linux/drivers/bluetooth/hci_qca.c

1705 lines
41 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Bluetooth Software UART Qualcomm protocol
*
* HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
* protocol extension to H4.
*
* Copyright (C) 2007 Texas Instruments, Inc.
* Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
*
* Acknowledgements:
* This file is based on hci_ll.c, which was...
* Written by Ohad Ben-Cohen <ohad@bencohen.org>
* which was in turn based on hci_h4.c, which was written
* by Maxim Krasnyansky and Marcel Holtmann.
*/
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/serdev.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "hci_uart.h"
#include "btqca.h"
/* HCI_IBS protocol messages */
#define HCI_IBS_SLEEP_IND 0xFE
#define HCI_IBS_WAKE_IND 0xFD
#define HCI_IBS_WAKE_ACK 0xFC
#define HCI_MAX_IBS_SIZE 10
#define IBS_WAKE_RETRANS_TIMEOUT_MS 100
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
#define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 40
#define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000
#define CMD_TRANS_TIMEOUT_MS 100
/* susclk rate */
#define SUSCLK_RATE_32KHZ 32768
/* Controller debug log header */
#define QCA_DEBUG_HANDLE 0x2EDC
enum qca_flags {
QCA_IBS_ENABLED,
QCA_DROP_VENDOR_EVENT,
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
QCA_SUSPENDING,
};
/* HCI_IBS transmit side sleep protocol states */
enum tx_ibs_states {
HCI_IBS_TX_ASLEEP,
HCI_IBS_TX_WAKING,
HCI_IBS_TX_AWAKE,
};
/* HCI_IBS receive side sleep protocol states */
enum rx_states {
HCI_IBS_RX_ASLEEP,
HCI_IBS_RX_AWAKE,
};
/* HCI_IBS transmit and receive side clock state vote */
enum hci_ibs_clock_state_vote {
HCI_IBS_VOTE_STATS_UPDATE,
HCI_IBS_TX_VOTE_CLOCK_ON,
HCI_IBS_TX_VOTE_CLOCK_OFF,
HCI_IBS_RX_VOTE_CLOCK_ON,
HCI_IBS_RX_VOTE_CLOCK_OFF,
};
struct qca_data {
struct hci_uart *hu;
struct sk_buff *rx_skb;
struct sk_buff_head txq;
struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */
spinlock_t hci_ibs_lock; /* HCI_IBS state lock */
u8 tx_ibs_state; /* HCI_IBS transmit side power state*/
u8 rx_ibs_state; /* HCI_IBS receive side power state */
bool tx_vote; /* Clock must be on for TX */
bool rx_vote; /* Clock must be on for RX */
struct timer_list tx_idle_timer;
u32 tx_idle_delay;
struct timer_list wake_retrans_timer;
u32 wake_retrans;
struct workqueue_struct *workqueue;
struct work_struct ws_awake_rx;
struct work_struct ws_awake_device;
struct work_struct ws_rx_vote_off;
struct work_struct ws_tx_vote_off;
unsigned long flags;
struct completion drop_ev_comp;
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
wait_queue_head_t suspend_wait_q;
/* For debugging purpose */
u64 ibs_sent_wacks;
u64 ibs_sent_slps;
u64 ibs_sent_wakes;
u64 ibs_recv_wacks;
u64 ibs_recv_slps;
u64 ibs_recv_wakes;
u64 vote_last_jif;
u32 vote_on_ms;
u32 vote_off_ms;
u64 tx_votes_on;
u64 rx_votes_on;
u64 tx_votes_off;
u64 rx_votes_off;
u64 votes_on;
u64 votes_off;
};
enum qca_speed_type {
QCA_INIT_SPEED = 1,
QCA_OPER_SPEED
};
/*
* Voltage regulator information required for configuring the
* QCA Bluetooth chipset
*/
struct qca_vreg {
const char *name;
unsigned int load_uA;
};
struct qca_vreg_data {
enum qca_btsoc_type soc_type;
struct qca_vreg *vregs;
size_t num_vregs;
};
/*
* Platform data for the QCA Bluetooth power driver.
*/
struct qca_power {
struct device *dev;
struct regulator_bulk_data *vreg_bulk;
int num_vregs;
bool vregs_on;
};
struct qca_serdev {
struct hci_uart serdev_hu;
struct gpio_desc *bt_en;
struct clk *susclk;
enum qca_btsoc_type btsoc_type;
struct qca_power *bt_power;
u32 init_speed;
u32 oper_speed;
const char *firmware_name;
};
static int qca_regulator_enable(struct qca_serdev *qcadev);
static void qca_regulator_disable(struct qca_serdev *qcadev);
Bluetooth: hci_qca: Remove hdev dereference in qca_close(). When flag KASAN is set, we are seeing an following crash while removing hci_uart module. [ 50.589909] Unable to handle kernel paging request at virtual address 6b6b6b6b6b6b73 [ 50.597902] Mem abort info: [ 50.600846] Exception class = DABT (current EL), IL = 32 bits [ 50.606959] SET = 0, FnV = 0 [ 50.610142] EA = 0, S1PTW = 0 [ 50.613396] Data abort info: [ 50.616401] ISV = 0, ISS = 0x00000004 [ 50.620373] CM = 0, WnR = 0 [ 50.623466] [006b6b6b6b6b6b73] address between user and kernel address ranges [ 50.630818] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 50.671670] PC is at qca_power_shutdown+0x28/0x100 [hci_uart] [ 50.677593] LR is at qca_close+0x74/0xb0 [hci_uart] [ 50.775689] Process rmmod (pid: 2144, stack limit = 0xffffff801ba90000) [ 50.782493] Call trace: [ 50.872150] [<ffffff8000c3c81c>] qca_power_shutdown+0x28/0x100 [hci_uart] [ 50.879138] [<ffffff8000c3c968>] qca_close+0x74/0xb0 [hci_uart] [ 50.885238] [<ffffff8000c3a71c>] hci_uart_unregister_device+0x44/0x50 [hci_uart] [ 50.892846] [<ffffff8000c3c9f4>] qca_serdev_remove+0x50/0x5c [hci_uart] [ 50.899654] [<ffffff800844f630>] serdev_drv_remove+0x28/0x38 [ 50.905489] [<ffffff800850fc44>] device_release_driver_internal+0x140/0x1e4 [ 50.912653] [<ffffff800850fd94>] driver_detach+0x78/0x84 [ 50.918121] [<ffffff800850edac>] bus_remove_driver+0x80/0xa8 [ 50.923942] [<ffffff80085107dc>] driver_unregister+0x4c/0x58 [ 50.929768] [<ffffff8000c3ca8c>] qca_deinit+0x24/0x598 [hci_uart] [ 50.936045] [<ffffff8000c3ca10>] hci_uart_exit+0x10/0x48 [hci_uart] [ 50.942495] [<ffffff8008136630>] SyS_delete_module+0x17c/0x224 This crash is due to dereference of hdev, after freeing it. Signed-off-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2018-08-22 20:20:05 +08:00
static void qca_power_shutdown(struct hci_uart *hu);
static int qca_power_off(struct hci_dev *hdev);
static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
{
enum qca_btsoc_type soc_type;
if (hu->serdev) {
struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
soc_type = qsd->btsoc_type;
} else {
soc_type = QCA_ROME;
}
return soc_type;
}
static const char *qca_get_firmware_name(struct hci_uart *hu)
{
if (hu->serdev) {
struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
return qsd->firmware_name;
} else {
return NULL;
}
}
static void __serial_clock_on(struct tty_struct *tty)
{
/* TODO: Some chipset requires to enable UART clock on client
* side to save power consumption or manual work is required.
* Please put your code to control UART clock here if needed
*/
}
static void __serial_clock_off(struct tty_struct *tty)
{
/* TODO: Some chipset requires to disable UART clock on client
* side to save power consumption or manual work is required.
* Please put your code to control UART clock off here if needed
*/
}
/* serial_clock_vote needs to be called with the ibs lock held */
static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
unsigned int diff;
bool old_vote = (qca->tx_vote | qca->rx_vote);
bool new_vote;
switch (vote) {
case HCI_IBS_VOTE_STATS_UPDATE:
diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
if (old_vote)
qca->vote_off_ms += diff;
else
qca->vote_on_ms += diff;
return;
case HCI_IBS_TX_VOTE_CLOCK_ON:
qca->tx_vote = true;
qca->tx_votes_on++;
new_vote = true;
break;
case HCI_IBS_RX_VOTE_CLOCK_ON:
qca->rx_vote = true;
qca->rx_votes_on++;
new_vote = true;
break;
case HCI_IBS_TX_VOTE_CLOCK_OFF:
qca->tx_vote = false;
qca->tx_votes_off++;
new_vote = qca->rx_vote | qca->tx_vote;
break;
case HCI_IBS_RX_VOTE_CLOCK_OFF:
qca->rx_vote = false;
qca->rx_votes_off++;
new_vote = qca->rx_vote | qca->tx_vote;
break;
default:
BT_ERR("Voting irregularity");
return;
}
if (new_vote != old_vote) {
if (new_vote)
__serial_clock_on(hu->tty);
else
__serial_clock_off(hu->tty);
BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
vote ? "true" : "false");
diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
if (new_vote) {
qca->votes_on++;
qca->vote_off_ms += diff;
} else {
qca->votes_off++;
qca->vote_on_ms += diff;
}
qca->vote_last_jif = jiffies;
}
}
/* Builds and sends an HCI_IBS command packet.
* These are very simple packets with only 1 cmd byte.
*/
static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
{
int err = 0;
struct sk_buff *skb = NULL;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
skb = bt_skb_alloc(1, GFP_ATOMIC);
if (!skb) {
BT_ERR("Failed to allocate memory for HCI_IBS packet");
return -ENOMEM;
}
/* Assign HCI_IBS type */
skb_put_u8(skb, cmd);
skb_queue_tail(&qca->txq, skb);
return err;
}
static void qca_wq_awake_device(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_awake_device);
struct hci_uart *hu = qca->hu;
unsigned long retrans_delay;
unsigned long flags;
BT_DBG("hu %p wq awake device", hu);
/* Vote for serial clock */
serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
/* Send wake indication to device */
if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
BT_ERR("Failed to send WAKE to device");
qca->ibs_sent_wakes++;
/* Start retransmit timer */
retrans_delay = msecs_to_jiffies(qca->wake_retrans);
mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
static void qca_wq_awake_rx(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_awake_rx);
struct hci_uart *hu = qca->hu;
unsigned long flags;
BT_DBG("hu %p wq awake rx", hu);
serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
/* Always acknowledge device wake up,
* sending IBS message doesn't count as TX ON.
*/
if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
BT_ERR("Failed to acknowledge device wake up");
qca->ibs_sent_wacks++;
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_rx_vote_off);
struct hci_uart *hu = qca->hu;
BT_DBG("hu %p rx clock vote off", hu);
serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
}
static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_tx_vote_off);
struct hci_uart *hu = qca->hu;
BT_DBG("hu %p tx clock vote off", hu);
/* Run HCI tx handling unlocked */
hci_uart_tx_wakeup(hu);
/* Now that message queued to tty driver, vote for tty clocks off.
* It is up to the tty driver to pend the clocks off until tx done.
*/
serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
}
static void hci_ibs_tx_idle_timeout(struct timer_list *t)
{
struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
struct hci_uart *hu = qca->hu;
unsigned long flags;
BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
spin_lock_irqsave_nested(&qca->hci_ibs_lock,
flags, SINGLE_DEPTH_NESTING);
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_AWAKE:
/* TX_IDLE, go to SLEEP */
if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
BT_ERR("Failed to send SLEEP to device");
break;
}
qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
qca->ibs_sent_slps++;
queue_work(qca->workqueue, &qca->ws_tx_vote_off);
break;
case HCI_IBS_TX_ASLEEP:
case HCI_IBS_TX_WAKING:
/* Fall through */
default:
BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
}
static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
{
struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
struct hci_uart *hu = qca->hu;
unsigned long flags, retrans_delay;
bool retransmit = false;
BT_DBG("hu %p wake retransmit timeout in %d state",
hu, qca->tx_ibs_state);
spin_lock_irqsave_nested(&qca->hci_ibs_lock,
flags, SINGLE_DEPTH_NESTING);
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
if (test_bit(QCA_SUSPENDING, &qca->flags)) {
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return;
}
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_WAKING:
/* No WAKE_ACK, retransmit WAKE */
retransmit = true;
if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
BT_ERR("Failed to acknowledge device wake up");
break;
}
qca->ibs_sent_wakes++;
retrans_delay = msecs_to_jiffies(qca->wake_retrans);
mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
break;
case HCI_IBS_TX_ASLEEP:
case HCI_IBS_TX_AWAKE:
/* Fall through */
default:
BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
if (retransmit)
hci_uart_tx_wakeup(hu);
}
/* Initialize protocol */
static int qca_open(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
struct qca_data *qca;
int ret;
BT_DBG("hu %p qca_open", hu);
if (!hci_uart_has_flow_control(hu))
return -EOPNOTSUPP;
qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
if (!qca)
return -ENOMEM;
skb_queue_head_init(&qca->txq);
skb_queue_head_init(&qca->tx_wait_q);
spin_lock_init(&qca->hci_ibs_lock);
qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
if (!qca->workqueue) {
BT_ERR("QCA Workqueue not initialized properly");
kfree(qca);
return -ENOMEM;
}
INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
init_waitqueue_head(&qca->suspend_wait_q);
qca->hu = hu;
init_completion(&qca->drop_ev_comp);
/* Assume we start with both sides asleep -- extra wakes OK */
qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
qca->vote_last_jif = jiffies;
hu->priv = qca;
if (hu->serdev) {
qcadev = serdev_device_get_drvdata(hu->serdev);
if (!qca_is_wcn399x(qcadev->btsoc_type)) {
gpiod_set_value_cansleep(qcadev->bt_en, 1);
/* Controller needs time to bootup. */
msleep(150);
} else {
hu->init_speed = qcadev->init_speed;
hu->oper_speed = qcadev->oper_speed;
ret = qca_regulator_enable(qcadev);
if (ret) {
destroy_workqueue(qca->workqueue);
kfree_skb(qca->rx_skb);
hu->priv = NULL;
kfree(qca);
return ret;
}
}
}
timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
qca->tx_idle_delay, qca->wake_retrans);
return 0;
}
static void qca_debugfs_init(struct hci_dev *hdev)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
struct dentry *ibs_dir;
umode_t mode;
if (!hdev->debugfs)
return;
ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
/* read only */
mode = S_IRUGO;
debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
&qca->ibs_sent_slps);
debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
&qca->ibs_sent_wakes);
debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
&qca->ibs_sent_wacks);
debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
&qca->ibs_recv_slps);
debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
&qca->ibs_recv_wakes);
debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
&qca->ibs_recv_wacks);
debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
/* read/write */
mode = S_IRUGO | S_IWUSR;
debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
&qca->tx_idle_delay);
}
/* Flush protocol data */
static int qca_flush(struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
BT_DBG("hu %p qca flush", hu);
skb_queue_purge(&qca->tx_wait_q);
skb_queue_purge(&qca->txq);
return 0;
}
/* Close protocol */
static int qca_close(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p qca close", hu);
serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
skb_queue_purge(&qca->tx_wait_q);
skb_queue_purge(&qca->txq);
del_timer(&qca->tx_idle_timer);
del_timer(&qca->wake_retrans_timer);
destroy_workqueue(qca->workqueue);
qca->hu = NULL;
if (hu->serdev) {
qcadev = serdev_device_get_drvdata(hu->serdev);
if (qca_is_wcn399x(qcadev->btsoc_type))
Bluetooth: hci_qca: Remove hdev dereference in qca_close(). When flag KASAN is set, we are seeing an following crash while removing hci_uart module. [ 50.589909] Unable to handle kernel paging request at virtual address 6b6b6b6b6b6b73 [ 50.597902] Mem abort info: [ 50.600846] Exception class = DABT (current EL), IL = 32 bits [ 50.606959] SET = 0, FnV = 0 [ 50.610142] EA = 0, S1PTW = 0 [ 50.613396] Data abort info: [ 50.616401] ISV = 0, ISS = 0x00000004 [ 50.620373] CM = 0, WnR = 0 [ 50.623466] [006b6b6b6b6b6b73] address between user and kernel address ranges [ 50.630818] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 50.671670] PC is at qca_power_shutdown+0x28/0x100 [hci_uart] [ 50.677593] LR is at qca_close+0x74/0xb0 [hci_uart] [ 50.775689] Process rmmod (pid: 2144, stack limit = 0xffffff801ba90000) [ 50.782493] Call trace: [ 50.872150] [<ffffff8000c3c81c>] qca_power_shutdown+0x28/0x100 [hci_uart] [ 50.879138] [<ffffff8000c3c968>] qca_close+0x74/0xb0 [hci_uart] [ 50.885238] [<ffffff8000c3a71c>] hci_uart_unregister_device+0x44/0x50 [hci_uart] [ 50.892846] [<ffffff8000c3c9f4>] qca_serdev_remove+0x50/0x5c [hci_uart] [ 50.899654] [<ffffff800844f630>] serdev_drv_remove+0x28/0x38 [ 50.905489] [<ffffff800850fc44>] device_release_driver_internal+0x140/0x1e4 [ 50.912653] [<ffffff800850fd94>] driver_detach+0x78/0x84 [ 50.918121] [<ffffff800850edac>] bus_remove_driver+0x80/0xa8 [ 50.923942] [<ffffff80085107dc>] driver_unregister+0x4c/0x58 [ 50.929768] [<ffffff8000c3ca8c>] qca_deinit+0x24/0x598 [hci_uart] [ 50.936045] [<ffffff8000c3ca10>] hci_uart_exit+0x10/0x48 [hci_uart] [ 50.942495] [<ffffff8008136630>] SyS_delete_module+0x17c/0x224 This crash is due to dereference of hdev, after freeing it. Signed-off-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2018-08-22 20:20:05 +08:00
qca_power_shutdown(hu);
else
gpiod_set_value_cansleep(qcadev->bt_en, 0);
}
kfree_skb(qca->rx_skb);
hu->priv = NULL;
kfree(qca);
return 0;
}
/* Called upon a wake-up-indication from the device.
*/
static void device_want_to_wakeup(struct hci_uart *hu)
{
unsigned long flags;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p want to wake up", hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->ibs_recv_wakes++;
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
/* Don't wake the rx up when suspending. */
if (test_bit(QCA_SUSPENDING, &qca->flags)) {
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return;
}
switch (qca->rx_ibs_state) {
case HCI_IBS_RX_ASLEEP:
/* Make sure clock is on - we may have turned clock off since
* receiving the wake up indicator awake rx clock.
*/
queue_work(qca->workqueue, &qca->ws_awake_rx);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return;
case HCI_IBS_RX_AWAKE:
/* Always acknowledge device wake up,
* sending IBS message doesn't count as TX ON.
*/
if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
BT_ERR("Failed to acknowledge device wake up");
break;
}
qca->ibs_sent_wacks++;
break;
default:
/* Any other state is illegal */
BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
qca->rx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
/* Called upon a sleep-indication from the device.
*/
static void device_want_to_sleep(struct hci_uart *hu)
{
unsigned long flags;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->ibs_recv_slps++;
switch (qca->rx_ibs_state) {
case HCI_IBS_RX_AWAKE:
/* Update state */
qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
/* Vote off rx clock under workqueue */
queue_work(qca->workqueue, &qca->ws_rx_vote_off);
break;
case HCI_IBS_RX_ASLEEP:
break;
default:
/* Any other state is illegal */
BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
qca->rx_ibs_state);
break;
}
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
wake_up_interruptible(&qca->suspend_wait_q);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
}
/* Called upon wake-up-acknowledgement from the device
*/
static void device_woke_up(struct hci_uart *hu)
{
unsigned long flags, idle_delay;
struct qca_data *qca = hu->priv;
struct sk_buff *skb = NULL;
BT_DBG("hu %p woke up", hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->ibs_recv_wacks++;
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
/* Don't react to the wake-up-acknowledgment when suspending. */
if (test_bit(QCA_SUSPENDING, &qca->flags)) {
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return;
}
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_AWAKE:
/* Expect one if we send 2 WAKEs */
BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
qca->tx_ibs_state);
break;
case HCI_IBS_TX_WAKING:
/* Send pending packets */
while ((skb = skb_dequeue(&qca->tx_wait_q)))
skb_queue_tail(&qca->txq, skb);
/* Switch timers and change state to HCI_IBS_TX_AWAKE */
del_timer(&qca->wake_retrans_timer);
idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
break;
case HCI_IBS_TX_ASLEEP:
/* Fall through */
default:
BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
qca->tx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
/* Enqueue frame for transmittion (padding, crc, etc) may be called from
* two simultaneous tasklets.
*/
static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
unsigned long flags = 0, idle_delay;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
qca->tx_ibs_state);
/* Prepend skb with frame type */
memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
/* Don't go to sleep in middle of patch download or
* Out-Of-Band(GPIOs control) sleep is selected.
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
* Don't wake the device up when suspending.
*/
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
test_bit(QCA_SUSPENDING, &qca->flags)) {
skb_queue_tail(&qca->txq, skb);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return 0;
}
/* Act according to current state */
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_AWAKE:
BT_DBG("Device awake, sending normally");
skb_queue_tail(&qca->txq, skb);
idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
break;
case HCI_IBS_TX_ASLEEP:
BT_DBG("Device asleep, waking up and queueing packet");
/* Save packet for later */
skb_queue_tail(&qca->tx_wait_q, skb);
qca->tx_ibs_state = HCI_IBS_TX_WAKING;
/* Schedule a work queue to wake up device */
queue_work(qca->workqueue, &qca->ws_awake_device);
break;
case HCI_IBS_TX_WAKING:
BT_DBG("Device waking up, queueing packet");
/* Transient state; just keep packet for later */
skb_queue_tail(&qca->tx_wait_q, skb);
break;
default:
BT_ERR("Illegal tx state: %d (losing packet)",
qca->tx_ibs_state);
kfree_skb(skb);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return 0;
}
static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
device_want_to_sleep(hu);
kfree_skb(skb);
return 0;
}
static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
device_want_to_wakeup(hu);
kfree_skb(skb);
return 0;
}
static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
device_woke_up(hu);
kfree_skb(skb);
return 0;
}
static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
{
/* We receive debug logs from chip as an ACL packets.
* Instead of sending the data to ACL to decode the
* received data, we are pushing them to the above layers
* as a diagnostic packet.
*/
if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
return hci_recv_diag(hdev, skb);
return hci_recv_frame(hdev, skb);
}
static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
struct hci_event_hdr *hdr = (void *)skb->data;
/* For the WCN3990 the vendor command for a baudrate change
* isn't sent as synchronous HCI command, because the
* controller sends the corresponding vendor event with the
* new baudrate. The event is received and properly decoded
* after changing the baudrate of the host port. It needs to
* be dropped, otherwise it can be misinterpreted as
* response to a later firmware download command (also a
* vendor command).
*/
if (hdr->evt == HCI_EV_VENDOR)
complete(&qca->drop_ev_comp);
kfree_skb(skb);
return 0;
}
return hci_recv_frame(hdev, skb);
}
#define QCA_IBS_SLEEP_IND_EVENT \
.type = HCI_IBS_SLEEP_IND, \
.hlen = 0, \
.loff = 0, \
.lsize = 0, \
.maxlen = HCI_MAX_IBS_SIZE
#define QCA_IBS_WAKE_IND_EVENT \
.type = HCI_IBS_WAKE_IND, \
.hlen = 0, \
.loff = 0, \
.lsize = 0, \
.maxlen = HCI_MAX_IBS_SIZE
#define QCA_IBS_WAKE_ACK_EVENT \
.type = HCI_IBS_WAKE_ACK, \
.hlen = 0, \
.loff = 0, \
.lsize = 0, \
.maxlen = HCI_MAX_IBS_SIZE
static const struct h4_recv_pkt qca_recv_pkts[] = {
{ H4_RECV_ACL, .recv = qca_recv_acl_data },
{ H4_RECV_SCO, .recv = hci_recv_frame },
{ H4_RECV_EVENT, .recv = qca_recv_event },
{ QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind },
{ QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack },
{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
};
static int qca_recv(struct hci_uart *hu, const void *data, int count)
{
struct qca_data *qca = hu->priv;
if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
return -EUNATCH;
qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
if (IS_ERR(qca->rx_skb)) {
int err = PTR_ERR(qca->rx_skb);
bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
qca->rx_skb = NULL;
return err;
}
return count;
}
static struct sk_buff *qca_dequeue(struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
return skb_dequeue(&qca->txq);
}
static uint8_t qca_get_baudrate_value(int speed)
{
switch (speed) {
case 9600:
return QCA_BAUDRATE_9600;
case 19200:
return QCA_BAUDRATE_19200;
case 38400:
return QCA_BAUDRATE_38400;
case 57600:
return QCA_BAUDRATE_57600;
case 115200:
return QCA_BAUDRATE_115200;
case 230400:
return QCA_BAUDRATE_230400;
case 460800:
return QCA_BAUDRATE_460800;
case 500000:
return QCA_BAUDRATE_500000;
case 921600:
return QCA_BAUDRATE_921600;
case 1000000:
return QCA_BAUDRATE_1000000;
case 2000000:
return QCA_BAUDRATE_2000000;
case 3000000:
return QCA_BAUDRATE_3000000;
case 3200000:
return QCA_BAUDRATE_3200000;
case 3500000:
return QCA_BAUDRATE_3500000;
default:
return QCA_BAUDRATE_115200;
}
}
static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
struct sk_buff *skb;
u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
if (baudrate > QCA_BAUDRATE_3200000)
return -EINVAL;
cmd[4] = baudrate;
skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
if (!skb) {
bt_dev_err(hdev, "Failed to allocate baudrate packet");
return -ENOMEM;
}
/* Assign commands to change baudrate and packet type. */
skb_put_data(skb, cmd, sizeof(cmd));
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
skb_queue_tail(&qca->txq, skb);
hci_uart_tx_wakeup(hu);
/* Wait for the baudrate change request to be sent */
while (!skb_queue_empty(&qca->txq))
usleep_range(100, 200);
if (hu->serdev)
serdev_device_wait_until_sent(hu->serdev,
msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
/* Give the controller time to process the request */
if (qca_is_wcn399x(qca_soc_type(hu)))
msleep(10);
else
msleep(300);
return 0;
}
static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
{
if (hu->serdev)
serdev_device_set_baudrate(hu->serdev, speed);
else
hci_uart_set_baudrate(hu, speed);
}
static int qca_send_power_pulse(struct hci_uart *hu, bool on)
{
int ret;
int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
/* These power pulses are single byte command which are sent
* at required baudrate to wcn3990. On wcn3990, we have an external
* circuit at Tx pin which decodes the pulse sent at specific baudrate.
* For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
* and also we use the same power inputs to turn on and off for
* Wi-Fi/BT. Powering up the power sources will not enable BT, until
* we send a power on pulse at 115200 bps. This algorithm will help to
* save power. Disabling hardware flow control is mandatory while
* sending power pulses to SoC.
*/
bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
serdev_device_write_flush(hu->serdev);
hci_uart_set_flow_control(hu, true);
ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
if (ret < 0) {
bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
return ret;
}
serdev_device_wait_until_sent(hu->serdev, timeout);
hci_uart_set_flow_control(hu, false);
/* Give to controller time to boot/shutdown */
if (on)
msleep(100);
else
msleep(10);
return 0;
}
static unsigned int qca_get_speed(struct hci_uart *hu,
enum qca_speed_type speed_type)
{
unsigned int speed = 0;
if (speed_type == QCA_INIT_SPEED) {
if (hu->init_speed)
speed = hu->init_speed;
else if (hu->proto->init_speed)
speed = hu->proto->init_speed;
} else {
if (hu->oper_speed)
speed = hu->oper_speed;
else if (hu->proto->oper_speed)
speed = hu->proto->oper_speed;
}
return speed;
}
static int qca_check_speeds(struct hci_uart *hu)
{
if (qca_is_wcn399x(qca_soc_type(hu))) {
if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
!qca_get_speed(hu, QCA_OPER_SPEED))
return -EINVAL;
} else {
if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
!qca_get_speed(hu, QCA_OPER_SPEED))
return -EINVAL;
}
return 0;
}
static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
{
unsigned int speed, qca_baudrate;
struct qca_data *qca = hu->priv;
int ret = 0;
if (speed_type == QCA_INIT_SPEED) {
speed = qca_get_speed(hu, QCA_INIT_SPEED);
if (speed)
host_set_baudrate(hu, speed);
} else {
enum qca_btsoc_type soc_type = qca_soc_type(hu);
speed = qca_get_speed(hu, QCA_OPER_SPEED);
if (!speed)
return 0;
/* Disable flow control for wcn3990 to deassert RTS while
* changing the baudrate of chip and host.
*/
if (qca_is_wcn399x(soc_type))
hci_uart_set_flow_control(hu, true);
if (soc_type == QCA_WCN3990) {
reinit_completion(&qca->drop_ev_comp);
set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
}
qca_baudrate = qca_get_baudrate_value(speed);
bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
ret = qca_set_baudrate(hu->hdev, qca_baudrate);
if (ret)
goto error;
host_set_baudrate(hu, speed);
error:
if (qca_is_wcn399x(soc_type))
hci_uart_set_flow_control(hu, false);
if (soc_type == QCA_WCN3990) {
/* Wait for the controller to send the vendor event
* for the baudrate change command.
*/
if (!wait_for_completion_timeout(&qca->drop_ev_comp,
msecs_to_jiffies(100))) {
bt_dev_err(hu->hdev,
"Failed to change controller baudrate\n");
ret = -ETIMEDOUT;
}
clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
}
}
return ret;
}
static int qca_wcn3990_init(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
int ret;
/* Check for vregs status, may be hci down has turned
* off the voltage regulator.
*/
qcadev = serdev_device_get_drvdata(hu->serdev);
if (!qcadev->bt_power->vregs_on) {
serdev_device_close(hu->serdev);
ret = qca_regulator_enable(qcadev);
if (ret)
return ret;
ret = serdev_device_open(hu->serdev);
if (ret) {
bt_dev_err(hu->hdev, "failed to open port");
return ret;
}
}
/* Forcefully enable wcn3990 to enter in to boot mode. */
host_set_baudrate(hu, 2400);
ret = qca_send_power_pulse(hu, false);
if (ret)
return ret;
qca_set_speed(hu, QCA_INIT_SPEED);
ret = qca_send_power_pulse(hu, true);
if (ret)
return ret;
/* Now the device is in ready state to communicate with host.
* To sync host with device we need to reopen port.
* Without this, we will have RTS and CTS synchronization
* issues.
*/
serdev_device_close(hu->serdev);
ret = serdev_device_open(hu->serdev);
if (ret) {
bt_dev_err(hu->hdev, "failed to open port");
return ret;
}
hci_uart_set_flow_control(hu, false);
return 0;
}
static int qca_setup(struct hci_uart *hu)
{
struct hci_dev *hdev = hu->hdev;
struct qca_data *qca = hu->priv;
unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
enum qca_btsoc_type soc_type = qca_soc_type(hu);
const char *firmware_name = qca_get_firmware_name(hu);
int ret;
int soc_ver = 0;
ret = qca_check_speeds(hu);
if (ret)
return ret;
/* Patch downloading has to be done without IBS mode */
clear_bit(QCA_IBS_ENABLED, &qca->flags);
/* Enable controller to do both LE scan and BR/EDR inquiry
* simultaneously.
*/
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
if (qca_is_wcn399x(soc_type)) {
bt_dev_info(hdev, "setting up wcn3990");
/* Enable NON_PERSISTENT_SETUP QUIRK to ensure to execute
* setup for every hci up.
*/
set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
hu->hdev->shutdown = qca_power_off;
ret = qca_wcn3990_init(hu);
if (ret)
return ret;
ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
if (ret)
return ret;
} else {
bt_dev_info(hdev, "ROME setup");
qca_set_speed(hu, QCA_INIT_SPEED);
}
/* Setup user speed if needed */
speed = qca_get_speed(hu, QCA_OPER_SPEED);
if (speed) {
ret = qca_set_speed(hu, QCA_OPER_SPEED);
if (ret)
return ret;
qca_baudrate = qca_get_baudrate_value(speed);
}
if (!qca_is_wcn399x(soc_type)) {
/* Get QCA version information */
ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
if (ret)
return ret;
}
bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
/* Setup patch / NVM configurations */
ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
firmware_name);
if (!ret) {
set_bit(QCA_IBS_ENABLED, &qca->flags);
qca_debugfs_init(hdev);
} else if (ret == -ENOENT) {
/* No patch/nvm-config found, run with original fw/config */
ret = 0;
} else if (ret == -EAGAIN) {
/*
* Userspace firmware loader will return -EAGAIN in case no
* patch/nvm-config is found, so run with original fw/config.
*/
ret = 0;
}
/* Setup bdaddr */
if (qca_is_wcn399x(soc_type))
hu->hdev->set_bdaddr = qca_set_bdaddr;
else
hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
return ret;
}
static const struct hci_uart_proto qca_proto = {
.id = HCI_UART_QCA,
.name = "QCA",
.manufacturer = 29,
.init_speed = 115200,
.oper_speed = 3000000,
.open = qca_open,
.close = qca_close,
.flush = qca_flush,
.setup = qca_setup,
.recv = qca_recv,
.enqueue = qca_enqueue,
.dequeue = qca_dequeue,
};
static const struct qca_vreg_data qca_soc_data_wcn3990 = {
.soc_type = QCA_WCN3990,
.vregs = (struct qca_vreg []) {
{ "vddio", 15000 },
{ "vddxo", 80000 },
{ "vddrf", 300000 },
{ "vddch0", 450000 },
},
.num_vregs = 4,
};
static const struct qca_vreg_data qca_soc_data_wcn3991 = {
.soc_type = QCA_WCN3991,
.vregs = (struct qca_vreg []) {
{ "vddio", 15000 },
{ "vddxo", 80000 },
{ "vddrf", 300000 },
{ "vddch0", 450000 },
},
.num_vregs = 4,
};
static const struct qca_vreg_data qca_soc_data_wcn3998 = {
.soc_type = QCA_WCN3998,
.vregs = (struct qca_vreg []) {
{ "vddio", 10000 },
{ "vddxo", 80000 },
{ "vddrf", 300000 },
{ "vddch0", 450000 },
},
.num_vregs = 4,
};
Bluetooth: hci_qca: Remove hdev dereference in qca_close(). When flag KASAN is set, we are seeing an following crash while removing hci_uart module. [ 50.589909] Unable to handle kernel paging request at virtual address 6b6b6b6b6b6b73 [ 50.597902] Mem abort info: [ 50.600846] Exception class = DABT (current EL), IL = 32 bits [ 50.606959] SET = 0, FnV = 0 [ 50.610142] EA = 0, S1PTW = 0 [ 50.613396] Data abort info: [ 50.616401] ISV = 0, ISS = 0x00000004 [ 50.620373] CM = 0, WnR = 0 [ 50.623466] [006b6b6b6b6b6b73] address between user and kernel address ranges [ 50.630818] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 50.671670] PC is at qca_power_shutdown+0x28/0x100 [hci_uart] [ 50.677593] LR is at qca_close+0x74/0xb0 [hci_uart] [ 50.775689] Process rmmod (pid: 2144, stack limit = 0xffffff801ba90000) [ 50.782493] Call trace: [ 50.872150] [<ffffff8000c3c81c>] qca_power_shutdown+0x28/0x100 [hci_uart] [ 50.879138] [<ffffff8000c3c968>] qca_close+0x74/0xb0 [hci_uart] [ 50.885238] [<ffffff8000c3a71c>] hci_uart_unregister_device+0x44/0x50 [hci_uart] [ 50.892846] [<ffffff8000c3c9f4>] qca_serdev_remove+0x50/0x5c [hci_uart] [ 50.899654] [<ffffff800844f630>] serdev_drv_remove+0x28/0x38 [ 50.905489] [<ffffff800850fc44>] device_release_driver_internal+0x140/0x1e4 [ 50.912653] [<ffffff800850fd94>] driver_detach+0x78/0x84 [ 50.918121] [<ffffff800850edac>] bus_remove_driver+0x80/0xa8 [ 50.923942] [<ffffff80085107dc>] driver_unregister+0x4c/0x58 [ 50.929768] [<ffffff8000c3ca8c>] qca_deinit+0x24/0x598 [hci_uart] [ 50.936045] [<ffffff8000c3ca10>] hci_uart_exit+0x10/0x48 [hci_uart] [ 50.942495] [<ffffff8008136630>] SyS_delete_module+0x17c/0x224 This crash is due to dereference of hdev, after freeing it. Signed-off-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2018-08-22 20:20:05 +08:00
static void qca_power_shutdown(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
struct qca_data *qca = hu->priv;
unsigned long flags;
qcadev = serdev_device_get_drvdata(hu->serdev);
/* From this point we go into power off state. But serial port is
* still open, stop queueing the IBS data and flush all the buffered
* data in skb's.
*/
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
clear_bit(QCA_IBS_ENABLED, &qca->flags);
qca_flush(hu);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
host_set_baudrate(hu, 2400);
qca_send_power_pulse(hu, false);
qca_regulator_disable(qcadev);
}
static int qca_power_off(struct hci_dev *hdev)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
/* Perform pre shutdown command */
qca_send_pre_shutdown_cmd(hdev);
usleep_range(8000, 10000);
qca_power_shutdown(hu);
return 0;
}
static int qca_regulator_enable(struct qca_serdev *qcadev)
{
struct qca_power *power = qcadev->bt_power;
int ret;
/* Already enabled */
if (power->vregs_on)
return 0;
BT_DBG("enabling %d regulators)", power->num_vregs);
ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
if (ret)
return ret;
power->vregs_on = true;
return 0;
}
static void qca_regulator_disable(struct qca_serdev *qcadev)
{
struct qca_power *power;
if (!qcadev)
return;
power = qcadev->bt_power;
/* Already disabled? */
if (!power->vregs_on)
return;
regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
power->vregs_on = false;
}
static int qca_init_regulators(struct qca_power *qca,
const struct qca_vreg *vregs, size_t num_vregs)
{
struct regulator_bulk_data *bulk;
int ret;
int i;
bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
if (!bulk)
return -ENOMEM;
for (i = 0; i < num_vregs; i++)
bulk[i].supply = vregs[i].name;
ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
if (ret < 0)
return ret;
for (i = 0; i < num_vregs; i++) {
ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
if (ret)
return ret;
}
qca->vreg_bulk = bulk;
qca->num_vregs = num_vregs;
return 0;
}
static int qca_serdev_probe(struct serdev_device *serdev)
{
struct qca_serdev *qcadev;
const struct qca_vreg_data *data;
int err;
qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
if (!qcadev)
return -ENOMEM;
qcadev->serdev_hu.serdev = serdev;
data = of_device_get_match_data(&serdev->dev);
serdev_device_set_drvdata(serdev, qcadev);
device_property_read_string(&serdev->dev, "firmware-name",
&qcadev->firmware_name);
if (data && qca_is_wcn399x(data->soc_type)) {
qcadev->btsoc_type = data->soc_type;
qcadev->bt_power = devm_kzalloc(&serdev->dev,
sizeof(struct qca_power),
GFP_KERNEL);
if (!qcadev->bt_power)
return -ENOMEM;
qcadev->bt_power->dev = &serdev->dev;
err = qca_init_regulators(qcadev->bt_power, data->vregs,
data->num_vregs);
if (err) {
BT_ERR("Failed to init regulators:%d", err);
goto out;
}
qcadev->bt_power->vregs_on = false;
device_property_read_u32(&serdev->dev, "max-speed",
&qcadev->oper_speed);
if (!qcadev->oper_speed)
BT_DBG("UART will pick default operating speed");
err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
if (err) {
BT_ERR("wcn3990 serdev registration failed");
goto out;
}
} else {
qcadev->btsoc_type = QCA_ROME;
qcadev->bt_en = devm_gpiod_get(&serdev->dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(qcadev->bt_en)) {
dev_err(&serdev->dev, "failed to acquire enable gpio\n");
return PTR_ERR(qcadev->bt_en);
}
qcadev->susclk = devm_clk_get(&serdev->dev, NULL);
if (IS_ERR(qcadev->susclk)) {
dev_err(&serdev->dev, "failed to acquire clk\n");
return PTR_ERR(qcadev->susclk);
}
err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
if (err)
return err;
err = clk_prepare_enable(qcadev->susclk);
if (err)
return err;
err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
if (err)
clk_disable_unprepare(qcadev->susclk);
}
out: return err;
}
static void qca_serdev_remove(struct serdev_device *serdev)
{
struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
if (qca_is_wcn399x(qcadev->btsoc_type))
Bluetooth: hci_qca: Remove hdev dereference in qca_close(). When flag KASAN is set, we are seeing an following crash while removing hci_uart module. [ 50.589909] Unable to handle kernel paging request at virtual address 6b6b6b6b6b6b73 [ 50.597902] Mem abort info: [ 50.600846] Exception class = DABT (current EL), IL = 32 bits [ 50.606959] SET = 0, FnV = 0 [ 50.610142] EA = 0, S1PTW = 0 [ 50.613396] Data abort info: [ 50.616401] ISV = 0, ISS = 0x00000004 [ 50.620373] CM = 0, WnR = 0 [ 50.623466] [006b6b6b6b6b6b73] address between user and kernel address ranges [ 50.630818] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 50.671670] PC is at qca_power_shutdown+0x28/0x100 [hci_uart] [ 50.677593] LR is at qca_close+0x74/0xb0 [hci_uart] [ 50.775689] Process rmmod (pid: 2144, stack limit = 0xffffff801ba90000) [ 50.782493] Call trace: [ 50.872150] [<ffffff8000c3c81c>] qca_power_shutdown+0x28/0x100 [hci_uart] [ 50.879138] [<ffffff8000c3c968>] qca_close+0x74/0xb0 [hci_uart] [ 50.885238] [<ffffff8000c3a71c>] hci_uart_unregister_device+0x44/0x50 [hci_uart] [ 50.892846] [<ffffff8000c3c9f4>] qca_serdev_remove+0x50/0x5c [hci_uart] [ 50.899654] [<ffffff800844f630>] serdev_drv_remove+0x28/0x38 [ 50.905489] [<ffffff800850fc44>] device_release_driver_internal+0x140/0x1e4 [ 50.912653] [<ffffff800850fd94>] driver_detach+0x78/0x84 [ 50.918121] [<ffffff800850edac>] bus_remove_driver+0x80/0xa8 [ 50.923942] [<ffffff80085107dc>] driver_unregister+0x4c/0x58 [ 50.929768] [<ffffff8000c3ca8c>] qca_deinit+0x24/0x598 [hci_uart] [ 50.936045] [<ffffff8000c3ca10>] hci_uart_exit+0x10/0x48 [hci_uart] [ 50.942495] [<ffffff8008136630>] SyS_delete_module+0x17c/0x224 This crash is due to dereference of hdev, after freeing it. Signed-off-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2018-08-22 20:20:05 +08:00
qca_power_shutdown(&qcadev->serdev_hu);
else
clk_disable_unprepare(qcadev->susclk);
hci_uart_unregister_device(&qcadev->serdev_hu);
}
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
static int __maybe_unused qca_suspend(struct device *dev)
{
struct hci_dev *hdev = container_of(dev, struct hci_dev, dev);
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
unsigned long flags;
int ret = 0;
u8 cmd;
set_bit(QCA_SUSPENDING, &qca->flags);
/* Device is downloading patch or doesn't support in-band sleep. */
if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
return 0;
cancel_work_sync(&qca->ws_awake_device);
cancel_work_sync(&qca->ws_awake_rx);
spin_lock_irqsave_nested(&qca->hci_ibs_lock,
flags, SINGLE_DEPTH_NESTING);
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_WAKING:
del_timer(&qca->wake_retrans_timer);
/* Fall through */
case HCI_IBS_TX_AWAKE:
del_timer(&qca->tx_idle_timer);
serdev_device_write_flush(hu->serdev);
cmd = HCI_IBS_SLEEP_IND;
ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
if (ret < 0) {
BT_ERR("Failed to send SLEEP to device");
break;
}
qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
qca->ibs_sent_slps++;
qca_wq_serial_tx_clock_vote_off(&qca->ws_tx_vote_off);
break;
case HCI_IBS_TX_ASLEEP:
break;
default:
BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
ret = -EINVAL;
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
if (ret < 0)
goto error;
serdev_device_wait_until_sent(hu->serdev,
msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
* to sleep, so that the packet does not wake the system later.
*/
ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
if (ret > 0)
return 0;
if (ret == 0)
ret = -ETIMEDOUT;
error:
clear_bit(QCA_SUSPENDING, &qca->flags);
return ret;
}
static int __maybe_unused qca_resume(struct device *dev)
{
struct hci_dev *hdev = container_of(dev, struct hci_dev, dev);
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
clear_bit(QCA_SUSPENDING, &qca->flags);
return 0;
}
static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
static const struct of_device_id qca_bluetooth_of_match[] = {
{ .compatible = "qcom,qca6174-bt" },
{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
static struct serdev_device_driver qca_serdev_driver = {
.probe = qca_serdev_probe,
.remove = qca_serdev_remove,
.driver = {
.name = "hci_uart_qca",
.of_match_table = qca_bluetooth_of_match,
Bluetooth: hci_qca: add PM support Add PM suspend/resume callbacks for hci_qca driver. BT host will make sure both Rx and Tx go into sleep state in qca_suspend. Without this, Tx may still remain in awake state, which prevents BTSOC from entering deep sleep. For example, BlueZ will send Set Event Mask to device when suspending and this will wake the device Rx up. However, the Tx idle timeout on the host side is 2000 ms. If the host is suspended before its Tx idle times out, it won't send HCI_IBS_SLEEP_IND to the device and the device Rx will remain awake. We implement this by canceling relevant work in workqueue, sending HCI_IBS_SLEEP_IND to the device and then waiting HCI_IBS_SLEEP_IND sent by the device. In order to prevent the device from being awaken again after qca_suspend is called, we introduce QCA_SUSPEND flag. QCA_SUSPEND is set in the beginning of qca_suspend to indicate system is suspending and that we'd like to ignore any further wake events. With QCA_SUSPEND and spinlock, we can avoid race condition, e.g. if qca_enqueue acquires qca->hci_ibs_lock before qca_suspend calls cancel_work_sync and then qca_enqueue adds a new qca->ws_awake_device work after the previous one is cancelled. If BTSOC wants to wake the whole system up after qca_suspend is called, it will keep sending HCI_IBS_WAKE_IND and uart driver will take care of waking the system. For example, uart driver will reconfigure its Rx pin to a normal GPIO pin and enable irq wake on that pin when suspending. Once host detects Rx falling, the system will begin resuming. Then, the BT host clears QCA_SUSPEND flag in qca_resume and begins dealing with normal HCI packets. By doing so, only a few HCI_IBS_WAKE_IND packets are lost and there is no data packet loss. Signed-off-by: Claire Chang <tientzu@chromium.org> Reviewed-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-10-31 18:46:14 +08:00
.pm = &qca_pm_ops,
},
};
int __init qca_init(void)
{
serdev_device_driver_register(&qca_serdev_driver);
return hci_uart_register_proto(&qca_proto);
}
int __exit qca_deinit(void)
{
serdev_device_driver_unregister(&qca_serdev_driver);
return hci_uart_unregister_proto(&qca_proto);
}