2022-08-08 14:46:02 +08:00
|
|
|
// SPDX-License-Identifier: (GPL-2.0)
|
|
|
|
/*
|
|
|
|
* Microchip coreQSPI QSPI controller driver
|
|
|
|
*
|
|
|
|
* Copyright (C) 2018-2022 Microchip Technology Inc. and its subsidiaries
|
|
|
|
*
|
|
|
|
* Author: Naga Sureshkumar Relli <nagasuresh.relli@microchip.com>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/clk.h>
|
|
|
|
#include <linux/err.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/iopoll.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/of_irq.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
|
|
#include <linux/spi/spi-mem.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* QSPI Control register mask defines
|
|
|
|
*/
|
|
|
|
#define CONTROL_ENABLE BIT(0)
|
|
|
|
#define CONTROL_MASTER BIT(1)
|
|
|
|
#define CONTROL_XIP BIT(2)
|
|
|
|
#define CONTROL_XIPADDR BIT(3)
|
|
|
|
#define CONTROL_CLKIDLE BIT(10)
|
|
|
|
#define CONTROL_SAMPLE_MASK GENMASK(12, 11)
|
|
|
|
#define CONTROL_MODE0 BIT(13)
|
|
|
|
#define CONTROL_MODE12_MASK GENMASK(15, 14)
|
|
|
|
#define CONTROL_MODE12_EX_RO BIT(14)
|
|
|
|
#define CONTROL_MODE12_EX_RW BIT(15)
|
|
|
|
#define CONTROL_MODE12_FULL GENMASK(15, 14)
|
|
|
|
#define CONTROL_FLAGSX4 BIT(16)
|
|
|
|
#define CONTROL_CLKRATE_MASK GENMASK(27, 24)
|
|
|
|
#define CONTROL_CLKRATE_SHIFT 24
|
|
|
|
|
|
|
|
/*
|
|
|
|
* QSPI Frames register mask defines
|
|
|
|
*/
|
|
|
|
#define FRAMES_TOTALBYTES_MASK GENMASK(15, 0)
|
|
|
|
#define FRAMES_CMDBYTES_MASK GENMASK(24, 16)
|
|
|
|
#define FRAMES_CMDBYTES_SHIFT 16
|
|
|
|
#define FRAMES_SHIFT 25
|
|
|
|
#define FRAMES_IDLE_MASK GENMASK(29, 26)
|
|
|
|
#define FRAMES_IDLE_SHIFT 26
|
|
|
|
#define FRAMES_FLAGBYTE BIT(30)
|
|
|
|
#define FRAMES_FLAGWORD BIT(31)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* QSPI Interrupt Enable register mask defines
|
|
|
|
*/
|
|
|
|
#define IEN_TXDONE BIT(0)
|
|
|
|
#define IEN_RXDONE BIT(1)
|
|
|
|
#define IEN_RXAVAILABLE BIT(2)
|
|
|
|
#define IEN_TXAVAILABLE BIT(3)
|
|
|
|
#define IEN_RXFIFOEMPTY BIT(4)
|
|
|
|
#define IEN_TXFIFOFULL BIT(5)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* QSPI Status register mask defines
|
|
|
|
*/
|
|
|
|
#define STATUS_TXDONE BIT(0)
|
|
|
|
#define STATUS_RXDONE BIT(1)
|
|
|
|
#define STATUS_RXAVAILABLE BIT(2)
|
|
|
|
#define STATUS_TXAVAILABLE BIT(3)
|
|
|
|
#define STATUS_RXFIFOEMPTY BIT(4)
|
|
|
|
#define STATUS_TXFIFOFULL BIT(5)
|
|
|
|
#define STATUS_READY BIT(7)
|
|
|
|
#define STATUS_FLAGSX4 BIT(8)
|
|
|
|
#define STATUS_MASK GENMASK(8, 0)
|
|
|
|
|
|
|
|
#define BYTESUPPER_MASK GENMASK(31, 16)
|
|
|
|
#define BYTESLOWER_MASK GENMASK(15, 0)
|
|
|
|
|
|
|
|
#define MAX_DIVIDER 16
|
|
|
|
#define MIN_DIVIDER 0
|
|
|
|
#define MAX_DATA_CMD_LEN 256
|
|
|
|
|
|
|
|
/* QSPI ready time out value */
|
|
|
|
#define TIMEOUT_MS 500
|
|
|
|
|
|
|
|
/*
|
|
|
|
* QSPI Register offsets.
|
|
|
|
*/
|
|
|
|
#define REG_CONTROL (0x00)
|
|
|
|
#define REG_FRAMES (0x04)
|
|
|
|
#define REG_IEN (0x0c)
|
|
|
|
#define REG_STATUS (0x10)
|
|
|
|
#define REG_DIRECT_ACCESS (0x14)
|
|
|
|
#define REG_UPPER_ACCESS (0x18)
|
|
|
|
#define REG_RX_DATA (0x40)
|
|
|
|
#define REG_TX_DATA (0x44)
|
|
|
|
#define REG_X4_RX_DATA (0x48)
|
|
|
|
#define REG_X4_TX_DATA (0x4c)
|
|
|
|
#define REG_FRAMESUP (0x50)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct mchp_coreqspi - Defines qspi driver instance
|
|
|
|
* @regs: Virtual address of the QSPI controller registers
|
|
|
|
* @clk: QSPI Operating clock
|
|
|
|
* @data_completion: completion structure
|
|
|
|
* @op_lock: lock access to the device
|
|
|
|
* @txbuf: TX buffer
|
|
|
|
* @rxbuf: RX buffer
|
|
|
|
* @irq: IRQ number
|
|
|
|
* @tx_len: Number of bytes left to transfer
|
|
|
|
* @rx_len: Number of bytes left to receive
|
|
|
|
*/
|
|
|
|
struct mchp_coreqspi {
|
|
|
|
void __iomem *regs;
|
|
|
|
struct clk *clk;
|
|
|
|
struct completion data_completion;
|
|
|
|
struct mutex op_lock; /* lock access to the device */
|
|
|
|
u8 *txbuf;
|
|
|
|
u8 *rxbuf;
|
|
|
|
int irq;
|
|
|
|
int tx_len;
|
|
|
|
int rx_len;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int mchp_coreqspi_set_mode(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
|
|
|
|
{
|
|
|
|
u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The operating mode can be configured based on the command that needs to be send.
|
|
|
|
* bits[15:14]: Sets whether multiple bit SPI operates in normal, extended or full modes.
|
|
|
|
* 00: Normal (single DQ0 TX and single DQ1 RX lines)
|
|
|
|
* 01: Extended RO (command and address bytes on DQ0 only)
|
|
|
|
* 10: Extended RW (command byte on DQ0 only)
|
|
|
|
* 11: Full. (command and address are on all DQ lines)
|
|
|
|
* bit[13]: Sets whether multiple bit SPI uses 2 or 4 bits of data
|
|
|
|
* 0: 2-bits (BSPI)
|
|
|
|
* 1: 4-bits (QSPI)
|
|
|
|
*/
|
|
|
|
if (op->data.buswidth == 4 || op->data.buswidth == 2) {
|
|
|
|
control &= ~CONTROL_MODE12_MASK;
|
|
|
|
if (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))
|
|
|
|
control |= CONTROL_MODE12_EX_RO;
|
|
|
|
else if (op->cmd.buswidth == 1)
|
|
|
|
control |= CONTROL_MODE12_EX_RW;
|
|
|
|
else
|
|
|
|
control |= CONTROL_MODE12_FULL;
|
|
|
|
|
|
|
|
control |= CONTROL_MODE0;
|
|
|
|
} else {
|
|
|
|
control &= ~(CONTROL_MODE12_MASK |
|
|
|
|
CONTROL_MODE0);
|
|
|
|
}
|
|
|
|
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void mchp_coreqspi_read_op(struct mchp_coreqspi *qspi)
|
|
|
|
{
|
|
|
|
u32 control, data;
|
|
|
|
|
|
|
|
if (!qspi->rx_len)
|
|
|
|
return;
|
|
|
|
|
|
|
|
control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read 4-bytes from the SPI FIFO in single transaction and then read
|
|
|
|
* the reamaining data byte wise.
|
|
|
|
*/
|
|
|
|
control |= CONTROL_FLAGSX4;
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
while (qspi->rx_len >= 4) {
|
|
|
|
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
|
|
|
|
;
|
|
|
|
data = readl_relaxed(qspi->regs + REG_X4_RX_DATA);
|
|
|
|
*(u32 *)qspi->rxbuf = data;
|
|
|
|
qspi->rxbuf += 4;
|
|
|
|
qspi->rx_len -= 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
control &= ~CONTROL_FLAGSX4;
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
while (qspi->rx_len--) {
|
|
|
|
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
|
|
|
|
;
|
|
|
|
data = readl_relaxed(qspi->regs + REG_RX_DATA);
|
|
|
|
*qspi->rxbuf++ = (data & 0xFF);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void mchp_coreqspi_write_op(struct mchp_coreqspi *qspi, bool word)
|
|
|
|
{
|
|
|
|
u32 control, data;
|
|
|
|
|
|
|
|
control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
control |= CONTROL_FLAGSX4;
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
while (qspi->tx_len >= 4) {
|
|
|
|
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
|
|
|
|
;
|
|
|
|
data = *(u32 *)qspi->txbuf;
|
|
|
|
qspi->txbuf += 4;
|
|
|
|
qspi->tx_len -= 4;
|
|
|
|
writel_relaxed(data, qspi->regs + REG_X4_TX_DATA);
|
|
|
|
}
|
|
|
|
|
|
|
|
control &= ~CONTROL_FLAGSX4;
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
while (qspi->tx_len--) {
|
|
|
|
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
|
|
|
|
;
|
|
|
|
data = *qspi->txbuf++;
|
|
|
|
writel_relaxed(data, qspi->regs + REG_TX_DATA);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mchp_coreqspi_enable_ints(struct mchp_coreqspi *qspi)
|
|
|
|
{
|
|
|
|
u32 mask = IEN_TXDONE |
|
|
|
|
IEN_RXDONE |
|
|
|
|
IEN_RXAVAILABLE;
|
|
|
|
|
|
|
|
writel_relaxed(mask, qspi->regs + REG_IEN);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mchp_coreqspi_disable_ints(struct mchp_coreqspi *qspi)
|
|
|
|
{
|
|
|
|
writel_relaxed(0, qspi->regs + REG_IEN);
|
|
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t mchp_coreqspi_isr(int irq, void *dev_id)
|
|
|
|
{
|
|
|
|
struct mchp_coreqspi *qspi = (struct mchp_coreqspi *)dev_id;
|
|
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
int intfield = readl_relaxed(qspi->regs + REG_STATUS) & STATUS_MASK;
|
|
|
|
|
|
|
|
if (intfield == 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (intfield & IEN_TXDONE) {
|
|
|
|
writel_relaxed(IEN_TXDONE, qspi->regs + REG_STATUS);
|
|
|
|
ret = IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (intfield & IEN_RXAVAILABLE) {
|
|
|
|
writel_relaxed(IEN_RXAVAILABLE, qspi->regs + REG_STATUS);
|
|
|
|
mchp_coreqspi_read_op(qspi);
|
|
|
|
ret = IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (intfield & IEN_RXDONE) {
|
|
|
|
writel_relaxed(IEN_RXDONE, qspi->regs + REG_STATUS);
|
|
|
|
complete(&qspi->data_completion);
|
|
|
|
ret = IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mchp_coreqspi_setup_clock(struct mchp_coreqspi *qspi, struct spi_device *spi)
|
|
|
|
{
|
|
|
|
unsigned long clk_hz;
|
|
|
|
u32 control, baud_rate_val = 0;
|
|
|
|
|
|
|
|
clk_hz = clk_get_rate(qspi->clk);
|
|
|
|
if (!clk_hz)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
baud_rate_val = DIV_ROUND_UP(clk_hz, 2 * spi->max_speed_hz);
|
|
|
|
if (baud_rate_val > MAX_DIVIDER || baud_rate_val < MIN_DIVIDER) {
|
|
|
|
dev_err(&spi->dev,
|
|
|
|
"could not configure the clock for spi clock %d Hz & system clock %ld Hz\n",
|
|
|
|
spi->max_speed_hz, clk_hz);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
control |= baud_rate_val << CONTROL_CLKRATE_SHIFT;
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
if ((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA))
|
|
|
|
control |= CONTROL_CLKIDLE;
|
|
|
|
else
|
|
|
|
control &= ~CONTROL_CLKIDLE;
|
|
|
|
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mchp_coreqspi_setup_op(struct spi_device *spi_dev)
|
|
|
|
{
|
|
|
|
struct spi_controller *ctlr = spi_dev->master;
|
|
|
|
struct mchp_coreqspi *qspi = spi_controller_get_devdata(ctlr);
|
|
|
|
u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
control |= (CONTROL_MASTER | CONTROL_ENABLE);
|
|
|
|
control &= ~CONTROL_CLKIDLE;
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void mchp_coreqspi_config_op(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
|
|
|
|
{
|
|
|
|
u32 idle_cycles = 0;
|
|
|
|
int total_bytes, cmd_bytes, frames, ctrl;
|
|
|
|
|
|
|
|
cmd_bytes = op->cmd.nbytes + op->addr.nbytes;
|
|
|
|
total_bytes = cmd_bytes + op->data.nbytes;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* As per the coreQSPI IP spec,the number of command and data bytes are
|
|
|
|
* controlled by the frames register for each SPI sequence. This supports
|
|
|
|
* the SPI flash memory read and writes sequences as below. so configure
|
|
|
|
* the cmd and total bytes accordingly.
|
|
|
|
* ---------------------------------------------------------------------
|
|
|
|
* TOTAL BYTES | CMD BYTES | What happens |
|
|
|
|
* ______________________________________________________________________
|
|
|
|
* | | |
|
|
|
|
* 1 | 1 | The SPI core will transmit a single byte |
|
|
|
|
* | | and receive data is discarded |
|
|
|
|
* | | |
|
|
|
|
* 1 | 0 | The SPI core will transmit a single byte |
|
|
|
|
* | | and return a single byte |
|
|
|
|
* | | |
|
|
|
|
* 10 | 4 | The SPI core will transmit 4 command |
|
|
|
|
* | | bytes discarding the receive data and |
|
|
|
|
* | | transmits 6 dummy bytes returning the 6 |
|
|
|
|
* | | received bytes and return a single byte |
|
|
|
|
* | | |
|
|
|
|
* 10 | 10 | The SPI core will transmit 10 command |
|
|
|
|
* | | |
|
|
|
|
* 10 | 0 | The SPI core will transmit 10 command |
|
|
|
|
* | | bytes and returning 10 received bytes |
|
|
|
|
* ______________________________________________________________________
|
|
|
|
*/
|
|
|
|
if (!(op->data.dir == SPI_MEM_DATA_IN))
|
|
|
|
cmd_bytes = total_bytes;
|
|
|
|
|
|
|
|
frames = total_bytes & BYTESUPPER_MASK;
|
|
|
|
writel_relaxed(frames, qspi->regs + REG_FRAMESUP);
|
|
|
|
frames = total_bytes & BYTESLOWER_MASK;
|
|
|
|
frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT;
|
|
|
|
|
|
|
|
if (op->dummy.buswidth)
|
|
|
|
idle_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
|
|
|
|
|
|
|
|
frames |= idle_cycles << FRAMES_IDLE_SHIFT;
|
|
|
|
ctrl = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
if (ctrl & CONTROL_MODE12_MASK)
|
|
|
|
frames |= (1 << FRAMES_SHIFT);
|
|
|
|
|
|
|
|
frames |= FRAMES_FLAGWORD;
|
|
|
|
writel_relaxed(frames, qspi->regs + REG_FRAMES);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mchp_qspi_wait_for_ready(struct spi_mem *mem)
|
|
|
|
{
|
|
|
|
struct mchp_coreqspi *qspi = spi_controller_get_devdata
|
|
|
|
(mem->spi->master);
|
|
|
|
u32 status;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = readl_poll_timeout(qspi->regs + REG_STATUS, status,
|
|
|
|
(status & STATUS_READY), 0,
|
|
|
|
TIMEOUT_MS);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(&mem->spi->dev,
|
|
|
|
"Timeout waiting on QSPI ready.\n");
|
|
|
|
return -ETIMEDOUT;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mchp_coreqspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
|
|
|
{
|
|
|
|
struct mchp_coreqspi *qspi = spi_controller_get_devdata
|
|
|
|
(mem->spi->master);
|
|
|
|
u32 address = op->addr.val;
|
|
|
|
u8 opcode = op->cmd.opcode;
|
|
|
|
u8 opaddr[5];
|
|
|
|
int err, i;
|
|
|
|
|
|
|
|
mutex_lock(&qspi->op_lock);
|
|
|
|
err = mchp_qspi_wait_for_ready(mem);
|
|
|
|
if (err)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
err = mchp_coreqspi_setup_clock(qspi, mem->spi);
|
|
|
|
if (err)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
err = mchp_coreqspi_set_mode(qspi, op);
|
|
|
|
if (err)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
reinit_completion(&qspi->data_completion);
|
|
|
|
mchp_coreqspi_config_op(qspi, op);
|
|
|
|
if (op->cmd.opcode) {
|
|
|
|
qspi->txbuf = &opcode;
|
|
|
|
qspi->rxbuf = NULL;
|
|
|
|
qspi->tx_len = op->cmd.nbytes;
|
|
|
|
qspi->rx_len = 0;
|
|
|
|
mchp_coreqspi_write_op(qspi, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
qspi->txbuf = &opaddr[0];
|
|
|
|
if (op->addr.nbytes) {
|
|
|
|
for (i = 0; i < op->addr.nbytes; i++)
|
|
|
|
qspi->txbuf[i] = address >> (8 * (op->addr.nbytes - i - 1));
|
|
|
|
|
|
|
|
qspi->rxbuf = NULL;
|
|
|
|
qspi->tx_len = op->addr.nbytes;
|
|
|
|
qspi->rx_len = 0;
|
|
|
|
mchp_coreqspi_write_op(qspi, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (op->data.nbytes) {
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT) {
|
|
|
|
qspi->txbuf = (u8 *)op->data.buf.out;
|
|
|
|
qspi->rxbuf = NULL;
|
|
|
|
qspi->rx_len = 0;
|
|
|
|
qspi->tx_len = op->data.nbytes;
|
|
|
|
mchp_coreqspi_write_op(qspi, true);
|
|
|
|
} else {
|
|
|
|
qspi->txbuf = NULL;
|
|
|
|
qspi->rxbuf = (u8 *)op->data.buf.in;
|
|
|
|
qspi->rx_len = op->data.nbytes;
|
|
|
|
qspi->tx_len = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mchp_coreqspi_enable_ints(qspi);
|
|
|
|
|
|
|
|
if (!wait_for_completion_timeout(&qspi->data_completion, msecs_to_jiffies(1000)))
|
|
|
|
err = -ETIMEDOUT;
|
|
|
|
|
|
|
|
error:
|
|
|
|
mutex_unlock(&qspi->op_lock);
|
|
|
|
mchp_coreqspi_disable_ints(qspi);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool mchp_coreqspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
|
|
|
{
|
|
|
|
if (!spi_mem_default_supports_op(mem, op))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if ((op->data.buswidth == 4 || op->data.buswidth == 2) &&
|
|
|
|
(op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))) {
|
|
|
|
/*
|
|
|
|
* If the command and address are on DQ0 only, then this
|
|
|
|
* controller doesn't support sending data on dual and
|
|
|
|
* quad lines. but it supports reading data on dual and
|
|
|
|
* quad lines with same configuration as command and
|
|
|
|
* address on DQ0.
|
|
|
|
* i.e. The control register[15:13] :EX_RO(read only) is
|
|
|
|
* meant only for the command and address are on DQ0 but
|
|
|
|
* not to write data, it is just to read.
|
|
|
|
* Ex: 0x34h is Quad Load Program Data which is not
|
|
|
|
* supported. Then the spi-mem layer will iterate over
|
|
|
|
* each command and it will chose the supported one.
|
|
|
|
*/
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mchp_coreqspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
|
|
|
|
{
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT || op->data.dir == SPI_MEM_DATA_IN) {
|
|
|
|
if (op->data.nbytes > MAX_DATA_CMD_LEN)
|
|
|
|
op->data.nbytes = MAX_DATA_CMD_LEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct spi_controller_mem_ops mchp_coreqspi_mem_ops = {
|
|
|
|
.adjust_op_size = mchp_coreqspi_adjust_op_size,
|
|
|
|
.supports_op = mchp_coreqspi_supports_op,
|
|
|
|
.exec_op = mchp_coreqspi_exec_op,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int mchp_coreqspi_probe(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
struct spi_controller *ctlr;
|
|
|
|
struct mchp_coreqspi *qspi;
|
|
|
|
struct device *dev = &pdev->dev;
|
|
|
|
struct device_node *np = dev->of_node;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*qspi));
|
|
|
|
if (!ctlr)
|
|
|
|
return dev_err_probe(&pdev->dev, -ENOMEM,
|
|
|
|
"unable to allocate master for QSPI controller\n");
|
|
|
|
|
|
|
|
qspi = spi_controller_get_devdata(ctlr);
|
|
|
|
platform_set_drvdata(pdev, qspi);
|
|
|
|
|
|
|
|
qspi->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
|
|
if (IS_ERR(qspi->regs))
|
|
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(qspi->regs),
|
|
|
|
"failed to map registers\n");
|
|
|
|
|
|
|
|
qspi->clk = devm_clk_get(&pdev->dev, NULL);
|
|
|
|
if (IS_ERR(qspi->clk))
|
|
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(qspi->clk),
|
|
|
|
"could not get clock\n");
|
|
|
|
|
|
|
|
ret = clk_prepare_enable(qspi->clk);
|
|
|
|
if (ret)
|
|
|
|
return dev_err_probe(&pdev->dev, ret,
|
|
|
|
"failed to enable clock\n");
|
|
|
|
|
|
|
|
init_completion(&qspi->data_completion);
|
|
|
|
mutex_init(&qspi->op_lock);
|
|
|
|
|
|
|
|
qspi->irq = platform_get_irq(pdev, 0);
|
|
|
|
if (qspi->irq < 0) {
|
|
|
|
ret = qspi->irq;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = devm_request_irq(&pdev->dev, qspi->irq, mchp_coreqspi_isr,
|
|
|
|
IRQF_SHARED, pdev->name, qspi);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(&pdev->dev, "request_irq failed %d\n", ret);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
|
|
|
|
ctlr->mem_ops = &mchp_coreqspi_mem_ops;
|
|
|
|
ctlr->setup = mchp_coreqspi_setup_op;
|
|
|
|
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
|
|
|
|
SPI_TX_DUAL | SPI_TX_QUAD;
|
|
|
|
ctlr->dev.of_node = np;
|
|
|
|
|
|
|
|
ret = devm_spi_register_controller(&pdev->dev, ctlr);
|
|
|
|
if (ret) {
|
|
|
|
dev_err_probe(&pdev->dev, ret,
|
|
|
|
"spi_register_controller failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out:
|
|
|
|
clk_disable_unprepare(qspi->clk);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2023-03-04 01:19:50 +08:00
|
|
|
static void mchp_coreqspi_remove(struct platform_device *pdev)
|
2022-08-08 14:46:02 +08:00
|
|
|
{
|
|
|
|
struct mchp_coreqspi *qspi = platform_get_drvdata(pdev);
|
|
|
|
u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
|
|
|
|
mchp_coreqspi_disable_ints(qspi);
|
|
|
|
control &= ~CONTROL_ENABLE;
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
clk_disable_unprepare(qspi->clk);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct of_device_id mchp_coreqspi_of_match[] = {
|
|
|
|
{ .compatible = "microchip,coreqspi-rtl-v2" },
|
|
|
|
{ /* sentinel */ }
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, mchp_coreqspi_of_match);
|
|
|
|
|
|
|
|
static struct platform_driver mchp_coreqspi_driver = {
|
|
|
|
.probe = mchp_coreqspi_probe,
|
|
|
|
.driver = {
|
|
|
|
.name = "microchip,coreqspi",
|
|
|
|
.of_match_table = mchp_coreqspi_of_match,
|
|
|
|
},
|
2023-03-04 01:19:50 +08:00
|
|
|
.remove_new = mchp_coreqspi_remove,
|
2022-08-08 14:46:02 +08:00
|
|
|
};
|
|
|
|
module_platform_driver(mchp_coreqspi_driver);
|
|
|
|
|
|
|
|
MODULE_AUTHOR("Naga Sureshkumar Relli <nagasuresh.relli@microchip.com");
|
|
|
|
MODULE_DESCRIPTION("Microchip coreQSPI QSPI controller driver");
|
|
|
|
MODULE_LICENSE("GPL");
|