linux/arch/s390/pci/pci.c

993 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright IBM Corp. 2012
*
* Author(s):
* Jan Glauber <jang@linux.vnet.ibm.com>
*
* The System z PCI code is a rewrite from a prototype by
* the following people (Kudoz!):
* Alexander Schmidt
* Christoph Raisch
* Hannes Hering
* Hoang-Nam Nguyen
* Jan-Bernd Themann
* Stefan Roscher
* Thomas Klein
*/
#define KMSG_COMPONENT "zpci"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <linux/seq_file.h>
#include <linux/jump_label.h>
#include <linux/pci.h>
#include <linux/printk.h>
#include <asm/isc.h>
#include <asm/airq.h>
#include <asm/facility.h>
#include <asm/pci_insn.h>
#include <asm/pci_clp.h>
#include <asm/pci_dma.h>
#include "pci_bus.h"
#include "pci_iov.h"
/* list of all detected zpci devices */
static LIST_HEAD(zpci_list);
static DEFINE_SPINLOCK(zpci_list_lock);
static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
static DEFINE_SPINLOCK(zpci_domain_lock);
#define ZPCI_IOMAP_ENTRIES \
min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \
ZPCI_IOMAP_MAX_ENTRIES)
unsigned int s390_pci_no_rid;
static DEFINE_SPINLOCK(zpci_iomap_lock);
static unsigned long *zpci_iomap_bitmap;
struct zpci_iomap_entry *zpci_iomap_start;
EXPORT_SYMBOL_GPL(zpci_iomap_start);
DEFINE_STATIC_KEY_FALSE(have_mio);
static struct kmem_cache *zdev_fmb_cache;
struct zpci_dev *get_zdev_by_fid(u32 fid)
{
struct zpci_dev *tmp, *zdev = NULL;
spin_lock(&zpci_list_lock);
list_for_each_entry(tmp, &zpci_list, entry) {
if (tmp->fid == fid) {
zdev = tmp;
break;
}
}
spin_unlock(&zpci_list_lock);
return zdev;
}
void zpci_remove_reserved_devices(void)
{
struct zpci_dev *tmp, *zdev;
enum zpci_state state;
LIST_HEAD(remove);
spin_lock(&zpci_list_lock);
list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
if (zdev->state == ZPCI_FN_STATE_STANDBY &&
!clp_get_state(zdev->fid, &state) &&
state == ZPCI_FN_STATE_RESERVED)
list_move_tail(&zdev->entry, &remove);
}
spin_unlock(&zpci_list_lock);
list_for_each_entry_safe(zdev, tmp, &remove, entry)
zpci_zdev_put(zdev);
}
int pci_domain_nr(struct pci_bus *bus)
{
return ((struct zpci_bus *) bus->sysdata)->domain_nr;
}
EXPORT_SYMBOL_GPL(pci_domain_nr);
int pci_proc_domain(struct pci_bus *bus)
{
return pci_domain_nr(bus);
}
EXPORT_SYMBOL_GPL(pci_proc_domain);
/* Modify PCI: Register I/O address translation parameters */
int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
u64 base, u64 limit, u64 iota)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
struct zpci_fib fib = {0};
u8 cc, status;
WARN_ON_ONCE(iota & 0x3fff);
fib.pba = base;
fib.pal = limit;
fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
cc = zpci_mod_fc(req, &fib, &status);
if (cc)
zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
return cc;
}
/* Modify PCI: Unregister I/O address translation parameters */
int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
struct zpci_fib fib = {0};
u8 cc, status;
cc = zpci_mod_fc(req, &fib, &status);
if (cc)
zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
return cc;
}
/* Modify PCI: Set PCI function measurement parameters */
int zpci_fmb_enable_device(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
struct zpci_fib fib = {0};
u8 cc, status;
if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
return -EINVAL;
zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
if (!zdev->fmb)
return -ENOMEM;
WARN_ON((u64) zdev->fmb & 0xf);
/* reset software counters */
atomic64_set(&zdev->allocated_pages, 0);
atomic64_set(&zdev->mapped_pages, 0);
atomic64_set(&zdev->unmapped_pages, 0);
fib.fmb_addr = virt_to_phys(zdev->fmb);
cc = zpci_mod_fc(req, &fib, &status);
if (cc) {
kmem_cache_free(zdev_fmb_cache, zdev->fmb);
zdev->fmb = NULL;
}
return cc ? -EIO : 0;
}
/* Modify PCI: Disable PCI function measurement */
int zpci_fmb_disable_device(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
struct zpci_fib fib = {0};
u8 cc, status;
if (!zdev->fmb)
return -EINVAL;
/* Function measurement is disabled if fmb address is zero */
cc = zpci_mod_fc(req, &fib, &status);
if (cc == 3) /* Function already gone. */
cc = 0;
if (!cc) {
kmem_cache_free(zdev_fmb_cache, zdev->fmb);
zdev->fmb = NULL;
}
return cc ? -EIO : 0;
}
static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
u64 data;
int rc;
rc = __zpci_load(&data, req, offset);
if (!rc) {
data = le64_to_cpu((__force __le64) data);
data >>= (8 - len) * 8;
*val = (u32) data;
} else
*val = 0xffffffff;
return rc;
}
static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
u64 data = val;
int rc;
data <<= (8 - len) * 8;
data = (__force u64) cpu_to_le64(data);
rc = __zpci_store(data, req, offset);
return rc;
}
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
resource_size_t size,
resource_size_t align)
{
return 0;
}
/* combine single writes by using store-block insn */
void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
{
zpci_memcpy_toio(to, from, count);
}
static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot)
{
unsigned long offset, vaddr;
struct vm_struct *area;
phys_addr_t last_addr;
last_addr = addr + size - 1;
if (!size || last_addr < addr)
return NULL;
if (!static_branch_unlikely(&have_mio))
return (void __iomem *) addr;
offset = addr & ~PAGE_MASK;
addr &= PAGE_MASK;
size = PAGE_ALIGN(size + offset);
area = get_vm_area(size, VM_IOREMAP);
if (!area)
return NULL;
vaddr = (unsigned long) area->addr;
if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) {
free_vm_area(area);
return NULL;
}
return (void __iomem *) ((unsigned long) area->addr + offset);
}
void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot)
{
return __ioremap(addr, size, __pgprot(prot));
}
EXPORT_SYMBOL(ioremap_prot);
void __iomem *ioremap(phys_addr_t addr, size_t size)
{
return __ioremap(addr, size, PAGE_KERNEL);
}
EXPORT_SYMBOL(ioremap);
void __iomem *ioremap_wc(phys_addr_t addr, size_t size)
{
return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL));
}
EXPORT_SYMBOL(ioremap_wc);
void __iomem *ioremap_wt(phys_addr_t addr, size_t size)
{
return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL));
}
EXPORT_SYMBOL(ioremap_wt);
void iounmap(volatile void __iomem *addr)
{
if (static_branch_likely(&have_mio))
vunmap((__force void *) ((unsigned long) addr & PAGE_MASK));
}
EXPORT_SYMBOL(iounmap);
/* Create a virtual mapping cookie for a PCI BAR */
static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
unsigned long offset, unsigned long max)
{
struct zpci_dev *zdev = to_zpci(pdev);
int idx;
idx = zdev->bars[bar].map_idx;
spin_lock(&zpci_iomap_lock);
/* Detect overrun */
WARN_ON(!++zpci_iomap_start[idx].count);
zpci_iomap_start[idx].fh = zdev->fh;
zpci_iomap_start[idx].bar = bar;
spin_unlock(&zpci_iomap_lock);
return (void __iomem *) ZPCI_ADDR(idx) + offset;
}
static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
unsigned long offset,
unsigned long max)
{
unsigned long barsize = pci_resource_len(pdev, bar);
struct zpci_dev *zdev = to_zpci(pdev);
void __iomem *iova;
iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
return iova ? iova + offset : iova;
}
void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
unsigned long offset, unsigned long max)
{
if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
return NULL;
if (static_branch_likely(&have_mio))
return pci_iomap_range_mio(pdev, bar, offset, max);
else
return pci_iomap_range_fh(pdev, bar, offset, max);
}
EXPORT_SYMBOL(pci_iomap_range);
void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
{
return pci_iomap_range(dev, bar, 0, maxlen);
}
EXPORT_SYMBOL(pci_iomap);
static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
unsigned long offset, unsigned long max)
{
unsigned long barsize = pci_resource_len(pdev, bar);
struct zpci_dev *zdev = to_zpci(pdev);
void __iomem *iova;
iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
return iova ? iova + offset : iova;
}
void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
unsigned long offset, unsigned long max)
{
if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
return NULL;
if (static_branch_likely(&have_mio))
return pci_iomap_wc_range_mio(pdev, bar, offset, max);
else
return pci_iomap_range_fh(pdev, bar, offset, max);
}
EXPORT_SYMBOL(pci_iomap_wc_range);
void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
{
return pci_iomap_wc_range(dev, bar, 0, maxlen);
}
EXPORT_SYMBOL(pci_iomap_wc);
static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
{
unsigned int idx = ZPCI_IDX(addr);
spin_lock(&zpci_iomap_lock);
/* Detect underrun */
WARN_ON(!zpci_iomap_start[idx].count);
if (!--zpci_iomap_start[idx].count) {
zpci_iomap_start[idx].fh = 0;
zpci_iomap_start[idx].bar = 0;
}
spin_unlock(&zpci_iomap_lock);
}
static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
{
iounmap(addr);
}
void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
{
if (static_branch_likely(&have_mio))
pci_iounmap_mio(pdev, addr);
else
pci_iounmap_fh(pdev, addr);
}
EXPORT_SYMBOL(pci_iounmap);
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *val)
{
struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn);
return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
}
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 val)
{
struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn);
return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
}
static struct pci_ops pci_root_ops = {
.read = pci_read,
.write = pci_write,
};
static void zpci_map_resources(struct pci_dev *pdev)
{
struct zpci_dev *zdev = to_zpci(pdev);
resource_size_t len;
int i;
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
len = pci_resource_len(pdev, i);
if (!len)
continue;
if (zpci_use_mio(zdev))
pdev->resource[i].start =
(resource_size_t __force) zdev->bars[i].mio_wt;
else
pdev->resource[i].start = (resource_size_t __force)
pci_iomap_range_fh(pdev, i, 0, 0);
pdev->resource[i].end = pdev->resource[i].start + len - 1;
}
zpci_iov_map_resources(pdev);
}
static void zpci_unmap_resources(struct pci_dev *pdev)
{
struct zpci_dev *zdev = to_zpci(pdev);
resource_size_t len;
int i;
if (zpci_use_mio(zdev))
return;
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
len = pci_resource_len(pdev, i);
if (!len)
continue;
pci_iounmap_fh(pdev, (void __iomem __force *)
pdev->resource[i].start);
}
}
static int zpci_alloc_iomap(struct zpci_dev *zdev)
{
unsigned long entry;
spin_lock(&zpci_iomap_lock);
entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
if (entry == ZPCI_IOMAP_ENTRIES) {
spin_unlock(&zpci_iomap_lock);
return -ENOSPC;
}
set_bit(entry, zpci_iomap_bitmap);
spin_unlock(&zpci_iomap_lock);
return entry;
}
static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
{
spin_lock(&zpci_iomap_lock);
memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
clear_bit(entry, zpci_iomap_bitmap);
spin_unlock(&zpci_iomap_lock);
}
static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
unsigned long size, unsigned long flags)
{
struct resource *r;
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (!r)
return NULL;
r->start = start;
r->end = r->start + size - 1;
r->flags = flags;
r->name = zdev->res_name;
if (request_resource(&iomem_resource, r)) {
kfree(r);
return NULL;
}
return r;
}
int zpci_setup_bus_resources(struct zpci_dev *zdev,
struct list_head *resources)
{
unsigned long addr, size, flags;
struct resource *res;
int i, entry;
snprintf(zdev->res_name, sizeof(zdev->res_name),
"PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
if (!zdev->bars[i].size)
continue;
entry = zpci_alloc_iomap(zdev);
if (entry < 0)
return entry;
zdev->bars[i].map_idx = entry;
/* only MMIO is supported */
flags = IORESOURCE_MEM;
if (zdev->bars[i].val & 8)
flags |= IORESOURCE_PREFETCH;
if (zdev->bars[i].val & 4)
flags |= IORESOURCE_MEM_64;
if (zpci_use_mio(zdev))
addr = (unsigned long) zdev->bars[i].mio_wt;
else
addr = ZPCI_ADDR(entry);
size = 1UL << zdev->bars[i].size;
res = __alloc_res(zdev, addr, size, flags);
if (!res) {
zpci_free_iomap(zdev, entry);
return -ENOMEM;
}
zdev->bars[i].res = res;
pci_add_resource(resources, res);
}
zdev->has_resources = 1;
return 0;
}
static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
{
int i;
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
if (!zdev->bars[i].size || !zdev->bars[i].res)
continue;
zpci_free_iomap(zdev, zdev->bars[i].map_idx);
release_resource(zdev->bars[i].res);
kfree(zdev->bars[i].res);
}
zdev->has_resources = 0;
}
int pcibios_add_device(struct pci_dev *pdev)
{
s390/pci: fix use after free of zpci_dev The struct pci_dev uses reference counting but zPCI assumed erroneously that the last reference would always be the local reference after calling pci_stop_and_remove_bus_device(). This is usually the case but not how reference counting works and thus inherently fragile. In fact one case where this causes a NULL pointer dereference when on an SRIOV device the function 0 was hot unplugged before another function of the same multi-function device. In this case the second function's pdev->sriov->dev reference keeps the struct pci_dev of function 0 alive even after the unplug. This bug was previously hidden by the fact that we were leaking the struct pci_dev which in turn means that it always outlived the struct zpci_dev. This was fixed in commit 0b13525c20fe ("s390/pci: fix leak of PCI device structure") exposing the broken behavior. Fix this by accounting for the long living reference a struct pci_dev has to its underlying struct zpci_dev via the zbus->function[] array and only release that in pcibios_release_device() ensuring that the struct pci_dev is not left with a dangling reference. This is a minimal fix in the future it would probably better to use fine grained reference counting for struct zpci_dev. Fixes: 05bc1be6db4b2 ("s390/pci: create zPCI bus") Cc: stable@vger.kernel.org Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-08-06 18:11:16 +08:00
struct zpci_dev *zdev = to_zpci(pdev);
struct resource *res;
int i;
s390/pci: fix use after free of zpci_dev The struct pci_dev uses reference counting but zPCI assumed erroneously that the last reference would always be the local reference after calling pci_stop_and_remove_bus_device(). This is usually the case but not how reference counting works and thus inherently fragile. In fact one case where this causes a NULL pointer dereference when on an SRIOV device the function 0 was hot unplugged before another function of the same multi-function device. In this case the second function's pdev->sriov->dev reference keeps the struct pci_dev of function 0 alive even after the unplug. This bug was previously hidden by the fact that we were leaking the struct pci_dev which in turn means that it always outlived the struct zpci_dev. This was fixed in commit 0b13525c20fe ("s390/pci: fix leak of PCI device structure") exposing the broken behavior. Fix this by accounting for the long living reference a struct pci_dev has to its underlying struct zpci_dev via the zbus->function[] array and only release that in pcibios_release_device() ensuring that the struct pci_dev is not left with a dangling reference. This is a minimal fix in the future it would probably better to use fine grained reference counting for struct zpci_dev. Fixes: 05bc1be6db4b2 ("s390/pci: create zPCI bus") Cc: stable@vger.kernel.org Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-08-06 18:11:16 +08:00
/* The pdev has a reference to the zdev via its bus */
zpci_zdev_get(zdev);
if (pdev->is_physfn)
pdev->no_vf_scan = 1;
pdev->dev.groups = zpci_attr_groups;
pdev->dev.dma_ops = &s390_pci_dma_ops;
zpci_map_resources(pdev);
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
res = &pdev->resource[i];
if (res->parent || !res->flags)
continue;
pci_claim_resource(pdev, i);
}
return 0;
}
void pcibios_release_device(struct pci_dev *pdev)
{
s390/pci: fix use after free of zpci_dev The struct pci_dev uses reference counting but zPCI assumed erroneously that the last reference would always be the local reference after calling pci_stop_and_remove_bus_device(). This is usually the case but not how reference counting works and thus inherently fragile. In fact one case where this causes a NULL pointer dereference when on an SRIOV device the function 0 was hot unplugged before another function of the same multi-function device. In this case the second function's pdev->sriov->dev reference keeps the struct pci_dev of function 0 alive even after the unplug. This bug was previously hidden by the fact that we were leaking the struct pci_dev which in turn means that it always outlived the struct zpci_dev. This was fixed in commit 0b13525c20fe ("s390/pci: fix leak of PCI device structure") exposing the broken behavior. Fix this by accounting for the long living reference a struct pci_dev has to its underlying struct zpci_dev via the zbus->function[] array and only release that in pcibios_release_device() ensuring that the struct pci_dev is not left with a dangling reference. This is a minimal fix in the future it would probably better to use fine grained reference counting for struct zpci_dev. Fixes: 05bc1be6db4b2 ("s390/pci: create zPCI bus") Cc: stable@vger.kernel.org Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-08-06 18:11:16 +08:00
struct zpci_dev *zdev = to_zpci(pdev);
zpci_unmap_resources(pdev);
s390/pci: fix use after free of zpci_dev The struct pci_dev uses reference counting but zPCI assumed erroneously that the last reference would always be the local reference after calling pci_stop_and_remove_bus_device(). This is usually the case but not how reference counting works and thus inherently fragile. In fact one case where this causes a NULL pointer dereference when on an SRIOV device the function 0 was hot unplugged before another function of the same multi-function device. In this case the second function's pdev->sriov->dev reference keeps the struct pci_dev of function 0 alive even after the unplug. This bug was previously hidden by the fact that we were leaking the struct pci_dev which in turn means that it always outlived the struct zpci_dev. This was fixed in commit 0b13525c20fe ("s390/pci: fix leak of PCI device structure") exposing the broken behavior. Fix this by accounting for the long living reference a struct pci_dev has to its underlying struct zpci_dev via the zbus->function[] array and only release that in pcibios_release_device() ensuring that the struct pci_dev is not left with a dangling reference. This is a minimal fix in the future it would probably better to use fine grained reference counting for struct zpci_dev. Fixes: 05bc1be6db4b2 ("s390/pci: create zPCI bus") Cc: stable@vger.kernel.org Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-08-06 18:11:16 +08:00
zpci_zdev_put(zdev);
}
int pcibios_enable_device(struct pci_dev *pdev, int mask)
{
struct zpci_dev *zdev = to_zpci(pdev);
zpci_debug_init_device(zdev, dev_name(&pdev->dev));
zpci_fmb_enable_device(zdev);
return pci_enable_resources(pdev, mask);
}
void pcibios_disable_device(struct pci_dev *pdev)
{
struct zpci_dev *zdev = to_zpci(pdev);
zpci_fmb_disable_device(zdev);
zpci_debug_exit_device(zdev);
}
static int __zpci_register_domain(int domain)
{
spin_lock(&zpci_domain_lock);
if (test_bit(domain, zpci_domain)) {
spin_unlock(&zpci_domain_lock);
pr_err("Domain %04x is already assigned\n", domain);
return -EEXIST;
}
set_bit(domain, zpci_domain);
spin_unlock(&zpci_domain_lock);
return domain;
}
static int __zpci_alloc_domain(void)
{
int domain;
spin_lock(&zpci_domain_lock);
/*
* We can always auto allocate domains below ZPCI_NR_DEVICES.
* There is either a free domain or we have reached the maximum in
* which case we would have bailed earlier.
*/
domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
set_bit(domain, zpci_domain);
spin_unlock(&zpci_domain_lock);
return domain;
}
int zpci_alloc_domain(int domain)
{
if (zpci_unique_uid) {
if (domain)
return __zpci_register_domain(domain);
pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
update_uid_checking(false);
}
return __zpci_alloc_domain();
}
void zpci_free_domain(int domain)
{
spin_lock(&zpci_domain_lock);
clear_bit(domain, zpci_domain);
spin_unlock(&zpci_domain_lock);
}
int zpci_enable_device(struct zpci_dev *zdev)
{
u32 fh = zdev->fh;
int rc = 0;
if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
rc = -EIO;
else
zdev->fh = fh;
return rc;
}
int zpci_disable_device(struct zpci_dev *zdev)
{
u32 fh = zdev->fh;
int cc, rc = 0;
cc = clp_disable_fh(zdev, &fh);
if (!cc) {
zdev->fh = fh;
} else if (cc == CLP_RC_SETPCIFN_ALRDY) {
pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
zdev->fid);
/* Function is already disabled - update handle */
rc = clp_refresh_fh(zdev->fid, &fh);
if (!rc) {
zdev->fh = fh;
rc = -EINVAL;
}
} else {
rc = -EIO;
}
return rc;
}
/**
* zpci_create_device() - Create a new zpci_dev and add it to the zbus
* @fid: Function ID of the device to be created
* @fh: Current Function Handle of the device to be created
* @state: Initial state after creation either Standby or Configured
*
* Creates a new zpci device and adds it to its, possibly newly created, zbus
* as well as zpci_list.
*
s390/pci: separate zbus registration from scanning Now that the zbus can be created without being scanned we can go one step further and make registering a device to a zbus independent from scanning it. This way the zbus handling becomes much more natural in that functions can be registered on the zbus to be scanned later more closely resembling the handling of both real PCI hardware and other virtual PCI busses like Hyper-V's virtual PCI bus (see for example drivers/pci/controller/pci-hyperv.c:create_root_hv_pci_bus()). Having zbus registration separate from scanning allows us to return fully initialized but still disabled zdevs from zpci_create_device() which can then be configured just as we would configure a zdev from standby (minus the SCLP Configure already done by the platform). There is still the exception that a PCI function with non-zero devfn can be plugged before its PCI bus, which depends on the function with zero devfn, is created. In this case the zdev returend from zpci_create_device() is still missing its bus, hotplug slot, and resources which need to be created later but at least it doesn't wait in the enabled state and can otherwise be treated as initialized. With this we also separate the initial PCI scan using CLP List PCI Functions into two phases. In the CLP loop's callback we only register each function with a virtual zbus creating the latter as needed. Then, after we have built this virtual PCI topology based on our list of zbusses, we can make use of the common code functionality to scan each complete zbus as a separate child bus. Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Acked-by: Pierre Morel <pmorel@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-02-12 18:57:58 +08:00
* Returns: the zdev on success or an error pointer otherwise
*/
s390/pci: separate zbus registration from scanning Now that the zbus can be created without being scanned we can go one step further and make registering a device to a zbus independent from scanning it. This way the zbus handling becomes much more natural in that functions can be registered on the zbus to be scanned later more closely resembling the handling of both real PCI hardware and other virtual PCI busses like Hyper-V's virtual PCI bus (see for example drivers/pci/controller/pci-hyperv.c:create_root_hv_pci_bus()). Having zbus registration separate from scanning allows us to return fully initialized but still disabled zdevs from zpci_create_device() which can then be configured just as we would configure a zdev from standby (minus the SCLP Configure already done by the platform). There is still the exception that a PCI function with non-zero devfn can be plugged before its PCI bus, which depends on the function with zero devfn, is created. In this case the zdev returend from zpci_create_device() is still missing its bus, hotplug slot, and resources which need to be created later but at least it doesn't wait in the enabled state and can otherwise be treated as initialized. With this we also separate the initial PCI scan using CLP List PCI Functions into two phases. In the CLP loop's callback we only register each function with a virtual zbus creating the latter as needed. Then, after we have built this virtual PCI topology based on our list of zbusses, we can make use of the common code functionality to scan each complete zbus as a separate child bus. Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Acked-by: Pierre Morel <pmorel@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-02-12 18:57:58 +08:00
struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
{
struct zpci_dev *zdev;
int rc;
zpci_dbg(3, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
if (!zdev)
s390/pci: separate zbus registration from scanning Now that the zbus can be created without being scanned we can go one step further and make registering a device to a zbus independent from scanning it. This way the zbus handling becomes much more natural in that functions can be registered on the zbus to be scanned later more closely resembling the handling of both real PCI hardware and other virtual PCI busses like Hyper-V's virtual PCI bus (see for example drivers/pci/controller/pci-hyperv.c:create_root_hv_pci_bus()). Having zbus registration separate from scanning allows us to return fully initialized but still disabled zdevs from zpci_create_device() which can then be configured just as we would configure a zdev from standby (minus the SCLP Configure already done by the platform). There is still the exception that a PCI function with non-zero devfn can be plugged before its PCI bus, which depends on the function with zero devfn, is created. In this case the zdev returend from zpci_create_device() is still missing its bus, hotplug slot, and resources which need to be created later but at least it doesn't wait in the enabled state and can otherwise be treated as initialized. With this we also separate the initial PCI scan using CLP List PCI Functions into two phases. In the CLP loop's callback we only register each function with a virtual zbus creating the latter as needed. Then, after we have built this virtual PCI topology based on our list of zbusses, we can make use of the common code functionality to scan each complete zbus as a separate child bus. Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Acked-by: Pierre Morel <pmorel@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-02-12 18:57:58 +08:00
return ERR_PTR(-ENOMEM);
/* FID and Function Handle are the static/dynamic identifiers */
zdev->fid = fid;
zdev->fh = fh;
/* Query function properties and update zdev */
rc = clp_query_pci_fn(zdev);
if (rc)
goto error;
zdev->state = state;
kref_init(&zdev->kref);
mutex_init(&zdev->lock);
rc = zpci_init_iommu(zdev);
if (rc)
goto error;
rc = zpci_bus_device_register(zdev, &pci_root_ops);
if (rc)
goto error_destroy_iommu;
spin_lock(&zpci_list_lock);
list_add_tail(&zdev->entry, &zpci_list);
spin_unlock(&zpci_list_lock);
s390/pci: separate zbus registration from scanning Now that the zbus can be created without being scanned we can go one step further and make registering a device to a zbus independent from scanning it. This way the zbus handling becomes much more natural in that functions can be registered on the zbus to be scanned later more closely resembling the handling of both real PCI hardware and other virtual PCI busses like Hyper-V's virtual PCI bus (see for example drivers/pci/controller/pci-hyperv.c:create_root_hv_pci_bus()). Having zbus registration separate from scanning allows us to return fully initialized but still disabled zdevs from zpci_create_device() which can then be configured just as we would configure a zdev from standby (minus the SCLP Configure already done by the platform). There is still the exception that a PCI function with non-zero devfn can be plugged before its PCI bus, which depends on the function with zero devfn, is created. In this case the zdev returend from zpci_create_device() is still missing its bus, hotplug slot, and resources which need to be created later but at least it doesn't wait in the enabled state and can otherwise be treated as initialized. With this we also separate the initial PCI scan using CLP List PCI Functions into two phases. In the CLP loop's callback we only register each function with a virtual zbus creating the latter as needed. Then, after we have built this virtual PCI topology based on our list of zbusses, we can make use of the common code functionality to scan each complete zbus as a separate child bus. Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Acked-by: Pierre Morel <pmorel@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-02-12 18:57:58 +08:00
return zdev;
error_destroy_iommu:
zpci_destroy_iommu(zdev);
error:
zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
kfree(zdev);
s390/pci: separate zbus registration from scanning Now that the zbus can be created without being scanned we can go one step further and make registering a device to a zbus independent from scanning it. This way the zbus handling becomes much more natural in that functions can be registered on the zbus to be scanned later more closely resembling the handling of both real PCI hardware and other virtual PCI busses like Hyper-V's virtual PCI bus (see for example drivers/pci/controller/pci-hyperv.c:create_root_hv_pci_bus()). Having zbus registration separate from scanning allows us to return fully initialized but still disabled zdevs from zpci_create_device() which can then be configured just as we would configure a zdev from standby (minus the SCLP Configure already done by the platform). There is still the exception that a PCI function with non-zero devfn can be plugged before its PCI bus, which depends on the function with zero devfn, is created. In this case the zdev returend from zpci_create_device() is still missing its bus, hotplug slot, and resources which need to be created later but at least it doesn't wait in the enabled state and can otherwise be treated as initialized. With this we also separate the initial PCI scan using CLP List PCI Functions into two phases. In the CLP loop's callback we only register each function with a virtual zbus creating the latter as needed. Then, after we have built this virtual PCI topology based on our list of zbusses, we can make use of the common code functionality to scan each complete zbus as a separate child bus. Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Acked-by: Pierre Morel <pmorel@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-02-12 18:57:58 +08:00
return ERR_PTR(rc);
}
/**
* zpci_scan_configured_device() - Scan a freshly configured zpci_dev
* @zdev: The zpci_dev to be configured
* @fh: The general function handle supplied by the platform
*
* Given a device in the configuration state Configured, enables, scans and
* adds it to the common code PCI subsystem if possible. If the PCI device is
* parked because we can not yet create a PCI bus because we have not seen
* function 0, it is ignored but will be scanned once function 0 appears.
* If any failure occurs, the zpci_dev is left disabled.
*
* Return: 0 on success, or an error code otherwise
*/
int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
{
int rc;
zdev->fh = fh;
/* the PCI function will be scanned once function 0 appears */
if (!zdev->zbus->bus)
return 0;
/* For function 0 on a multi-function bus scan whole bus as we might
* have to pick up existing functions waiting for it to allow creating
* the PCI bus
*/
if (zdev->devfn == 0 && zdev->zbus->multifunction)
rc = zpci_bus_scan_bus(zdev->zbus);
else
rc = zpci_bus_scan_device(zdev);
return rc;
}
/**
* zpci_deconfigure_device() - Deconfigure a zpci_dev
* @zdev: The zpci_dev to configure
*
* Deconfigure a zPCI function that is currently configured and possibly known
* to the common code PCI subsystem.
* If any failure occurs the device is left as is.
*
* Return: 0 on success, or an error code otherwise
*/
int zpci_deconfigure_device(struct zpci_dev *zdev)
{
int rc;
if (zdev->zbus->bus)
zpci_bus_remove_device(zdev, false);
if (zdev->dma_table) {
rc = zpci_dma_exit_device(zdev);
if (rc)
return rc;
}
if (zdev_enabled(zdev)) {
rc = zpci_disable_device(zdev);
if (rc)
return rc;
}
rc = sclp_pci_deconfigure(zdev->fid);
zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
if (rc)
return rc;
zdev->state = ZPCI_FN_STATE_STANDBY;
return 0;
}
void zpci_release_device(struct kref *kref)
{
struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
int ret;
if (zdev->zbus->bus)
zpci_bus_remove_device(zdev, false);
if (zdev->dma_table)
zpci_dma_exit_device(zdev);
if (zdev_enabled(zdev))
zpci_disable_device(zdev);
switch (zdev->state) {
case ZPCI_FN_STATE_CONFIGURED:
ret = sclp_pci_deconfigure(zdev->fid);
zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
fallthrough;
case ZPCI_FN_STATE_STANDBY:
if (zdev->has_hp_slot)
zpci_exit_slot(zdev);
if (zdev->has_resources)
zpci_cleanup_bus_resources(zdev);
zpci_bus_device_unregister(zdev);
zpci_destroy_iommu(zdev);
fallthrough;
default:
break;
}
spin_lock(&zpci_list_lock);
list_del(&zdev->entry);
spin_unlock(&zpci_list_lock);
zpci_dbg(3, "rem fid:%x\n", zdev->fid);
kfree(zdev);
}
int zpci_report_error(struct pci_dev *pdev,
struct zpci_report_error_header *report)
{
struct zpci_dev *zdev = to_zpci(pdev);
return sclp_pci_report(report, zdev->fh, zdev->fid);
}
EXPORT_SYMBOL(zpci_report_error);
static int zpci_mem_init(void)
{
BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
__alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
__alignof__(struct zpci_fmb), 0, NULL);
if (!zdev_fmb_cache)
goto error_fmb;
zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
sizeof(*zpci_iomap_start), GFP_KERNEL);
if (!zpci_iomap_start)
goto error_iomap;
zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
if (!zpci_iomap_bitmap)
goto error_iomap_bitmap;
if (static_branch_likely(&have_mio))
clp_setup_writeback_mio();
return 0;
error_iomap_bitmap:
kfree(zpci_iomap_start);
error_iomap:
kmem_cache_destroy(zdev_fmb_cache);
error_fmb:
return -ENOMEM;
}
static void zpci_mem_exit(void)
{
kfree(zpci_iomap_bitmap);
kfree(zpci_iomap_start);
kmem_cache_destroy(zdev_fmb_cache);
}
static unsigned int s390_pci_probe __initdata = 1;
unsigned int s390_pci_force_floating __initdata;
static unsigned int s390_pci_initialized;
char * __init pcibios_setup(char *str)
{
if (!strcmp(str, "off")) {
s390_pci_probe = 0;
return NULL;
}
if (!strcmp(str, "nomio")) {
S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO;
return NULL;
}
if (!strcmp(str, "force_floating")) {
s390_pci_force_floating = 1;
return NULL;
}
if (!strcmp(str, "norid")) {
s390_pci_no_rid = 1;
return NULL;
}
return str;
}
bool zpci_is_enabled(void)
{
return s390_pci_initialized;
}
static int __init pci_base_init(void)
{
int rc;
if (!s390_pci_probe)
return 0;
if (!test_facility(69) || !test_facility(71)) {
pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
return 0;
}
if (MACHINE_HAS_PCI_MIO) {
static_branch_enable(&have_mio);
ctl_set_bit(2, 5);
}
rc = zpci_debug_init();
if (rc)
goto out;
rc = zpci_mem_init();
if (rc)
goto out_mem;
rc = zpci_irq_init();
if (rc)
goto out_irq;
rc = zpci_dma_init();
if (rc)
goto out_dma;
rc = clp_scan_pci_devices();
if (rc)
goto out_find;
s390/pci: separate zbus registration from scanning Now that the zbus can be created without being scanned we can go one step further and make registering a device to a zbus independent from scanning it. This way the zbus handling becomes much more natural in that functions can be registered on the zbus to be scanned later more closely resembling the handling of both real PCI hardware and other virtual PCI busses like Hyper-V's virtual PCI bus (see for example drivers/pci/controller/pci-hyperv.c:create_root_hv_pci_bus()). Having zbus registration separate from scanning allows us to return fully initialized but still disabled zdevs from zpci_create_device() which can then be configured just as we would configure a zdev from standby (minus the SCLP Configure already done by the platform). There is still the exception that a PCI function with non-zero devfn can be plugged before its PCI bus, which depends on the function with zero devfn, is created. In this case the zdev returend from zpci_create_device() is still missing its bus, hotplug slot, and resources which need to be created later but at least it doesn't wait in the enabled state and can otherwise be treated as initialized. With this we also separate the initial PCI scan using CLP List PCI Functions into two phases. In the CLP loop's callback we only register each function with a virtual zbus creating the latter as needed. Then, after we have built this virtual PCI topology based on our list of zbusses, we can make use of the common code functionality to scan each complete zbus as a separate child bus. Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com> Acked-by: Pierre Morel <pmorel@linux.ibm.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-02-12 18:57:58 +08:00
zpci_bus_scan_busses();
s390_pci_initialized = 1;
return 0;
out_find:
zpci_dma_exit();
out_dma:
zpci_irq_exit();
out_irq:
zpci_mem_exit();
out_mem:
zpci_debug_exit();
out:
return rc;
}
subsys_initcall_sync(pci_base_init);