL;
count = xa_to_value(p);
count++;
return xa_err(xa_store(&devlink->snapshot_ids, id, xa_mk_value(count),
GFP_KERNEL));
}
/**
* __devlink_snapshot_id_decrement - Decrease number of snapshots using an id
* @devlink: devlink instance
* @id: the snapshot id
*
* Track when a snapshot is deleted and stops using an id. Load the count
* for the given id from the snapshot xarray, decrement it, and store it
* back.
*
* If the count reaches zero, erase this id from the xarray, freeing it
* up for future re-use by devlink_region_snapshot_id_get().
*
* Called when a snapshot using the given id is deleted, and when the
* initial allocator of the id is finished using it.
*/
static void __devlink_snapshot_id_decrement(struct devlink *devlink, u32 id)
{
unsigned long count;
void *p;
lockdep_assert_held(&devlink->lock);
p = xa_load(&devlink->snapshot_ids, id);
if (WARN_ON(!p))
return;
if (WARN_ON(!xa_is_value(p)))
return;
count = xa_to_value(p);
if (count > 1) {
count--;
xa_store(&devlink->snapshot_ids, id, xa_mk_value(count),
GFP_KERNEL);
} else {
/* If this was the last user, we can erase this id */
xa_erase(&devlink->snapshot_ids, id);
}
}
/**
* __devlink_snapshot_id_insert - Insert a specific snapshot ID
* @devlink: devlink instance
* @id: the snapshot id
*
* Mark the given snapshot id as used by inserting a zero value into the
* snapshot xarray.
*
* This must be called while holding the devlink instance lock. Unlike
* devlink_snapshot_id_get, the initial reference count is zero, not one.
* It is expected that the id will immediately be used before
* releasing the devlink instance lock.
*
* Returns zero on success, or an error code if the snapshot id could not
* be inserted.
*/
static int __devlink_snapshot_id_insert(struct devlink *devlink, u32 id)
{
lockdep_assert_held(&devlink->lock);
if (WARN_ON(xa_load(&devlink->snapshot_ids, id)))
return -EEXIST;
return xa_err(xa_store(&devlink->snapshot_ids, id, xa_mk_value(0),
GFP_KERNEL));
}
/**
* __devlink_region_snapshot_id_get - get snapshot ID
* @devlink: devlink instance
* @id: storage to return snapshot id
*
* Allocates a new snapshot id. Returns zero on success, or a negative
* error on failure. Must be called while holding the devlink instance
* lock.
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
*
* Snapshot IDs are tracked using an xarray which stores the number of
* users of the snapshot id.
*
* Note that the caller of this function counts as a 'user', in order to
* avoid race conditions. The caller must release its hold on the
* snapshot by using devlink_region_snapshot_id_put.
*/
static int __devlink_region_snapshot_id_get(struct devlink *devlink, u32 *id)
{
lockdep_assert_held(&devlink->lock);
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
return xa_alloc(&devlink->snapshot_ids, id, xa_mk_value(1),
xa_limit_32b, GFP_KERNEL);
}
/**
* __devlink_region_snapshot_create - create a new snapshot
* This will add a new snapshot of a region. The snapshot
* will be stored on the region struct and can be accessed
* from devlink. This is useful for future analyses of snapshots.
* Multiple snapshots can be created on a region.
* The @snapshot_id should be obtained using the getter function.
*
* Must be called only while holding the devlink instance lock.
*
* @region: devlink region of the snapshot
* @data: snapshot data
* @snapshot_id: snapshot id to be created
*/
static int
__devlink_region_snapshot_create(struct devlink_region *region,
u8 *data, u32 snapshot_id)
{
struct devlink *devlink = region->devlink;
struct devlink_snapshot *snapshot;
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
int err;
lockdep_assert_held(&devlink->lock);
/* check if region can hold one more snapshot */
if (region->cur_snapshots == region->max_snapshots)
return -ENOSPC;
if (devlink_region_snapshot_get_by_id(region, snapshot_id))
return -EEXIST;
snapshot = kzalloc(sizeof(*snapshot), GFP_KERNEL);
if (!snapshot)
return -ENOMEM;
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
err = __devlink_snapshot_id_increment(devlink, snapshot_id);
if (err)
goto err_snapshot_id_increment;
snapshot->id = snapshot_id;
snapshot->region = region;
snapshot->data = data;
list_add_tail(&snapshot->list, &region->snapshot_list);
region->cur_snapshots++;
devlink_nl_region_notify(region, snapshot, DEVLINK_CMD_REGION_NEW);
return 0;
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
err_snapshot_id_increment:
kfree(snapshot);
return err;
}
static void devlink_region_snapshot_del(struct devlink_region *region,
struct devlink_snapshot *snapshot)
{
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
struct devlink *devlink = region->devlink;
lockdep_assert_held(&devlink->lock);
devlink_nl_region_notify(region, snapshot, DEVLINK_CMD_REGION_DEL);
region->cur_snapshots--;
list_del(&snapshot->list);
region->ops->destructor(snapshot->data);
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
__devlink_snapshot_id_decrement(devlink, snapshot->id);
kfree(snapshot);
}
static int devlink_nl_cmd_region_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_region *region;
const char *region_name;
struct sk_buff *msg;
int err;
if (!info->attrs[DEVLINK_ATTR_REGION_NAME])
return -EINVAL;
region_name = nla_data(info->attrs[DEVLINK_ATTR_REGION_NAME]);
region = devlink_region_get_by_name(devlink, region_name);
if (!region)
return -EINVAL;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_region_fill(msg, devlink, DEVLINK_CMD_REGION_GET,
info->snd_portid, info->snd_seq, 0,
region);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int devlink_nl_cmd_region_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink_region *region;
struct devlink *devlink;
int start = cb->args[0];
int idx = 0;
int err;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(region, &devlink->region_list, list) {
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_region_fill(msg, devlink,
DEVLINK_CMD_REGION_GET,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI, region);
if (err) {
mutex_unlock(&devlink->lock);
goto out;
}
idx++;
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
cb->args[0] = idx;
return msg->len;
}
static int devlink_nl_cmd_region_del(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_snapshot *snapshot;
struct devlink_region *region;
const char *region_name;
u32 snapshot_id;
if (!info->attrs[DEVLINK_ATTR_REGION_NAME] ||
!info->attrs[DEVLINK_ATTR_REGION_SNAPSHOT_ID])
return -EINVAL;
region_name = nla_data(info->attrs[DEVLINK_ATTR_REGION_NAME]);
snapshot_id = nla_get_u32(info->attrs[DEVLINK_ATTR_REGION_SNAPSHOT_ID]);
region = devlink_region_get_by_name(devlink, region_name);
if (!region)
return -EINVAL;
snapshot = devlink_region_snapshot_get_by_id(region, snapshot_id);
if (!snapshot)
return -EINVAL;
devlink_region_snapshot_del(region, snapshot);
return 0;
}
static int
devlink_nl_cmd_region_new(struct sk_buff *skb, struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_snapshot *snapshot;
struct nlattr *snapshot_id_attr;
struct devlink_region *region;
const char *region_name;
u32 snapshot_id;
u8 *data;
int err;
if (!info->attrs[DEVLINK_ATTR_REGION_NAME]) {
NL_SET_ERR_MSG_MOD(info->extack, "No region name provided");
return -EINVAL;
}
region_name = nla_data(info->attrs[DEVLINK_ATTR_REGION_NAME]);
region = devlink_region_get_by_name(devlink, region_name);
if (!region) {
NL_SET_ERR_MSG_MOD(info->extack, "The requested region does not exist");
return -EINVAL;
}
if (!region->ops->snapshot) {
NL_SET_ERR_MSG_MOD(info->extack, "The requested region does not support taking an immediate snapshot");
return -EOPNOTSUPP;
}
if (region->cur_snapshots == region->max_snapshots) {
NL_SET_ERR_MSG_MOD(info->extack, "The region has reached the maximum number of stored snapshots");
return -ENOSPC;
}
snapshot_id_attr = info->attrs[DEVLINK_ATTR_REGION_SNAPSHOT_ID];
if (snapshot_id_attr) {
snapshot_id = nla_get_u32(snapshot_id_attr);
if (devlink_region_snapshot_get_by_id(region, snapshot_id)) {
NL_SET_ERR_MSG_MOD(info->extack, "The requested snapshot id is already in use");
return -EEXIST;
}
err = __devlink_snapshot_id_insert(devlink, snapshot_id);
if (err)
return err;
} else {
err = __devlink_region_snapshot_id_get(devlink, &snapshot_id);
if (err) {
NL_SET_ERR_MSG_MOD(info->extack, "Failed to allocate a new snapshot id");
return err;
}
}
err = region->ops->snapshot(devlink, info->extack, &data);
if (err)
goto err_snapshot_capture;
err = __devlink_region_snapshot_create(region, data, snapshot_id);
if (err)
goto err_snapshot_create;
if (!snapshot_id_attr) {
struct sk_buff *msg;
snapshot = devlink_region_snapshot_get_by_id(region,
snapshot_id);
if (WARN_ON(!snapshot))
return -EINVAL;
msg = devlink_nl_region_notify_build(region, snapshot,
DEVLINK_CMD_REGION_NEW,
info->snd_portid,
info->snd_seq);
err = PTR_ERR_OR_ZERO(msg);
if (err)
goto err_notify;
err = genlmsg_reply(msg, info);
if (err)
goto err_notify;
}
return 0;
err_snapshot_create:
region->ops->destructor(data);
err_snapshot_capture:
__devlink_snapshot_id_decrement(devlink, snapshot_id);
return err;
err_notify:
devlink_region_snapshot_del(region, snapshot);
return err;
}
static int devlink_nl_cmd_region_read_chunk_fill(struct sk_buff *msg,
struct devlink *devlink,
u8 *chunk, u32 chunk_size,
u64 addr)
{
struct nlattr *chunk_attr;
int err;
chunk_attr = nla_nest_start_noflag(msg, DEVLINK_ATTR_REGION_CHUNK);
if (!chunk_attr)
return -EINVAL;
err = nla_put(msg, DEVLINK_ATTR_REGION_CHUNK_DATA, chunk_size, chunk);
if (err)
goto nla_put_failure;
err = nla_put_u64_64bit(msg, DEVLINK_ATTR_REGION_CHUNK_ADDR, addr,
DEVLINK_ATTR_PAD);
if (err)
goto nla_put_failure;
nla_nest_end(msg, chunk_attr);
return 0;
nla_put_failure:
nla_nest_cancel(msg, chunk_attr);
return err;
}
#define DEVLINK_REGION_READ_CHUNK_SIZE 256
static int devlink_nl_region_read_snapshot_fill(struct sk_buff *skb,
struct devlink *devlink,
struct devlink_region *region,
struct nlattr **attrs,
u64 start_offset,
u64 end_offset,
u64 *new_offset)
{
struct devlink_snapshot *snapshot;
u64 curr_offset = start_offset;
u32 snapshot_id;
int err = 0;
*new_offset = start_offset;
snapshot_id = nla_get_u32(attrs[DEVLINK_ATTR_REGION_SNAPSHOT_ID]);
snapshot = devlink_region_snapshot_get_by_id(region, snapshot_id);
if (!snapshot)
return -EINVAL;
while (curr_offset < end_offset) {
u32 data_size;
u8 *data;
if (end_offset - curr_offset < DEVLINK_REGION_READ_CHUNK_SIZE)
data_size = end_offset - curr_offset;
else
data_size = DEVLINK_REGION_READ_CHUNK_SIZE;
data = &snapshot->data[curr_offset];
err = devlink_nl_cmd_region_read_chunk_fill(skb, devlink,
data, data_size,
curr_offset);
if (err)
break;
curr_offset += data_size;
}
*new_offset = curr_offset;
return err;
}
static int devlink_nl_cmd_region_read_dumpit(struct sk_buff *skb,
struct netlink_callback *cb)
{
const struct genl_dumpit_info *info = genl_dumpit_info(cb);
u64 ret_offset, start_offset, end_offset = U64_MAX;
struct nlattr **attrs = info->attrs;
struct devlink_region *region;
struct nlattr *chunks_attr;
const char *region_name;
struct devlink *devlink;
void *hdr;
int err;
start_offset = *((u64 *)&cb->args[0]);
mutex_lock(&devlink_mutex);
devlink = devlink_get_from_attrs(sock_net(cb->skb->sk), attrs);
if (IS_ERR(devlink)) {
err = PTR_ERR(devlink);
goto out_dev;
}
mutex_lock(&devlink->lock);
if (!attrs[DEVLINK_ATTR_REGION_NAME] ||
!attrs[DEVLINK_ATTR_REGION_SNAPSHOT_ID]) {
err = -EINVAL;
goto out_unlock;
}
region_name = nla_data(attrs[DEVLINK_ATTR_REGION_NAME]);
region = devlink_region_get_by_name(devlink, region_name);
if (!region) {
err = -EINVAL;
goto out_unlock;
}
if (attrs[DEVLINK_ATTR_REGION_CHUNK_ADDR] &&
attrs[DEVLINK_ATTR_REGION_CHUNK_LEN]) {
if (!start_offset)
start_offset =
nla_get_u64(attrs[DEVLINK_ATTR_REGION_CHUNK_ADDR]);
end_offset = nla_get_u64(attrs[DEVLINK_ATTR_REGION_CHUNK_ADDR]);
end_offset += nla_get_u64(attrs[DEVLINK_ATTR_REGION_CHUNK_LEN]);
}
if (end_offset > region->size)
end_offset = region->size;
/* return 0 if there is no further data to read */
if (start_offset == end_offset) {
err = 0;
goto out_unlock;
}
hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
&devlink_nl_family, NLM_F_ACK | NLM_F_MULTI,
DEVLINK_CMD_REGION_READ);
if (!hdr) {
err = -EMSGSIZE;
goto out_unlock;
}
err = devlink_nl_put_handle(skb, devlink);
if (err)
goto nla_put_failure;
err = nla_put_string(skb, DEVLINK_ATTR_REGION_NAME, region_name);
if (err)
goto nla_put_failure;
chunks_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_REGION_CHUNKS);
if (!chunks_attr) {
err = -EMSGSIZE;
goto nla_put_failure;
}
err = devlink_nl_region_read_snapshot_fill(skb, devlink,
region, attrs,
start_offset,
end_offset, &ret_offset);
if (err && err != -EMSGSIZE)
goto nla_put_failure;
/* Check if there was any progress done to prevent infinite loop */
if (ret_offset == start_offset) {
err = -EINVAL;
goto nla_put_failure;
}
*((u64 *)&cb->args[0]) = ret_offset;
nla_nest_end(skb, chunks_attr);
genlmsg_end(skb, hdr);
mutex_unlock(&devlink->lock);
mutex_unlock(&devlink_mutex);
return skb->len;
nla_put_failure:
genlmsg_cancel(skb, hdr);
out_unlock:
mutex_unlock(&devlink->lock);
out_dev:
mutex_unlock(&devlink_mutex);
return err;
}
struct devlink_info_req {
struct sk_buff *msg;
};
int devlink_info_driver_name_put(struct devlink_info_req *req, const char *name)
{
return nla_put_string(req->msg, DEVLINK_ATTR_INFO_DRIVER_NAME, name);
}
EXPORT_SYMBOL_GPL(devlink_info_driver_name_put);
int devlink_info_serial_number_put(struct devlink_info_req *req, const char *sn)
{
return nla_put_string(req->msg, DEVLINK_ATTR_INFO_SERIAL_NUMBER, sn);
}
EXPORT_SYMBOL_GPL(devlink_info_serial_number_put);
devlink: add version reporting to devlink info API ethtool -i has a few fixed-size fields which can be used to report firmware version and expansion ROM version. Unfortunately, modern hardware has more firmware components. There is usually some datapath microcode, management controller, PXE drivers, and a CPLD load. Running ethtool -i on modern controllers reveals the fact that vendors cram multiple values into firmware version field. Here are some examples from systems I could lay my hands on quickly: tg3: "FFV20.2.17 bc 5720-v1.39" i40e: "6.01 0x800034a4 1.1747.0" nfp: "0.0.3.5 0.25 sriov-2.1.16 nic" Add a new devlink API to allow retrieving multiple versions, and provide user-readable name for those versions. While at it break down the versions into three categories: - fixed - this is the board/fixed component version, usually vendors report information like the board version in the PCI VPD, but it will benefit from naming and common API as well; - running - this is the running firmware version; - stored - this is firmware in the flash, after firmware update this value will reflect the flashed version, while the running version may only be updated after reboot. v3: - add per-type helpers instead of using the special argument (Jiri). RFCv2: - remove the nesting in attr DEVLINK_ATTR_INFO_VERSIONS (now versions are mixed with other info attrs)l - have the driver report versions from the same callback as other info. Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-01 02:50:41 +08:00
static int devlink_info_version_put(struct devlink_info_req *req, int attr,
const char *version_name,
const char *version_value)
{
struct nlattr *nest;
int err;
nest = nla_nest_start_noflag(req->msg, attr);
devlink: add version reporting to devlink info API ethtool -i has a few fixed-size fields which can be used to report firmware version and expansion ROM version. Unfortunately, modern hardware has more firmware components. There is usually some datapath microcode, management controller, PXE drivers, and a CPLD load. Running ethtool -i on modern controllers reveals the fact that vendors cram multiple values into firmware version field. Here are some examples from systems I could lay my hands on quickly: tg3: "FFV20.2.17 bc 5720-v1.39" i40e: "6.01 0x800034a4 1.1747.0" nfp: "0.0.3.5 0.25 sriov-2.1.16 nic" Add a new devlink API to allow retrieving multiple versions, and provide user-readable name for those versions. While at it break down the versions into three categories: - fixed - this is the board/fixed component version, usually vendors report information like the board version in the PCI VPD, but it will benefit from naming and common API as well; - running - this is the running firmware version; - stored - this is firmware in the flash, after firmware update this value will reflect the flashed version, while the running version may only be updated after reboot. v3: - add per-type helpers instead of using the special argument (Jiri). RFCv2: - remove the nesting in attr DEVLINK_ATTR_INFO_VERSIONS (now versions are mixed with other info attrs)l - have the driver report versions from the same callback as other info. Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-01 02:50:41 +08:00
if (!nest)
return -EMSGSIZE;
err = nla_put_string(req->msg, DEVLINK_ATTR_INFO_VERSION_NAME,
version_name);
if (err)
goto nla_put_failure;
err = nla_put_string(req->msg, DEVLINK_ATTR_INFO_VERSION_VALUE,
version_value);
if (err)
goto nla_put_failure;
nla_nest_end(req->msg, nest);
return 0;
nla_put_failure:
nla_nest_cancel(req->msg, nest);
return err;
}
int devlink_info_version_fixed_put(struct devlink_info_req *req,
const char *version_name,
const char *version_value)
{
return devlink_info_version_put(req, DEVLINK_ATTR_INFO_VERSION_FIXED,
version_name, version_value);
}
EXPORT_SYMBOL_GPL(devlink_info_version_fixed_put);
int devlink_info_version_stored_put(struct devlink_info_req *req,
const char *version_name,
const char *version_value)
{
return devlink_info_version_put(req, DEVLINK_ATTR_INFO_VERSION_STORED,
version_name, version_value);
}
EXPORT_SYMBOL_GPL(devlink_info_version_stored_put);
int devlink_info_version_running_put(struct devlink_info_req *req,
const char *version_name,
const char *version_value)
{
return devlink_info_version_put(req, DEVLINK_ATTR_INFO_VERSION_RUNNING,
version_name, version_value);
}
EXPORT_SYMBOL_GPL(devlink_info_version_running_put);
static int
devlink_nl_info_fill(struct sk_buff *msg, struct devlink *devlink,
enum devlink_command cmd, u32 portid,
u32 seq, int flags, struct netlink_ext_ack *extack)
{
struct devlink_info_req req;
void *hdr;
int err;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
err = -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto err_cancel_msg;
req.msg = msg;
err = devlink->ops->info_get(devlink, &req, extack);
if (err)
goto err_cancel_msg;
genlmsg_end(msg, hdr);
return 0;
err_cancel_msg:
genlmsg_cancel(msg, hdr);
return err;
}
static int devlink_nl_cmd_info_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct sk_buff *msg;
int err;
if (!devlink->ops->info_get)
return -EOPNOTSUPP;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_info_fill(msg, devlink, DEVLINK_CMD_INFO_GET,
info->snd_portid, info->snd_seq, 0,
info->extack);
if (err) {
nlmsg_free(msg);
return err;
}
return genlmsg_reply(msg, info);
}
static int devlink_nl_cmd_info_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink *devlink;
int start = cb->args[0];
int idx = 0;
int err = 0;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
if (idx < start) {
idx++;
continue;
}
if (!devlink->ops->info_get) {
idx++;
continue;
}
mutex_lock(&devlink->lock);
err = devlink_nl_info_fill(msg, devlink, DEVLINK_CMD_INFO_GET,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
cb->extack);
mutex_unlock(&devlink->lock);
if (err && err != -EOPNOTSUPP)
break;
idx++;
}
mutex_unlock(&devlink_mutex);
if (err != -EMSGSIZE)
return err;
cb->args[0] = idx;
return msg->len;
}
struct devlink_fmsg_item {
struct list_head list;
int attrtype;
u8 nla_type;
u16 len;
int value[];
};
struct devlink_fmsg {
struct list_head item_list;
bool putting_binary; /* This flag forces enclosing of binary data
* in an array brackets. It forces using
* of designated API:
* devlink_fmsg_binary_pair_nest_start()
* devlink_fmsg_binary_pair_nest_end()
*/
};
static struct devlink_fmsg *devlink_fmsg_alloc(void)
{
struct devlink_fmsg *fmsg;
fmsg = kzalloc(sizeof(*fmsg), GFP_KERNEL);
if (!fmsg)
return NULL;
INIT_LIST_HEAD(&fmsg->item_list);
return fmsg;
}
static void devlink_fmsg_free(struct devlink_fmsg *fmsg)
{
struct devlink_fmsg_item *item, *tmp;
list_for_each_entry_safe(item, tmp, &fmsg->item_list, list) {
list_del(&item->list);
kfree(item);
}
kfree(fmsg);
}
static int devlink_fmsg_nest_common(struct devlink_fmsg *fmsg,
int attrtype)
{
struct devlink_fmsg_item *item;
item = kzalloc(sizeof(*item), GFP_KERNEL);
if (!item)
return -ENOMEM;
item->attrtype = attrtype;
list_add_tail(&item->list, &fmsg->item_list);
return 0;
}
int devlink_fmsg_obj_nest_start(struct devlink_fmsg *fmsg)
{
if (fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_OBJ_NEST_START);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_obj_nest_start);
static int devlink_fmsg_nest_end(struct devlink_fmsg *fmsg)
{
if (fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_NEST_END);
}
int devlink_fmsg_obj_nest_end(struct devlink_fmsg *fmsg)
{
if (fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_nest_end(fmsg);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_obj_nest_end);
#define DEVLINK_FMSG_MAX_SIZE (GENLMSG_DEFAULT_SIZE - GENL_HDRLEN - NLA_HDRLEN)
static int devlink_fmsg_put_name(struct devlink_fmsg *fmsg, const char *name)
{
struct devlink_fmsg_item *item;
if (fmsg->putting_binary)
return -EINVAL;
if (strlen(name) + 1 > DEVLINK_FMSG_MAX_SIZE)
return -EMSGSIZE;
item = kzalloc(sizeof(*item) + strlen(name) + 1, GFP_KERNEL);
if (!item)
return -ENOMEM;
item->nla_type = NLA_NUL_STRING;
item->len = strlen(name) + 1;
item->attrtype = DEVLINK_ATTR_FMSG_OBJ_NAME;
memcpy(&item->value, name, item->len);
list_add_tail(&item->list, &fmsg->item_list);
return 0;
}
int devlink_fmsg_pair_nest_start(struct devlink_fmsg *fmsg, const char *name)
{
int err;
if (fmsg->putting_binary)
return -EINVAL;
err = devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_PAIR_NEST_START);
if (err)
return err;
err = devlink_fmsg_put_name(fmsg, name);
if (err)
return err;
return 0;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_pair_nest_start);
int devlink_fmsg_pair_nest_end(struct devlink_fmsg *fmsg)
{
if (fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_nest_end(fmsg);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_pair_nest_end);
int devlink_fmsg_arr_pair_nest_start(struct devlink_fmsg *fmsg,
const char *name)
{
int err;
if (fmsg->putting_binary)
return -EINVAL;
err = devlink_fmsg_pair_nest_start(fmsg, name);
if (err)
return err;
err = devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_ARR_NEST_START);
if (err)
return err;
return 0;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_arr_pair_nest_start);
int devlink_fmsg_arr_pair_nest_end(struct devlink_fmsg *fmsg)
{
int err;
if (fmsg->putting_binary)
return -EINVAL;
err = devlink_fmsg_nest_end(fmsg);
if (err)
return err;
err = devlink_fmsg_nest_end(fmsg);
if (err)
return err;
return 0;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_arr_pair_nest_end);
int devlink_fmsg_binary_pair_nest_start(struct devlink_fmsg *fmsg,
const char *name)
{
int err;
err = devlink_fmsg_arr_pair_nest_start(fmsg, name);
if (err)
return err;
fmsg->putting_binary = true;
return err;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_binary_pair_nest_start);
int devlink_fmsg_binary_pair_nest_end(struct devlink_fmsg *fmsg)
{
if (!fmsg->putting_binary)
return -EINVAL;
fmsg->putting_binary = false;
return devlink_fmsg_arr_pair_nest_end(fmsg);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_binary_pair_nest_end);
static int devlink_fmsg_put_value(struct devlink_fmsg *fmsg,
const void *value, u16 value_len,
u8 value_nla_type)
{
struct devlink_fmsg_item *item;
if (value_len > DEVLINK_FMSG_MAX_SIZE)
return -EMSGSIZE;
item = kzalloc(sizeof(*item) + value_len, GFP_KERNEL);
if (!item)
return -ENOMEM;
item->nla_type = value_nla_type;
item->len = value_len;
item->attrtype = DEVLINK_ATTR_FMSG_OBJ_VALUE_DATA;
memcpy(&item->value, value, item->len);
list_add_tail(&item->list, &fmsg->item_list);
return 0;
}
int devlink_fmsg_bool_put(struct devlink_fmsg *fmsg, bool value)
{
if (fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_FLAG);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_bool_put);
int devlink_fmsg_u8_put(struct devlink_fmsg *fmsg, u8 value)
{
if (fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_U8);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_u8_put);
int devlink_fmsg_u32_put(struct devlink_fmsg *fmsg, u32 value)
{
if (fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_U32);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_u32_put);
int devlink_fmsg_u64_put(struct devlink_fmsg *fmsg, u64 value)
{
if (fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_U64);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_u64_put);
int devlink_fmsg_string_put(struct devlink_fmsg *fmsg, const char *value)
{
if (fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_put_value(fmsg, value, strlen(value) + 1,
NLA_NUL_STRING);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_string_put);
int devlink_fmsg_binary_put(struct devlink_fmsg *fmsg, const void *value,
u16 value_len)
{
if (!fmsg->putting_binary)
return -EINVAL;
return devlink_fmsg_put_value(fmsg, value, value_len, NLA_BINARY);
}
EXPORT_SYMBOL_GPL(devlink_fmsg_binary_put);
int devlink_fmsg_bool_pair_put(struct devlink_fmsg *fmsg, const char *name,
bool value)
{
int err;
err = devlink_fmsg_pair_nest_start(fmsg, name);
if (err)
return err;
err = devlink_fmsg_bool_put(fmsg, value);
if (err)
return err;
err = devlink_fmsg_pair_nest_end(fmsg);
if (err)
return err;
return 0;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_bool_pair_put);
int devlink_fmsg_u8_pair_put(struct devlink_fmsg *fmsg, const char *name,
u8 value)
{
int err;
err = devlink_fmsg_pair_nest_start(fmsg, name);
if (err)
return err;
err = devlink_fmsg_u8_put(fmsg, value);
if (err)
return err;
err = devlink_fmsg_pair_nest_end(fmsg);
if (err)
return err;
return 0;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_u8_pair_put);
int devlink_fmsg_u32_pair_put(struct devlink_fmsg *fmsg, const char *name,
u32 value)
{
int err;
err = devlink_fmsg_pair_nest_start(fmsg, name);
if (err)
return err;
err = devlink_fmsg_u32_put(fmsg, value);
if (err)
return err;
err = devlink_fmsg_pair_nest_end(fmsg);
if (err)
return err;
return 0;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_u32_pair_put);
int devlink_fmsg_u64_pair_put(struct devlink_fmsg *fmsg, const char *name,
u64 value)
{
int err;
err = devlink_fmsg_pair_nest_start(fmsg, name);
if (err)
return err;
err = devlink_fmsg_u64_put(fmsg, value);
if (err)
return err;
err = devlink_fmsg_pair_nest_end(fmsg);
if (err)
return err;
return 0;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_u64_pair_put);
int devlink_fmsg_string_pair_put(struct devlink_fmsg *fmsg, const char *name,
const char *value)
{
int err;
err = devlink_fmsg_pair_nest_start(fmsg, name);
if (err)
return err;
err = devlink_fmsg_string_put(fmsg, value);
if (err)
return err;
err = devlink_fmsg_pair_nest_end(fmsg);
if (err)
return err;
return 0;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_string_pair_put);
int devlink_fmsg_binary_pair_put(struct devlink_fmsg *fmsg, const char *name,
const void *value, u32 value_len)
{
u32 data_size;
int end_err;
u32 offset;
int err;
err = devlink_fmsg_binary_pair_nest_start(fmsg, name);
if (err)
return err;
for (offset = 0; offset < value_len; offset += data_size) {
data_size = value_len - offset;
if (data_size > DEVLINK_FMSG_MAX_SIZE)
data_size = DEVLINK_FMSG_MAX_SIZE;
err = devlink_fmsg_binary_put(fmsg, value + offset, data_size);
if (err)
break;
/* Exit from loop with a break (instead of
* return) to make sure putting_binary is turned off in
* devlink_fmsg_binary_pair_nest_end
*/
}
end_err = devlink_fmsg_binary_pair_nest_end(fmsg);
if (end_err)
err = end_err;
return err;
}
EXPORT_SYMBOL_GPL(devlink_fmsg_binary_pair_put);
static int
devlink_fmsg_item_fill_type(struct devlink_fmsg_item *msg, struct sk_buff *skb)
{
switch (msg->nla_type) {
case NLA_FLAG:
case NLA_U8:
case NLA_U32:
case NLA_U64:
case NLA_NUL_STRING:
case NLA_BINARY:
return nla_put_u8(skb, DEVLINK_ATTR_FMSG_OBJ_VALUE_TYPE,
msg->nla_type);
default:
return -EINVAL;
}
}
static int
devlink_fmsg_item_fill_data(struct devlink_fmsg_item *msg, struct sk_buff *skb)
{
int attrtype = DEVLINK_ATTR_FMSG_OBJ_VALUE_DATA;
u8 tmp;
switch (msg->nla_type) {
case NLA_FLAG:
/* Always provide flag data, regardless of its value */
tmp = *(bool *) msg->value;
return nla_put_u8(skb, attrtype, tmp);
case NLA_U8:
return nla_put_u8(skb, attrtype, *(u8 *) msg->value);
case NLA_U32:
return nla_put_u32(skb, attrtype, *(u32 *) msg->value);
case NLA_U64:
return nla_put_u64_64bit(skb, attrtype, *(u64 *) msg->value,
DEVLINK_ATTR_PAD);
case NLA_NUL_STRING:
return nla_put_string(skb, attrtype, (char *) &msg->value);
case NLA_BINARY:
return nla_put(skb, attrtype, msg->len, (void *) &msg->value);
default:
return -EINVAL;
}
}
static int
devlink_fmsg_prepare_skb(struct devlink_fmsg *fmsg, struct sk_buff *skb,
int *start)
{
struct devlink_fmsg_item *item;
struct nlattr *fmsg_nlattr;
int i = 0;
int err;
fmsg_nlattr = nla_nest_start_noflag(skb, DEVLINK_ATTR_FMSG);
if (!fmsg_nlattr)
return -EMSGSIZE;
list_for_each_entry(item, &fmsg->item_list, list) {
if (i < *start) {
i++;
continue;
}
switch (item->attrtype) {
case DEVLINK_ATTR_FMSG_OBJ_NEST_START:
case DEVLINK_ATTR_FMSG_PAIR_NEST_START:
case DEVLINK_ATTR_FMSG_ARR_NEST_START:
case DEVLINK_ATTR_FMSG_NEST_END:
err = nla_put_flag(skb, item->attrtype);
break;
case DEVLINK_ATTR_FMSG_OBJ_VALUE_DATA:
err = devlink_fmsg_item_fill_type(item, skb);
if (err)
break;
err = devlink_fmsg_item_fill_data(item, skb);
break;
case DEVLINK_ATTR_FMSG_OBJ_NAME:
err = nla_put_string(skb, item->attrtype,
(char *) &item->value);
break;
default:
err = -EINVAL;
break;
}
if (!err)
*start = ++i;
else
break;
}
nla_nest_end(skb, fmsg_nlattr);
return err;
}
static int devlink_fmsg_snd(struct devlink_fmsg *fmsg,
struct genl_info *info,
enum devlink_command cmd, int flags)
{
struct nlmsghdr *nlh;
struct sk_buff *skb;
bool last = false;
int index = 0;
void *hdr;
int err;
while (!last) {
int tmp_index = index;
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb)
return -ENOMEM;
hdr = genlmsg_put(skb, info->snd_portid, info->snd_seq,
&devlink_nl_family, flags | NLM_F_MULTI, cmd);
if (!hdr) {
err = -EMSGSIZE;
goto nla_put_failure;
}
err = devlink_fmsg_prepare_skb(fmsg, skb, &index);
if (!err)
last = true;
else if (err != -EMSGSIZE || tmp_index == index)
goto nla_put_failure;
genlmsg_end(skb, hdr);
err = genlmsg_reply(skb, info);
if (err)
return err;
}
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb)
return -ENOMEM;
nlh = nlmsg_put(skb, info->snd_portid, info->snd_seq,
NLMSG_DONE, 0, flags | NLM_F_MULTI);
if (!nlh) {
err = -EMSGSIZE;
goto nla_put_failure;
}
return genlmsg_reply(skb, info);
nla_put_failure:
nlmsg_free(skb);
return err;
}
static int devlink_fmsg_dumpit(struct devlink_fmsg *fmsg, struct sk_buff *skb,
struct netlink_callback *cb,
enum devlink_command cmd)
{
int index = cb->args[0];
int tmp_index = index;
void *hdr;
int err;
hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
&devlink_nl_family, NLM_F_ACK | NLM_F_MULTI, cmd);
if (!hdr) {
err = -EMSGSIZE;
goto nla_put_failure;
}
err = devlink_fmsg_prepare_skb(fmsg, skb, &index);
if ((err && err != -EMSGSIZE) || tmp_index == index)
goto nla_put_failure;
cb->args[0] = index;
genlmsg_end(skb, hdr);
return skb->len;
nla_put_failure:
genlmsg_cancel(skb, hdr);
return err;
}
struct devlink_health_reporter {
struct list_head list;
void *priv;
const struct devlink_health_reporter_ops *ops;
struct devlink *devlink;
struct devlink_fmsg *dump_fmsg;
struct mutex dump_lock; /* lock parallel read/write from dump buffers */
u64 graceful_period;
bool auto_recover;
bool auto_dump;
u8 health_state;
u64 dump_ts;
u64 dump_real_ts;
u64 error_count;
u64 recovery_count;
u64 last_recovery_ts;
refcount_t refcount;
};
void *
devlink_health_reporter_priv(struct devlink_health_reporter *reporter)
{
return reporter->priv;
}
EXPORT_SYMBOL_GPL(devlink_health_reporter_priv);
static struct devlink_health_reporter *
devlink_health_reporter_find_by_name(struct devlink *devlink,
const char *reporter_name)
{
struct devlink_health_reporter *reporter;
lockdep_assert_held(&devlink->reporters_lock);
list_for_each_entry(reporter, &devlink->reporter_list, list)
if (!strcmp(reporter->ops->name, reporter_name))
return reporter;
return NULL;
}
/**
* devlink_health_reporter_create - create devlink health reporter
*
* @devlink: devlink
* @ops: ops
* @graceful_period: to avoid recovery loops, in msecs
* @priv: priv
*/
struct devlink_health_reporter *
devlink_health_reporter_create(struct devlink *devlink,
const struct devlink_health_reporter_ops *ops,
u64 graceful_period, void *priv)
{
struct devlink_health_reporter *reporter;
mutex_lock(&devlink->reporters_lock);
if (devlink_health_reporter_find_by_name(devlink, ops->name)) {
reporter = ERR_PTR(-EEXIST);
goto unlock;
}
if (WARN_ON(graceful_period && !ops->recover)) {
reporter = ERR_PTR(-EINVAL);
goto unlock;
}
reporter = kzalloc(sizeof(*reporter), GFP_KERNEL);
if (!reporter) {
reporter = ERR_PTR(-ENOMEM);
goto unlock;
}
reporter->priv = priv;
reporter->ops = ops;
reporter->devlink = devlink;
reporter->graceful_period = graceful_period;
reporter->auto_recover = !!ops->recover;
reporter->auto_dump = !!ops->dump;
mutex_init(&reporter->dump_lock);
refcount_set(&reporter->refcount, 1);
list_add_tail(&reporter->list, &devlink->reporter_list);
unlock:
mutex_unlock(&devlink->reporters_lock);
return reporter;
}
EXPORT_SYMBOL_GPL(devlink_health_reporter_create);
/**
* devlink_health_reporter_destroy - destroy devlink health reporter
*
* @reporter: devlink health reporter to destroy
*/
void
devlink_health_reporter_destroy(struct devlink_health_reporter *reporter)
{
mutex_lock(&reporter->devlink->reporters_lock);
list_del(&reporter->list);
mutex_unlock(&reporter->devlink->reporters_lock);
while (refcount_read(&reporter->refcount) > 1)
msleep(100);
mutex_destroy(&reporter->dump_lock);
if (reporter->dump_fmsg)
devlink_fmsg_free(reporter->dump_fmsg);
kfree(reporter);
}
EXPORT_SYMBOL_GPL(devlink_health_reporter_destroy);
static int
devlink_nl_health_reporter_fill(struct sk_buff *msg,
struct devlink *devlink,
struct devlink_health_reporter *reporter,
enum devlink_command cmd, u32 portid,
u32 seq, int flags)
{
struct nlattr *reporter_attr;
void *hdr;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto genlmsg_cancel;
reporter_attr = nla_nest_start_noflag(msg,
DEVLINK_ATTR_HEALTH_REPORTER);
if (!reporter_attr)
goto genlmsg_cancel;
if (nla_put_string(msg, DEVLINK_ATTR_HEALTH_REPORTER_NAME,
reporter->ops->name))
goto reporter_nest_cancel;
if (nla_put_u8(msg, DEVLINK_ATTR_HEALTH_REPORTER_STATE,
reporter->health_state))
goto reporter_nest_cancel;
if (nla_put_u64_64bit(msg, DEVLINK_ATTR_HEALTH_REPORTER_ERR_COUNT,
reporter->error_count, DEVLINK_ATTR_PAD))
goto reporter_nest_cancel;
if (nla_put_u64_64bit(msg, DEVLINK_ATTR_HEALTH_REPORTER_RECOVER_COUNT,
reporter->recovery_count, DEVLINK_ATTR_PAD))
goto reporter_nest_cancel;
if (reporter->ops->recover &&
nla_put_u64_64bit(msg, DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD,
reporter->graceful_period,
DEVLINK_ATTR_PAD))
goto reporter_nest_cancel;
if (reporter->ops->recover &&
nla_put_u8(msg, DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER,
reporter->auto_recover))
goto reporter_nest_cancel;
if (reporter->dump_fmsg &&
nla_put_u64_64bit(msg, DEVLINK_ATTR_HEALTH_REPORTER_DUMP_TS,
jiffies_to_msecs(reporter->dump_ts),
DEVLINK_ATTR_PAD))
goto reporter_nest_cancel;
if (reporter->dump_fmsg &&
nla_put_u64_64bit(msg, DEVLINK_ATTR_HEALTH_REPORTER_DUMP_TS_NS,
reporter->dump_real_ts, DEVLINK_ATTR_PAD))
goto reporter_nest_cancel;
if (reporter->ops->dump &&
nla_put_u8(msg, DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP,
reporter->auto_dump))
goto reporter_nest_cancel;
nla_nest_end(msg, reporter_attr);
genlmsg_end(msg, hdr);
return 0;
reporter_nest_cancel:
nla_nest_end(msg, reporter_attr);
genlmsg_cancel:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static void devlink_recover_notify(struct devlink_health_reporter *reporter,
enum devlink_command cmd)
{
struct sk_buff *msg;
int err;
WARN_ON(cmd != DEVLINK_CMD_HEALTH_REPORTER_RECOVER);
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
err = devlink_nl_health_reporter_fill(msg, reporter->devlink,
reporter, cmd, 0, 0, 0);
if (err) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(&devlink_nl_family,
devlink_net(reporter->devlink),
msg, 0, DEVLINK_MCGRP_CONFIG, GFP_KERNEL);
}
void
devlink_health_reporter_recovery_done(struct devlink_health_reporter *reporter)
{
reporter->recovery_count++;
reporter->last_recovery_ts = jiffies;
}
EXPORT_SYMBOL_GPL(devlink_health_reporter_recovery_done);
static int
devlink_health_reporter_recover(struct devlink_health_reporter *reporter,
void *priv_ctx, struct netlink_ext_ack *extack)
{
int err;
if (reporter->health_state == DEVLINK_HEALTH_REPORTER_STATE_HEALTHY)
return 0;
if (!reporter->ops->recover)
return -EOPNOTSUPP;
err = reporter->ops->recover(reporter, priv_ctx, extack);
if (err)
return err;
devlink_health_reporter_recovery_done(reporter);
reporter->health_state = DEVLINK_HEALTH_REPORTER_STATE_HEALTHY;
devlink_recover_notify(reporter, DEVLINK_CMD_HEALTH_REPORTER_RECOVER);
return 0;
}
static void
devlink_health_dump_clear(struct devlink_health_reporter *reporter)
{
if (!reporter->dump_fmsg)
return;
devlink_fmsg_free(reporter->dump_fmsg);
reporter->dump_fmsg = NULL;
}
static int devlink_health_do_dump(struct devlink_health_reporter *reporter,
void *priv_ctx,
struct netlink_ext_ack *extack)
{
int err;
if (!reporter->ops->dump)
return 0;
if (reporter->dump_fmsg)
return 0;
reporter->dump_fmsg = devlink_fmsg_alloc();
if (!reporter->dump_fmsg) {
err = -ENOMEM;
return err;
}
err = devlink_fmsg_obj_nest_start(reporter->dump_fmsg);
if (err)
goto dump_err;
err = reporter->ops->dump(reporter, reporter->dump_fmsg,
priv_ctx, extack);
if (err)
goto dump_err;
err = devlink_fmsg_obj_nest_end(reporter->dump_fmsg);
if (err)
goto dump_err;
reporter->dump_ts = jiffies;
reporter->dump_real_ts = ktime_get_real_ns();
return 0;
dump_err:
devlink_health_dump_clear(reporter);
return err;
}
int devlink_health_report(struct devlink_health_reporter *reporter,
const char *msg, void *priv_ctx)
{
enum devlink_health_reporter_state prev_health_state;
struct devlink *devlink = reporter->devlink;
unsigned long recover_ts_threshold;
/* write a log message of the current error */
WARN_ON(!msg);
trace_devlink_health_report(devlink, reporter->ops->name, msg);
reporter->error_count++;
prev_health_state = reporter->health_state;
reporter->health_state = DEVLINK_HEALTH_REPORTER_STATE_ERROR;
devlink_recover_notify(reporter, DEVLINK_CMD_HEALTH_REPORTER_RECOVER);
/* abort if the previous error wasn't recovered */
recover_ts_threshold = reporter->last_recovery_ts +
msecs_to_jiffies(reporter->graceful_period);
if (reporter->auto_recover &&
(prev_health_state != DEVLINK_HEALTH_REPORTER_STATE_HEALTHY ||
(reporter->last_recovery_ts && reporter->recovery_count &&
time_is_after_jiffies(recover_ts_threshold)))) {
trace_devlink_health_recover_aborted(devlink,
reporter->ops->name,
reporter->health_state,
jiffies -
reporter->last_recovery_ts);
return -ECANCELED;
}
reporter->health_state = DEVLINK_HEALTH_REPORTER_STATE_ERROR;
if (reporter->auto_dump) {
mutex_lock(&reporter->dump_lock);
/* store current dump of current error, for later analysis */
devlink_health_do_dump(reporter, priv_ctx, NULL);
mutex_unlock(&reporter->dump_lock);
}
if (reporter->auto_recover)
return devlink_health_reporter_recover(reporter,
priv_ctx, NULL);
return 0;
}
EXPORT_SYMBOL_GPL(devlink_health_report);
static struct devlink_health_reporter *
devlink_health_reporter_get_from_attrs(struct devlink *devlink,
struct nlattr **attrs)
{
struct devlink_health_reporter *reporter;
char *reporter_name;
if (!attrs[DEVLINK_ATTR_HEALTH_REPORTER_NAME])
return NULL;
reporter_name = nla_data(attrs[DEVLINK_ATTR_HEALTH_REPORTER_NAME]);
mutex_lock(&devlink->reporters_lock);
reporter = devlink_health_reporter_find_by_name(devlink, reporter_name);
if (reporter)
refcount_inc(&reporter->refcount);
mutex_unlock(&devlink->reporters_lock);
return reporter;
}
static struct devlink_health_reporter *
devlink_health_reporter_get_from_info(struct devlink *devlink,
struct genl_info *info)
{
return devlink_health_reporter_get_from_attrs(devlink, info->attrs);
}
static struct devlink_health_reporter *
devlink_health_reporter_get_from_cb(struct netlink_callback *cb)
{
const struct genl_dumpit_info *info = genl_dumpit_info(cb);
struct devlink_health_reporter *reporter;
struct nlattr **attrs = info->attrs;
struct devlink *devlink;
mutex_lock(&devlink_mutex);
devlink = devlink_get_from_attrs(sock_net(cb->skb->sk), attrs);
if (IS_ERR(devlink))
goto unlock;
reporter = devlink_health_reporter_get_from_attrs(devlink, attrs);
mutex_unlock(&devlink_mutex);
return reporter;
unlock:
mutex_unlock(&devlink_mutex);
return NULL;
}
static void
devlink_health_reporter_put(struct devlink_health_reporter *reporter)
{
refcount_dec(&reporter->refcount);
}
void
devlink_health_reporter_state_update(struct devlink_health_reporter *reporter,
enum devlink_health_reporter_state state)
{
if (WARN_ON(state != DEVLINK_HEALTH_REPORTER_STATE_HEALTHY &&
state != DEVLINK_HEALTH_REPORTER_STATE_ERROR))
return;
if (reporter->health_state == state)
return;
reporter->health_state = state;
trace_devlink_health_reporter_state_update(reporter->devlink,
reporter->ops->name, state);
devlink_recover_notify(reporter, DEVLINK_CMD_HEALTH_REPORTER_RECOVER);
}
EXPORT_SYMBOL_GPL(devlink_health_reporter_state_update);
static int devlink_nl_cmd_health_reporter_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_health_reporter *reporter;
struct sk_buff *msg;
int err;
reporter = devlink_health_reporter_get_from_info(devlink, info);
if (!reporter)
return -EINVAL;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg) {
err = -ENOMEM;
goto out;
}
err = devlink_nl_health_reporter_fill(msg, devlink, reporter,
DEVLINK_CMD_HEALTH_REPORTER_GET,
info->snd_portid, info->snd_seq,
0);
if (err) {
nlmsg_free(msg);
goto out;
}
err = genlmsg_reply(msg, info);
out:
devlink_health_reporter_put(reporter);
return err;
}
static int
devlink_nl_cmd_health_reporter_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink_health_reporter *reporter;
struct devlink *devlink;
int start = cb->args[0];
int idx = 0;
int err;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
mutex_lock(&devlink->reporters_lock);
list_for_each_entry(reporter, &devlink->reporter_list,
list) {
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_health_reporter_fill(msg, devlink,
reporter,
DEVLINK_CMD_HEALTH_REPORTER_GET,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI);
if (err) {
mutex_unlock(&devlink->reporters_lock);
goto out;
}
idx++;
}
mutex_unlock(&devlink->reporters_lock);
}
out:
mutex_unlock(&devlink_mutex);
cb->args[0] = idx;
return msg->len;
}
static int
devlink_nl_cmd_health_reporter_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_health_reporter *reporter;
int err;
reporter = devlink_health_reporter_get_from_info(devlink, info);
if (!reporter)
return -EINVAL;
if (!reporter->ops->recover &&
(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD] ||
info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER])) {
err = -EOPNOTSUPP;
goto out;
}
if (!reporter->ops->dump &&
info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP]) {
err = -EOPNOTSUPP;
goto out;
}
if (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD])
reporter->graceful_period =
nla_get_u64(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD]);
if (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER])
reporter->auto_recover =
nla_get_u8(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER]);
if (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP])
reporter->auto_dump =
nla_get_u8(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP]);
devlink_health_reporter_put(reporter);
return 0;
out:
devlink_health_reporter_put(reporter);
return err;
}
static int devlink_nl_cmd_health_reporter_recover_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_health_reporter *reporter;
int err;
reporter = devlink_health_reporter_get_from_info(devlink, info);
if (!reporter)
return -EINVAL;
err = devlink_health_reporter_recover(reporter, NULL, info->extack);
devlink_health_reporter_put(reporter);
return err;
}
static int devlink_nl_cmd_health_reporter_diagnose_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_health_reporter *reporter;
struct devlink_fmsg *fmsg;
int err;
reporter = devlink_health_reporter_get_from_info(devlink, info);
if (!reporter)
return -EINVAL;
if (!reporter->ops->diagnose) {
devlink_health_reporter_put(reporter);
return -EOPNOTSUPP;
}
fmsg = devlink_fmsg_alloc();
if (!fmsg) {
devlink_health_reporter_put(reporter);
return -ENOMEM;
}
err = devlink_fmsg_obj_nest_start(fmsg);
if (err)
goto out;
err = reporter->ops->diagnose(reporter, fmsg, info->extack);
if (err)
goto out;
err = devlink_fmsg_obj_nest_end(fmsg);
if (err)
goto out;
err = devlink_fmsg_snd(fmsg, info,
DEVLINK_CMD_HEALTH_REPORTER_DIAGNOSE, 0);
out:
devlink_fmsg_free(fmsg);
devlink_health_reporter_put(reporter);
return err;
}
static int
devlink_nl_cmd_health_reporter_dump_get_dumpit(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct devlink_health_reporter *reporter;
u64 start = cb->args[0];
int err;
reporter = devlink_health_reporter_get_from_cb(cb);
if (!reporter)
return -EINVAL;
if (!reporter->ops->dump) {
err = -EOPNOTSUPP;
goto out;
}
mutex_lock(&reporter->dump_lock);
if (!start) {
err = devlink_health_do_dump(reporter, NULL, cb->extack);
if (err)
goto unlock;
cb->args[1] = reporter->dump_ts;
}
if (!reporter->dump_fmsg || cb->args[1] != reporter->dump_ts) {
NL_SET_ERR_MSG_MOD(cb->extack, "Dump trampled, please retry");
err = -EAGAIN;
goto unlock;
}
err = devlink_fmsg_dumpit(reporter->dump_fmsg, skb, cb,
DEVLINK_CMD_HEALTH_REPORTER_DUMP_GET);
unlock:
mutex_unlock(&reporter->dump_lock);
out:
devlink_health_reporter_put(reporter);
return err;
}
static int
devlink_nl_cmd_health_reporter_dump_clear_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink *devlink = info->user_ptr[0];
struct devlink_health_reporter *reporter;
reporter = devlink_health_reporter_get_from_info(devlink, info);
if (!reporter)
return -EINVAL;
if (!reporter->ops->dump) {
devlink_health_reporter_put(reporter);
return -EOPNOTSUPP;
}
mutex_lock(&reporter->dump_lock);
devlink_health_dump_clear(reporter);
mutex_unlock(&reporter->dump_lock);
devlink_health_reporter_put(reporter);
return 0;
}
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
struct devlink_stats {
u64 rx_bytes;
u64 rx_packets;
struct u64_stats_sync syncp;
};
devlink: Add packet trap policers support Devices capable of offloading the kernel's datapath and perform functions such as bridging and routing must also be able to send (trap) specific packets to the kernel (i.e., the CPU) for processing. For example, a device acting as a multicast-aware bridge must be able to trap IGMP membership reports to the kernel for processing by the bridge module. In most cases, the underlying device is capable of handling packet rates that are several orders of magnitude higher compared to those that can be handled by the CPU. Therefore, in order to prevent the underlying device from overwhelming the CPU, devices usually include packet trap policers that are able to police the trapped packets to rates that can be handled by the CPU. This patch allows capable device drivers to register their supported packet trap policers with devlink. User space can then tune the parameters of these policer (currently, rate and burst size) and read from the device the number of packets that were dropped by the policer, if supported. Subsequent patches in the series will allow device drivers to create default binding between these policers and packet trap groups and allow user space to change the binding. v2: * Add 'strict_start_type' in devlink policy * Have device drivers provide max/min rate/burst size for each policer. Use them to check validity of user provided parameters Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-31 03:38:18 +08:00
/**
* struct devlink_trap_policer_item - Packet trap policer attributes.
* @policer: Immutable packet trap policer attributes.
* @rate: Rate in packets / sec.
* @burst: Burst size in packets.
* @list: trap_policer_list member.
*
* Describes packet trap policer attributes. Created by devlink during trap
* policer registration.
*/
struct devlink_trap_policer_item {
const struct devlink_trap_policer *policer;
u64 rate;
u64 burst;
struct list_head list;
};
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
/**
* struct devlink_trap_group_item - Packet trap group attributes.
* @group: Immutable packet trap group attributes.
* @policer_item: Associated policer item. Can be NULL.
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
* @list: trap_group_list member.
* @stats: Trap group statistics.
*
* Describes packet trap group attributes. Created by devlink during trap
* group registration.
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
*/
struct devlink_trap_group_item {
const struct devlink_trap_group *group;
struct devlink_trap_policer_item *policer_item;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
struct list_head list;
struct devlink_stats __percpu *stats;
};
/**
* struct devlink_trap_item - Packet trap attributes.
* @trap: Immutable packet trap attributes.
* @group_item: Associated group item.
* @list: trap_list member.
* @action: Trap action.
* @stats: Trap statistics.
* @priv: Driver private information.
*
* Describes both mutable and immutable packet trap attributes. Created by
* devlink during trap registration and used for all trap related operations.
*/
struct devlink_trap_item {
const struct devlink_trap *trap;
struct devlink_trap_group_item *group_item;
struct list_head list;
enum devlink_trap_action action;
struct devlink_stats __percpu *stats;
void *priv;
};
devlink: Add packet trap policers support Devices capable of offloading the kernel's datapath and perform functions such as bridging and routing must also be able to send (trap) specific packets to the kernel (i.e., the CPU) for processing. For example, a device acting as a multicast-aware bridge must be able to trap IGMP membership reports to the kernel for processing by the bridge module. In most cases, the underlying device is capable of handling packet rates that are several orders of magnitude higher compared to those that can be handled by the CPU. Therefore, in order to prevent the underlying device from overwhelming the CPU, devices usually include packet trap policers that are able to police the trapped packets to rates that can be handled by the CPU. This patch allows capable device drivers to register their supported packet trap policers with devlink. User space can then tune the parameters of these policer (currently, rate and burst size) and read from the device the number of packets that were dropped by the policer, if supported. Subsequent patches in the series will allow device drivers to create default binding between these policers and packet trap groups and allow user space to change the binding. v2: * Add 'strict_start_type' in devlink policy * Have device drivers provide max/min rate/burst size for each policer. Use them to check validity of user provided parameters Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-31 03:38:18 +08:00
static struct devlink_trap_policer_item *
devlink_trap_policer_item_lookup(struct devlink *devlink, u32 id)
{
struct devlink_trap_policer_item *policer_item;
list_for_each_entry(policer_item, &devlink->trap_policer_list, list) {
if (policer_item->policer->id == id)
return policer_item;
}
return NULL;
}
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
static struct devlink_trap_item *
devlink_trap_item_lookup(struct devlink *devlink, const char *name)
{
struct devlink_trap_item *trap_item;
list_for_each_entry(trap_item, &devlink->trap_list, list) {
if (!strcmp(trap_item->trap->name, name))
return trap_item;
}
return NULL;
}
static struct devlink_trap_item *
devlink_trap_item_get_from_info(struct devlink *devlink,
struct genl_info *info)
{
struct nlattr *attr;
if (!info->attrs[DEVLINK_ATTR_TRAP_NAME])
return NULL;
attr = info->attrs[DEVLINK_ATTR_TRAP_NAME];
return devlink_trap_item_lookup(devlink, nla_data(attr));
}
static int
devlink_trap_action_get_from_info(struct genl_info *info,
enum devlink_trap_action *p_trap_action)
{
u8 val;
val = nla_get_u8(info->attrs[DEVLINK_ATTR_TRAP_ACTION]);
switch (val) {
case DEVLINK_TRAP_ACTION_DROP: /* fall-through */
case DEVLINK_TRAP_ACTION_TRAP: /* fall-through */
case DEVLINK_TRAP_ACTION_MIRROR:
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
*p_trap_action = val;
break;
default:
return -EINVAL;
}
return 0;
}
static int devlink_trap_metadata_put(struct sk_buff *msg,
const struct devlink_trap *trap)
{
struct nlattr *attr;
attr = nla_nest_start(msg, DEVLINK_ATTR_TRAP_METADATA);
if (!attr)
return -EMSGSIZE;
if ((trap->metadata_cap & DEVLINK_TRAP_METADATA_TYPE_F_IN_PORT) &&
nla_put_flag(msg, DEVLINK_ATTR_TRAP_METADATA_TYPE_IN_PORT))
goto nla_put_failure;
if ((trap->metadata_cap & DEVLINK_TRAP_METADATA_TYPE_F_FA_COOKIE) &&
nla_put_flag(msg, DEVLINK_ATTR_TRAP_METADATA_TYPE_FA_COOKIE))
goto nla_put_failure;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
nla_nest_end(msg, attr);
return 0;
nla_put_failure:
nla_nest_cancel(msg, attr);
return -EMSGSIZE;
}
static void devlink_trap_stats_read(struct devlink_stats __percpu *trap_stats,
struct devlink_stats *stats)
{
int i;
memset(stats, 0, sizeof(*stats));
for_each_possible_cpu(i) {
struct devlink_stats *cpu_stats;
u64 rx_packets, rx_bytes;
unsigned int start;
cpu_stats = per_cpu_ptr(trap_stats, i);
do {
start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
rx_packets = cpu_stats->rx_packets;
rx_bytes = cpu_stats->rx_bytes;
} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
}
}
static int devlink_trap_stats_put(struct sk_buff *msg,
struct devlink_stats __percpu *trap_stats)
{
struct devlink_stats stats;
struct nlattr *attr;
devlink_trap_stats_read(trap_stats, &stats);
attr = nla_nest_start(msg, DEVLINK_ATTR_STATS);
if (!attr)
return -EMSGSIZE;
if (nla_put_u64_64bit(msg, DEVLINK_ATTR_STATS_RX_PACKETS,
stats.rx_packets, DEVLINK_ATTR_PAD))
goto nla_put_failure;
if (nla_put_u64_64bit(msg, DEVLINK_ATTR_STATS_RX_BYTES,
stats.rx_bytes, DEVLINK_ATTR_PAD))
goto nla_put_failure;
nla_nest_end(msg, attr);
return 0;
nla_put_failure:
nla_nest_cancel(msg, attr);
return -EMSGSIZE;
}
static int devlink_nl_trap_fill(struct sk_buff *msg, struct devlink *devlink,
const struct devlink_trap_item *trap_item,
enum devlink_command cmd, u32 portid, u32 seq,
int flags)
{
struct devlink_trap_group_item *group_item = trap_item->group_item;
void *hdr;
int err;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (nla_put_string(msg, DEVLINK_ATTR_TRAP_GROUP_NAME,
group_item->group->name))
goto nla_put_failure;
if (nla_put_string(msg, DEVLINK_ATTR_TRAP_NAME, trap_item->trap->name))
goto nla_put_failure;
if (nla_put_u8(msg, DEVLINK_ATTR_TRAP_TYPE, trap_item->trap->type))
goto nla_put_failure;
if (trap_item->trap->generic &&
nla_put_flag(msg, DEVLINK_ATTR_TRAP_GENERIC))
goto nla_put_failure;
if (nla_put_u8(msg, DEVLINK_ATTR_TRAP_ACTION, trap_item->action))
goto nla_put_failure;
err = devlink_trap_metadata_put(msg, trap_item->trap);
if (err)
goto nla_put_failure;
err = devlink_trap_stats_put(msg, trap_item->stats);
if (err)
goto nla_put_failure;
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int devlink_nl_cmd_trap_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct netlink_ext_ack *extack = info->extack;
struct devlink *devlink = info->user_ptr[0];
struct devlink_trap_item *trap_item;
struct sk_buff *msg;
int err;
if (list_empty(&devlink->trap_list))
return -EOPNOTSUPP;
trap_item = devlink_trap_item_get_from_info(devlink, info);
if (!trap_item) {
NL_SET_ERR_MSG_MOD(extack, "Device did not register this trap");
return -ENOENT;
}
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_trap_fill(msg, devlink, trap_item,
DEVLINK_CMD_TRAP_NEW, info->snd_portid,
info->snd_seq, 0);
if (err)
goto err_trap_fill;
return genlmsg_reply(msg, info);
err_trap_fill:
nlmsg_free(msg);
return err;
}
static int devlink_nl_cmd_trap_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct devlink_trap_item *trap_item;
struct devlink *devlink;
int start = cb->args[0];
int idx = 0;
int err;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(trap_item, &devlink->trap_list, list) {
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_trap_fill(msg, devlink, trap_item,
DEVLINK_CMD_TRAP_NEW,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI);
if (err) {
mutex_unlock(&devlink->lock);
goto out;
}
idx++;
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
cb->args[0] = idx;
return msg->len;
}
static int __devlink_trap_action_set(struct devlink *devlink,
struct devlink_trap_item *trap_item,
enum devlink_trap_action trap_action,
struct netlink_ext_ack *extack)
{
int err;
if (trap_item->action != trap_action &&
trap_item->trap->type != DEVLINK_TRAP_TYPE_DROP) {
NL_SET_ERR_MSG_MOD(extack, "Cannot change action of non-drop traps. Skipping");
return 0;
}
err = devlink->ops->trap_action_set(devlink, trap_item->trap,
trap_action);
if (err)
return err;
trap_item->action = trap_action;
return 0;
}
static int devlink_trap_action_set(struct devlink *devlink,
struct devlink_trap_item *trap_item,
struct genl_info *info)
{
enum devlink_trap_action trap_action;
int err;
if (!info->attrs[DEVLINK_ATTR_TRAP_ACTION])
return 0;
err = devlink_trap_action_get_from_info(info, &trap_action);
if (err) {
NL_SET_ERR_MSG_MOD(info->extack, "Invalid trap action");
return -EINVAL;
}
return __devlink_trap_action_set(devlink, trap_item, trap_action,
info->extack);
}
static int devlink_nl_cmd_trap_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct netlink_ext_ack *extack = info->extack;
struct devlink *devlink = info->user_ptr[0];
struct devlink_trap_item *trap_item;
int err;
if (list_empty(&devlink->trap_list))
return -EOPNOTSUPP;
trap_item = devlink_trap_item_get_from_info(devlink, info);
if (!trap_item) {
NL_SET_ERR_MSG_MOD(extack, "Device did not register this trap");
return -ENOENT;
}
err = devlink_trap_action_set(devlink, trap_item, info);
if (err)
return err;
return 0;
}
static struct devlink_trap_group_item *
devlink_trap_group_item_lookup(struct devlink *devlink, const char *name)
{
struct devlink_trap_group_item *group_item;
list_for_each_entry(group_item, &devlink->trap_group_list, list) {
if (!strcmp(group_item->group->name, name))
return group_item;
}
return NULL;
}
static struct devlink_trap_group_item *
devlink_trap_group_item_lookup_by_id(struct devlink *devlink, u16 id)
{
struct devlink_trap_group_item *group_item;
list_for_each_entry(group_item, &devlink->trap_group_list, list) {
if (group_item->group->id == id)
return group_item;
}
return NULL;
}
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
static struct devlink_trap_group_item *
devlink_trap_group_item_get_from_info(struct devlink *devlink,
struct genl_info *info)
{
char *name;
if (!info->attrs[DEVLINK_ATTR_TRAP_GROUP_NAME])
return NULL;
name = nla_data(info->attrs[DEVLINK_ATTR_TRAP_GROUP_NAME]);
return devlink_trap_group_item_lookup(devlink, name);
}
static int
devlink_nl_trap_group_fill(struct sk_buff *msg, struct devlink *devlink,
const struct devlink_trap_group_item *group_item,
enum devlink_command cmd, u32 portid, u32 seq,
int flags)
{
void *hdr;
int err;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (nla_put_string(msg, DEVLINK_ATTR_TRAP_GROUP_NAME,
group_item->group->name))
goto nla_put_failure;
if (group_item->group->generic &&
nla_put_flag(msg, DEVLINK_ATTR_TRAP_GENERIC))
goto nla_put_failure;
if (group_item->policer_item &&
nla_put_u32(msg, DEVLINK_ATTR_TRAP_POLICER_ID,
group_item->policer_item->policer->id))
goto nla_put_failure;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
err = devlink_trap_stats_put(msg, group_item->stats);
if (err)
goto nla_put_failure;
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int devlink_nl_cmd_trap_group_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct netlink_ext_ack *extack = info->extack;
struct devlink *devlink = info->user_ptr[0];
struct devlink_trap_group_item *group_item;
struct sk_buff *msg;
int err;
if (list_empty(&devlink->trap_group_list))
return -EOPNOTSUPP;
group_item = devlink_trap_group_item_get_from_info(devlink, info);
if (!group_item) {
NL_SET_ERR_MSG_MOD(extack, "Device did not register this trap group");
return -ENOENT;
}
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_trap_group_fill(msg, devlink, group_item,
DEVLINK_CMD_TRAP_GROUP_NEW,
info->snd_portid, info->snd_seq, 0);
if (err)
goto err_trap_group_fill;
return genlmsg_reply(msg, info);
err_trap_group_fill:
nlmsg_free(msg);
return err;
}
static int devlink_nl_cmd_trap_group_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
enum devlink_command cmd = DEVLINK_CMD_TRAP_GROUP_NEW;
struct devlink_trap_group_item *group_item;
u32 portid = NETLINK_CB(cb->skb).portid;
struct devlink *devlink;
int start = cb->args[0];
int idx = 0;
int err;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(group_item, &devlink->trap_group_list,
list) {
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_trap_group_fill(msg, devlink,
group_item, cmd,
portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI);
if (err) {
mutex_unlock(&devlink->lock);
goto out;
}
idx++;
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
cb->args[0] = idx;
return msg->len;
}
static int
__devlink_trap_group_action_set(struct devlink *devlink,
struct devlink_trap_group_item *group_item,
enum devlink_trap_action trap_action,
struct netlink_ext_ack *extack)
{
const char *group_name = group_item->group->name;
struct devlink_trap_item *trap_item;
int err;
list_for_each_entry(trap_item, &devlink->trap_list, list) {
if (strcmp(trap_item->group_item->group->name, group_name))
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
continue;
err = __devlink_trap_action_set(devlink, trap_item,
trap_action, extack);
if (err)
return err;
}
return 0;
}
static int
devlink_trap_group_action_set(struct devlink *devlink,
struct devlink_trap_group_item *group_item,
struct genl_info *info, bool *p_modified)
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
{
enum devlink_trap_action trap_action;
int err;
if (!info->attrs[DEVLINK_ATTR_TRAP_ACTION])
return 0;
err = devlink_trap_action_get_from_info(info, &trap_action);
if (err) {
NL_SET_ERR_MSG_MOD(info->extack, "Invalid trap action");
return -EINVAL;
}
err = __devlink_trap_group_action_set(devlink, group_item, trap_action,
info->extack);
if (err)
return err;
*p_modified = true;
return 0;
}
static int devlink_trap_group_set(struct devlink *devlink,
struct devlink_trap_group_item *group_item,
struct genl_info *info)
{
struct devlink_trap_policer_item *policer_item;
struct netlink_ext_ack *extack = info->extack;
const struct devlink_trap_policer *policer;
struct nlattr **attrs = info->attrs;
int err;
if (!attrs[DEVLINK_ATTR_TRAP_POLICER_ID])
return 0;
if (!devlink->ops->trap_group_set)
return -EOPNOTSUPP;
policer_item = group_item->policer_item;
if (attrs[DEVLINK_ATTR_TRAP_POLICER_ID]) {
u32 policer_id;
policer_id = nla_get_u32(attrs[DEVLINK_ATTR_TRAP_POLICER_ID]);
policer_item = devlink_trap_policer_item_lookup(devlink,
policer_id);
if (policer_id && !policer_item) {
NL_SET_ERR_MSG_MOD(extack, "Device did not register this trap policer");
return -ENOENT;
}
}
policer = policer_item ? policer_item->policer : NULL;
err = devlink->ops->trap_group_set(devlink, group_item->group, policer);
if (err)
return err;
group_item->policer_item = policer_item;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
return 0;
}
static int devlink_nl_cmd_trap_group_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct netlink_ext_ack *extack = info->extack;
struct devlink *devlink = info->user_ptr[0];
struct devlink_trap_group_item *group_item;
bool modified = false;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
int err;
if (list_empty(&devlink->trap_group_list))
return -EOPNOTSUPP;
group_item = devlink_trap_group_item_get_from_info(devlink, info);
if (!group_item) {
NL_SET_ERR_MSG_MOD(extack, "Device did not register this trap group");
return -ENOENT;
}
err = devlink_trap_group_action_set(devlink, group_item, info,
&modified);
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
if (err)
return err;
err = devlink_trap_group_set(devlink, group_item, info);
if (err)
goto err_trap_group_set;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
return 0;
err_trap_group_set:
if (modified)
NL_SET_ERR_MSG_MOD(extack, "Trap group set failed, but some changes were committed already");
return err;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
}
devlink: Add packet trap policers support Devices capable of offloading the kernel's datapath and perform functions such as bridging and routing must also be able to send (trap) specific packets to the kernel (i.e., the CPU) for processing. For example, a device acting as a multicast-aware bridge must be able to trap IGMP membership reports to the kernel for processing by the bridge module. In most cases, the underlying device is capable of handling packet rates that are several orders of magnitude higher compared to those that can be handled by the CPU. Therefore, in order to prevent the underlying device from overwhelming the CPU, devices usually include packet trap policers that are able to police the trapped packets to rates that can be handled by the CPU. This patch allows capable device drivers to register their supported packet trap policers with devlink. User space can then tune the parameters of these policer (currently, rate and burst size) and read from the device the number of packets that were dropped by the policer, if supported. Subsequent patches in the series will allow device drivers to create default binding between these policers and packet trap groups and allow user space to change the binding. v2: * Add 'strict_start_type' in devlink policy * Have device drivers provide max/min rate/burst size for each policer. Use them to check validity of user provided parameters Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-31 03:38:18 +08:00
static struct devlink_trap_policer_item *
devlink_trap_policer_item_get_from_info(struct devlink *devlink,
struct genl_info *info)
{
u32 id;
if (!info->attrs[DEVLINK_ATTR_TRAP_POLICER_ID])
return NULL;
id = nla_get_u32(info->attrs[DEVLINK_ATTR_TRAP_POLICER_ID]);
return devlink_trap_policer_item_lookup(devlink, id);
}
static int
devlink_trap_policer_stats_put(struct sk_buff *msg, struct devlink *devlink,
const struct devlink_trap_policer *policer)
{
struct nlattr *attr;
u64 drops;
int err;
if (!devlink->ops->trap_policer_counter_get)
return 0;
err = devlink->ops->trap_policer_counter_get(devlink, policer, &drops);
if (err)
return err;
attr = nla_nest_start(msg, DEVLINK_ATTR_STATS);
if (!attr)
return -EMSGSIZE;
if (nla_put_u64_64bit(msg, DEVLINK_ATTR_STATS_RX_DROPPED, drops,
DEVLINK_ATTR_PAD))
goto nla_put_failure;
nla_nest_end(msg, attr);
return 0;
nla_put_failure:
nla_nest_cancel(msg, attr);
return -EMSGSIZE;
}
static int
devlink_nl_trap_policer_fill(struct sk_buff *msg, struct devlink *devlink,
const struct devlink_trap_policer_item *policer_item,
enum devlink_command cmd, u32 portid, u32 seq,
int flags)
{
void *hdr;
int err;
hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd);
if (!hdr)
return -EMSGSIZE;
if (devlink_nl_put_handle(msg, devlink))
goto nla_put_failure;
if (nla_put_u32(msg, DEVLINK_ATTR_TRAP_POLICER_ID,
policer_item->policer->id))
goto nla_put_failure;
if (nla_put_u64_64bit(msg, DEVLINK_ATTR_TRAP_POLICER_RATE,
policer_item->rate, DEVLINK_ATTR_PAD))
goto nla_put_failure;
if (nla_put_u64_64bit(msg, DEVLINK_ATTR_TRAP_POLICER_BURST,
policer_item->burst, DEVLINK_ATTR_PAD))
goto nla_put_failure;
err = devlink_trap_policer_stats_put(msg, devlink,
policer_item->policer);
if (err)
goto nla_put_failure;
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int devlink_nl_cmd_trap_policer_get_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_trap_policer_item *policer_item;
struct netlink_ext_ack *extack = info->extack;
struct devlink *devlink = info->user_ptr[0];
struct sk_buff *msg;
int err;
if (list_empty(&devlink->trap_policer_list))
return -EOPNOTSUPP;
policer_item = devlink_trap_policer_item_get_from_info(devlink, info);
if (!policer_item) {
NL_SET_ERR_MSG_MOD(extack, "Device did not register this trap policer");
return -ENOENT;
}
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
err = devlink_nl_trap_policer_fill(msg, devlink, policer_item,
DEVLINK_CMD_TRAP_POLICER_NEW,
info->snd_portid, info->snd_seq, 0);
if (err)
goto err_trap_policer_fill;
return genlmsg_reply(msg, info);
err_trap_policer_fill:
nlmsg_free(msg);
return err;
}
static int devlink_nl_cmd_trap_policer_get_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
enum devlink_command cmd = DEVLINK_CMD_TRAP_POLICER_NEW;
struct devlink_trap_policer_item *policer_item;
u32 portid = NETLINK_CB(cb->skb).portid;
struct devlink *devlink;
int start = cb->args[0];
int idx = 0;
int err;
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (!net_eq(devlink_net(devlink), sock_net(msg->sk)))
continue;
mutex_lock(&devlink->lock);
list_for_each_entry(policer_item, &devlink->trap_policer_list,
list) {
if (idx < start) {
idx++;
continue;
}
err = devlink_nl_trap_policer_fill(msg, devlink,
policer_item, cmd,
portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI);
if (err) {
mutex_unlock(&devlink->lock);
goto out;
}
idx++;
}
mutex_unlock(&devlink->lock);
}
out:
mutex_unlock(&devlink_mutex);
cb->args[0] = idx;
return msg->len;
}
static int
devlink_trap_policer_set(struct devlink *devlink,
struct devlink_trap_policer_item *policer_item,
struct genl_info *info)
{
struct netlink_ext_ack *extack = info->extack;
struct nlattr **attrs = info->attrs;
u64 rate, burst;
int err;
rate = policer_item->rate;
burst = policer_item->burst;
if (attrs[DEVLINK_ATTR_TRAP_POLICER_RATE])
rate = nla_get_u64(attrs[DEVLINK_ATTR_TRAP_POLICER_RATE]);
if (attrs[DEVLINK_ATTR_TRAP_POLICER_BURST])
burst = nla_get_u64(attrs[DEVLINK_ATTR_TRAP_POLICER_BURST]);
if (rate < policer_item->policer->min_rate) {
NL_SET_ERR_MSG_MOD(extack, "Policer rate lower than limit");
return -EINVAL;
}
if (rate > policer_item->policer->max_rate) {
NL_SET_ERR_MSG_MOD(extack, "Policer rate higher than limit");
return -EINVAL;
}
if (burst < policer_item->policer->min_burst) {
NL_SET_ERR_MSG_MOD(extack, "Policer burst size lower than limit");
return -EINVAL;
}
if (burst > policer_item->policer->max_burst) {
NL_SET_ERR_MSG_MOD(extack, "Policer burst size higher than limit");
return -EINVAL;
}
err = devlink->ops->trap_policer_set(devlink, policer_item->policer,
rate, burst, info->extack);
if (err)
return err;
policer_item->rate = rate;
policer_item->burst = burst;
return 0;
}
static int devlink_nl_cmd_trap_policer_set_doit(struct sk_buff *skb,
struct genl_info *info)
{
struct devlink_trap_policer_item *policer_item;
struct netlink_ext_ack *extack = info->extack;
struct devlink *devlink = info->user_ptr[0];
if (list_empty(&devlink->trap_policer_list))
return -EOPNOTSUPP;
if (!devlink->ops->trap_policer_set)
return -EOPNOTSUPP;
policer_item = devlink_trap_policer_item_get_from_info(devlink, info);
if (!policer_item) {
NL_SET_ERR_MSG_MOD(extack, "Device did not register this trap policer");
return -ENOENT;
}
return devlink_trap_policer_set(devlink, policer_item, info);
}
static const struct nla_policy devlink_nl_policy[DEVLINK_ATTR_MAX + 1] = {
devlink: Add packet trap policers support Devices capable of offloading the kernel's datapath and perform functions such as bridging and routing must also be able to send (trap) specific packets to the kernel (i.e., the CPU) for processing. For example, a device acting as a multicast-aware bridge must be able to trap IGMP membership reports to the kernel for processing by the bridge module. In most cases, the underlying device is capable of handling packet rates that are several orders of magnitude higher compared to those that can be handled by the CPU. Therefore, in order to prevent the underlying device from overwhelming the CPU, devices usually include packet trap policers that are able to police the trapped packets to rates that can be handled by the CPU. This patch allows capable device drivers to register their supported packet trap policers with devlink. User space can then tune the parameters of these policer (currently, rate and burst size) and read from the device the number of packets that were dropped by the policer, if supported. Subsequent patches in the series will allow device drivers to create default binding between these policers and packet trap groups and allow user space to change the binding. v2: * Add 'strict_start_type' in devlink policy * Have device drivers provide max/min rate/burst size for each policer. Use them to check validity of user provided parameters Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-31 03:38:18 +08:00
[DEVLINK_ATTR_UNSPEC] = { .strict_start_type =
DEVLINK_ATTR_TRAP_POLICER_ID },
[DEVLINK_ATTR_BUS_NAME] = { .type = NLA_NUL_STRING },
[DEVLINK_ATTR_DEV_NAME] = { .type = NLA_NUL_STRING },
[DEVLINK_ATTR_PORT_INDEX] = { .type = NLA_U32 },
[DEVLINK_ATTR_PORT_TYPE] = { .type = NLA_U16 },
[DEVLINK_ATTR_PORT_SPLIT_COUNT] = { .type = NLA_U32 },
[DEVLINK_ATTR_SB_INDEX] = { .type = NLA_U32 },
[DEVLINK_ATTR_SB_POOL_INDEX] = { .type = NLA_U16 },
[DEVLINK_ATTR_SB_POOL_TYPE] = { .type = NLA_U8 },
[DEVLINK_ATTR_SB_POOL_SIZE] = { .type = NLA_U32 },
[DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE] = { .type = NLA_U8 },
[DEVLINK_ATTR_SB_THRESHOLD] = { .type = NLA_U32 },
[DEVLINK_ATTR_SB_TC_INDEX] = { .type = NLA_U16 },
[DEVLINK_ATTR_ESWITCH_MODE] = { .type = NLA_U16 },
[DEVLINK_ATTR_ESWITCH_INLINE_MODE] = { .type = NLA_U8 },
[DEVLINK_ATTR_ESWITCH_ENCAP_MODE] = { .type = NLA_U8 },
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
[DEVLINK_ATTR_DPIPE_TABLE_NAME] = { .type = NLA_NUL_STRING },
[DEVLINK_ATTR_DPIPE_TABLE_COUNTERS_ENABLED] = { .type = NLA_U8 },
[DEVLINK_ATTR_RESOURCE_ID] = { .type = NLA_U64},
[DEVLINK_ATTR_RESOURCE_SIZE] = { .type = NLA_U64},
[DEVLINK_ATTR_PARAM_NAME] = { .type = NLA_NUL_STRING },
[DEVLINK_ATTR_PARAM_TYPE] = { .type = NLA_U8 },
[DEVLINK_ATTR_PARAM_VALUE_CMODE] = { .type = NLA_U8 },
[DEVLINK_ATTR_REGION_NAME] = { .type = NLA_NUL_STRING },
[DEVLINK_ATTR_REGION_SNAPSHOT_ID] = { .type = NLA_U32 },
[DEVLINK_ATTR_REGION_CHUNK_ADDR] = { .type = NLA_U64 },
[DEVLINK_ATTR_REGION_CHUNK_LEN] = { .type = NLA_U64 },
[DEVLINK_ATTR_HEALTH_REPORTER_NAME] = { .type = NLA_NUL_STRING },
[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD] = { .type = NLA_U64 },
[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER] = { .type = NLA_U8 },
[DEVLINK_ATTR_FLASH_UPDATE_FILE_NAME] = { .type = NLA_NUL_STRING },
[DEVLINK_ATTR_FLASH_UPDATE_COMPONENT] = { .type = NLA_NUL_STRING },
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
[DEVLINK_ATTR_TRAP_NAME] = { .type = NLA_NUL_STRING },
[DEVLINK_ATTR_TRAP_ACTION] = { .type = NLA_U8 },
[DEVLINK_ATTR_TRAP_GROUP_NAME] = { .type = NLA_NUL_STRING },
[DEVLINK_ATTR_NETNS_PID] = { .type = NLA_U32 },
[DEVLINK_ATTR_NETNS_FD] = { .type = NLA_U32 },
[DEVLINK_ATTR_NETNS_ID] = { .type = NLA_U32 },
[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP] = { .type = NLA_U8 },
devlink: Add packet trap policers support Devices capable of offloading the kernel's datapath and perform functions such as bridging and routing must also be able to send (trap) specific packets to the kernel (i.e., the CPU) for processing. For example, a device acting as a multicast-aware bridge must be able to trap IGMP membership reports to the kernel for processing by the bridge module. In most cases, the underlying device is capable of handling packet rates that are several orders of magnitude higher compared to those that can be handled by the CPU. Therefore, in order to prevent the underlying device from overwhelming the CPU, devices usually include packet trap policers that are able to police the trapped packets to rates that can be handled by the CPU. This patch allows capable device drivers to register their supported packet trap policers with devlink. User space can then tune the parameters of these policer (currently, rate and burst size) and read from the device the number of packets that were dropped by the policer, if supported. Subsequent patches in the series will allow device drivers to create default binding between these policers and packet trap groups and allow user space to change the binding. v2: * Add 'strict_start_type' in devlink policy * Have device drivers provide max/min rate/burst size for each policer. Use them to check validity of user provided parameters Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-31 03:38:18 +08:00
[DEVLINK_ATTR_TRAP_POLICER_ID] = { .type = NLA_U32 },
[DEVLINK_ATTR_TRAP_POLICER_RATE] = { .type = NLA_U64 },
[DEVLINK_ATTR_TRAP_POLICER_BURST] = { .type = NLA_U64 },
};
static const struct genl_ops devlink_nl_ops[] = {
{
.cmd = DEVLINK_CMD_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_get_doit,
.dumpit = devlink_nl_cmd_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_PORT_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_port_get_doit,
.dumpit = devlink_nl_cmd_port_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_PORT,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_PORT_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_port_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_PORT,
},
{
.cmd = DEVLINK_CMD_PORT_SPLIT,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_port_split_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
{
.cmd = DEVLINK_CMD_PORT_UNSPLIT,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_port_unsplit_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
{
.cmd = DEVLINK_CMD_SB_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_sb_get_doit,
.dumpit = devlink_nl_cmd_sb_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NEED_SB,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_SB_POOL_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_sb_pool_get_doit,
.dumpit = devlink_nl_cmd_sb_pool_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NEED_SB,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_SB_POOL_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_sb_pool_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NEED_SB,
},
{
.cmd = DEVLINK_CMD_SB_PORT_POOL_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_sb_port_pool_get_doit,
.dumpit = devlink_nl_cmd_sb_port_pool_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_PORT |
DEVLINK_NL_FLAG_NEED_SB,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_SB_PORT_POOL_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_sb_port_pool_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_PORT |
DEVLINK_NL_FLAG_NEED_SB,
},
{
.cmd = DEVLINK_CMD_SB_TC_POOL_BIND_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_sb_tc_pool_bind_get_doit,
.dumpit = devlink_nl_cmd_sb_tc_pool_bind_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_PORT |
DEVLINK_NL_FLAG_NEED_SB,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_SB_TC_POOL_BIND_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_sb_tc_pool_bind_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_PORT |
DEVLINK_NL_FLAG_NEED_SB,
},
{
.cmd = DEVLINK_CMD_SB_OCC_SNAPSHOT,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_sb_occ_snapshot_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NEED_SB,
},
{
.cmd = DEVLINK_CMD_SB_OCC_MAX_CLEAR,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_sb_occ_max_clear_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NEED_SB,
},
{
.cmd = DEVLINK_CMD_ESWITCH_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_eswitch_get_doit,
.flags = GENL_ADMIN_PERM,
devlink: Rely on driver eswitch thread safety instead of devlink devlink_nl_cmd_eswitch_set_doit() doesn't hold devlink->lock mutex while invoking driver callback. This is likely due to eswitch mode setting involves adding/remove devlink ports, health reporters or other devlink objects for a devlink device. So it is driver responsiblity to ensure thread safe eswitch state transition happening via either sriov legacy enablement or via devlink eswitch set callback. Therefore, get() callback should also be invoked without holding devlink->lock mutex. Vendor driver can use same internal lock which it uses during eswitch mode set() callback. This makes get() and set() implimentation symmetric in devlink core and in vendor drivers. Hence, remove holding devlink->lock mutex during eswitch get() callback. Failing to do so results into below deadlock scenario when mlx5_core driver is improved to handle eswitch mode set critical section invoked by devlink and sriov sysfs interface in subsequent patch. devlink_nl_cmd_eswitch_set_doit() mlx5_eswitch_mode_set() mutex_lock(esw->mode_lock) <- Lock A [...] register_devlink_port() mutex_lock(&devlink->lock); <- lock B mutex_lock(&devlink->lock); <- lock B devlink_nl_cmd_eswitch_get_doit() mlx5_eswitch_mode_get() mutex_lock(esw->mode_lock) <- Lock A In subsequent patch, mlx5_core driver uses its internal lock during get() and set() eswitch callbacks. Other drivers have been inspected which returns either constant during get operations or reads the value from already allocated structure. Hence it is safe to remove the lock in get( ) callback and let vendor driver handle it. Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Mark Bloch <markb@mellanox.com> Signed-off-by: Parav Pandit <parav@mellanox.com> Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
2020-02-24 09:06:56 +08:00
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
{
.cmd = DEVLINK_CMD_ESWITCH_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_eswitch_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
{
.cmd = DEVLINK_CMD_DPIPE_TABLE_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
.doit = devlink_nl_cmd_dpipe_table_get,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
},
{
.cmd = DEVLINK_CMD_DPIPE_ENTRIES_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
.doit = devlink_nl_cmd_dpipe_entries_get,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
},
{
.cmd = DEVLINK_CMD_DPIPE_HEADERS_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
.doit = devlink_nl_cmd_dpipe_headers_get,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
},
{
.cmd = DEVLINK_CMD_DPIPE_TABLE_COUNTERS_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
.doit = devlink_nl_cmd_dpipe_table_counters_set,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
{
.cmd = DEVLINK_CMD_RESOURCE_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_resource_set,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
{
.cmd = DEVLINK_CMD_RESOURCE_DUMP,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_resource_dump,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_RELOAD,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_reload,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
{
.cmd = DEVLINK_CMD_PARAM_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_param_get_doit,
.dumpit = devlink_nl_cmd_param_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_PARAM_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_param_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
{
.cmd = DEVLINK_CMD_PORT_PARAM_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_port_param_get_doit,
.dumpit = devlink_nl_cmd_port_param_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_PORT,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_PORT_PARAM_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_port_param_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_PORT,
},
{
.cmd = DEVLINK_CMD_REGION_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_region_get_doit,
.dumpit = devlink_nl_cmd_region_get_dumpit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
{
.cmd = DEVLINK_CMD_REGION_NEW,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_region_new,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
{
.cmd = DEVLINK_CMD_REGION_DEL,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_region_del,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
{
.cmd = DEVLINK_CMD_REGION_READ,
.validate = GENL_DONT_VALIDATE_STRICT |
GENL_DONT_VALIDATE_DUMP_STRICT,
.dumpit = devlink_nl_cmd_region_read_dumpit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
{
.cmd = DEVLINK_CMD_INFO_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_info_get_doit,
.dumpit = devlink_nl_cmd_info_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_HEALTH_REPORTER_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_health_reporter_get_doit,
.dumpit = devlink_nl_cmd_health_reporter_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_HEALTH_REPORTER_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_health_reporter_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
{
.cmd = DEVLINK_CMD_HEALTH_REPORTER_RECOVER,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_health_reporter_recover_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
{
.cmd = DEVLINK_CMD_HEALTH_REPORTER_DIAGNOSE,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_health_reporter_diagnose_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
{
.cmd = DEVLINK_CMD_HEALTH_REPORTER_DUMP_GET,
.validate = GENL_DONT_VALIDATE_STRICT |
GENL_DONT_VALIDATE_DUMP_STRICT,
.dumpit = devlink_nl_cmd_health_reporter_dump_get_dumpit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
{
.cmd = DEVLINK_CMD_HEALTH_REPORTER_DUMP_CLEAR,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_health_reporter_dump_clear_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK |
DEVLINK_NL_FLAG_NO_LOCK,
},
{
.cmd = DEVLINK_CMD_FLASH_UPDATE,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = devlink_nl_cmd_flash_update,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
{
.cmd = DEVLINK_CMD_TRAP_GET,
.doit = devlink_nl_cmd_trap_get_doit,
.dumpit = devlink_nl_cmd_trap_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_TRAP_SET,
.doit = devlink_nl_cmd_trap_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
{
.cmd = DEVLINK_CMD_TRAP_GROUP_GET,
.doit = devlink_nl_cmd_trap_group_get_doit,
.dumpit = devlink_nl_cmd_trap_group_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_TRAP_GROUP_SET,
.doit = devlink_nl_cmd_trap_group_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
devlink: Add packet trap policers support Devices capable of offloading the kernel's datapath and perform functions such as bridging and routing must also be able to send (trap) specific packets to the kernel (i.e., the CPU) for processing. For example, a device acting as a multicast-aware bridge must be able to trap IGMP membership reports to the kernel for processing by the bridge module. In most cases, the underlying device is capable of handling packet rates that are several orders of magnitude higher compared to those that can be handled by the CPU. Therefore, in order to prevent the underlying device from overwhelming the CPU, devices usually include packet trap policers that are able to police the trapped packets to rates that can be handled by the CPU. This patch allows capable device drivers to register their supported packet trap policers with devlink. User space can then tune the parameters of these policer (currently, rate and burst size) and read from the device the number of packets that were dropped by the policer, if supported. Subsequent patches in the series will allow device drivers to create default binding between these policers and packet trap groups and allow user space to change the binding. v2: * Add 'strict_start_type' in devlink policy * Have device drivers provide max/min rate/burst size for each policer. Use them to check validity of user provided parameters Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-31 03:38:18 +08:00
{
.cmd = DEVLINK_CMD_TRAP_POLICER_GET,
.doit = devlink_nl_cmd_trap_policer_get_doit,
.dumpit = devlink_nl_cmd_trap_policer_get_dumpit,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
/* can be retrieved by unprivileged users */
},
{
.cmd = DEVLINK_CMD_TRAP_POLICER_SET,
.doit = devlink_nl_cmd_trap_policer_set_doit,
.flags = GENL_ADMIN_PERM,
.internal_flags = DEVLINK_NL_FLAG_NEED_DEVLINK,
},
};
static struct genl_family devlink_nl_family __ro_after_init = {
.name = DEVLINK_GENL_NAME,
.version = DEVLINK_GENL_VERSION,
.maxattr = DEVLINK_ATTR_MAX,
.policy = devlink_nl_policy,
.netnsok = true,
.pre_doit = devlink_nl_pre_doit,
.post_doit = devlink_nl_post_doit,
.module = THIS_MODULE,
.ops = devlink_nl_ops,
.n_ops = ARRAY_SIZE(devlink_nl_ops),
.mcgrps = devlink_nl_mcgrps,
.n_mcgrps = ARRAY_SIZE(devlink_nl_mcgrps),
};
/**
* devlink_alloc - Allocate new devlink instance resources
*
* @ops: ops
* @priv_size: size of user private data
*
* Allocate new devlink instance resources, including devlink index
* and name.
*/
struct devlink *devlink_alloc(const struct devlink_ops *ops, size_t priv_size)
{
struct devlink *devlink;
if (WARN_ON(!ops))
return NULL;
devlink = kzalloc(sizeof(*devlink) + priv_size, GFP_KERNEL);
if (!devlink)
return NULL;
devlink->ops = ops;
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
xa_init_flags(&devlink->snapshot_ids, XA_FLAGS_ALLOC);
__devlink_net_set(devlink, &init_net);
INIT_LIST_HEAD(&devlink->port_list);
INIT_LIST_HEAD(&devlink->sb_list);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
INIT_LIST_HEAD_RCU(&devlink->dpipe_table_list);
INIT_LIST_HEAD(&devlink->resource_list);
INIT_LIST_HEAD(&devlink->param_list);
INIT_LIST_HEAD(&devlink->region_list);
INIT_LIST_HEAD(&devlink->reporter_list);
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
INIT_LIST_HEAD(&devlink->trap_list);
INIT_LIST_HEAD(&devlink->trap_group_list);
devlink: Add packet trap policers support Devices capable of offloading the kernel's datapath and perform functions such as bridging and routing must also be able to send (trap) specific packets to the kernel (i.e., the CPU) for processing. For example, a device acting as a multicast-aware bridge must be able to trap IGMP membership reports to the kernel for processing by the bridge module. In most cases, the underlying device is capable of handling packet rates that are several orders of magnitude higher compared to those that can be handled by the CPU. Therefore, in order to prevent the underlying device from overwhelming the CPU, devices usually include packet trap policers that are able to police the trapped packets to rates that can be handled by the CPU. This patch allows capable device drivers to register their supported packet trap policers with devlink. User space can then tune the parameters of these policer (currently, rate and burst size) and read from the device the number of packets that were dropped by the policer, if supported. Subsequent patches in the series will allow device drivers to create default binding between these policers and packet trap groups and allow user space to change the binding. v2: * Add 'strict_start_type' in devlink policy * Have device drivers provide max/min rate/burst size for each policer. Use them to check validity of user provided parameters Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-31 03:38:18 +08:00
INIT_LIST_HEAD(&devlink->trap_policer_list);
mutex_init(&devlink->lock);
mutex_init(&devlink->reporters_lock);
return devlink;
}
EXPORT_SYMBOL_GPL(devlink_alloc);
/**
* devlink_register - Register devlink instance
*
* @devlink: devlink
* @dev: parent device
*/
int devlink_register(struct devlink *devlink, struct device *dev)
{
mutex_lock(&devlink_mutex);
devlink->dev = dev;
devlink->registered = true;
list_add_tail(&devlink->list, &devlink_list);
devlink_notify(devlink, DEVLINK_CMD_NEW);
mutex_unlock(&devlink_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(devlink_register);
/**
* devlink_unregister - Unregister devlink instance
*
* @devlink: devlink
*/
void devlink_unregister(struct devlink *devlink)
{
mutex_lock(&devlink_mutex);
WARN_ON(devlink_reload_supported(devlink) &&
devlink->reload_enabled);
devlink_notify(devlink, DEVLINK_CMD_DEL);
list_del(&devlink->list);
mutex_unlock(&devlink_mutex);
}
EXPORT_SYMBOL_GPL(devlink_unregister);
/**
* devlink_reload_enable - Enable reload of devlink instance
*
* @devlink: devlink
*
* Should be called at end of device initialization
* process when reload operation is supported.
*/
void devlink_reload_enable(struct devlink *devlink)
{
mutex_lock(&devlink_mutex);
devlink->reload_enabled = true;
mutex_unlock(&devlink_mutex);
}
EXPORT_SYMBOL_GPL(devlink_reload_enable);
/**
* devlink_reload_disable - Disable reload of devlink instance
*
* @devlink: devlink
*
* Should be called at the beginning of device cleanup
* process when reload operation is supported.
*/
void devlink_reload_disable(struct devlink *devlink)
{
mutex_lock(&devlink_mutex);
/* Mutex is taken which ensures that no reload operation is in
* progress while setting up forbidded flag.
*/
devlink->reload_enabled = false;
mutex_unlock(&devlink_mutex);
}
EXPORT_SYMBOL_GPL(devlink_reload_disable);
/**
* devlink_free - Free devlink instance resources
*
* @devlink: devlink
*/
void devlink_free(struct devlink *devlink)
{
mutex_destroy(&devlink->reporters_lock);
mutex_destroy(&devlink->lock);
devlink: Add packet trap policers support Devices capable of offloading the kernel's datapath and perform functions such as bridging and routing must also be able to send (trap) specific packets to the kernel (i.e., the CPU) for processing. For example, a device acting as a multicast-aware bridge must be able to trap IGMP membership reports to the kernel for processing by the bridge module. In most cases, the underlying device is capable of handling packet rates that are several orders of magnitude higher compared to those that can be handled by the CPU. Therefore, in order to prevent the underlying device from overwhelming the CPU, devices usually include packet trap policers that are able to police the trapped packets to rates that can be handled by the CPU. This patch allows capable device drivers to register their supported packet trap policers with devlink. User space can then tune the parameters of these policer (currently, rate and burst size) and read from the device the number of packets that were dropped by the policer, if supported. Subsequent patches in the series will allow device drivers to create default binding between these policers and packet trap groups and allow user space to change the binding. v2: * Add 'strict_start_type' in devlink policy * Have device drivers provide max/min rate/burst size for each policer. Use them to check validity of user provided parameters Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-31 03:38:18 +08:00
WARN_ON(!list_empty(&devlink->trap_policer_list));
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
WARN_ON(!list_empty(&devlink->trap_group_list));
WARN_ON(!list_empty(&devlink->trap_list));
WARN_ON(!list_empty(&devlink->reporter_list));
WARN_ON(!list_empty(&devlink->region_list));
WARN_ON(!list_empty(&devlink->param_list));
WARN_ON(!list_empty(&devlink->resource_list));
WARN_ON(!list_empty(&devlink->dpipe_table_list));
WARN_ON(!list_empty(&devlink->sb_list));
WARN_ON(!list_empty(&devlink->port_list));
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
xa_destroy(&devlink->snapshot_ids);
kfree(devlink);
}
EXPORT_SYMBOL_GPL(devlink_free);
static void devlink_port_type_warn(struct work_struct *work)
{
WARN(true, "Type was not set for devlink port.");
}
static bool devlink_port_type_should_warn(struct devlink_port *devlink_port)
{
/* Ignore CPU and DSA flavours. */
return devlink_port->attrs.flavour != DEVLINK_PORT_FLAVOUR_CPU &&
devlink_port->attrs.flavour != DEVLINK_PORT_FLAVOUR_DSA;
}
devlink: Wait longer before warning about unset port type The commit cited below causes devlink to emit a warning if a type was not set on a devlink port for longer than 30 seconds to "prevent misbehavior of drivers". This proved to be problematic when unregistering the backing netdev. The flow is always: devlink_port_type_clear() // schedules the warning unregister_netdev() // blocking devlink_port_unregister() // cancels the warning The call to unregister_netdev() can block for long periods of time for various reasons: RTNL lock is contended, large amounts of configuration to unroll following dismantle of the netdev, etc. This results in devlink emitting a warning despite the driver behaving correctly. In emulated environments (of future hardware) which are usually very slow, the warning can also be emitted during port creation as more than 30 seconds can pass between the time the devlink port is registered and when its type is set. In addition, syzbot has hit this warning [1] 1974 times since 07/11/19 without being able to produce a reproducer. Probably because reproduction depends on the load or other bugs (e.g., RTNL not being released). To prevent bogus warnings, increase the timeout to 1 hour. [1] https://syzkaller.appspot.com/bug?id=e99b59e9c024a666c9f7450dc162a4b74d09d9cb Fixes: 136bf27fc0e9 ("devlink: add warning in case driver does not set port type") Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reported-by: syzbot+b0a18ed7b08b735d2f41@syzkaller.appspotmail.com Reported-by: Alex Veber <alexve@mellanox.com> Tested-by: Alex Veber <alexve@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-10 01:57:41 +08:00
#define DEVLINK_PORT_TYPE_WARN_TIMEOUT (HZ * 3600)
static void devlink_port_type_warn_schedule(struct devlink_port *devlink_port)
{
if (!devlink_port_type_should_warn(devlink_port))
return;
/* Schedule a work to WARN in case driver does not set port
* type within timeout.
*/
schedule_delayed_work(&devlink_port->type_warn_dw,
DEVLINK_PORT_TYPE_WARN_TIMEOUT);
}
static void devlink_port_type_warn_cancel(struct devlink_port *devlink_port)
{
if (!devlink_port_type_should_warn(devlink_port))
return;
cancel_delayed_work_sync(&devlink_port->type_warn_dw);
}
/**
* devlink_port_register - Register devlink port
*
* @devlink: devlink
* @devlink_port: devlink port
* @port_index: driver-specific numerical identifier of the port
*
* Register devlink port with provided port index. User can use
* any indexing, even hw-related one. devlink_port structure
* is convenient to be embedded inside user driver private structure.
* Note that the caller should take care of zeroing the devlink_port
* structure.
*/
int devlink_port_register(struct devlink *devlink,
struct devlink_port *devlink_port,
unsigned int port_index)
{
mutex_lock(&devlink->lock);
if (devlink_port_index_exists(devlink, port_index)) {
mutex_unlock(&devlink->lock);
return -EEXIST;
}
devlink_port->devlink = devlink;
devlink_port->index = port_index;
devlink_port->registered = true;
spin_lock_init(&devlink_port->type_lock);
list_add_tail(&devlink_port->list, &devlink->port_list);
INIT_LIST_HEAD(&devlink_port->param_list);
mutex_unlock(&devlink->lock);
INIT_DELAYED_WORK(&devlink_port->type_warn_dw, &devlink_port_type_warn);
devlink_port_type_warn_schedule(devlink_port);
devlink_port_notify(devlink_port, DEVLINK_CMD_PORT_NEW);
return 0;
}
EXPORT_SYMBOL_GPL(devlink_port_register);
/**
* devlink_port_unregister - Unregister devlink port
*
* @devlink_port: devlink port
*/
void devlink_port_unregister(struct devlink_port *devlink_port)
{
struct devlink *devlink = devlink_port->devlink;
devlink_port_type_warn_cancel(devlink_port);
devlink_port_notify(devlink_port, DEVLINK_CMD_PORT_DEL);
mutex_lock(&devlink->lock);
list_del(&devlink_port->list);
mutex_unlock(&devlink->lock);
}
EXPORT_SYMBOL_GPL(devlink_port_unregister);
static void __devlink_port_type_set(struct devlink_port *devlink_port,
enum devlink_port_type type,
void *type_dev)
{
if (WARN_ON(!devlink_port->registered))
return;
devlink_port_type_warn_cancel(devlink_port);
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
spin_lock_bh(&devlink_port->type_lock);
devlink_port->type = type;
devlink_port->type_dev = type_dev;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
spin_unlock_bh(&devlink_port->type_lock);
devlink_port_notify(devlink_port, DEVLINK_CMD_PORT_NEW);
}
/**
* devlink_port_type_eth_set - Set port type to Ethernet
*
* @devlink_port: devlink port
* @netdev: related netdevice
*/
void devlink_port_type_eth_set(struct devlink_port *devlink_port,
struct net_device *netdev)
{
const struct net_device_ops *ops = netdev->netdev_ops;
/* If driver registers devlink port, it should set devlink port
* attributes accordingly so the compat functions are called
* and the original ops are not used.
*/
if (ops->ndo_get_phys_port_name) {
/* Some drivers use the same set of ndos for netdevs
* that have devlink_port registered and also for
* those who don't. Make sure that ndo_get_phys_port_name
* returns -EOPNOTSUPP here in case it is defined.
* Warn if not.
*/
char name[IFNAMSIZ];
int err;
err = ops->ndo_get_phys_port_name(netdev, name, sizeof(name));
WARN_ON(err != -EOPNOTSUPP);
}
if (ops->ndo_get_port_parent_id) {
/* Some drivers use the same set of ndos for netdevs
* that have devlink_port registered and also for
* those who don't. Make sure that ndo_get_port_parent_id
* returns -EOPNOTSUPP here in case it is defined.
* Warn if not.
*/
struct netdev_phys_item_id ppid;
int err;
err = ops->ndo_get_port_parent_id(netdev, &ppid);
WARN_ON(err != -EOPNOTSUPP);
}
__devlink_port_type_set(devlink_port, DEVLINK_PORT_TYPE_ETH, netdev);
}
EXPORT_SYMBOL_GPL(devlink_port_type_eth_set);
/**
* devlink_port_type_ib_set - Set port type to InfiniBand
*
* @devlink_port: devlink port
* @ibdev: related IB device
*/
void devlink_port_type_ib_set(struct devlink_port *devlink_port,
struct ib_device *ibdev)
{
__devlink_port_type_set(devlink_port, DEVLINK_PORT_TYPE_IB, ibdev);
}
EXPORT_SYMBOL_GPL(devlink_port_type_ib_set);
/**
* devlink_port_type_clear - Clear port type
*
* @devlink_port: devlink port
*/
void devlink_port_type_clear(struct devlink_port *devlink_port)
{
__devlink_port_type_set(devlink_port, DEVLINK_PORT_TYPE_NOTSET, NULL);
devlink_port_type_warn_schedule(devlink_port);
}
EXPORT_SYMBOL_GPL(devlink_port_type_clear);
static int __devlink_port_attrs_set(struct devlink_port *devlink_port,
enum devlink_port_flavour flavour,
const unsigned char *switch_id,
unsigned char switch_id_len)
{
struct devlink_port_attrs *attrs = &devlink_port->attrs;
if (WARN_ON(devlink_port->registered))
return -EEXIST;
attrs->set = true;
attrs->flavour = flavour;
if (switch_id) {
attrs->switch_port = true;
if (WARN_ON(switch_id_len > MAX_PHYS_ITEM_ID_LEN))
switch_id_len = MAX_PHYS_ITEM_ID_LEN;
memcpy(attrs->switch_id.id, switch_id, switch_id_len);
attrs->switch_id.id_len = switch_id_len;
} else {
attrs->switch_port = false;
}
return 0;
}
/**
* devlink_port_attrs_set - Set port attributes
*
* @devlink_port: devlink port
* @flavour: flavour of the port
* @port_number: number of the port that is facing user, for example
* the front panel port number
* @split: indicates if this is split port
* @split_subport_number: if the port is split, this is the number
* of subport.
* @switch_id: if the port is part of switch, this is buffer with ID,
* otwerwise this is NULL
* @switch_id_len: length of the switch_id buffer
*/
void devlink_port_attrs_set(struct devlink_port *devlink_port,
enum devlink_port_flavour flavour,
u32 port_number, bool split,
u32 split_subport_number,
const unsigned char *switch_id,
unsigned char switch_id_len)
{
struct devlink_port_attrs *attrs = &devlink_port->attrs;
int ret;
ret = __devlink_port_attrs_set(devlink_port, flavour,
switch_id, switch_id_len);
if (ret)
return;
attrs->split = split;
attrs->phys.port_number = port_number;
attrs->phys.split_subport_number = split_subport_number;
}
EXPORT_SYMBOL_GPL(devlink_port_attrs_set);
/**
* devlink_port_attrs_pci_pf_set - Set PCI PF port attributes
*
* @devlink_port: devlink port
* @pf: associated PF for the devlink port instance
* @switch_id: if the port is part of switch, this is buffer with ID,
* otherwise this is NULL
* @switch_id_len: length of the switch_id buffer
*/
void devlink_port_attrs_pci_pf_set(struct devlink_port *devlink_port,
const unsigned char *switch_id,
unsigned char switch_id_len, u16 pf)
{
struct devlink_port_attrs *attrs = &devlink_port->attrs;
int ret;
ret = __devlink_port_attrs_set(devlink_port,
DEVLINK_PORT_FLAVOUR_PCI_PF,
switch_id, switch_id_len);
if (ret)
return;
attrs->pci_pf.pf = pf;
}
EXPORT_SYMBOL_GPL(devlink_port_attrs_pci_pf_set);
/**
* devlink_port_attrs_pci_vf_set - Set PCI VF port attributes
*
* @devlink_port: devlink port
* @pf: associated PF for the devlink port instance
* @vf: associated VF of a PF for the devlink port instance
* @switch_id: if the port is part of switch, this is buffer with ID,
* otherwise this is NULL
* @switch_id_len: length of the switch_id buffer
*/
void devlink_port_attrs_pci_vf_set(struct devlink_port *devlink_port,
const unsigned char *switch_id,
unsigned char switch_id_len,
u16 pf, u16 vf)
{
struct devlink_port_attrs *attrs = &devlink_port->attrs;
int ret;
ret = __devlink_port_attrs_set(devlink_port,
DEVLINK_PORT_FLAVOUR_PCI_VF,
switch_id, switch_id_len);
if (ret)
return;
attrs->pci_vf.pf = pf;
attrs->pci_vf.vf = vf;
}
EXPORT_SYMBOL_GPL(devlink_port_attrs_pci_vf_set);
static int __devlink_port_phys_port_name_get(struct devlink_port *devlink_port,
char *name, size_t len)
{
struct devlink_port_attrs *attrs = &devlink_port->attrs;
int n = 0;
if (!attrs->set)
return -EOPNOTSUPP;
switch (attrs->flavour) {
case DEVLINK_PORT_FLAVOUR_PHYSICAL:
case DEVLINK_PORT_FLAVOUR_VIRTUAL:
if (!attrs->split)
n = snprintf(name, len, "p%u", attrs->phys.port_number);
else
n = snprintf(name, len, "p%us%u",
attrs->phys.port_number,
attrs->phys.split_subport_number);
break;
case DEVLINK_PORT_FLAVOUR_CPU:
case DEVLINK_PORT_FLAVOUR_DSA:
/* As CPU and DSA ports do not have a netdevice associated
* case should not ever happen.
*/
WARN_ON(1);
return -EINVAL;
case DEVLINK_PORT_FLAVOUR_PCI_PF:
n = snprintf(name, len, "pf%u", attrs->pci_pf.pf);
break;
case DEVLINK_PORT_FLAVOUR_PCI_VF:
n = snprintf(name, len, "pf%uvf%u",
attrs->pci_vf.pf, attrs->pci_vf.vf);
break;
}
if (n >= len)
return -EINVAL;
return 0;
}
int devlink_sb_register(struct devlink *devlink, unsigned int sb_index,
u32 size, u16 ingress_pools_count,
u16 egress_pools_count, u16 ingress_tc_count,
u16 egress_tc_count)
{
struct devlink_sb *devlink_sb;
int err = 0;
mutex_lock(&devlink->lock);
if (devlink_sb_index_exists(devlink, sb_index)) {
err = -EEXIST;
goto unlock;
}
devlink_sb = kzalloc(sizeof(*devlink_sb), GFP_KERNEL);
if (!devlink_sb) {
err = -ENOMEM;
goto unlock;
}
devlink_sb->index = sb_index;
devlink_sb->size = size;
devlink_sb->ingress_pools_count = ingress_pools_count;
devlink_sb->egress_pools_count = egress_pools_count;
devlink_sb->ingress_tc_count = ingress_tc_count;
devlink_sb->egress_tc_count = egress_tc_count;
list_add_tail(&devlink_sb->list, &devlink->sb_list);
unlock:
mutex_unlock(&devlink->lock);
return err;
}
EXPORT_SYMBOL_GPL(devlink_sb_register);
void devlink_sb_unregister(struct devlink *devlink, unsigned int sb_index)
{
struct devlink_sb *devlink_sb;
mutex_lock(&devlink->lock);
devlink_sb = devlink_sb_get_by_index(devlink, sb_index);
WARN_ON(!devlink_sb);
list_del(&devlink_sb->list);
mutex_unlock(&devlink->lock);
kfree(devlink_sb);
}
EXPORT_SYMBOL_GPL(devlink_sb_unregister);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
/**
* devlink_dpipe_headers_register - register dpipe headers
*
* @devlink: devlink
* @dpipe_headers: dpipe header array
*
* Register the headers supported by hardware.
*/
int devlink_dpipe_headers_register(struct devlink *devlink,
struct devlink_dpipe_headers *dpipe_headers)
{
mutex_lock(&devlink->lock);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
devlink->dpipe_headers = dpipe_headers;
mutex_unlock(&devlink->lock);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
return 0;
}
EXPORT_SYMBOL_GPL(devlink_dpipe_headers_register);
/**
* devlink_dpipe_headers_unregister - unregister dpipe headers
*
* @devlink: devlink
*
* Unregister the headers supported by hardware.
*/
void devlink_dpipe_headers_unregister(struct devlink *devlink)
{
mutex_lock(&devlink->lock);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
devlink->dpipe_headers = NULL;
mutex_unlock(&devlink->lock);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
}
EXPORT_SYMBOL_GPL(devlink_dpipe_headers_unregister);
/**
* devlink_dpipe_table_counter_enabled - check if counter allocation
* required
* @devlink: devlink
* @table_name: tables name
*
* Used by driver to check if counter allocation is required.
* After counter allocation is turned on the table entries
* are updated to include counter statistics.
*
* After that point on the driver must respect the counter
* state so that each entry added to the table is added
* with a counter.
*/
bool devlink_dpipe_table_counter_enabled(struct devlink *devlink,
const char *table_name)
{
struct devlink_dpipe_table *table;
bool enabled;
rcu_read_lock();
table = devlink_dpipe_table_find(&devlink->dpipe_table_list,
table_name, devlink);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
enabled = false;
if (table)
enabled = table->counters_enabled;
rcu_read_unlock();
return enabled;
}
EXPORT_SYMBOL_GPL(devlink_dpipe_table_counter_enabled);
/**
* devlink_dpipe_table_register - register dpipe table
*
* @devlink: devlink
* @table_name: table name
* @table_ops: table ops
* @priv: priv
* @counter_control_extern: external control for counters
*/
int devlink_dpipe_table_register(struct devlink *devlink,
const char *table_name,
struct devlink_dpipe_table_ops *table_ops,
void *priv, bool counter_control_extern)
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
{
struct devlink_dpipe_table *table;
int err = 0;
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (WARN_ON(!table_ops->size_get))
return -EINVAL;
mutex_lock(&devlink->lock);
if (devlink_dpipe_table_find(&devlink->dpipe_table_list, table_name,
devlink)) {
err = -EEXIST;
goto unlock;
}
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table) {
err = -ENOMEM;
goto unlock;
}
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
table->name = table_name;
table->table_ops = table_ops;
table->priv = priv;
table->counter_control_extern = counter_control_extern;
list_add_tail_rcu(&table->list, &devlink->dpipe_table_list);
unlock:
mutex_unlock(&devlink->lock);
return err;
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
}
EXPORT_SYMBOL_GPL(devlink_dpipe_table_register);
/**
* devlink_dpipe_table_unregister - unregister dpipe table
*
* @devlink: devlink
* @table_name: table name
*/
void devlink_dpipe_table_unregister(struct devlink *devlink,
const char *table_name)
{
struct devlink_dpipe_table *table;
mutex_lock(&devlink->lock);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
table = devlink_dpipe_table_find(&devlink->dpipe_table_list,
table_name, devlink);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
if (!table)
goto unlock;
list_del_rcu(&table->list);
mutex_unlock(&devlink->lock);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
kfree_rcu(table, rcu);
return;
unlock:
mutex_unlock(&devlink->lock);
devlink: Support for pipeline debug (dpipe) The pipeline debug is used to export the pipeline abstractions for the main objects - tables, headers and entries. The only support for set is for changing the counter parameter on specific table. The basic structures: Header - can represent a real protocol header information or internal metadata. Generic protocol headers like IPv4 can be shared between drivers. Each driver can add local headers. Field - part of a header. Can represent protocol field or specific ASIC metadata field. Hardware special metadata fields can be mapped to different resources, for example switch ASIC ports can have internal number which from the systems point of view is mapped to netdeivce ifindex. Match - represent specific match rule. Can describe match on specific field or header. The header index should be specified as well in order to support several header instances of the same type (tunneling). Action - represents specific action rule. Actions can describe operations on specific field values for example like set, increment, etc. And header operation like add and delete. Value - represents value which can be associated with specific match or action. Table - represents a hardware block which can be described with match/ action behavior. The match/action can be done on the packets data or on the internal metadata that it gathered along the packets traversal throw the pipeline which is vendor specific and should be exported in order to provide understanding of ASICs behavior. Entry - represents single record in a specific table. The entry is identified by specific combination of values for match/action. Prior to accessing the tables/entries the drivers provide the header/ field data base which is used by driver to user-space. The data base is split between the shared headers and unique headers. Signed-off-by: Arkadi Sharshevsky <arkadis@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-28 23:24:10 +08:00
}
EXPORT_SYMBOL_GPL(devlink_dpipe_table_unregister);
/**
* devlink_resource_register - devlink resource register
*
* @devlink: devlink
* @resource_name: resource's name
* @resource_size: resource's size
* @resource_id: resource's id
* @parent_resource_id: resource's parent id
* @size_params: size parameters
*/
int devlink_resource_register(struct devlink *devlink,
const char *resource_name,
u64 resource_size,
u64 resource_id,
u64 parent_resource_id,
const struct devlink_resource_size_params *size_params)
{
struct devlink_resource *resource;
struct list_head *resource_list;
bool top_hierarchy;
int err = 0;
top_hierarchy = parent_resource_id == DEVLINK_RESOURCE_ID_PARENT_TOP;
mutex_lock(&devlink->lock);
resource = devlink_resource_find(devlink, NULL, resource_id);
if (resource) {
err = -EINVAL;
goto out;
}
resource = kzalloc(sizeof(*resource), GFP_KERNEL);
if (!resource) {
err = -ENOMEM;
goto out;
}
if (top_hierarchy) {
resource_list = &devlink->resource_list;
} else {
struct devlink_resource *parent_resource;
parent_resource = devlink_resource_find(devlink, NULL,
parent_resource_id);
if (parent_resource) {
resource_list = &parent_resource->resource_list;
resource->parent = parent_resource;
} else {
kfree(resource);
err = -EINVAL;
goto out;
}
}
resource->name = resource_name;
resource->size = resource_size;
resource->size_new = resource_size;
resource->id = resource_id;
resource->size_valid = true;
memcpy(&resource->size_params, size_params,
sizeof(resource->size_params));
INIT_LIST_HEAD(&resource->resource_list);
list_add_tail(&resource->list, resource_list);
out:
mutex_unlock(&devlink->lock);
return err;
}
EXPORT_SYMBOL_GPL(devlink_resource_register);
/**
* devlink_resources_unregister - free all resources
*
* @devlink: devlink
* @resource: resource
*/
void devlink_resources_unregister(struct devlink *devlink,
struct devlink_resource *resource)
{
struct devlink_resource *tmp, *child_resource;
struct list_head *resource_list;
if (resource)
resource_list = &resource->resource_list;
else
resource_list = &devlink->resource_list;
if (!resource)
mutex_lock(&devlink->lock);
list_for_each_entry_safe(child_resource, tmp, resource_list, list) {
devlink_resources_unregister(devlink, child_resource);
list_del(&child_resource->list);
kfree(child_resource);
}
if (!resource)
mutex_unlock(&devlink->lock);
}
EXPORT_SYMBOL_GPL(devlink_resources_unregister);
/**
* devlink_resource_size_get - get and update size
*
* @devlink: devlink
* @resource_id: the requested resource id
* @p_resource_size: ptr to update
*/
int devlink_resource_size_get(struct devlink *devlink,
u64 resource_id,
u64 *p_resource_size)
{
struct devlink_resource *resource;
int err = 0;
mutex_lock(&devlink->lock);
resource = devlink_resource_find(devlink, NULL, resource_id);
if (!resource) {
err = -EINVAL;
goto out;
}
*p_resource_size = resource->size_new;
resource->size = resource->size_new;
out:
mutex_unlock(&devlink->lock);
return err;
}
EXPORT_SYMBOL_GPL(devlink_resource_size_get);
/**
* devlink_dpipe_table_resource_set - set the resource id
*
* @devlink: devlink
* @table_name: table name
* @resource_id: resource id
* @resource_units: number of resource's units consumed per table's entry
*/
int devlink_dpipe_table_resource_set(struct devlink *devlink,
const char *table_name, u64 resource_id,
u64 resource_units)
{
struct devlink_dpipe_table *table;
int err = 0;
mutex_lock(&devlink->lock);
table = devlink_dpipe_table_find(&devlink->dpipe_table_list,
table_name, devlink);
if (!table) {
err = -EINVAL;
goto out;
}
table->resource_id = resource_id;
table->resource_units = resource_units;
table->resource_valid = true;
out:
mutex_unlock(&devlink->lock);
return err;
}
EXPORT_SYMBOL_GPL(devlink_dpipe_table_resource_set);
/**
* devlink_resource_occ_get_register - register occupancy getter
*
* @devlink: devlink
* @resource_id: resource id
* @occ_get: occupancy getter callback
* @occ_get_priv: occupancy getter callback priv
*/
void devlink_resource_occ_get_register(struct devlink *devlink,
u64 resource_id,
devlink_resource_occ_get_t *occ_get,
void *occ_get_priv)
{
struct devlink_resource *resource;
mutex_lock(&devlink->lock);
resource = devlink_resource_find(devlink, NULL, resource_id);
if (WARN_ON(!resource))
goto out;
WARN_ON(resource->occ_get);
resource->occ_get = occ_get;
resource->occ_get_priv = occ_get_priv;
out:
mutex_unlock(&devlink->lock);
}
EXPORT_SYMBOL_GPL(devlink_resource_occ_get_register);
/**
* devlink_resource_occ_get_unregister - unregister occupancy getter
*
* @devlink: devlink
* @resource_id: resource id
*/
void devlink_resource_occ_get_unregister(struct devlink *devlink,
u64 resource_id)
{
struct devlink_resource *resource;
mutex_lock(&devlink->lock);
resource = devlink_resource_find(devlink, NULL, resource_id);
if (WARN_ON(!resource))
goto out;
WARN_ON(!resource->occ_get);
resource->occ_get = NULL;
resource->occ_get_priv = NULL;
out:
mutex_unlock(&devlink->lock);
}
EXPORT_SYMBOL_GPL(devlink_resource_occ_get_unregister);
static int devlink_param_verify(const struct devlink_param *param)
{
if (!param || !param->name || !param->supported_cmodes)
return -EINVAL;
if (param->generic)
return devlink_param_generic_verify(param);
else
return devlink_param_driver_verify(param);
}
static int __devlink_params_register(struct devlink *devlink,
unsigned int port_index,
struct list_head *param_list,
const struct devlink_param *params,
size_t params_count,
enum devlink_command reg_cmd,
enum devlink_command unreg_cmd)
{
const struct devlink_param *param = params;
int i;
int err;
mutex_lock(&devlink->lock);
for (i = 0; i < params_count; i++, param++) {
err = devlink_param_verify(param);
if (err)
goto rollback;
err = devlink_param_register_one(devlink, port_index,
param_list, param, reg_cmd);
if (err)
goto rollback;
}
mutex_unlock(&devlink->lock);
return 0;
rollback:
if (!i)
goto unlock;
for (param--; i > 0; i--, param--)
devlink_param_unregister_one(devlink, port_index, param_list,
param, unreg_cmd);
unlock:
mutex_unlock(&devlink->lock);
return err;
}
static void __devlink_params_unregister(struct devlink *devlink,
unsigned int port_index,
struct list_head *param_list,
const struct devlink_param *params,
size_t params_count,
enum devlink_command cmd)
{
const struct devlink_param *param = params;
int i;
mutex_lock(&devlink->lock);
for (i = 0; i < params_count; i++, param++)
devlink_param_unregister_one(devlink, 0, param_list, param,
cmd);
mutex_unlock(&devlink->lock);
}
/**
* devlink_params_register - register configuration parameters
*
* @devlink: devlink
* @params: configuration parameters array
* @params_count: number of parameters provided
*
* Register the configuration parameters supported by the driver.
*/
int devlink_params_register(struct devlink *devlink,
const struct devlink_param *params,
size_t params_count)
{
return __devlink_params_register(devlink, 0, &devlink->param_list,
params, params_count,
DEVLINK_CMD_PARAM_NEW,
DEVLINK_CMD_PARAM_DEL);
}
EXPORT_SYMBOL_GPL(devlink_params_register);
/**
* devlink_params_unregister - unregister configuration parameters
* @devlink: devlink
* @params: configuration parameters to unregister
* @params_count: number of parameters provided
*/
void devlink_params_unregister(struct devlink *devlink,
const struct devlink_param *params,
size_t params_count)
{
return __devlink_params_unregister(devlink, 0, &devlink->param_list,
params, params_count,
DEVLINK_CMD_PARAM_DEL);
}
EXPORT_SYMBOL_GPL(devlink_params_unregister);
/**
* devlink_params_publish - publish configuration parameters
*
* @devlink: devlink
*
* Publish previously registered configuration parameters.
*/
void devlink_params_publish(struct devlink *devlink)
{
struct devlink_param_item *param_item;
list_for_each_entry(param_item, &devlink->param_list, list) {
if (param_item->published)
continue;
param_item->published = true;
devlink_param_notify(devlink, 0, param_item,
DEVLINK_CMD_PARAM_NEW);
}
}
EXPORT_SYMBOL_GPL(devlink_params_publish);
/**
* devlink_params_unpublish - unpublish configuration parameters
*
* @devlink: devlink
*
* Unpublish previously registered configuration parameters.
*/
void devlink_params_unpublish(struct devlink *devlink)
{
struct devlink_param_item *param_item;
list_for_each_entry(param_item, &devlink->param_list, list) {
if (!param_item->published)
continue;
param_item->published = false;
devlink_param_notify(devlink, 0, param_item,
DEVLINK_CMD_PARAM_DEL);
}
}
EXPORT_SYMBOL_GPL(devlink_params_unpublish);
/**
* devlink_port_params_register - register port configuration parameters
*
* @devlink_port: devlink port
* @params: configuration parameters array
* @params_count: number of parameters provided
*
* Register the configuration parameters supported by the port.
*/
int devlink_port_params_register(struct devlink_port *devlink_port,
const struct devlink_param *params,
size_t params_count)
{
return __devlink_params_register(devlink_port->devlink,
devlink_port->index,
&devlink_port->param_list, params,
params_count,
DEVLINK_CMD_PORT_PARAM_NEW,
DEVLINK_CMD_PORT_PARAM_DEL);
}
EXPORT_SYMBOL_GPL(devlink_port_params_register);
/**
* devlink_port_params_unregister - unregister port configuration
* parameters
*
* @devlink_port: devlink port
* @params: configuration parameters array
* @params_count: number of parameters provided
*/
void devlink_port_params_unregister(struct devlink_port *devlink_port,
const struct devlink_param *params,
size_t params_count)
{
return __devlink_params_unregister(devlink_port->devlink,
devlink_port->index,
&devlink_port->param_list,
params, params_count,
DEVLINK_CMD_PORT_PARAM_DEL);
}
EXPORT_SYMBOL_GPL(devlink_port_params_unregister);
static int
__devlink_param_driverinit_value_get(struct list_head *param_list, u32 param_id,
union devlink_param_value *init_val)
{
struct devlink_param_item *param_item;
param_item = devlink_param_find_by_id(param_list, param_id);
if (!param_item)
return -EINVAL;
if (!param_item->driverinit_value_valid ||
!devlink_param_cmode_is_supported(param_item->param,
DEVLINK_PARAM_CMODE_DRIVERINIT))
return -EOPNOTSUPP;
if (param_item->param->type == DEVLINK_PARAM_TYPE_STRING)
strcpy(init_val->vstr, param_item->driverinit_value.vstr);
else
*init_val = param_item->driverinit_value;
return 0;
}
static int
__devlink_param_driverinit_value_set(struct devlink *devlink,
unsigned int port_index,
struct list_head *param_list, u32 param_id,
union devlink_param_value init_val,
enum devlink_command cmd)
{
struct devlink_param_item *param_item;
param_item = devlink_param_find_by_id(param_list, param_id);
if (!param_item)
return -EINVAL;
if (!devlink_param_cmode_is_supported(param_item->param,
DEVLINK_PARAM_CMODE_DRIVERINIT))
return -EOPNOTSUPP;
if (param_item->param->type == DEVLINK_PARAM_TYPE_STRING)
strcpy(param_item->driverinit_value.vstr, init_val.vstr);
else
param_item->driverinit_value = init_val;
param_item->driverinit_value_valid = true;
devlink_param_notify(devlink, port_index, param_item, cmd);
return 0;
}
/**
* devlink_param_driverinit_value_get - get configuration parameter
* value for driver initializing
*
* @devlink: devlink
* @param_id: parameter ID
* @init_val: value of parameter in driverinit configuration mode
*
* This function should be used by the driver to get driverinit
* configuration for initialization after reload command.
*/
int devlink_param_driverinit_value_get(struct devlink *devlink, u32 param_id,
union devlink_param_value *init_val)
{
if (!devlink_reload_supported(devlink))
return -EOPNOTSUPP;
return __devlink_param_driverinit_value_get(&devlink->param_list,
param_id, init_val);
}
EXPORT_SYMBOL_GPL(devlink_param_driverinit_value_get);
/**
* devlink_param_driverinit_value_set - set value of configuration
* parameter for driverinit
* configuration mode
*
* @devlink: devlink
* @param_id: parameter ID
* @init_val: value of parameter to set for driverinit configuration mode
*
* This function should be used by the driver to set driverinit
* configuration mode default value.
*/
int devlink_param_driverinit_value_set(struct devlink *devlink, u32 param_id,
union devlink_param_value init_val)
{
return __devlink_param_driverinit_value_set(devlink, 0,
&devlink->param_list,
param_id, init_val,
DEVLINK_CMD_PARAM_NEW);
}
EXPORT_SYMBOL_GPL(devlink_param_driverinit_value_set);
/**
* devlink_port_param_driverinit_value_get - get configuration parameter
* value for driver initializing
*
* @devlink_port: devlink_port
* @param_id: parameter ID
* @init_val: value of parameter in driverinit configuration mode
*
* This function should be used by the driver to get driverinit
* configuration for initialization after reload command.
*/
int devlink_port_param_driverinit_value_get(struct devlink_port *devlink_port,
u32 param_id,
union devlink_param_value *init_val)
{
struct devlink *devlink = devlink_port->devlink;
if (!devlink_reload_supported(devlink))
return -EOPNOTSUPP;
return __devlink_param_driverinit_value_get(&devlink_port->param_list,
param_id, init_val);
}
EXPORT_SYMBOL_GPL(devlink_port_param_driverinit_value_get);
/**
* devlink_port_param_driverinit_value_set - set value of configuration
* parameter for driverinit
* configuration mode
*
* @devlink_port: devlink_port
* @param_id: parameter ID
* @init_val: value of parameter to set for driverinit configuration mode
*
* This function should be used by the driver to set driverinit
* configuration mode default value.
*/
int devlink_port_param_driverinit_value_set(struct devlink_port *devlink_port,
u32 param_id,
union devlink_param_value init_val)
{
return __devlink_param_driverinit_value_set(devlink_port->devlink,
devlink_port->index,
&devlink_port->param_list,
param_id, init_val,
DEVLINK_CMD_PORT_PARAM_NEW);
}
EXPORT_SYMBOL_GPL(devlink_port_param_driverinit_value_set);
/**
* devlink_param_value_changed - notify devlink on a parameter's value
* change. Should be called by the driver
* right after the change.
*
* @devlink: devlink
* @param_id: parameter ID
*
* This function should be used by the driver to notify devlink on value
* change, excluding driverinit configuration mode.
* For driverinit configuration mode driver should use the function
*/
void devlink_param_value_changed(struct devlink *devlink, u32 param_id)
{
struct devlink_param_item *param_item;
param_item = devlink_param_find_by_id(&devlink->param_list, param_id);
WARN_ON(!param_item);
devlink_param_notify(devlink, 0, param_item, DEVLINK_CMD_PARAM_NEW);
}
EXPORT_SYMBOL_GPL(devlink_param_value_changed);
/**
* devlink_port_param_value_changed - notify devlink on a parameter's value
* change. Should be called by the driver
* right after the change.
*
* @devlink_port: devlink_port
* @param_id: parameter ID
*
* This function should be used by the driver to notify devlink on value
* change, excluding driverinit configuration mode.
* For driverinit configuration mode driver should use the function
* devlink_port_param_driverinit_value_set() instead.
*/
void devlink_port_param_value_changed(struct devlink_port *devlink_port,
u32 param_id)
{
struct devlink_param_item *param_item;
param_item = devlink_param_find_by_id(&devlink_port->param_list,
param_id);
WARN_ON(!param_item);
devlink_param_notify(devlink_port->devlink, devlink_port->index,
param_item, DEVLINK_CMD_PORT_PARAM_NEW);
}
EXPORT_SYMBOL_GPL(devlink_port_param_value_changed);
/**
* devlink_param_value_str_fill - Safely fill-up the string preventing
* from overflow of the preallocated buffer
*
* @dst_val: destination devlink_param_value
* @src: source buffer
*/
void devlink_param_value_str_fill(union devlink_param_value *dst_val,
const char *src)
{
size_t len;
len = strlcpy(dst_val->vstr, src, __DEVLINK_PARAM_MAX_STRING_VALUE);
WARN_ON(len >= __DEVLINK_PARAM_MAX_STRING_VALUE);
}
EXPORT_SYMBOL_GPL(devlink_param_value_str_fill);
/**
* devlink_region_create - create a new address region
*
* @devlink: devlink
* @ops: region operations and name
* @region_max_snapshots: Maximum supported number of snapshots for region
* @region_size: size of region
*/
struct devlink_region *
devlink_region_create(struct devlink *devlink,
const struct devlink_region_ops *ops,
u32 region_max_snapshots, u64 region_size)
{
struct devlink_region *region;
int err = 0;
if (WARN_ON(!ops) || WARN_ON(!ops->destructor))
return ERR_PTR(-EINVAL);
mutex_lock(&devlink->lock);
if (devlink_region_get_by_name(devlink, ops->name)) {
err = -EEXIST;
goto unlock;
}
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region) {
err = -ENOMEM;
goto unlock;
}
region->devlink = devlink;
region->max_snapshots = region_max_snapshots;
region->ops = ops;
region->size = region_size;
INIT_LIST_HEAD(&region->snapshot_list);
list_add_tail(&region->list, &devlink->region_list);
devlink_nl_region_notify(region, NULL, DEVLINK_CMD_REGION_NEW);
mutex_unlock(&devlink->lock);
return region;
unlock:
mutex_unlock(&devlink->lock);
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(devlink_region_create);
/**
* devlink_region_destroy - destroy address region
*
* @region: devlink region to destroy
*/
void devlink_region_destroy(struct devlink_region *region)
{
struct devlink *devlink = region->devlink;
struct devlink_snapshot *snapshot, *ts;
mutex_lock(&devlink->lock);
/* Free all snapshots of region */
list_for_each_entry_safe(snapshot, ts, &region->snapshot_list, list)
devlink_region_snapshot_del(region, snapshot);
list_del(&region->list);
devlink_nl_region_notify(region, NULL, DEVLINK_CMD_REGION_DEL);
mutex_unlock(&devlink->lock);
kfree(region);
}
EXPORT_SYMBOL_GPL(devlink_region_destroy);
/**
* devlink_region_snapshot_id_get - get snapshot ID
*
* This callback should be called when adding a new snapshot,
* Driver should use the same id for multiple snapshots taken
* on multiple regions at the same time/by the same trigger.
*
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
* The caller of this function must use devlink_region_snapshot_id_put
* when finished creating regions using this id.
*
* Returns zero on success, or a negative error code on failure.
*
* @devlink: devlink
* @id: storage to return id
*/
int devlink_region_snapshot_id_get(struct devlink *devlink, u32 *id)
{
int err;
mutex_lock(&devlink->lock);
err = __devlink_region_snapshot_id_get(devlink, id);
mutex_unlock(&devlink->lock);
return err;
}
EXPORT_SYMBOL_GPL(devlink_region_snapshot_id_get);
devlink: track snapshot id usage count using an xarray Each snapshot created for a devlink region must have an id. These ids are supposed to be unique per "event" that caused the snapshot to be created. Drivers call devlink_region_snapshot_id_get to obtain a new id to use for a new event trigger. The id values are tracked per devlink, so that the same id number can be used if a triggering event creates multiple snapshots on different regions. There is no mechanism for snapshot ids to ever be reused. Introduce an xarray to store the count of how many snapshots are using a given id, replacing the snapshot_id field previously used for picking the next id. The devlink_region_snapshot_id_get() function will use xa_alloc to insert an initial value of 1 value at an available slot between 0 and U32_MAX. The new __devlink_snapshot_id_increment() and __devlink_snapshot_id_decrement() functions will be used to track how many snapshots currently use an id. Drivers must now call devlink_snapshot_id_put() in order to release their reference of the snapshot id after adding region snapshots. By tracking the total number of snapshots using a given id, it is possible for the decrement() function to erase the id from the xarray when it is not in use. With this method, a snapshot id can become reused again once all snapshots that referred to it have been deleted via DEVLINK_CMD_REGION_DEL, and the driver has finished adding snapshots. This work also paves the way to introduce a mechanism for userspace to request a snapshot. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 02:37:15 +08:00
/**
* devlink_region_snapshot_id_put - put snapshot ID reference
*
* This should be called by a driver after finishing creating snapshots
* with an id. Doing so ensures that the ID can later be released in the
* event that all snapshots using it have been destroyed.
*
* @devlink: devlink
* @id: id to release reference on
*/
void devlink_region_snapshot_id_put(struct devlink *devlink, u32 id)
{
mutex_lock(&devlink->lock);
__devlink_snapshot_id_decrement(devlink, id);
mutex_unlock(&devlink->lock);
}
EXPORT_SYMBOL_GPL(devlink_region_snapshot_id_put);
/**
* devlink_region_snapshot_create - create a new snapshot
* This will add a new snapshot of a region. The snapshot
* will be stored on the region struct and can be accessed
* from devlink. This is useful for future analyses of snapshots.
* Multiple snapshots can be created on a region.
* The @snapshot_id should be obtained using the getter function.
*
* @region: devlink region of the snapshot
* @data: snapshot data
* @snapshot_id: snapshot id to be created
*/
int devlink_region_snapshot_create(struct devlink_region *region,
u8 *data, u32 snapshot_id)
{
struct devlink *devlink = region->devlink;
int err;
mutex_lock(&devlink->lock);
err = __devlink_region_snapshot_create(region, data, snapshot_id);
mutex_unlock(&devlink->lock);
return err;
}
EXPORT_SYMBOL_GPL(devlink_region_snapshot_create);
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
#define DEVLINK_TRAP(_id, _type) \
{ \
.type = DEVLINK_TRAP_TYPE_##_type, \
.id = DEVLINK_TRAP_GENERIC_ID_##_id, \
.name = DEVLINK_TRAP_GENERIC_NAME_##_id, \
}
static const struct devlink_trap devlink_trap_generic[] = {
DEVLINK_TRAP(SMAC_MC, DROP),
DEVLINK_TRAP(VLAN_TAG_MISMATCH, DROP),
DEVLINK_TRAP(INGRESS_VLAN_FILTER, DROP),
DEVLINK_TRAP(INGRESS_STP_FILTER, DROP),
DEVLINK_TRAP(EMPTY_TX_LIST, DROP),
DEVLINK_TRAP(PORT_LOOPBACK_FILTER, DROP),
DEVLINK_TRAP(BLACKHOLE_ROUTE, DROP),
DEVLINK_TRAP(TTL_ERROR, EXCEPTION),
DEVLINK_TRAP(TAIL_DROP, DROP),
DEVLINK_TRAP(NON_IP_PACKET, DROP),
DEVLINK_TRAP(UC_DIP_MC_DMAC, DROP),
DEVLINK_TRAP(DIP_LB, DROP),
DEVLINK_TRAP(SIP_MC, DROP),
DEVLINK_TRAP(SIP_LB, DROP),
DEVLINK_TRAP(CORRUPTED_IP_HDR, DROP),
DEVLINK_TRAP(IPV4_SIP_BC, DROP),
DEVLINK_TRAP(IPV6_MC_DIP_RESERVED_SCOPE, DROP),
DEVLINK_TRAP(IPV6_MC_DIP_INTERFACE_LOCAL_SCOPE, DROP),
DEVLINK_TRAP(MTU_ERROR, EXCEPTION),
DEVLINK_TRAP(UNRESOLVED_NEIGH, EXCEPTION),
DEVLINK_TRAP(RPF, EXCEPTION),
DEVLINK_TRAP(REJECT_ROUTE, EXCEPTION),
DEVLINK_TRAP(IPV4_LPM_UNICAST_MISS, EXCEPTION),
DEVLINK_TRAP(IPV6_LPM_UNICAST_MISS, EXCEPTION),
DEVLINK_TRAP(NON_ROUTABLE, DROP),
DEVLINK_TRAP(DECAP_ERROR, EXCEPTION),
DEVLINK_TRAP(OVERLAY_SMAC_MC, DROP),
DEVLINK_TRAP(INGRESS_FLOW_ACTION_DROP, DROP),
DEVLINK_TRAP(EGRESS_FLOW_ACTION_DROP, DROP),
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
};
#define DEVLINK_TRAP_GROUP(_id) \
{ \
.id = DEVLINK_TRAP_GROUP_GENERIC_ID_##_id, \
.name = DEVLINK_TRAP_GROUP_GENERIC_NAME_##_id, \
}
static const struct devlink_trap_group devlink_trap_group_generic[] = {
DEVLINK_TRAP_GROUP(L2_DROPS),
DEVLINK_TRAP_GROUP(L3_DROPS),
DEVLINK_TRAP_GROUP(L3_EXCEPTIONS),
DEVLINK_TRAP_GROUP(BUFFER_DROPS),
DEVLINK_TRAP_GROUP(TUNNEL_DROPS),
DEVLINK_TRAP_GROUP(ACL_DROPS),
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
};
static int devlink_trap_generic_verify(const struct devlink_trap *trap)
{
if (trap->id > DEVLINK_TRAP_GENERIC_ID_MAX)
return -EINVAL;
if (strcmp(trap->name, devlink_trap_generic[trap->id].name))
return -EINVAL;
if (trap->type != devlink_trap_generic[trap->id].type)
return -EINVAL;
return 0;
}
static int devlink_trap_driver_verify(const struct devlink_trap *trap)
{
int i;
if (trap->id <= DEVLINK_TRAP_GENERIC_ID_MAX)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(devlink_trap_generic); i++) {
if (!strcmp(trap->name, devlink_trap_generic[i].name))
return -EEXIST;
}
return 0;
}
static int devlink_trap_verify(const struct devlink_trap *trap)
{
if (!trap || !trap->name)
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
return -EINVAL;
if (trap->generic)
return devlink_trap_generic_verify(trap);
else
return devlink_trap_driver_verify(trap);
}
static int
devlink_trap_group_generic_verify(const struct devlink_trap_group *group)
{
if (group->id > DEVLINK_TRAP_GROUP_GENERIC_ID_MAX)
return -EINVAL;
if (strcmp(group->name, devlink_trap_group_generic[group->id].name))
return -EINVAL;
return 0;
}
static int
devlink_trap_group_driver_verify(const struct devlink_trap_group *group)
{
int i;
if (group->id <= DEVLINK_TRAP_GROUP_GENERIC_ID_MAX)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(devlink_trap_group_generic); i++) {
if (!strcmp(group->name, devlink_trap_group_generic[i].name))
return -EEXIST;
}
return 0;
}
static int devlink_trap_group_verify(const struct devlink_trap_group *group)
{
if (group->generic)
return devlink_trap_group_generic_verify(group);
else
return devlink_trap_group_driver_verify(group);
}
static void
devlink_trap_group_notify(struct devlink *devlink,
const struct devlink_trap_group_item *group_item,
enum devlink_command cmd)
{
struct sk_buff *msg;
int err;
WARN_ON_ONCE(cmd != DEVLINK_CMD_TRAP_GROUP_NEW &&
cmd != DEVLINK_CMD_TRAP_GROUP_DEL);
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
err = devlink_nl_trap_group_fill(msg, devlink, group_item, cmd, 0, 0,
0);
if (err) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(&devlink_nl_family, devlink_net(devlink),
msg, 0, DEVLINK_MCGRP_CONFIG, GFP_KERNEL);
}
static int
devlink_trap_item_group_link(struct devlink *devlink,
struct devlink_trap_item *trap_item)
{
u16 group_id = trap_item->trap->init_group_id;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
struct devlink_trap_group_item *group_item;
group_item = devlink_trap_group_item_lookup_by_id(devlink, group_id);
if (WARN_ON_ONCE(!group_item))
return -EINVAL;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
trap_item->group_item = group_item;
return 0;
}
static void devlink_trap_notify(struct devlink *devlink,
const struct devlink_trap_item *trap_item,
enum devlink_command cmd)
{
struct sk_buff *msg;
int err;
WARN_ON_ONCE(cmd != DEVLINK_CMD_TRAP_NEW &&
cmd != DEVLINK_CMD_TRAP_DEL);
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
err = devlink_nl_trap_fill(msg, devlink, trap_item, cmd, 0, 0, 0);
if (err) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(&devlink_nl_family, devlink_net(devlink),
msg, 0, DEVLINK_MCGRP_CONFIG, GFP_KERNEL);
}
static int
devlink_trap_register(struct devlink *devlink,
const struct devlink_trap *trap, void *priv)
{
struct devlink_trap_item *trap_item;
int err;
if (devlink_trap_item_lookup(devlink, trap->name))
return -EEXIST;
trap_item = kzalloc(sizeof(*trap_item), GFP_KERNEL);
if (!trap_item)
return -ENOMEM;
trap_item->stats = netdev_alloc_pcpu_stats(struct devlink_stats);
if (!trap_item->stats) {
err = -ENOMEM;
goto err_stats_alloc;
}
trap_item->trap = trap;
trap_item->action = trap->init_action;
trap_item->priv = priv;
err = devlink_trap_item_group_link(devlink, trap_item);
if (err)
goto err_group_link;
err = devlink->ops->trap_init(devlink, trap, trap_item);
if (err)
goto err_trap_init;
list_add_tail(&trap_item->list, &devlink->trap_list);
devlink_trap_notify(devlink, trap_item, DEVLINK_CMD_TRAP_NEW);
return 0;
err_trap_init:
err_group_link:
free_percpu(trap_item->stats);
err_stats_alloc:
kfree(trap_item);
return err;
}
static void devlink_trap_unregister(struct devlink *devlink,
const struct devlink_trap *trap)
{
struct devlink_trap_item *trap_item;
trap_item = devlink_trap_item_lookup(devlink, trap->name);
if (WARN_ON_ONCE(!trap_item))
return;
devlink_trap_notify(devlink, trap_item, DEVLINK_CMD_TRAP_DEL);
list_del(&trap_item->list);
if (devlink->ops->trap_fini)
devlink->ops->trap_fini(devlink, trap, trap_item);
free_percpu(trap_item->stats);
kfree(trap_item);
}
static void devlink_trap_disable(struct devlink *devlink,
const struct devlink_trap *trap)
{
struct devlink_trap_item *trap_item;
trap_item = devlink_trap_item_lookup(devlink, trap->name);
if (WARN_ON_ONCE(!trap_item))
return;
devlink->ops->trap_action_set(devlink, trap, DEVLINK_TRAP_ACTION_DROP);
trap_item->action = DEVLINK_TRAP_ACTION_DROP;
}
/**
* devlink_traps_register - Register packet traps with devlink.
* @devlink: devlink.
* @traps: Packet traps.
* @traps_count: Count of provided packet traps.
* @priv: Driver private information.
*
* Return: Non-zero value on failure.
*/
int devlink_traps_register(struct devlink *devlink,
const struct devlink_trap *traps,
size_t traps_count, void *priv)
{
int i, err;
if (!devlink->ops->trap_init || !devlink->ops->trap_action_set)
return -EINVAL;
mutex_lock(&devlink->lock);
for (i = 0; i < traps_count; i++) {
const struct devlink_trap *trap = &traps[i];
err = devlink_trap_verify(trap);
if (err)
goto err_trap_verify;
err = devlink_trap_register(devlink, trap, priv);
if (err)
goto err_trap_register;
}
mutex_unlock(&devlink->lock);
return 0;
err_trap_register:
err_trap_verify:
for (i--; i >= 0; i--)
devlink_trap_unregister(devlink, &traps[i]);
mutex_unlock(&devlink->lock);
return err;
}
EXPORT_SYMBOL_GPL(devlink_traps_register);
/**
* devlink_traps_unregister - Unregister packet traps from devlink.
* @devlink: devlink.
* @traps: Packet traps.
* @traps_count: Count of provided packet traps.
*/
void devlink_traps_unregister(struct devlink *devlink,
const struct devlink_trap *traps,
size_t traps_count)
{
int i;
mutex_lock(&devlink->lock);
/* Make sure we do not have any packets in-flight while unregistering
* traps by disabling all of them and waiting for a grace period.
*/
for (i = traps_count - 1; i >= 0; i--)
devlink_trap_disable(devlink, &traps[i]);
synchronize_rcu();
for (i = traps_count - 1; i >= 0; i--)
devlink_trap_unregister(devlink, &traps[i]);
mutex_unlock(&devlink->lock);
}
EXPORT_SYMBOL_GPL(devlink_traps_unregister);
static void
devlink_trap_stats_update(struct devlink_stats __percpu *trap_stats,
size_t skb_len)
{
struct devlink_stats *stats;
stats = this_cpu_ptr(trap_stats);
u64_stats_update_begin(&stats->syncp);
stats->rx_bytes += skb_len;
stats->rx_packets++;
u64_stats_update_end(&stats->syncp);
}
static void
devlink_trap_report_metadata_fill(struct net_dm_hw_metadata *hw_metadata,
const struct devlink_trap_item *trap_item,
struct devlink_port *in_devlink_port,
const struct flow_action_cookie *fa_cookie)
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
{
struct devlink_trap_group_item *group_item = trap_item->group_item;
hw_metadata->trap_group_name = group_item->group->name;
hw_metadata->trap_name = trap_item->trap->name;
hw_metadata->fa_cookie = fa_cookie;
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
spin_lock(&in_devlink_port->type_lock);
if (in_devlink_port->type == DEVLINK_PORT_TYPE_ETH)
hw_metadata->input_dev = in_devlink_port->type_dev;
spin_unlock(&in_devlink_port->type_lock);
}
/**
* devlink_trap_report - Report trapped packet to drop monitor.
* @devlink: devlink.
* @skb: Trapped packet.
* @trap_ctx: Trap context.
* @in_devlink_port: Input devlink port.
* @fa_cookie: Flow action cookie. Could be NULL.
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
*/
void devlink_trap_report(struct devlink *devlink, struct sk_buff *skb,
void *trap_ctx, struct devlink_port *in_devlink_port,
const struct flow_action_cookie *fa_cookie)
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
{
struct devlink_trap_item *trap_item = trap_ctx;
struct net_dm_hw_metadata hw_metadata = {};
devlink_trap_stats_update(trap_item->stats, skb->len);
devlink_trap_stats_update(trap_item->group_item->stats, skb->len);
devlink_trap_report_metadata_fill(&hw_metadata, trap_item,
in_devlink_port, fa_cookie);
devlink: Add packet trap infrastructure Add the basic packet trap infrastructure that allows device drivers to register their supported packet traps and trap groups with devlink. Each driver is expected to provide basic information about each supported trap, such as name and ID, but also the supported metadata types that will accompany each packet trapped via the trap. The currently supported metadata type is just the input port, but more will be added in the future. For example, output port and traffic class. Trap groups allow users to set the action of all member traps. In addition, users can retrieve per-group statistics in case per-trap statistics are too narrow. In the future, the trap group object can be extended with more attributes, such as policer settings which will limit the amount of traffic generated by member traps towards the CPU. Beside registering their packet traps with devlink, drivers are also expected to report trapped packets to devlink along with relevant metadata. devlink will maintain packets and bytes statistics for each packet trap and will potentially report the trapped packet with its metadata to user space via drop monitor netlink channel. The interface towards the drivers is simple and allows devlink to set the action of the trap. Currently, only two actions are supported: 'trap' and 'drop'. When set to 'trap', the device is expected to provide the sole copy of the packet to the driver which will pass it to devlink. When set to 'drop', the device is expected to drop the packet and not send a copy to the driver. In the future, more actions can be added, such as 'mirror'. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-17 21:28:17 +08:00
net_dm_hw_report(skb, &hw_metadata);
}
EXPORT_SYMBOL_GPL(devlink_trap_report);
/**
* devlink_trap_ctx_priv - Trap context to driver private information.
* @trap_ctx: Trap context.
*
* Return: Driver private information passed during registration.
*/
void *devlink_trap_ctx_priv(void *trap_ctx)
{
struct devlink_trap_item *trap_item = trap_ctx;
return trap_item->priv;
}
EXPORT_SYMBOL_GPL(devlink_trap_ctx_priv);
static int
devlink_trap_group_item_policer_link(struct devlink *devlink,
struct devlink_trap_group_item *group_item)
{
u32 policer_id = group_item->group->init_policer_id;
struct devlink_trap_policer_item *policer_item;
if (policer_id == 0)
return 0;
policer_item = devlink_trap_policer_item_lookup(devlink, policer_id);
if (WARN_ON_ONCE(!policer_item))
return -EINVAL;
group_item->policer_item = policer_item;
return 0;
}
static int
devlink_trap_group_register(struct devlink *devlink,
const struct devlink_trap_group *group)
{
struct devlink_trap_group_item *group_item;
int err;
if (devlink_trap_group_item_lookup(devlink, group->name))
return -EEXIST;
group_item = kzalloc(sizeof(*group_item), GFP_KERNEL);
if (!group_item)
return -ENOMEM;
group_item->stats = netdev_alloc_pcpu_stats(struct devlink_stats);
if (!group_item->stats) {
err = -ENOMEM;
goto err_stats_alloc;
}
group_item->group = group;
err = devlink_trap_group_item_policer_link(devlink, group_item);
if (err)
goto err_policer_link;
if (devlink->ops->trap_group_init) {
err = devlink->ops->trap_group_init(devlink, group);
if (err)
goto err_group_init;
}
list_add_tail(&group_item->list, &devlink->trap_group_list);
devlink_trap_group_notify(devlink, group_item,
DEVLINK_CMD_TRAP_GROUP_NEW);
return 0;
err_group_init:
err_policer_link:
free_percpu(group_item->stats);
err_stats_alloc:
kfree(group_item);
return err;
}
static void
devlink_trap_group_unregister(struct devlink *devlink,
const struct devlink_trap_group *group)
{
struct devlink_trap_group_item *group_item;
group_item = devlink_trap_group_item_lookup(devlink, group->name);
if (WARN_ON_ONCE(!group_item))
return;
devlink_trap_group_notify(devlink, group_item,
DEVLINK_CMD_TRAP_GROUP_DEL);
list_del(&group_item->list);
free_percpu(group_item->stats);
kfree(group_item);
}
/**
* devlink_trap_groups_register - Register packet trap groups with devlink.
* @devlink: devlink.
* @groups: Packet trap groups.
* @groups_count: Count of provided packet trap groups.
*
* Return: Non-zero value on failure.
*/
int devlink_trap_groups_register(struct devlink *devlink,
const struct devlink_trap_group *groups,
size_t groups_count)
{
int i, err;
mutex_lock(&devlink->lock);
for (i = 0; i < groups_count; i++) {
const struct devlink_trap_group *group = &groups[i];
err = devlink_trap_group_verify(group);
if (err)
goto err_trap_group_verify;
err = devlink_trap_group_register(devlink, group);
if (err)
goto err_trap_group_register;
}
mutex_unlock(&devlink->lock);
return 0;
err_trap_group_register:
err_trap_group_verify:
for (i--; i >= 0; i--)
devlink_trap_group_unregister(devlink, &groups[i]);
mutex_unlock(&devlink->lock);
return err;
}
EXPORT_SYMBOL_GPL(devlink_trap_groups_register);
/**
* devlink_trap_groups_unregister - Unregister packet trap groups from devlink.
* @devlink: devlink.
* @groups: Packet trap groups.
* @groups_count: Count of provided packet trap groups.
*/
void devlink_trap_groups_unregister(struct devlink *devlink,
const struct devlink_trap_group *groups,
size_t groups_count)
{
int i;
mutex_lock(&devlink->lock);
for (i = groups_count - 1; i >= 0; i--)
devlink_trap_group_unregister(devlink, &groups[i]);
mutex_unlock(&devlink->lock);
}
EXPORT_SYMBOL_GPL(devlink_trap_groups_unregister);
devlink: Add packet trap policers support Devices capable of offloading the kernel's datapath and perform functions such as bridging and routing must also be able to send (trap) specific packets to the kernel (i.e., the CPU) for processing. For example, a device acting as a multicast-aware bridge must be able to trap IGMP membership reports to the kernel for processing by the bridge module. In most cases, the underlying device is capable of handling packet rates that are several orders of magnitude higher compared to those that can be handled by the CPU. Therefore, in order to prevent the underlying device from overwhelming the CPU, devices usually include packet trap policers that are able to police the trapped packets to rates that can be handled by the CPU. This patch allows capable device drivers to register their supported packet trap policers with devlink. User space can then tune the parameters of these policer (currently, rate and burst size) and read from the device the number of packets that were dropped by the policer, if supported. Subsequent patches in the series will allow device drivers to create default binding between these policers and packet trap groups and allow user space to change the binding. v2: * Add 'strict_start_type' in devlink policy * Have device drivers provide max/min rate/burst size for each policer. Use them to check validity of user provided parameters Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-31 03:38:18 +08:00
static void
devlink_trap_policer_notify(struct devlink *devlink,
const struct devlink_trap_policer_item *policer_item,
enum devlink_command cmd)
{
struct sk_buff *msg;
int err;
WARN_ON_ONCE(cmd != DEVLINK_CMD_TRAP_POLICER_NEW &&
cmd != DEVLINK_CMD_TRAP_POLICER_DEL);
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
err = devlink_nl_trap_policer_fill(msg, devlink, policer_item, cmd, 0,
0, 0);
if (err) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(&devlink_nl_family, devlink_net(devlink),
msg, 0, DEVLINK_MCGRP_CONFIG, GFP_KERNEL);
}
static int
devlink_trap_policer_register(struct devlink *devlink,
const struct devlink_trap_policer *policer)
{
struct devlink_trap_policer_item *policer_item;
int err;
if (devlink_trap_policer_item_lookup(devlink, policer->id))
return -EEXIST;
policer_item = kzalloc(sizeof(*policer_item), GFP_KERNEL);
if (!policer_item)
return -ENOMEM;
policer_item->policer = policer;
policer_item->rate = policer->init_rate;
policer_item->burst = policer->init_burst;
if (devlink->ops->trap_policer_init) {
err = devlink->ops->trap_policer_init(devlink, policer);
if (err)
goto err_policer_init;
}
list_add_tail(&policer_item->list, &devlink->trap_policer_list);
devlink_trap_policer_notify(devlink, policer_item,
DEVLINK_CMD_TRAP_POLICER_NEW);
return 0;
err_policer_init:
kfree(policer_item);
return err;
}
static void
devlink_trap_policer_unregister(struct devlink *devlink,
const struct devlink_trap_policer *policer)
{
struct devlink_trap_policer_item *policer_item;
policer_item = devlink_trap_policer_item_lookup(devlink, policer->id);
if (WARN_ON_ONCE(!policer_item))
return;
devlink_trap_policer_notify(devlink, policer_item,
DEVLINK_CMD_TRAP_POLICER_DEL);
list_del(&policer_item->list);
if (devlink->ops->trap_policer_fini)
devlink->ops->trap_policer_fini(devlink, policer);
kfree(policer_item);
}
/**
* devlink_trap_policers_register - Register packet trap policers with devlink.
* @devlink: devlink.
* @policers: Packet trap policers.
* @policers_count: Count of provided packet trap policers.
*
* Return: Non-zero value on failure.
*/
int
devlink_trap_policers_register(struct devlink *devlink,
const struct devlink_trap_policer *policers,
size_t policers_count)
{
int i, err;
mutex_lock(&devlink->lock);
for (i = 0; i < policers_count; i++) {
const struct devlink_trap_policer *policer = &policers[i];
if (WARN_ON(policer->id == 0 ||
policer->max_rate < policer->min_rate ||
policer->max_burst < policer->min_burst)) {
err = -EINVAL;
goto err_trap_policer_verify;
}
err = devlink_trap_policer_register(devlink, policer);
if (err)
goto err_trap_policer_register;
}
mutex_unlock(&devlink->lock);
return 0;
err_trap_policer_register:
err_trap_policer_verify:
for (i--; i >= 0; i--)
devlink_trap_policer_unregister(devlink, &policers[i]);
mutex_unlock(&devlink->lock);
return err;
}
EXPORT_SYMBOL_GPL(devlink_trap_policers_register);
/**
* devlink_trap_policers_unregister - Unregister packet trap policers from devlink.
* @devlink: devlink.
* @policers: Packet trap policers.
* @policers_count: Count of provided packet trap policers.
*/
void
devlink_trap_policers_unregister(struct devlink *devlink,
const struct devlink_trap_policer *policers,
size_t policers_count)
{
int i;
mutex_lock(&devlink->lock);
for (i = policers_count - 1; i >= 0; i--)
devlink_trap_policer_unregister(devlink, &policers[i]);
mutex_unlock(&devlink->lock);
}
EXPORT_SYMBOL_GPL(devlink_trap_policers_unregister);
static void __devlink_compat_running_version(struct devlink *devlink,
char *buf, size_t len)
{
const struct nlattr *nlattr;
struct devlink_info_req req;
struct sk_buff *msg;
int rem, err;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
req.msg = msg;
err = devlink->ops->info_get(devlink, &req, NULL);
if (err)
goto free_msg;
nla_for_each_attr(nlattr, (void *)msg->data, msg->len, rem) {
const struct nlattr *kv;
int rem_kv;
if (nla_type(nlattr) != DEVLINK_ATTR_INFO_VERSION_RUNNING)
continue;
nla_for_each_nested(kv, nlattr, rem_kv) {
if (nla_type(kv) != DEVLINK_ATTR_INFO_VERSION_VALUE)
continue;
strlcat(buf, nla_data(kv), len);
strlcat(buf, " ", len);
}
}
free_msg:
nlmsg_free(msg);
}
void devlink_compat_running_version(struct net_device *dev,
char *buf, size_t len)
{
struct devlink *devlink;
dev_hold(dev);
rtnl_unlock();
devlink = netdev_to_devlink(dev);
if (!devlink || !devlink->ops->info_get)
goto out;
mutex_lock(&devlink->lock);
__devlink_compat_running_version(devlink, buf, len);
mutex_unlock(&devlink->lock);
out:
rtnl_lock();
dev_put(dev);
}
int devlink_compat_flash_update(struct net_device *dev, const char *file_name)
{
struct devlink *devlink;
int ret;
dev_hold(dev);
rtnl_unlock();
devlink = netdev_to_devlink(dev);
if (!devlink || !devlink->ops->flash_update) {
ret = -EOPNOTSUPP;
goto out;
}
mutex_lock(&devlink->lock);
ret = devlink->ops->flash_update(devlink, file_name, NULL, NULL);
mutex_unlock(&devlink->lock);
out:
rtnl_lock();
dev_put(dev);
return ret;
}
int devlink_compat_phys_port_name_get(struct net_device *dev,
char *name, size_t len)
{
struct devlink_port *devlink_port;
/* RTNL mutex is held here which ensures that devlink_port
* instance cannot disappear in the middle. No need to take
* any devlink lock as only permanent values are accessed.
*/
ASSERT_RTNL();
devlink_port = netdev_to_devlink_port(dev);
if (!devlink_port)
return -EOPNOTSUPP;
return __devlink_port_phys_port_name_get(devlink_port, name, len);
}
int devlink_compat_switch_id_get(struct net_device *dev,
struct netdev_phys_item_id *ppid)
{
struct devlink_port *devlink_port;
/* Caller must hold RTNL mutex or reference to dev, which ensures that
* devlink_port instance cannot disappear in the middle. No need to take
* any devlink lock as only permanent values are accessed.
*/
devlink_port = netdev_to_devlink_port(dev);
if (!devlink_port || !devlink_port->attrs.switch_port)
return -EOPNOTSUPP;
memcpy(ppid, &devlink_port->attrs.switch_id, sizeof(*ppid));
return 0;
}
static void __net_exit devlink_pernet_pre_exit(struct net *net)
{
struct devlink *devlink;
int err;
/* In case network namespace is getting destroyed, reload
* all devlink instances from this namespace into init_net.
*/
mutex_lock(&devlink_mutex);
list_for_each_entry(devlink, &devlink_list, list) {
if (net_eq(devlink_net(devlink), net)) {
if (WARN_ON(!devlink_reload_supported(devlink)))
continue;
err = devlink_reload(devlink, &init_net, NULL);
if (err && err != -EOPNOTSUPP)
pr_warn("Failed to reload devlink instance into init_net\n");
}
}
mutex_unlock(&devlink_mutex);
}
static struct pernet_operations devlink_pernet_ops __net_initdata = {
.pre_exit = devlink_pernet_pre_exit,
};
static int __init devlink_init(void)
{
int err;
err = genl_register_family(&devlink_nl_family);
if (err)
goto out;
err = register_pernet_subsys(&devlink_pernet_ops);
out:
WARN_ON(err);
return err;
}
subsys_initcall(devlink_init);