linux/drivers/net/sky2.c

4644 lines
120 KiB
C
Raw Normal View History

/*
* New driver for Marvell Yukon 2 chipset.
* Based on earlier sk98lin, and skge driver.
*
* This driver intentionally does not support all the features
* of the original driver such as link fail-over and link management because
* those should be done at higher levels.
*
* Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/crc32.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/ip.h>
#include <net/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/if_vlan.h>
#include <linux/prefetch.h>
#include <linux/debugfs.h>
#include <linux/mii.h>
#include <asm/irq.h>
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
#define SKY2_VLAN_TAG_USED 1
#endif
#include "sky2.h"
#define DRV_NAME "sky2"
#define DRV_VERSION "1.22"
#define PFX DRV_NAME " "
/*
* The Yukon II chipset takes 64 bit command blocks (called list elements)
* that are organized into three (receive, transmit, status) different rings
* similar to Tigon3.
*/
#define RX_LE_SIZE 1024
#define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
#define RX_MAX_PENDING (RX_LE_SIZE/6 - 2)
#define RX_DEF_PENDING RX_MAX_PENDING
#define TX_RING_SIZE 512
#define TX_DEF_PENDING (TX_RING_SIZE - 1)
#define TX_MIN_PENDING 64
#define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
#define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
#define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
#define TX_WATCHDOG (5 * HZ)
#define NAPI_WEIGHT 64
#define PHY_RETRIES 1000
#define SKY2_EEPROM_MAGIC 0x9955aabb
#define RING_NEXT(x,s) (((x)+1) & ((s)-1))
static const u32 default_msg =
NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
| NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
| NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
static int debug = -1; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static int copybreak __read_mostly = 128;
module_param(copybreak, int, 0);
MODULE_PARM_DESC(copybreak, "Receive copy threshold");
static int disable_msi = 0;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
static DEFINE_PCI_DEVICE_TABLE(sky2_id_table) = {
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) }, /* SK-9Sxx */
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B02) }, /* DGE-560SX */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B03) }, /* DGE-550T */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) }, /* 88E8021 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) }, /* 88E8022 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) }, /* 88E8061 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) }, /* 88E8062 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) }, /* 88E8021 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) }, /* 88E8022 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) }, /* 88E8061 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) }, /* 88E8062 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) }, /* 88E8035 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) }, /* 88E8036 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) }, /* 88E8038 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) }, /* 88E8039 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4354) }, /* 88E8040 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4355) }, /* 88E8040T */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4356) }, /* 88EC033 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4357) }, /* 88E8042 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x435A) }, /* 88E8048 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) }, /* 88E8052 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) }, /* 88E8050 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) }, /* 88E8053 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) }, /* 88E8055 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) }, /* 88E8056 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4365) }, /* 88E8070 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) }, /* 88EC036 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) }, /* 88EC032 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) }, /* 88EC034 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4369) }, /* 88EC042 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436A) }, /* 88E8058 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436B) }, /* 88E8071 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436C) }, /* 88E8072 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436D) }, /* 88E8055 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4370) }, /* 88E8075 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4380) }, /* 88E8057 */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, sky2_id_table);
/* Avoid conditionals by using array */
static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
static void sky2_set_multicast(struct net_device *dev);
/* Access to PHY via serial interconnect */
static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
{
int i;
gma_write16(hw, port, GM_SMI_DATA, val);
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) {
u16 ctrl = gma_read16(hw, port, GM_SMI_CTRL);
if (ctrl == 0xffff)
goto io_error;
if (!(ctrl & GM_SMI_CT_BUSY))
return 0;
udelay(10);
}
dev_warn(&hw->pdev->dev,"%s: phy write timeout\n", hw->dev[port]->name);
return -ETIMEDOUT;
io_error:
dev_err(&hw->pdev->dev, "%s: phy I/O error\n", hw->dev[port]->name);
return -EIO;
}
static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
{
int i;
gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) {
u16 ctrl = gma_read16(hw, port, GM_SMI_CTRL);
if (ctrl == 0xffff)
goto io_error;
if (ctrl & GM_SMI_CT_RD_VAL) {
*val = gma_read16(hw, port, GM_SMI_DATA);
return 0;
}
udelay(10);
}
dev_warn(&hw->pdev->dev, "%s: phy read timeout\n", hw->dev[port]->name);
return -ETIMEDOUT;
io_error:
dev_err(&hw->pdev->dev, "%s: phy I/O error\n", hw->dev[port]->name);
return -EIO;
}
static inline u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
{
u16 v;
__gm_phy_read(hw, port, reg, &v);
return v;
}
static void sky2_power_on(struct sky2_hw *hw)
{
/* switch power to VCC (WA for VAUX problem) */
sky2_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* disable Core Clock Division, */
sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
/* enable bits are inverted */
sky2_write8(hw, B2_Y2_CLK_GATE,
Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
else
sky2_write8(hw, B2_Y2_CLK_GATE, 0);
if (hw->flags & SKY2_HW_ADV_POWER_CTL) {
u32 reg;
sky2_pci_write32(hw, PCI_DEV_REG3, 0);
reg = sky2_pci_read32(hw, PCI_DEV_REG4);
/* set all bits to 0 except bits 15..12 and 8 */
reg &= P_ASPM_CONTROL_MSK;
sky2_pci_write32(hw, PCI_DEV_REG4, reg);
reg = sky2_pci_read32(hw, PCI_DEV_REG5);
/* set all bits to 0 except bits 28 & 27 */
reg &= P_CTL_TIM_VMAIN_AV_MSK;
sky2_pci_write32(hw, PCI_DEV_REG5, reg);
sky2_pci_write32(hw, PCI_CFG_REG_1, 0);
/* Enable workaround for dev 4.107 on Yukon-Ultra & Extreme */
reg = sky2_read32(hw, B2_GP_IO);
reg |= GLB_GPIO_STAT_RACE_DIS;
sky2_write32(hw, B2_GP_IO, reg);
sky2_read32(hw, B2_GP_IO);
}
}
static void sky2_power_aux(struct sky2_hw *hw)
{
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
sky2_write8(hw, B2_Y2_CLK_GATE, 0);
else
/* enable bits are inverted */
sky2_write8(hw, B2_Y2_CLK_GATE,
Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
/* switch power to VAUX */
if (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL)
sky2_write8(hw, B0_POWER_CTRL,
(PC_VAUX_ENA | PC_VCC_ENA |
PC_VAUX_ON | PC_VCC_OFF));
}
static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port)
{
u16 reg;
/* disable all GMAC IRQ's */
sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
gma_write16(hw, port, GM_MC_ADDR_H2, 0);
gma_write16(hw, port, GM_MC_ADDR_H3, 0);
gma_write16(hw, port, GM_MC_ADDR_H4, 0);
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
gma_write16(hw, port, GM_RX_CTRL, reg);
}
/* flow control to advertise bits */
static const u16 copper_fc_adv[] = {
[FC_NONE] = 0,
[FC_TX] = PHY_M_AN_ASP,
[FC_RX] = PHY_M_AN_PC,
[FC_BOTH] = PHY_M_AN_PC | PHY_M_AN_ASP,
};
/* flow control to advertise bits when using 1000BaseX */
static const u16 fiber_fc_adv[] = {
[FC_NONE] = PHY_M_P_NO_PAUSE_X,
[FC_TX] = PHY_M_P_ASYM_MD_X,
[FC_RX] = PHY_M_P_SYM_MD_X,
[FC_BOTH] = PHY_M_P_BOTH_MD_X,
};
/* flow control to GMA disable bits */
static const u16 gm_fc_disable[] = {
[FC_NONE] = GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS,
[FC_TX] = GM_GPCR_FC_RX_DIS,
[FC_RX] = GM_GPCR_FC_TX_DIS,
[FC_BOTH] = 0,
};
static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
{
struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg;
if (sky2->autoneg == AUTONEG_ENABLE &&
!(hw->flags & SKY2_HW_NEWER_PHY)) {
u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK);
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
/* on PHY 88E1040 Rev.D0 (and newer) downshift control changed */
if (hw->chip_id == CHIP_ID_YUKON_EC)
/* set downshift counter to 3x and enable downshift */
ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
else
/* set master & slave downshift counter to 1x */
ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
}
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
if (sky2_is_copper(hw)) {
if (!(hw->flags & SKY2_HW_GIGABIT)) {
/* enable automatic crossover */
ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
if (hw->chip_id == CHIP_ID_YUKON_FE_P &&
hw->chip_rev == CHIP_REV_YU_FE2_A0) {
u16 spec;
/* Enable Class A driver for FE+ A0 */
spec = gm_phy_read(hw, port, PHY_MARV_FE_SPEC_2);
spec |= PHY_M_FESC_SEL_CL_A;
gm_phy_write(hw, port, PHY_MARV_FE_SPEC_2, spec);
}
} else {
/* disable energy detect */
ctrl &= ~PHY_M_PC_EN_DET_MSK;
/* enable automatic crossover */
ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
/* downshift on PHY 88E1112 and 88E1149 is changed */
if (sky2->autoneg == AUTONEG_ENABLE
&& (hw->flags & SKY2_HW_NEWER_PHY)) {
/* set downshift counter to 3x and enable downshift */
ctrl &= ~PHY_M_PC_DSC_MSK;
ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
}
}
} else {
/* workaround for deviation #4.88 (CRC errors) */
/* disable Automatic Crossover */
ctrl &= ~PHY_M_PC_MDIX_MSK;
}
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* special setup for PHY 88E1112 Fiber */
if (hw->chip_id == CHIP_ID_YUKON_XL && (hw->flags & SKY2_HW_FIBRE_PHY)) {
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl &= ~PHY_M_MAC_MD_MSK;
ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
if (hw->pmd_type == 'P') {
/* select page 1 to access Fiber registers */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
/* for SFP-module set SIGDET polarity to low */
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl |= PHY_M_FIB_SIGD_POL;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
}
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
}
ctrl = PHY_CT_RESET;
ct1000 = 0;
adv = PHY_AN_CSMA;
reg = 0;
if (sky2->autoneg == AUTONEG_ENABLE) {
if (sky2_is_copper(hw)) {
if (sky2->advertising & ADVERTISED_1000baseT_Full)
ct1000 |= PHY_M_1000C_AFD;
if (sky2->advertising & ADVERTISED_1000baseT_Half)
ct1000 |= PHY_M_1000C_AHD;
if (sky2->advertising & ADVERTISED_100baseT_Full)
adv |= PHY_M_AN_100_FD;
if (sky2->advertising & ADVERTISED_100baseT_Half)
adv |= PHY_M_AN_100_HD;
if (sky2->advertising & ADVERTISED_10baseT_Full)
adv |= PHY_M_AN_10_FD;
if (sky2->advertising & ADVERTISED_10baseT_Half)
adv |= PHY_M_AN_10_HD;
adv |= copper_fc_adv[sky2->flow_mode];
} else { /* special defines for FIBER (88E1040S only) */
if (sky2->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_M_AN_1000X_AFD;
if (sky2->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_M_AN_1000X_AHD;
adv |= fiber_fc_adv[sky2->flow_mode];
}
/* Restart Auto-negotiation */
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* forced speed/duplex settings */
ct1000 = PHY_M_1000C_MSE;
/* Disable auto update for duplex flow control and speed */
reg |= GM_GPCR_AU_ALL_DIS;
switch (sky2->speed) {
case SPEED_1000:
ctrl |= PHY_CT_SP1000;
reg |= GM_GPCR_SPEED_1000;
break;
case SPEED_100:
ctrl |= PHY_CT_SP100;
reg |= GM_GPCR_SPEED_100;
break;
}
if (sky2->duplex == DUPLEX_FULL) {
reg |= GM_GPCR_DUP_FULL;
ctrl |= PHY_CT_DUP_MD;
} else if (sky2->speed < SPEED_1000)
sky2->flow_mode = FC_NONE;
reg |= gm_fc_disable[sky2->flow_mode];
/* Forward pause packets to GMAC? */
if (sky2->flow_mode & FC_RX)
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
else
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
}
gma_write16(hw, port, GM_GP_CTRL, reg);
if (hw->flags & SKY2_HW_GIGABIT)
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Setup Phy LED's */
ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
ledover = 0;
switch (hw->chip_id) {
case CHIP_ID_YUKON_FE:
/* on 88E3082 these bits are at 11..9 (shifted left) */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
/* delete ACT LED control bits */
ctrl &= ~PHY_M_FELP_LED1_MSK;
/* change ACT LED control to blink mode */
ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
break;
case CHIP_ID_YUKON_FE_P:
/* Enable Link Partner Next Page */
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl |= PHY_M_PC_ENA_LIP_NP;
/* disable Energy Detect and enable scrambler */
ctrl &= ~(PHY_M_PC_ENA_ENE_DT | PHY_M_PC_DIS_SCRAMB);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* set LED2 -> ACT, LED1 -> LINK, LED0 -> SPEED */
ctrl = PHY_M_FELP_LED2_CTRL(LED_PAR_CTRL_ACT_BL) |
PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_LINK) |
PHY_M_FELP_LED0_CTRL(LED_PAR_CTRL_SPEED);
gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
break;
case CHIP_ID_YUKON_XL:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* select page 3 to access LED control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
/* set LED Function Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
(PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
/* set Polarity Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
(PHY_M_POLC_LS1_P_MIX(4) |
PHY_M_POLC_IS0_P_MIX(4) |
PHY_M_POLC_LOS_CTRL(2) |
PHY_M_POLC_INIT_CTRL(2) |
PHY_M_POLC_STA1_CTRL(2) |
PHY_M_POLC_STA0_CTRL(2)));
/* restore page register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
case CHIP_ID_YUKON_EC_U:
case CHIP_ID_YUKON_EX:
case CHIP_ID_YUKON_SUPR:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* select page 3 to access LED control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
/* set LED Function Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
(PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
/* set Blink Rate in LED Timer Control Register */
gm_phy_write(hw, port, PHY_MARV_INT_MASK,
ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
/* restore page register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
default:
/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
/* turn off the Rx LED (LED_RX) */
ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
}
if (hw->chip_id == CHIP_ID_YUKON_EC_U || hw->chip_id == CHIP_ID_YUKON_UL_2) {
/* apply fixes in PHY AFE */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
/* increase differential signal amplitude in 10BASE-T */
gm_phy_write(hw, port, 0x18, 0xaa99);
gm_phy_write(hw, port, 0x17, 0x2011);
if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
/* fix for IEEE A/B Symmetry failure in 1000BASE-T */
gm_phy_write(hw, port, 0x18, 0xa204);
gm_phy_write(hw, port, 0x17, 0x2002);
}
/* set page register to 0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0);
} else if (hw->chip_id == CHIP_ID_YUKON_FE_P &&
hw->chip_rev == CHIP_REV_YU_FE2_A0) {
/* apply workaround for integrated resistors calibration */
gm_phy_write(hw, port, PHY_MARV_PAGE_ADDR, 17);
gm_phy_write(hw, port, PHY_MARV_PAGE_DATA, 0x3f60);
} else if (hw->chip_id != CHIP_ID_YUKON_EX &&
hw->chip_id < CHIP_ID_YUKON_SUPR) {
/* no effect on Yukon-XL */
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
/* turn on 100 Mbps LED (LED_LINK100) */
ledover |= PHY_M_LED_MO_100(MO_LED_ON);
}
if (ledover)
gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
}
/* Enable phy interrupt on auto-negotiation complete (or link up) */
if (sky2->autoneg == AUTONEG_ENABLE)
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
else
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
}
static const u32 phy_power[] = { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD };
static const u32 coma_mode[] = { PCI_Y2_PHY1_COMA, PCI_Y2_PHY2_COMA };
static void sky2_phy_power_up(struct sky2_hw *hw, unsigned port)
{
u32 reg1;
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
reg1 &= ~phy_power[port];
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
reg1 |= coma_mode[port];
sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
sky2_pci_read32(hw, PCI_DEV_REG1);
if (hw->chip_id == CHIP_ID_YUKON_FE)
gm_phy_write(hw, port, PHY_MARV_CTRL, PHY_CT_ANE);
else if (hw->flags & SKY2_HW_ADV_POWER_CTL)
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
}
static void sky2_phy_power_down(struct sky2_hw *hw, unsigned port)
{
u32 reg1;
u16 ctrl;
/* release GPHY Control reset */
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
/* release GMAC reset */
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
if (hw->flags & SKY2_HW_NEWER_PHY) {
/* select page 2 to access MAC control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
/* allow GMII Power Down */
ctrl &= ~PHY_M_MAC_GMIF_PUP;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* set page register back to 0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0);
}
/* setup General Purpose Control Register */
gma_write16(hw, port, GM_GP_CTRL,
GM_GPCR_FL_PASS | GM_GPCR_SPEED_100 | GM_GPCR_AU_ALL_DIS);
if (hw->chip_id != CHIP_ID_YUKON_EC) {
if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
/* select page 2 to access MAC control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
/* enable Power Down */
ctrl |= PHY_M_PC_POW_D_ENA;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* set page register back to 0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0);
}
/* set IEEE compatible Power Down Mode (dev. #4.99) */
gm_phy_write(hw, port, PHY_MARV_CTRL, PHY_CT_PDOWN);
}
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
reg1 |= phy_power[port]; /* set PHY to PowerDown/COMA Mode */
sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
/* Force a renegotiation */
static void sky2_phy_reinit(struct sky2_port *sky2)
{
spin_lock_bh(&sky2->phy_lock);
sky2_phy_init(sky2->hw, sky2->port);
spin_unlock_bh(&sky2->phy_lock);
}
/* Put device in state to listen for Wake On Lan */
static void sky2_wol_init(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
enum flow_control save_mode;
u16 ctrl;
u32 reg1;
/* Bring hardware out of reset */
sky2_write16(hw, B0_CTST, CS_RST_CLR);
sky2_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
/* Force to 10/100
* sky2_reset will re-enable on resume
*/
save_mode = sky2->flow_mode;
ctrl = sky2->advertising;
sky2->advertising &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
sky2->flow_mode = FC_NONE;
spin_lock_bh(&sky2->phy_lock);
sky2_phy_power_up(hw, port);
sky2_phy_init(hw, port);
spin_unlock_bh(&sky2->phy_lock);
sky2->flow_mode = save_mode;
sky2->advertising = ctrl;
/* Set GMAC to no flow control and auto update for speed/duplex */
gma_write16(hw, port, GM_GP_CTRL,
GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
/* Set WOL address */
memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
sky2->netdev->dev_addr, ETH_ALEN);
/* Turn on appropriate WOL control bits */
sky2_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
ctrl = 0;
if (sky2->wol & WAKE_PHY)
ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
else
ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
if (sky2->wol & WAKE_MAGIC)
ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
else
ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
sky2_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
/* Turn on legacy PCI-Express PME mode */
reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
reg1 |= PCI_Y2_PME_LEGACY;
sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
/* block receiver */
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
}
static void sky2_set_tx_stfwd(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
if ( (hw->chip_id == CHIP_ID_YUKON_EX &&
hw->chip_rev != CHIP_REV_YU_EX_A0) ||
hw->chip_id == CHIP_ID_YUKON_FE_P ||
hw->chip_id == CHIP_ID_YUKON_SUPR) {
/* Yukon-Extreme B0 and further Extreme devices */
/* enable Store & Forward mode for TX */
if (dev->mtu <= ETH_DATA_LEN)
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
TX_JUMBO_DIS | TX_STFW_ENA);
else
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
TX_JUMBO_ENA| TX_STFW_ENA);
} else {
if (dev->mtu <= ETH_DATA_LEN)
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_ENA);
else {
/* set Tx GMAC FIFO Almost Empty Threshold */
sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR),
(ECU_JUMBO_WM << 16) | ECU_AE_THR);
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
/* Can't do offload because of lack of store/forward */
dev->features &= ~(NETIF_F_TSO | NETIF_F_SG | NETIF_F_ALL_CSUM);
}
}
}
static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
{
struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
u16 reg;
u32 rx_reg;
int i;
const u8 *addr = hw->dev[port]->dev_addr;
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
/* WA DEV_472 -- looks like crossed wires on port 2 */
/* clear GMAC 1 Control reset */
sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
do {
sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
} while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
}
sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
/* Enable Transmit FIFO Underrun */
sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
spin_lock_bh(&sky2->phy_lock);
sky2_phy_power_up(hw, port);
sky2_phy_init(hw, port);
spin_unlock_bh(&sky2->phy_lock);
/* MIB clear */
reg = gma_read16(hw, port, GM_PHY_ADDR);
gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
gma_read16(hw, port, i);
gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */
gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */
gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */
gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */
gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
/* serial mode register */
reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (hw->dev[port]->mtu > ETH_DATA_LEN)
reg |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* ignore counter overflows */
gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Configure Rx MAC FIFO */
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
rx_reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
if (hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_FE_P)
rx_reg |= GMF_RX_OVER_ON;
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), rx_reg);
if (hw->chip_id == CHIP_ID_YUKON_XL) {
/* Hardware errata - clear flush mask */
sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), 0);
} else {
/* Flush Rx MAC FIFO on any flow control or error */
sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
}
/* Set threshold to 0xa (64 bytes) + 1 to workaround pause bug */
reg = RX_GMF_FL_THR_DEF + 1;
/* Another magic mystery workaround from sk98lin */
if (hw->chip_id == CHIP_ID_YUKON_FE_P &&
hw->chip_rev == CHIP_REV_YU_FE2_A0)
reg = 0x178;
sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), reg);
/* Configure Tx MAC FIFO */
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
/* On chips without ram buffer, pause is controled by MAC level */
if (!(hw->flags & SKY2_HW_RAM_BUFFER)) {
sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
sky2_set_tx_stfwd(hw, port);
}
if (hw->chip_id == CHIP_ID_YUKON_FE_P &&
hw->chip_rev == CHIP_REV_YU_FE2_A0) {
/* disable dynamic watermark */
reg = sky2_read16(hw, SK_REG(port, TX_GMF_EA));
reg &= ~TX_DYN_WM_ENA;
sky2_write16(hw, SK_REG(port, TX_GMF_EA), reg);
}
}
/* Assign Ram Buffer allocation to queue */
static void sky2_ramset(struct sky2_hw *hw, u16 q, u32 start, u32 space)
{
u32 end;
/* convert from K bytes to qwords used for hw register */
start *= 1024/8;
space *= 1024/8;
end = start + space - 1;
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
sky2_write32(hw, RB_ADDR(q, RB_START), start);
sky2_write32(hw, RB_ADDR(q, RB_END), end);
sky2_write32(hw, RB_ADDR(q, RB_WP), start);
sky2_write32(hw, RB_ADDR(q, RB_RP), start);
if (q == Q_R1 || q == Q_R2) {
u32 tp = space - space/4;
/* On receive queue's set the thresholds
* give receiver priority when > 3/4 full
* send pause when down to 2K
*/
sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
tp = space - 2048/8;
sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
} else {
/* Enable store & forward on Tx queue's because
* Tx FIFO is only 1K on Yukon
*/
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
}
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
sky2_read8(hw, RB_ADDR(q, RB_CTRL));
}
/* Setup Bus Memory Interface */
static void sky2_qset(struct sky2_hw *hw, u16 q)
{
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
}
/* Setup prefetch unit registers. This is the interface between
* hardware and driver list elements
*/
static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
u64 addr, u32 last)
{
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
}
static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
{
struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE);
le->ctrl = 0;
return le;
}
static void tx_init(struct sky2_port *sky2)
{
struct sky2_tx_le *le;
sky2->tx_prod = sky2->tx_cons = 0;
sky2->tx_tcpsum = 0;
sky2->tx_last_mss = 0;
le = get_tx_le(sky2);
le->addr = 0;
le->opcode = OP_ADDR64 | HW_OWNER;
}
static inline struct tx_ring_info *tx_le_re(struct sky2_port *sky2,
struct sky2_tx_le *le)
{
return sky2->tx_ring + (le - sky2->tx_le);
}
/* Update chip's next pointer */
static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
{
/* Make sure write' to descriptors are complete before we tell hardware */
wmb();
sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx);
/* Synchronize I/O on since next processor may write to tail */
mmiowb();
}
static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
{
struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
le->ctrl = 0;
return le;
}
/* Build description to hardware for one receive segment */
static void sky2_rx_add(struct sky2_port *sky2, u8 op,
dma_addr_t map, unsigned len)
{
struct sky2_rx_le *le;
if (sizeof(dma_addr_t) > sizeof(u32)) {
le = sky2_next_rx(sky2);
le->addr = cpu_to_le32(upper_32_bits(map));
le->opcode = OP_ADDR64 | HW_OWNER;
}
le = sky2_next_rx(sky2);
le->addr = cpu_to_le32((u32) map);
le->length = cpu_to_le16(len);
le->opcode = op | HW_OWNER;
}
/* Build description to hardware for one possibly fragmented skb */
static void sky2_rx_submit(struct sky2_port *sky2,
const struct rx_ring_info *re)
{
int i;
sky2_rx_add(sky2, OP_PACKET, re->data_addr, sky2->rx_data_size);
for (i = 0; i < skb_shinfo(re->skb)->nr_frags; i++)
sky2_rx_add(sky2, OP_BUFFER, re->frag_addr[i], PAGE_SIZE);
}
static void sky2_rx_map_skb(struct pci_dev *pdev, struct rx_ring_info *re,
unsigned size)
{
struct sk_buff *skb = re->skb;
int i;
re->data_addr = pci_map_single(pdev, skb->data, size, PCI_DMA_FROMDEVICE);
pci_unmap_len_set(re, data_size, size);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
re->frag_addr[i] = pci_map_page(pdev,
skb_shinfo(skb)->frags[i].page,
skb_shinfo(skb)->frags[i].page_offset,
skb_shinfo(skb)->frags[i].size,
PCI_DMA_FROMDEVICE);
}
static void sky2_rx_unmap_skb(struct pci_dev *pdev, struct rx_ring_info *re)
{
struct sk_buff *skb = re->skb;
int i;
pci_unmap_single(pdev, re->data_addr, pci_unmap_len(re, data_size),
PCI_DMA_FROMDEVICE);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
pci_unmap_page(pdev, re->frag_addr[i],
skb_shinfo(skb)->frags[i].size,
PCI_DMA_FROMDEVICE);
}
/* Tell chip where to start receive checksum.
* Actually has two checksums, but set both same to avoid possible byte
* order problems.
*/
static void rx_set_checksum(struct sky2_port *sky2)
{
struct sky2_rx_le *le = sky2_next_rx(sky2);
le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN);
le->ctrl = 0;
le->opcode = OP_TCPSTART | HW_OWNER;
sky2_write32(sky2->hw,
Q_ADDR(rxqaddr[sky2->port], Q_CSR),
sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
}
/*
* The RX Stop command will not work for Yukon-2 if the BMU does not
* reach the end of packet and since we can't make sure that we have
* incoming data, we must reset the BMU while it is not doing a DMA
* transfer. Since it is possible that the RX path is still active,
* the RX RAM buffer will be stopped first, so any possible incoming
* data will not trigger a DMA. After the RAM buffer is stopped, the
* BMU is polled until any DMA in progress is ended and only then it
* will be reset.
*/
static void sky2_rx_stop(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned rxq = rxqaddr[sky2->port];
int i;
/* disable the RAM Buffer receive queue */
sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
for (i = 0; i < 0xffff; i++)
if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
== sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
goto stopped;
printk(KERN_WARNING PFX "%s: receiver stop failed\n",
sky2->netdev->name);
stopped:
sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
/* reset the Rx prefetch unit */
sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
mmiowb();
}
/* Clean out receive buffer area, assumes receiver hardware stopped */
static void sky2_rx_clean(struct sky2_port *sky2)
{
unsigned i;
memset(sky2->rx_le, 0, RX_LE_BYTES);
for (i = 0; i < sky2->rx_pending; i++) {
struct rx_ring_info *re = sky2->rx_ring + i;
if (re->skb) {
sky2_rx_unmap_skb(sky2->hw->pdev, re);
kfree_skb(re->skb);
re->skb = NULL;
}
}
}
/* Basic MII support */
static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
int err = -EOPNOTSUPP;
if (!netif_running(dev))
return -ENODEV; /* Phy still in reset */
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = PHY_ADDR_MARV;
/* fallthru */
case SIOCGMIIREG: {
u16 val = 0;
spin_lock_bh(&sky2->phy_lock);
err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
spin_unlock_bh(&sky2->phy_lock);
data->val_out = val;
break;
}
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_bh(&sky2->phy_lock);
err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
data->val_in);
spin_unlock_bh(&sky2->phy_lock);
break;
}
return err;
}
#ifdef SKY2_VLAN_TAG_USED
static void sky2_set_vlan_mode(struct sky2_hw *hw, u16 port, bool onoff)
{
if (onoff) {
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
RX_VLAN_STRIP_ON);
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
TX_VLAN_TAG_ON);
} else {
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
RX_VLAN_STRIP_OFF);
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
TX_VLAN_TAG_OFF);
}
}
static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
u16 port = sky2->port;
netif_tx_lock_bh(dev);
napi_disable(&hw->napi);
sky2->vlgrp = grp;
sky2_set_vlan_mode(hw, port, grp != NULL);
sky2_read32(hw, B0_Y2_SP_LISR);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_enable(&hw->napi);
netif_tx_unlock_bh(dev);
}
#endif
/*
* Allocate an skb for receiving. If the MTU is large enough
* make the skb non-linear with a fragment list of pages.
*/
static struct sk_buff *sky2_rx_alloc(struct sky2_port *sky2)
{
struct sk_buff *skb;
int i;
if (sky2->hw->flags & SKY2_HW_RAM_BUFFER) {
unsigned char *start;
/*
* Workaround for a bug in FIFO that cause hang
* if the FIFO if the receive buffer is not 64 byte aligned.
* The buffer returned from netdev_alloc_skb is
* aligned except if slab debugging is enabled.
*/
skb = netdev_alloc_skb(sky2->netdev, sky2->rx_data_size + 8);
if (!skb)
goto nomem;
start = PTR_ALIGN(skb->data, 8);
skb_reserve(skb, start - skb->data);
} else {
skb = netdev_alloc_skb(sky2->netdev,
sky2->rx_data_size + NET_IP_ALIGN);
if (!skb)
goto nomem;
skb_reserve(skb, NET_IP_ALIGN);
}
for (i = 0; i < sky2->rx_nfrags; i++) {
struct page *page = alloc_page(GFP_ATOMIC);
if (!page)
goto free_partial;
skb_fill_page_desc(skb, i, page, 0, PAGE_SIZE);
}
return skb;
free_partial:
kfree_skb(skb);
nomem:
return NULL;
}
static inline void sky2_rx_update(struct sky2_port *sky2, unsigned rxq)
{
sky2_put_idx(sky2->hw, rxq, sky2->rx_put);
}
/*
* Allocate and setup receiver buffer pool.
* Normal case this ends up creating one list element for skb
* in the receive ring. Worst case if using large MTU and each
* allocation falls on a different 64 bit region, that results
* in 6 list elements per ring entry.
* One element is used for checksum enable/disable, and one
* extra to avoid wrap.
*/
static int sky2_rx_start(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
struct rx_ring_info *re;
unsigned rxq = rxqaddr[sky2->port];
unsigned i, size, thresh;
sky2->rx_put = sky2->rx_next = 0;
sky2_qset(hw, rxq);
/* On PCI express lowering the watermark gives better performance */
if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
sky2_write32(hw, Q_ADDR(rxq, Q_WM), BMU_WM_PEX);
/* These chips have no ram buffer?
* MAC Rx RAM Read is controlled by hardware */
if (hw->chip_id == CHIP_ID_YUKON_EC_U &&
(hw->chip_rev == CHIP_REV_YU_EC_U_A1
|| hw->chip_rev == CHIP_REV_YU_EC_U_B0))
sky2_write32(hw, Q_ADDR(rxq, Q_TEST), F_M_RX_RAM_DIS);
sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
if (!(hw->flags & SKY2_HW_NEW_LE))
rx_set_checksum(sky2);
/* Space needed for frame data + headers rounded up */
size = roundup(sky2->netdev->mtu + ETH_HLEN + VLAN_HLEN, 8);
/* Stopping point for hardware truncation */
thresh = (size - 8) / sizeof(u32);
sky2->rx_nfrags = size >> PAGE_SHIFT;
BUG_ON(sky2->rx_nfrags > ARRAY_SIZE(re->frag_addr));
/* Compute residue after pages */
size -= sky2->rx_nfrags << PAGE_SHIFT;
/* Optimize to handle small packets and headers */
if (size < copybreak)
size = copybreak;
if (size < ETH_HLEN)
size = ETH_HLEN;
sky2->rx_data_size = size;
/* Fill Rx ring */
for (i = 0; i < sky2->rx_pending; i++) {
re = sky2->rx_ring + i;
re->skb = sky2_rx_alloc(sky2);
if (!re->skb)
goto nomem;
sky2_rx_map_skb(hw->pdev, re, sky2->rx_data_size);
sky2_rx_submit(sky2, re);
}
/*
* The receiver hangs if it receives frames larger than the
* packet buffer. As a workaround, truncate oversize frames, but
* the register is limited to 9 bits, so if you do frames > 2052
* you better get the MTU right!
*/
if (thresh > 0x1ff)
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
else {
sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
}
/* Tell chip about available buffers */
sky2_rx_update(sky2, rxq);
return 0;
nomem:
sky2_rx_clean(sky2);
return -ENOMEM;
}
/* Bring up network interface. */
static int sky2_up(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u32 imask, ramsize;
int cap, err = -ENOMEM;
struct net_device *otherdev = hw->dev[sky2->port^1];
/*
* On dual port PCI-X card, there is an problem where status
* can be received out of order due to split transactions
*/
if (otherdev && netif_running(otherdev) &&
(cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
u16 cmd;
cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
cmd &= ~PCI_X_CMD_MAX_SPLIT;
sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
}
if (netif_msg_ifup(sky2))
printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
netif_carrier_off(dev);
/* must be power of 2 */
sky2->tx_le = pci_alloc_consistent(hw->pdev,
TX_RING_SIZE *
sizeof(struct sky2_tx_le),
&sky2->tx_le_map);
if (!sky2->tx_le)
goto err_out;
sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
GFP_KERNEL);
if (!sky2->tx_ring)
goto err_out;
tx_init(sky2);
sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
&sky2->rx_le_map);
if (!sky2->rx_le)
goto err_out;
memset(sky2->rx_le, 0, RX_LE_BYTES);
sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct rx_ring_info),
GFP_KERNEL);
if (!sky2->rx_ring)
goto err_out;
sky2_mac_init(hw, port);
/* Register is number of 4K blocks on internal RAM buffer. */
ramsize = sky2_read8(hw, B2_E_0) * 4;
if (ramsize > 0) {
u32 rxspace;
hw->flags |= SKY2_HW_RAM_BUFFER;
pr_debug(PFX "%s: ram buffer %dK\n", dev->name, ramsize);
if (ramsize < 16)
rxspace = ramsize / 2;
else
rxspace = 8 + (2*(ramsize - 16))/3;
sky2_ramset(hw, rxqaddr[port], 0, rxspace);
sky2_ramset(hw, txqaddr[port], rxspace, ramsize - rxspace);
/* Make sure SyncQ is disabled */
sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
RB_RST_SET);
}
sky2_qset(hw, txqaddr[port]);
/* This is copied from sk98lin 10.0.5.3; no one tells me about erratta's */
if (hw->chip_id == CHIP_ID_YUKON_EX && hw->chip_rev == CHIP_REV_YU_EX_B0)
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_TEST), F_TX_CHK_AUTO_OFF);
/* Set almost empty threshold */
if (hw->chip_id == CHIP_ID_YUKON_EC_U
&& hw->chip_rev == CHIP_REV_YU_EC_U_A0)
sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), ECU_TXFF_LEV);
sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
TX_RING_SIZE - 1);
#ifdef SKY2_VLAN_TAG_USED
sky2_set_vlan_mode(hw, port, sky2->vlgrp != NULL);
#endif
err = sky2_rx_start(sky2);
if (err)
goto err_out;
/* Enable interrupts from phy/mac for port */
imask = sky2_read32(hw, B0_IMSK);
imask |= portirq_msk[port];
sky2_write32(hw, B0_IMSK, imask);
sky2_set_multicast(dev);
return 0;
err_out:
if (sky2->rx_le) {
pci_free_consistent(hw->pdev, RX_LE_BYTES,
sky2->rx_le, sky2->rx_le_map);
sky2->rx_le = NULL;
}
if (sky2->tx_le) {
pci_free_consistent(hw->pdev,
TX_RING_SIZE * sizeof(struct sky2_tx_le),
sky2->tx_le, sky2->tx_le_map);
sky2->tx_le = NULL;
}
kfree(sky2->tx_ring);
kfree(sky2->rx_ring);
sky2->tx_ring = NULL;
sky2->rx_ring = NULL;
return err;
}
/* Modular subtraction in ring */
static inline int tx_dist(unsigned tail, unsigned head)
{
return (head - tail) & (TX_RING_SIZE - 1);
}
/* Number of list elements available for next tx */
static inline int tx_avail(const struct sky2_port *sky2)
{
return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
}
/* Estimate of number of transmit list elements required */
static unsigned tx_le_req(const struct sk_buff *skb)
{
unsigned count;
count = sizeof(dma_addr_t) / sizeof(u32);
count += skb_shinfo(skb)->nr_frags * count;
if (skb_is_gso(skb))
++count;
if (skb->ip_summed == CHECKSUM_PARTIAL)
++count;
return count;
}
/*
* Put one packet in ring for transmit.
* A single packet can generate multiple list elements, and
* the number of ring elements will probably be less than the number
* of list elements used.
*/
static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
struct sky2_tx_le *le = NULL;
struct tx_ring_info *re;
unsigned i, len;
dma_addr_t mapping;
u16 mss;
u8 ctrl;
if (unlikely(tx_avail(sky2) < tx_le_req(skb)))
return NETDEV_TX_BUSY;
if (unlikely(netif_msg_tx_queued(sky2)))
printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
dev->name, sky2->tx_prod, skb->len);
len = skb_headlen(skb);
mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
/* Send high bits if needed */
if (sizeof(dma_addr_t) > sizeof(u32)) {
le = get_tx_le(sky2);
le->addr = cpu_to_le32(upper_32_bits(mapping));
le->opcode = OP_ADDR64 | HW_OWNER;
}
/* Check for TCP Segmentation Offload */
mss = skb_shinfo(skb)->gso_size;
if (mss != 0) {
if (!(hw->flags & SKY2_HW_NEW_LE))
mss += ETH_HLEN + ip_hdrlen(skb) + tcp_hdrlen(skb);
if (mss != sky2->tx_last_mss) {
le = get_tx_le(sky2);
le->addr = cpu_to_le32(mss);
if (hw->flags & SKY2_HW_NEW_LE)
le->opcode = OP_MSS | HW_OWNER;
else
le->opcode = OP_LRGLEN | HW_OWNER;
sky2->tx_last_mss = mss;
}
}
ctrl = 0;
#ifdef SKY2_VLAN_TAG_USED
/* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
if (!le) {
le = get_tx_le(sky2);
le->addr = 0;
le->opcode = OP_VLAN|HW_OWNER;
} else
le->opcode |= OP_VLAN;
le->length = cpu_to_be16(vlan_tx_tag_get(skb));
ctrl |= INS_VLAN;
}
#endif
/* Handle TCP checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL) {
/* On Yukon EX (some versions) encoding change. */
if (hw->flags & SKY2_HW_AUTO_TX_SUM)
ctrl |= CALSUM; /* auto checksum */
else {
const unsigned offset = skb_transport_offset(skb);
u32 tcpsum;
tcpsum = offset << 16; /* sum start */
tcpsum |= offset + skb->csum_offset; /* sum write */
ctrl |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
if (ip_hdr(skb)->protocol == IPPROTO_UDP)
ctrl |= UDPTCP;
if (tcpsum != sky2->tx_tcpsum) {
sky2->tx_tcpsum = tcpsum;
le = get_tx_le(sky2);
le->addr = cpu_to_le32(tcpsum);
le->length = 0; /* initial checksum value */
le->ctrl = 1; /* one packet */
le->opcode = OP_TCPLISW | HW_OWNER;
}
}
}
le = get_tx_le(sky2);
le->addr = cpu_to_le32((u32) mapping);
le->length = cpu_to_le16(len);
le->ctrl = ctrl;
le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
re = tx_le_re(sky2, le);
re->skb = skb;
pci_unmap_addr_set(re, mapaddr, mapping);
pci_unmap_len_set(re, maplen, len);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
if (sizeof(dma_addr_t) > sizeof(u32)) {
le = get_tx_le(sky2);
le->addr = cpu_to_le32(upper_32_bits(mapping));
le->ctrl = 0;
le->opcode = OP_ADDR64 | HW_OWNER;
}
le = get_tx_le(sky2);
le->addr = cpu_to_le32((u32) mapping);
le->length = cpu_to_le16(frag->size);
le->ctrl = ctrl;
le->opcode = OP_BUFFER | HW_OWNER;
re = tx_le_re(sky2, le);
re->skb = skb;
pci_unmap_addr_set(re, mapaddr, mapping);
pci_unmap_len_set(re, maplen, frag->size);
}
le->ctrl |= EOP;
if (tx_avail(sky2) <= MAX_SKB_TX_LE)
netif_stop_queue(dev);
sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
dev->trans_start = jiffies;
return NETDEV_TX_OK;
}
/*
* Free ring elements from starting at tx_cons until "done"
*
* NB: the hardware will tell us about partial completion of multi-part
* buffers so make sure not to free skb to early.
*/
static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
{
struct net_device *dev = sky2->netdev;
struct pci_dev *pdev = sky2->hw->pdev;
unsigned idx;
BUG_ON(done >= TX_RING_SIZE);
for (idx = sky2->tx_cons; idx != done;
idx = RING_NEXT(idx, TX_RING_SIZE)) {
struct sky2_tx_le *le = sky2->tx_le + idx;
struct tx_ring_info *re = sky2->tx_ring + idx;
switch(le->opcode & ~HW_OWNER) {
case OP_LARGESEND:
case OP_PACKET:
pci_unmap_single(pdev,
pci_unmap_addr(re, mapaddr),
pci_unmap_len(re, maplen),
PCI_DMA_TODEVICE);
break;
case OP_BUFFER:
pci_unmap_page(pdev, pci_unmap_addr(re, mapaddr),
pci_unmap_len(re, maplen),
PCI_DMA_TODEVICE);
break;
}
if (le->ctrl & EOP) {
if (unlikely(netif_msg_tx_done(sky2)))
printk(KERN_DEBUG "%s: tx done %u\n",
dev->name, idx);
dev->stats.tx_packets++;
dev->stats.tx_bytes += re->skb->len;
dev_kfree_skb_any(re->skb);
sky2->tx_next = RING_NEXT(idx, TX_RING_SIZE);
}
}
sky2->tx_cons = idx;
smp_mb();
if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
netif_wake_queue(dev);
}
/* Cleanup all untransmitted buffers, assume transmitter not running */
static void sky2_tx_clean(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
netif_tx_lock_bh(dev);
sky2_tx_complete(sky2, sky2->tx_prod);
netif_tx_unlock_bh(dev);
}
/* Network shutdown */
static int sky2_down(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 ctrl;
u32 imask;
/* Never really got started! */
if (!sky2->tx_le)
return 0;
if (netif_msg_ifdown(sky2))
printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
/* Disable port IRQ */
imask = sky2_read32(hw, B0_IMSK);
imask &= ~portirq_msk[port];
sky2_write32(hw, B0_IMSK, imask);
synchronize_irq(hw->pdev->irq);
sky2_gmac_reset(hw, port);
/* Stop transmitter */
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
RB_RST_SET | RB_DIS_OP_MD);
ctrl = gma_read16(hw, port, GM_GP_CTRL);
ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
gma_write16(hw, port, GM_GP_CTRL, ctrl);
/* Make sure no packets are pending */
napi_synchronize(&hw->napi);
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
/* Workaround shared GMAC reset */
if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
&& port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
/* Disable Force Sync bit and Enable Alloc bit */
sky2_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset the PCI FIFO of the async Tx queue */
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Tx prefetch units */
sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
PREF_UNIT_RST_SET);
sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
sky2_rx_stop(sky2);
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
sky2_phy_power_down(hw, port);
/* turn off LED's */
sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
sky2_tx_clean(dev);
sky2_rx_clean(sky2);
pci_free_consistent(hw->pdev, RX_LE_BYTES,
sky2->rx_le, sky2->rx_le_map);
kfree(sky2->rx_ring);
pci_free_consistent(hw->pdev,
TX_RING_SIZE * sizeof(struct sky2_tx_le),
sky2->tx_le, sky2->tx_le_map);
kfree(sky2->tx_ring);
sky2->tx_le = NULL;
sky2->rx_le = NULL;
sky2->rx_ring = NULL;
sky2->tx_ring = NULL;
return 0;
}
static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
{
if (hw->flags & SKY2_HW_FIBRE_PHY)
return SPEED_1000;
if (!(hw->flags & SKY2_HW_GIGABIT)) {
if (aux & PHY_M_PS_SPEED_100)
return SPEED_100;
else
return SPEED_10;
}
switch (aux & PHY_M_PS_SPEED_MSK) {
case PHY_M_PS_SPEED_1000:
return SPEED_1000;
case PHY_M_PS_SPEED_100:
return SPEED_100;
default:
return SPEED_10;
}
}
static void sky2_link_up(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 reg;
static const char *fc_name[] = {
[FC_NONE] = "none",
[FC_TX] = "tx",
[FC_RX] = "rx",
[FC_BOTH] = "both",
};
/* enable Rx/Tx */
reg = gma_read16(hw, port, GM_GP_CTRL);
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
gma_write16(hw, port, GM_GP_CTRL, reg);
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
netif_carrier_on(sky2->netdev);
mod_timer(&hw->watchdog_timer, jiffies + 1);
/* Turn on link LED */
sky2_write8(hw, SK_REG(port, LNK_LED_REG),
LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
if (netif_msg_link(sky2))
printk(KERN_INFO PFX
"%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
sky2->netdev->name, sky2->speed,
sky2->duplex == DUPLEX_FULL ? "full" : "half",
fc_name[sky2->flow_status]);
}
static void sky2_link_down(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 reg;
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
reg = gma_read16(hw, port, GM_GP_CTRL);
reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
gma_write16(hw, port, GM_GP_CTRL, reg);
netif_carrier_off(sky2->netdev);
/* Turn on link LED */
sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
if (netif_msg_link(sky2))
printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
sky2_phy_init(hw, port);
}
static enum flow_control sky2_flow(int rx, int tx)
{
if (rx)
return tx ? FC_BOTH : FC_RX;
else
return tx ? FC_TX : FC_NONE;
}
static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 advert, lpa;
advert = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
if (lpa & PHY_M_AN_RF) {
printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
return -1;
}
if (!(aux & PHY_M_PS_SPDUP_RES)) {
printk(KERN_ERR PFX "%s: speed/duplex mismatch",
sky2->netdev->name);
return -1;
}
sky2->speed = sky2_phy_speed(hw, aux);
sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
/* Since the pause result bits seem to in different positions on
* different chips. look at registers.
*/
if (hw->flags & SKY2_HW_FIBRE_PHY) {
/* Shift for bits in fiber PHY */
advert &= ~(ADVERTISE_PAUSE_CAP|ADVERTISE_PAUSE_ASYM);
lpa &= ~(LPA_PAUSE_CAP|LPA_PAUSE_ASYM);
if (advert & ADVERTISE_1000XPAUSE)
advert |= ADVERTISE_PAUSE_CAP;
if (advert & ADVERTISE_1000XPSE_ASYM)
advert |= ADVERTISE_PAUSE_ASYM;
if (lpa & LPA_1000XPAUSE)
lpa |= LPA_PAUSE_CAP;
if (lpa & LPA_1000XPAUSE_ASYM)
lpa |= LPA_PAUSE_ASYM;
}
sky2->flow_status = FC_NONE;
if (advert & ADVERTISE_PAUSE_CAP) {
if (lpa & LPA_PAUSE_CAP)
sky2->flow_status = FC_BOTH;
else if (advert & ADVERTISE_PAUSE_ASYM)
sky2->flow_status = FC_RX;
} else if (advert & ADVERTISE_PAUSE_ASYM) {
if ((lpa & LPA_PAUSE_CAP) && (lpa & LPA_PAUSE_ASYM))
sky2->flow_status = FC_TX;
}
if (sky2->duplex == DUPLEX_HALF && sky2->speed < SPEED_1000
&& !(hw->chip_id == CHIP_ID_YUKON_EC_U || hw->chip_id == CHIP_ID_YUKON_EX))
sky2->flow_status = FC_NONE;
if (sky2->flow_status & FC_TX)
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
else
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
return 0;
}
/* Interrupt from PHY */
static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u16 istatus, phystat;
if (!netif_running(dev))
return;
spin_lock(&sky2->phy_lock);
istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
if (netif_msg_intr(sky2))
printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
sky2->netdev->name, istatus, phystat);
if (sky2->autoneg == AUTONEG_ENABLE && (istatus & PHY_M_IS_AN_COMPL)) {
if (sky2_autoneg_done(sky2, phystat) == 0)
sky2_link_up(sky2);
goto out;
}
if (istatus & PHY_M_IS_LSP_CHANGE)
sky2->speed = sky2_phy_speed(hw, phystat);
if (istatus & PHY_M_IS_DUP_CHANGE)
sky2->duplex =
(phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
if (istatus & PHY_M_IS_LST_CHANGE) {
if (phystat & PHY_M_PS_LINK_UP)
sky2_link_up(sky2);
else
sky2_link_down(sky2);
}
out:
spin_unlock(&sky2->phy_lock);
}
/* Transmit timeout is only called if we are running, carrier is up
* and tx queue is full (stopped).
*/
static void sky2_tx_timeout(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
if (netif_msg_timer(sky2))
printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
dev->name, sky2->tx_cons, sky2->tx_prod,
sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX),
sky2_read16(hw, Q_ADDR(txqaddr[sky2->port], Q_DONE)));
/* can't restart safely under softirq */
schedule_work(&hw->restart_work);
}
static int sky2_change_mtu(struct net_device *dev, int new_mtu)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
int err;
u16 ctl, mode;
u32 imask;
if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
return -EINVAL;
if (new_mtu > ETH_DATA_LEN &&
(hw->chip_id == CHIP_ID_YUKON_FE ||
hw->chip_id == CHIP_ID_YUKON_FE_P))
return -EINVAL;
if (!netif_running(dev)) {
dev->mtu = new_mtu;
return 0;
}
imask = sky2_read32(hw, B0_IMSK);
sky2_write32(hw, B0_IMSK, 0);
dev->trans_start = jiffies; /* prevent tx timeout */
netif_stop_queue(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_disable(&hw->napi);
synchronize_irq(hw->pdev->irq);
if (!(hw->flags & SKY2_HW_RAM_BUFFER))
sky2_set_tx_stfwd(hw, port);
ctl = gma_read16(hw, port, GM_GP_CTRL);
gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
sky2_rx_stop(sky2);
sky2_rx_clean(sky2);
dev->mtu = new_mtu;
mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (dev->mtu > ETH_DATA_LEN)
mode |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, port, GM_SERIAL_MODE, mode);
sky2_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD);
err = sky2_rx_start(sky2);
sky2_write32(hw, B0_IMSK, imask);
sky2_read32(hw, B0_Y2_SP_LISR);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_enable(&hw->napi);
if (err)
dev_close(dev);
else {
gma_write16(hw, port, GM_GP_CTRL, ctl);
netif_wake_queue(dev);
}
return err;
}
/* For small just reuse existing skb for next receive */
static struct sk_buff *receive_copy(struct sky2_port *sky2,
const struct rx_ring_info *re,
unsigned length)
{
struct sk_buff *skb;
skb = netdev_alloc_skb(sky2->netdev, length + 2);
if (likely(skb)) {
skb_reserve(skb, 2);
pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->data_addr,
length, PCI_DMA_FROMDEVICE);
skb_copy_from_linear_data(re->skb, skb->data, length);
skb->ip_summed = re->skb->ip_summed;
skb->csum = re->skb->csum;
pci_dma_sync_single_for_device(sky2->hw->pdev, re->data_addr,
length, PCI_DMA_FROMDEVICE);
re->skb->ip_summed = CHECKSUM_NONE;
skb_put(skb, length);
}
return skb;
}
/* Adjust length of skb with fragments to match received data */
static void skb_put_frags(struct sk_buff *skb, unsigned int hdr_space,
unsigned int length)
{
int i, num_frags;
unsigned int size;
/* put header into skb */
size = min(length, hdr_space);
skb->tail += size;
skb->len += size;
length -= size;
num_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < num_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
if (length == 0) {
/* don't need this page */
__free_page(frag->page);
--skb_shinfo(skb)->nr_frags;
} else {
size = min(length, (unsigned) PAGE_SIZE);
frag->size = size;
skb->data_len += size;
skb->truesize += size;
skb->len += size;
length -= size;
}
}
}
/* Normal packet - take skb from ring element and put in a new one */
static struct sk_buff *receive_new(struct sky2_port *sky2,
struct rx_ring_info *re,
unsigned int length)
{
struct sk_buff *skb, *nskb;
unsigned hdr_space = sky2->rx_data_size;
/* Don't be tricky about reusing pages (yet) */
nskb = sky2_rx_alloc(sky2);
if (unlikely(!nskb))
return NULL;
skb = re->skb;
sky2_rx_unmap_skb(sky2->hw->pdev, re);
prefetch(skb->data);
re->skb = nskb;
sky2_rx_map_skb(sky2->hw->pdev, re, hdr_space);
if (skb_shinfo(skb)->nr_frags)
skb_put_frags(skb, hdr_space, length);
else
skb_put(skb, length);
return skb;
}
/*
* Receive one packet.
* For larger packets, get new buffer.
*/
static struct sk_buff *sky2_receive(struct net_device *dev,
u16 length, u32 status)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct rx_ring_info *re = sky2->rx_ring + sky2->rx_next;
struct sk_buff *skb = NULL;
u16 count = (status & GMR_FS_LEN) >> 16;
#ifdef SKY2_VLAN_TAG_USED
/* Account for vlan tag */
if (sky2->vlgrp && (status & GMR_FS_VLAN))
count -= VLAN_HLEN;
#endif
if (unlikely(netif_msg_rx_status(sky2)))
printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
dev->name, sky2->rx_next, status, length);
sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
prefetch(sky2->rx_ring + sky2->rx_next);
/* This chip has hardware problems that generates bogus status.
* So do only marginal checking and expect higher level protocols
* to handle crap frames.
*/
if (sky2->hw->chip_id == CHIP_ID_YUKON_FE_P &&
sky2->hw->chip_rev == CHIP_REV_YU_FE2_A0 &&
length != count)
goto okay;
if (status & GMR_FS_ANY_ERR)
goto error;
if (!(status & GMR_FS_RX_OK))
goto resubmit;
/* if length reported by DMA does not match PHY, packet was truncated */
if (length != count)
goto len_error;
okay:
if (length < copybreak)
skb = receive_copy(sky2, re, length);
else
skb = receive_new(sky2, re, length);
resubmit:
sky2_rx_submit(sky2, re);
return skb;
len_error:
/* Truncation of overlength packets
causes PHY length to not match MAC length */
++dev->stats.rx_length_errors;
if (netif_msg_rx_err(sky2) && net_ratelimit())
pr_info(PFX "%s: rx length error: status %#x length %d\n",
dev->name, status, length);
goto resubmit;
error:
++dev->stats.rx_errors;
if (status & GMR_FS_RX_FF_OV) {
dev->stats.rx_over_errors++;
goto resubmit;
}
if (netif_msg_rx_err(sky2) && net_ratelimit())
printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
dev->name, status, length);
if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
dev->stats.rx_length_errors++;
if (status & GMR_FS_FRAGMENT)
dev->stats.rx_frame_errors++;
if (status & GMR_FS_CRC_ERR)
dev->stats.rx_crc_errors++;
goto resubmit;
}
/* Transmit complete */
static inline void sky2_tx_done(struct net_device *dev, u16 last)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (netif_running(dev)) {
netif_tx_lock(dev);
sky2_tx_complete(sky2, last);
netif_tx_unlock(dev);
}
}
/* Process status response ring */
static int sky2_status_intr(struct sky2_hw *hw, int to_do, u16 idx)
{
int work_done = 0;
unsigned rx[2] = { 0, 0 };
rmb();
do {
struct sky2_port *sky2;
struct sky2_status_le *le = hw->st_le + hw->st_idx;
unsigned port;
struct net_device *dev;
struct sk_buff *skb;
u32 status;
u16 length;
u8 opcode = le->opcode;
if (!(opcode & HW_OWNER))
break;
hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE);
port = le->css & CSS_LINK_BIT;
dev = hw->dev[port];
sky2 = netdev_priv(dev);
length = le16_to_cpu(le->length);
status = le32_to_cpu(le->status);
le->opcode = 0;
switch (opcode & ~HW_OWNER) {
case OP_RXSTAT:
++rx[port];
skb = sky2_receive(dev, length, status);
if (unlikely(!skb)) {
dev->stats.rx_dropped++;
break;
}
/* This chip reports checksum status differently */
if (hw->flags & SKY2_HW_NEW_LE) {
if (sky2->rx_csum &&
(le->css & (CSS_ISIPV4 | CSS_ISIPV6)) &&
(le->css & CSS_TCPUDPCSOK))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
dev->last_rx = jiffies;
#ifdef SKY2_VLAN_TAG_USED
if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
vlan_hwaccel_receive_skb(skb,
sky2->vlgrp,
be16_to_cpu(sky2->rx_tag));
} else
#endif
netif_receive_skb(skb);
/* Stop after net poll weight */
if (++work_done >= to_do)
goto exit_loop;
break;
#ifdef SKY2_VLAN_TAG_USED
case OP_RXVLAN:
sky2->rx_tag = length;
break;
case OP_RXCHKSVLAN:
sky2->rx_tag = length;
/* fall through */
#endif
case OP_RXCHKS:
if (!sky2->rx_csum)
break;
/* If this happens then driver assuming wrong format */
if (unlikely(hw->flags & SKY2_HW_NEW_LE)) {
if (net_ratelimit())
printk(KERN_NOTICE "%s: unexpected"
" checksum status\n",
dev->name);
break;
}
/* Both checksum counters are programmed to start at
* the same offset, so unless there is a problem they
* should match. This failure is an early indication that
* hardware receive checksumming won't work.
*/
if (likely(status >> 16 == (status & 0xffff))) {
skb = sky2->rx_ring[sky2->rx_next].skb;
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = status & 0xffff;
} else {
printk(KERN_NOTICE PFX "%s: hardware receive "
"checksum problem (status = %#x)\n",
dev->name, status);
sky2->rx_csum = 0;
sky2_write32(sky2->hw,
Q_ADDR(rxqaddr[port], Q_CSR),
BMU_DIS_RX_CHKSUM);
}
break;
case OP_TXINDEXLE:
/* TX index reports status for both ports */
BUILD_BUG_ON(TX_RING_SIZE > 0x1000);
sky2_tx_done(hw->dev[0], status & 0xfff);
if (hw->dev[1])
sky2_tx_done(hw->dev[1],
((status >> 24) & 0xff)
| (u16)(length & 0xf) << 8);
break;
default:
if (net_ratelimit())
printk(KERN_WARNING PFX
"unknown status opcode 0x%x\n", opcode);
}
} while (hw->st_idx != idx);
/* Fully processed status ring so clear irq */
sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
exit_loop:
if (rx[0])
sky2_rx_update(netdev_priv(hw->dev[0]), Q_R1);
if (rx[1])
sky2_rx_update(netdev_priv(hw->dev[1]), Q_R2);
return work_done;
}
static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
{
struct net_device *dev = hw->dev[port];
if (net_ratelimit())
printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
dev->name, status);
if (status & Y2_IS_PAR_RD1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: ram data read parity error\n",
dev->name);
/* Clear IRQ */
sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
}
if (status & Y2_IS_PAR_WR1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: ram data write parity error\n",
dev->name);
sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
}
if (status & Y2_IS_PAR_MAC1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
}
if (status & Y2_IS_PAR_RX1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
}
if (status & Y2_IS_TCP_TXA1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: TCP segmentation error\n",
dev->name);
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
}
}
static void sky2_hw_intr(struct sky2_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
u32 status = sky2_read32(hw, B0_HWE_ISRC);
u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
status &= hwmsk;
if (status & Y2_IS_TIST_OV)
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
u16 pci_err;
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_err = sky2_pci_read16(hw, PCI_STATUS);
if (net_ratelimit())
dev_err(&pdev->dev, "PCI hardware error (0x%x)\n",
pci_err);
sky2_pci_write16(hw, PCI_STATUS,
pci_err | PCI_STATUS_ERROR_BITS);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
if (status & Y2_IS_PCI_EXP) {
/* PCI-Express uncorrectable Error occurred */
u32 err;
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
err = sky2_read32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS);
sky2_write32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS,
0xfffffffful);
if (net_ratelimit())
dev_err(&pdev->dev, "PCI Express error (0x%x)\n", err);
sky2_read32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
if (status & Y2_HWE_L1_MASK)
sky2_hw_error(hw, 0, status);
status >>= 8;
if (status & Y2_HWE_L1_MASK)
sky2_hw_error(hw, 1, status);
}
static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
if (netif_msg_intr(sky2))
printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
dev->name, status);
if (status & GM_IS_RX_CO_OV)
gma_read16(hw, port, GM_RX_IRQ_SRC);
if (status & GM_IS_TX_CO_OV)
gma_read16(hw, port, GM_TX_IRQ_SRC);
if (status & GM_IS_RX_FF_OR) {
++dev->stats.rx_fifo_errors;
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
}
if (status & GM_IS_TX_FF_UR) {
++dev->stats.tx_fifo_errors;
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
}
}
/* This should never happen it is a bug. */
static void sky2_le_error(struct sky2_hw *hw, unsigned port,
u16 q, unsigned ring_size)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
unsigned idx;
const u64 *le = (q == Q_R1 || q == Q_R2)
? (u64 *) sky2->rx_le : (u64 *) sky2->tx_le;
idx = sky2_read16(hw, Y2_QADDR(q, PREF_UNIT_GET_IDX));
printk(KERN_ERR PFX "%s: descriptor error q=%#x get=%u [%llx] put=%u\n",
dev->name, (unsigned) q, idx, (unsigned long long) le[idx],
(unsigned) sky2_read16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX)));
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_IRQ_CHK);
}
static int sky2_rx_hung(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
unsigned rxq = rxqaddr[port];
u32 mac_rp = sky2_read32(hw, SK_REG(port, RX_GMF_RP));
u8 mac_lev = sky2_read8(hw, SK_REG(port, RX_GMF_RLEV));
u8 fifo_rp = sky2_read8(hw, Q_ADDR(rxq, Q_RP));
u8 fifo_lev = sky2_read8(hw, Q_ADDR(rxq, Q_RL));
/* If idle and MAC or PCI is stuck */
if (sky2->check.last == dev->last_rx &&
((mac_rp == sky2->check.mac_rp &&
mac_lev != 0 && mac_lev >= sky2->check.mac_lev) ||
/* Check if the PCI RX hang */
(fifo_rp == sky2->check.fifo_rp &&
fifo_lev != 0 && fifo_lev >= sky2->check.fifo_lev))) {
printk(KERN_DEBUG PFX "%s: hung mac %d:%d fifo %d (%d:%d)\n",
dev->name, mac_lev, mac_rp, fifo_lev, fifo_rp,
sky2_read8(hw, Q_ADDR(rxq, Q_WP)));
return 1;
} else {
sky2->check.last = dev->last_rx;
sky2->check.mac_rp = mac_rp;
sky2->check.mac_lev = mac_lev;
sky2->check.fifo_rp = fifo_rp;
sky2->check.fifo_lev = fifo_lev;
return 0;
}
}
static void sky2_watchdog(unsigned long arg)
{
struct sky2_hw *hw = (struct sky2_hw *) arg;
/* Check for lost IRQ once a second */
if (sky2_read32(hw, B0_ISRC)) {
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_schedule(&hw->napi);
} else {
int i, active = 0;
for (i = 0; i < hw->ports; i++) {
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
struct net_device *dev = hw->dev[i];
if (!netif_running(dev))
continue;
++active;
/* For chips with Rx FIFO, check if stuck */
if ((hw->flags & SKY2_HW_RAM_BUFFER) &&
sky2_rx_hung(dev)) {
pr_info(PFX "%s: receiver hang detected\n",
dev->name);
schedule_work(&hw->restart_work);
return;
}
}
if (active == 0)
return;
}
mod_timer(&hw->watchdog_timer, round_jiffies(jiffies + HZ));
}
/* Hardware/software error handling */
static void sky2_err_intr(struct sky2_hw *hw, u32 status)
{
if (net_ratelimit())
dev_warn(&hw->pdev->dev, "error interrupt status=%#x\n", status);
if (status & Y2_IS_HW_ERR)
sky2_hw_intr(hw);
if (status & Y2_IS_IRQ_MAC1)
sky2_mac_intr(hw, 0);
if (status & Y2_IS_IRQ_MAC2)
sky2_mac_intr(hw, 1);
if (status & Y2_IS_CHK_RX1)
sky2_le_error(hw, 0, Q_R1, RX_LE_SIZE);
if (status & Y2_IS_CHK_RX2)
sky2_le_error(hw, 1, Q_R2, RX_LE_SIZE);
if (status & Y2_IS_CHK_TXA1)
sky2_le_error(hw, 0, Q_XA1, TX_RING_SIZE);
if (status & Y2_IS_CHK_TXA2)
sky2_le_error(hw, 1, Q_XA2, TX_RING_SIZE);
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
static int sky2_poll(struct napi_struct *napi, int work_limit)
{
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
struct sky2_hw *hw = container_of(napi, struct sky2_hw, napi);
u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
int work_done = 0;
u16 idx;
if (unlikely(status & Y2_IS_ERROR))
sky2_err_intr(hw, status);
if (status & Y2_IS_IRQ_PHY1)
sky2_phy_intr(hw, 0);
if (status & Y2_IS_IRQ_PHY2)
sky2_phy_intr(hw, 1);
while ((idx = sky2_read16(hw, STAT_PUT_IDX)) != hw->st_idx) {
work_done += sky2_status_intr(hw, work_limit - work_done, idx);
if (work_done >= work_limit)
goto done;
}
/* Bug/Errata workaround?
* Need to kick the TX irq moderation timer.
*/
if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_START) {
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
}
napi_complete(napi);
sky2_read32(hw, B0_Y2_SP_LISR);
done:
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
return work_done;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t sky2_intr(int irq, void *dev_id)
{
struct sky2_hw *hw = dev_id;
u32 status;
/* Reading this mask interrupts as side effect */
status = sky2_read32(hw, B0_Y2_SP_ISRC2);
if (status == 0 || status == ~0)
return IRQ_NONE;
prefetch(&hw->st_le[hw->st_idx]);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_schedule(&hw->napi);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void sky2_netpoll(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_schedule(&sky2->hw->napi);
}
#endif
/* Chip internal frequency for clock calculations */
static u32 sky2_mhz(const struct sky2_hw *hw)
{
switch (hw->chip_id) {
case CHIP_ID_YUKON_EC:
case CHIP_ID_YUKON_EC_U:
case CHIP_ID_YUKON_EX:
case CHIP_ID_YUKON_SUPR:
case CHIP_ID_YUKON_UL_2:
return 125;
case CHIP_ID_YUKON_FE:
return 100;
case CHIP_ID_YUKON_FE_P:
return 50;
case CHIP_ID_YUKON_XL:
return 156;
default:
BUG();
}
}
static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
{
return sky2_mhz(hw) * us;
}
static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
{
return clk / sky2_mhz(hw);
}
static int __devinit sky2_init(struct sky2_hw *hw)
{
u8 t8;
/* Enable all clocks and check for bad PCI access */
sky2_pci_write32(hw, PCI_DEV_REG3, 0);
sky2_write8(hw, B0_CTST, CS_RST_CLR);
hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
switch(hw->chip_id) {
case CHIP_ID_YUKON_XL:
hw->flags = SKY2_HW_GIGABIT | SKY2_HW_NEWER_PHY;
break;
case CHIP_ID_YUKON_EC_U:
hw->flags = SKY2_HW_GIGABIT
| SKY2_HW_NEWER_PHY
| SKY2_HW_ADV_POWER_CTL;
break;
case CHIP_ID_YUKON_EX:
hw->flags = SKY2_HW_GIGABIT
| SKY2_HW_NEWER_PHY
| SKY2_HW_NEW_LE
| SKY2_HW_ADV_POWER_CTL;
/* New transmit checksum */
if (hw->chip_rev != CHIP_REV_YU_EX_B0)
hw->flags |= SKY2_HW_AUTO_TX_SUM;
break;
case CHIP_ID_YUKON_EC:
/* This rev is really old, and requires untested workarounds */
if (hw->chip_rev == CHIP_REV_YU_EC_A1) {
dev_err(&hw->pdev->dev, "unsupported revision Yukon-EC rev A1\n");
return -EOPNOTSUPP;
}
hw->flags = SKY2_HW_GIGABIT;
break;
case CHIP_ID_YUKON_FE:
break;
case CHIP_ID_YUKON_FE_P:
hw->flags = SKY2_HW_NEWER_PHY
| SKY2_HW_NEW_LE
| SKY2_HW_AUTO_TX_SUM
| SKY2_HW_ADV_POWER_CTL;
break;
case CHIP_ID_YUKON_SUPR:
hw->flags = SKY2_HW_GIGABIT
| SKY2_HW_NEWER_PHY
| SKY2_HW_NEW_LE
| SKY2_HW_AUTO_TX_SUM
| SKY2_HW_ADV_POWER_CTL;
break;
case CHIP_ID_YUKON_UL_2:
hw->flags = SKY2_HW_GIGABIT
| SKY2_HW_ADV_POWER_CTL;
break;
default:
dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
hw->chip_id);
return -EOPNOTSUPP;
}
hw->pmd_type = sky2_read8(hw, B2_PMD_TYP);
if (hw->pmd_type == 'L' || hw->pmd_type == 'S' || hw->pmd_type == 'P')
hw->flags |= SKY2_HW_FIBRE_PHY;
hw->ports = 1;
t8 = sky2_read8(hw, B2_Y2_HW_RES);
if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
++hw->ports;
}
return 0;
}
static void sky2_reset(struct sky2_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
u16 status;
int i, cap;
u32 hwe_mask = Y2_HWE_ALL_MASK;
/* disable ASF */
if (hw->chip_id == CHIP_ID_YUKON_EX) {
status = sky2_read16(hw, HCU_CCSR);
status &= ~(HCU_CCSR_AHB_RST | HCU_CCSR_CPU_RST_MODE |
HCU_CCSR_UC_STATE_MSK);
sky2_write16(hw, HCU_CCSR, status);
} else
sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
/* do a SW reset */
sky2_write8(hw, B0_CTST, CS_RST_SET);
sky2_write8(hw, B0_CTST, CS_RST_CLR);
/* allow writes to PCI config */
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
/* clear PCI errors, if any */
status = sky2_pci_read16(hw, PCI_STATUS);
status |= PCI_STATUS_ERROR_BITS;
sky2_pci_write16(hw, PCI_STATUS, status);
sky2_write8(hw, B0_CTST, CS_MRST_CLR);
cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
if (cap) {
sky2_write32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS,
0xfffffffful);
/* If error bit is stuck on ignore it */
if (sky2_read32(hw, B0_HWE_ISRC) & Y2_IS_PCI_EXP)
dev_info(&pdev->dev, "ignoring stuck error report bit\n");
else
hwe_mask |= Y2_IS_PCI_EXP;
}
sky2_power_on(hw);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
for (i = 0; i < hw->ports; i++) {
sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
if (hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_SUPR)
sky2_write16(hw, SK_REG(i, GMAC_CTRL),
GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON
| GMC_BYP_RETR_ON);
}
/* Clear I2C IRQ noise */
sky2_write32(hw, B2_I2C_IRQ, 1);
/* turn off hardware timer (unused) */
sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
/* Turn off descriptor polling */
sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
/* Turn off receive timestamp */
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
/* enable the Tx Arbiters */
for (i = 0; i < hw->ports; i++)
sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */
for (i = 0; i < hw->ports; i++) {
sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
}
sky2_write32(hw, B0_HWE_IMSK, hwe_mask);
for (i = 0; i < hw->ports; i++)
sky2_gmac_reset(hw, i);
memset(hw->st_le, 0, STATUS_LE_BYTES);
hw->st_idx = 0;
sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
/* Set the list last index */
sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
sky2_write16(hw, STAT_TX_IDX_TH, 10);
sky2_write8(hw, STAT_FIFO_WM, 16);
/* set Status-FIFO ISR watermark */
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
else
sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
/* enable status unit */
sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
}
static void sky2_restart(struct work_struct *work)
{
struct sky2_hw *hw = container_of(work, struct sky2_hw, restart_work);
struct net_device *dev;
int i, err;
rtnl_lock();
for (i = 0; i < hw->ports; i++) {
dev = hw->dev[i];
if (netif_running(dev))
sky2_down(dev);
}
napi_disable(&hw->napi);
sky2_write32(hw, B0_IMSK, 0);
sky2_reset(hw);
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
napi_enable(&hw->napi);
for (i = 0; i < hw->ports; i++) {
dev = hw->dev[i];
if (netif_running(dev)) {
err = sky2_up(dev);
if (err) {
printk(KERN_INFO PFX "%s: could not restart %d\n",
dev->name, err);
dev_close(dev);
}
}
}
rtnl_unlock();
}
static inline u8 sky2_wol_supported(const struct sky2_hw *hw)
{
return sky2_is_copper(hw) ? (WAKE_PHY | WAKE_MAGIC) : 0;
}
static void sky2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
const struct sky2_port *sky2 = netdev_priv(dev);
wol->supported = sky2_wol_supported(sky2->hw);
wol->wolopts = sky2->wol;
}
static int sky2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
if ((wol->wolopts & ~sky2_wol_supported(sky2->hw))
|| !device_can_wakeup(&hw->pdev->dev))
return -EOPNOTSUPP;
sky2->wol = wol->wolopts;
if (hw->chip_id == CHIP_ID_YUKON_EC_U ||
hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_FE_P)
sky2_write32(hw, B0_CTST, sky2->wol
? Y2_HW_WOL_ON : Y2_HW_WOL_OFF);
device_set_wakeup_enable(&hw->pdev->dev, sky2->wol);
if (!netif_running(dev))
sky2_wol_init(sky2);
return 0;
}
static u32 sky2_supported_modes(const struct sky2_hw *hw)
{
if (sky2_is_copper(hw)) {
u32 modes = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_Autoneg | SUPPORTED_TP;
if (hw->flags & SKY2_HW_GIGABIT)
modes |= SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full;
return modes;
} else
return SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg
| SUPPORTED_FIBRE;
}
static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
ecmd->transceiver = XCVR_INTERNAL;
ecmd->supported = sky2_supported_modes(hw);
ecmd->phy_address = PHY_ADDR_MARV;
if (sky2_is_copper(hw)) {
ecmd->port = PORT_TP;
ecmd->speed = sky2->speed;
} else {
ecmd->speed = SPEED_1000;
ecmd->port = PORT_FIBRE;
}
ecmd->advertising = sky2->advertising;
ecmd->autoneg = sky2->autoneg;
ecmd->duplex = sky2->duplex;
return 0;
}
static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
const struct sky2_hw *hw = sky2->hw;
u32 supported = sky2_supported_modes(hw);
if (ecmd->autoneg == AUTONEG_ENABLE) {
ecmd->advertising = supported;
sky2->duplex = -1;
sky2->speed = -1;
} else {
u32 setting;
switch (ecmd->speed) {
case SPEED_1000:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_1000baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_1000baseT_Half;
else
return -EINVAL;
break;
case SPEED_100:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_100baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_100baseT_Half;
else
return -EINVAL;
break;
case SPEED_10:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_10baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_10baseT_Half;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
if ((setting & supported) == 0)
return -EINVAL;
sky2->speed = ecmd->speed;
sky2->duplex = ecmd->duplex;
}
sky2->autoneg = ecmd->autoneg;
sky2->advertising = ecmd->advertising;
if (netif_running(dev)) {
sky2_phy_reinit(sky2);
sky2_set_multicast(dev);
}
return 0;
}
static void sky2_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct sky2_port *sky2 = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->fw_version, "N/A");
strcpy(info->bus_info, pci_name(sky2->hw->pdev));
}
static const struct sky2_stat {
char name[ETH_GSTRING_LEN];
u16 offset;
} sky2_stats[] = {
{ "tx_bytes", GM_TXO_OK_HI },
{ "rx_bytes", GM_RXO_OK_HI },
{ "tx_broadcast", GM_TXF_BC_OK },
{ "rx_broadcast", GM_RXF_BC_OK },
{ "tx_multicast", GM_TXF_MC_OK },
{ "rx_multicast", GM_RXF_MC_OK },
{ "tx_unicast", GM_TXF_UC_OK },
{ "rx_unicast", GM_RXF_UC_OK },
{ "tx_mac_pause", GM_TXF_MPAUSE },
{ "rx_mac_pause", GM_RXF_MPAUSE },
{ "collisions", GM_TXF_COL },
{ "late_collision",GM_TXF_LAT_COL },
{ "aborted", GM_TXF_ABO_COL },
{ "single_collisions", GM_TXF_SNG_COL },
{ "multi_collisions", GM_TXF_MUL_COL },
{ "rx_short", GM_RXF_SHT },
{ "rx_runt", GM_RXE_FRAG },
{ "rx_64_byte_packets", GM_RXF_64B },
{ "rx_65_to_127_byte_packets", GM_RXF_127B },
{ "rx_128_to_255_byte_packets", GM_RXF_255B },
{ "rx_256_to_511_byte_packets", GM_RXF_511B },
{ "rx_512_to_1023_byte_packets", GM_RXF_1023B },
{ "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
{ "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
{ "rx_too_long", GM_RXF_LNG_ERR },
{ "rx_fifo_overflow", GM_RXE_FIFO_OV },
{ "rx_jabber", GM_RXF_JAB_PKT },
{ "rx_fcs_error", GM_RXF_FCS_ERR },
{ "tx_64_byte_packets", GM_TXF_64B },
{ "tx_65_to_127_byte_packets", GM_TXF_127B },
{ "tx_128_to_255_byte_packets", GM_TXF_255B },
{ "tx_256_to_511_byte_packets", GM_TXF_511B },
{ "tx_512_to_1023_byte_packets", GM_TXF_1023B },
{ "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
{ "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
{ "tx_fifo_underrun", GM_TXE_FIFO_UR },
};
static u32 sky2_get_rx_csum(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
return sky2->rx_csum;
}
static int sky2_set_rx_csum(struct net_device *dev, u32 data)
{
struct sky2_port *sky2 = netdev_priv(dev);
sky2->rx_csum = data;
sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
return 0;
}
static u32 sky2_get_msglevel(struct net_device *netdev)
{
struct sky2_port *sky2 = netdev_priv(netdev);
return sky2->msg_enable;
}
static int sky2_nway_reset(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (!netif_running(dev) || sky2->autoneg != AUTONEG_ENABLE)
return -EINVAL;
sky2_phy_reinit(sky2);
sky2_set_multicast(dev);
return 0;
}
static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
int i;
data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
| (u64) gma_read32(hw, port, GM_TXO_OK_LO);
data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
| (u64) gma_read32(hw, port, GM_RXO_OK_LO);
for (i = 2; i < count; i++)
data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
}
static void sky2_set_msglevel(struct net_device *netdev, u32 value)
{
struct sky2_port *sky2 = netdev_priv(netdev);
sky2->msg_enable = value;
}
static int sky2_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(sky2_stats);
default:
return -EOPNOTSUPP;
}
}
static void sky2_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 * data)
{
struct sky2_port *sky2 = netdev_priv(dev);
sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
}
static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
sky2_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
static int sky2_set_mac_address(struct net_device *dev, void *p)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
const struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
dev->dev_addr, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
dev->dev_addr, ETH_ALEN);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
return 0;
}
static void inline sky2_add_filter(u8 filter[8], const u8 *addr)
{
u32 bit;
bit = ether_crc(ETH_ALEN, addr) & 63;
filter[bit >> 3] |= 1 << (bit & 7);
}
static void sky2_set_multicast(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
struct dev_mc_list *list = dev->mc_list;
u16 reg;
u8 filter[8];
int rx_pause;
static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
rx_pause = (sky2->flow_status == FC_RX || sky2->flow_status == FC_BOTH);
memset(filter, 0, sizeof(filter));
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA;
if (dev->flags & IFF_PROMISC) /* promiscuous */
reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else if (dev->flags & IFF_ALLMULTI)
memset(filter, 0xff, sizeof(filter));
else if (dev->mc_count == 0 && !rx_pause)
reg &= ~GM_RXCR_MCF_ENA;
else {
int i;
reg |= GM_RXCR_MCF_ENA;
if (rx_pause)
sky2_add_filter(filter, pause_mc_addr);
for (i = 0; list && i < dev->mc_count; i++, list = list->next)
sky2_add_filter(filter, list->dmi_addr);
}
gma_write16(hw, port, GM_MC_ADDR_H1,
(u16) filter[0] | ((u16) filter[1] << 8));
gma_write16(hw, port, GM_MC_ADDR_H2,
(u16) filter[2] | ((u16) filter[3] << 8));
gma_write16(hw, port, GM_MC_ADDR_H3,
(u16) filter[4] | ((u16) filter[5] << 8));
gma_write16(hw, port, GM_MC_ADDR_H4,
(u16) filter[6] | ((u16) filter[7] << 8));
gma_write16(hw, port, GM_RX_CTRL, reg);
}
/* Can have one global because blinking is controlled by
* ethtool and that is always under RTNL mutex
*/
static void sky2_led(struct sky2_port *sky2, enum led_mode mode)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
spin_lock_bh(&sky2->phy_lock);
if (hw->chip_id == CHIP_ID_YUKON_EC_U ||
hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_SUPR) {
u16 pg;
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
switch (mode) {
case MO_LED_OFF:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(8) |
PHY_M_LEDC_INIT_CTRL(8) |
PHY_M_LEDC_STA1_CTRL(8) |
PHY_M_LEDC_STA0_CTRL(8));
break;
case MO_LED_ON:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(9) |
PHY_M_LEDC_INIT_CTRL(9) |
PHY_M_LEDC_STA1_CTRL(9) |
PHY_M_LEDC_STA0_CTRL(9));
break;
case MO_LED_BLINK:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(0xa) |
PHY_M_LEDC_INIT_CTRL(0xa) |
PHY_M_LEDC_STA1_CTRL(0xa) |
PHY_M_LEDC_STA0_CTRL(0xa));
break;
case MO_LED_NORM:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(1) |
PHY_M_LEDC_INIT_CTRL(8) |
PHY_M_LEDC_STA1_CTRL(7) |
PHY_M_LEDC_STA0_CTRL(7));
}
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(mode) |
PHY_M_LED_MO_10(mode) |
PHY_M_LED_MO_100(mode) |
PHY_M_LED_MO_1000(mode) |
PHY_M_LED_MO_RX(mode) |
PHY_M_LED_MO_TX(mode));
spin_unlock_bh(&sky2->phy_lock);
}
/* blink LED's for finding board */
static int sky2_phys_id(struct net_device *dev, u32 data)
{
struct sky2_port *sky2 = netdev_priv(dev);
unsigned int i;
if (data == 0)
data = UINT_MAX;
for (i = 0; i < data; i++) {
sky2_led(sky2, MO_LED_ON);
if (msleep_interruptible(500))
break;
sky2_led(sky2, MO_LED_OFF);
if (msleep_interruptible(500))
break;
}
sky2_led(sky2, MO_LED_NORM);
return 0;
}
static void sky2_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
switch (sky2->flow_mode) {
case FC_NONE:
ecmd->tx_pause = ecmd->rx_pause = 0;
break;
case FC_TX:
ecmd->tx_pause = 1, ecmd->rx_pause = 0;
break;
case FC_RX:
ecmd->tx_pause = 0, ecmd->rx_pause = 1;
break;
case FC_BOTH:
ecmd->tx_pause = ecmd->rx_pause = 1;
}
ecmd->autoneg = sky2->autoneg;
}
static int sky2_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
sky2->autoneg = ecmd->autoneg;
sky2->flow_mode = sky2_flow(ecmd->rx_pause, ecmd->tx_pause);
if (netif_running(dev))
sky2_phy_reinit(sky2);
return 0;
}
static int sky2_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
ecmd->tx_coalesce_usecs = 0;
else {
u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
}
ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
ecmd->rx_coalesce_usecs = 0;
else {
u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
}
ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
ecmd->rx_coalesce_usecs_irq = 0;
else {
u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
}
ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
return 0;
}
/* Note: this affect both ports */
static int sky2_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
if (ecmd->tx_coalesce_usecs > tmax ||
ecmd->rx_coalesce_usecs > tmax ||
ecmd->rx_coalesce_usecs_irq > tmax)
return -EINVAL;
if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
return -EINVAL;
if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
return -EINVAL;
if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
return -EINVAL;
if (ecmd->tx_coalesce_usecs == 0)
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_TX_TIMER_INI,
sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
}
sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
if (ecmd->rx_coalesce_usecs == 0)
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_LEV_TIMER_INI,
sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
}
sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
if (ecmd->rx_coalesce_usecs_irq == 0)
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_ISR_TIMER_INI,
sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
}
sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
return 0;
}
static void sky2_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct sky2_port *sky2 = netdev_priv(dev);
ering->rx_max_pending = RX_MAX_PENDING;
ering->rx_mini_max_pending = 0;
ering->rx_jumbo_max_pending = 0;
ering->tx_max_pending = TX_RING_SIZE - 1;
ering->rx_pending = sky2->rx_pending;
ering->rx_mini_pending = 0;
ering->rx_jumbo_pending = 0;
ering->tx_pending = sky2->tx_pending;
}
static int sky2_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct sky2_port *sky2 = netdev_priv(dev);
int err = 0;
if (ering->rx_pending > RX_MAX_PENDING ||
ering->rx_pending < 8 ||
ering->tx_pending < MAX_SKB_TX_LE ||
ering->tx_pending > TX_RING_SIZE - 1)
return -EINVAL;
if (netif_running(dev))
sky2_down(dev);
sky2->rx_pending = ering->rx_pending;
sky2->tx_pending = ering->tx_pending;
if (netif_running(dev)) {
err = sky2_up(dev);
if (err)
dev_close(dev);
}
return err;
}
static int sky2_get_regs_len(struct net_device *dev)
{
return 0x4000;
}
/*
* Returns copy of control register region
* Note: ethtool_get_regs always provides full size (16k) buffer
*/
static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
const struct sky2_port *sky2 = netdev_priv(dev);
const void __iomem *io = sky2->hw->regs;
unsigned int b;
regs->version = 1;
for (b = 0; b < 128; b++) {
/* This complicated switch statement is to make sure and
* only access regions that are unreserved.
* Some blocks are only valid on dual port cards.
* and block 3 has some special diagnostic registers that
* are poison.
*/
switch (b) {
case 3:
/* skip diagnostic ram region */
memcpy_fromio(p + 0x10, io + 0x10, 128 - 0x10);
break;
/* dual port cards only */
case 5: /* Tx Arbiter 2 */
case 9: /* RX2 */
case 14 ... 15: /* TX2 */
case 17: case 19: /* Ram Buffer 2 */
case 22 ... 23: /* Tx Ram Buffer 2 */
case 25: /* Rx MAC Fifo 1 */
case 27: /* Tx MAC Fifo 2 */
case 31: /* GPHY 2 */
case 40 ... 47: /* Pattern Ram 2 */
case 52: case 54: /* TCP Segmentation 2 */
case 112 ... 116: /* GMAC 2 */
if (sky2->hw->ports == 1)
goto reserved;
/* fall through */
case 0: /* Control */
case 2: /* Mac address */
case 4: /* Tx Arbiter 1 */
case 7: /* PCI express reg */
case 8: /* RX1 */
case 12 ... 13: /* TX1 */
case 16: case 18:/* Rx Ram Buffer 1 */
case 20 ... 21: /* Tx Ram Buffer 1 */
case 24: /* Rx MAC Fifo 1 */
case 26: /* Tx MAC Fifo 1 */
case 28 ... 29: /* Descriptor and status unit */
case 30: /* GPHY 1*/
case 32 ... 39: /* Pattern Ram 1 */
case 48: case 50: /* TCP Segmentation 1 */
case 56 ... 60: /* PCI space */
case 80 ... 84: /* GMAC 1 */
memcpy_fromio(p, io, 128);
break;
default:
reserved:
memset(p, 0, 128);
}
p += 128;
io += 128;
}
}
/* In order to do Jumbo packets on these chips, need to turn off the
* transmit store/forward. Therefore checksum offload won't work.
*/
static int no_tx_offload(struct net_device *dev)
{
const struct sky2_port *sky2 = netdev_priv(dev);
const struct sky2_hw *hw = sky2->hw;
return dev->mtu > ETH_DATA_LEN && hw->chip_id == CHIP_ID_YUKON_EC_U;
}
static int sky2_set_tx_csum(struct net_device *dev, u32 data)
{
if (data && no_tx_offload(dev))
return -EINVAL;
return ethtool_op_set_tx_csum(dev, data);
}
static int sky2_set_tso(struct net_device *dev, u32 data)
{
if (data && no_tx_offload(dev))
return -EINVAL;
return ethtool_op_set_tso(dev, data);
}
static int sky2_get_eeprom_len(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
u16 reg2;
reg2 = sky2_pci_read16(hw, PCI_DEV_REG2);
return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
}
static int sky2_vpd_wait(const struct sky2_hw *hw, int cap, u16 busy)
{
unsigned long start = jiffies;
while ( (sky2_pci_read16(hw, cap + PCI_VPD_ADDR) & PCI_VPD_ADDR_F) == busy) {
/* Can take up to 10.6 ms for write */
if (time_after(jiffies, start + HZ/4)) {
dev_err(&hw->pdev->dev, PFX "VPD cycle timed out");
return -ETIMEDOUT;
}
mdelay(1);
}
return 0;
}
static int sky2_vpd_read(struct sky2_hw *hw, int cap, void *data,
u16 offset, size_t length)
{
int rc = 0;
while (length > 0) {
u32 val;
sky2_pci_write16(hw, cap + PCI_VPD_ADDR, offset);
rc = sky2_vpd_wait(hw, cap, 0);
if (rc)
break;
val = sky2_pci_read32(hw, cap + PCI_VPD_DATA);
memcpy(data, &val, min(sizeof(val), length));
offset += sizeof(u32);
data += sizeof(u32);
length -= sizeof(u32);
}
return rc;
}
static int sky2_vpd_write(struct sky2_hw *hw, int cap, const void *data,
u16 offset, unsigned int length)
{
unsigned int i;
int rc = 0;
for (i = 0; i < length; i += sizeof(u32)) {
u32 val = *(u32 *)(data + i);
sky2_pci_write32(hw, cap + PCI_VPD_DATA, val);
sky2_pci_write32(hw, cap + PCI_VPD_ADDR, offset | PCI_VPD_ADDR_F);
rc = sky2_vpd_wait(hw, cap, PCI_VPD_ADDR_F);
if (rc)
break;
}
return rc;
}
static int sky2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *data)
{
struct sky2_port *sky2 = netdev_priv(dev);
int cap = pci_find_capability(sky2->hw->pdev, PCI_CAP_ID_VPD);
if (!cap)
return -EINVAL;
eeprom->magic = SKY2_EEPROM_MAGIC;
return sky2_vpd_read(sky2->hw, cap, data, eeprom->offset, eeprom->len);
}
static int sky2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *data)
{
struct sky2_port *sky2 = netdev_priv(dev);
int cap = pci_find_capability(sky2->hw->pdev, PCI_CAP_ID_VPD);
if (!cap)
return -EINVAL;
if (eeprom->magic != SKY2_EEPROM_MAGIC)
return -EINVAL;
/* Partial writes not supported */
if ((eeprom->offset & 3) || (eeprom->len & 3))
return -EINVAL;
return sky2_vpd_write(sky2->hw, cap, data, eeprom->offset, eeprom->len);
}
static const struct ethtool_ops sky2_ethtool_ops = {
.get_settings = sky2_get_settings,
.set_settings = sky2_set_settings,
.get_drvinfo = sky2_get_drvinfo,
.get_wol = sky2_get_wol,
.set_wol = sky2_set_wol,
.get_msglevel = sky2_get_msglevel,
.set_msglevel = sky2_set_msglevel,
.nway_reset = sky2_nway_reset,
.get_regs_len = sky2_get_regs_len,
.get_regs = sky2_get_regs,
.get_link = ethtool_op_get_link,
.get_eeprom_len = sky2_get_eeprom_len,
.get_eeprom = sky2_get_eeprom,
.set_eeprom = sky2_set_eeprom,
.set_sg = ethtool_op_set_sg,
.set_tx_csum = sky2_set_tx_csum,
.set_tso = sky2_set_tso,
.get_rx_csum = sky2_get_rx_csum,
.set_rx_csum = sky2_set_rx_csum,
.get_strings = sky2_get_strings,
.get_coalesce = sky2_get_coalesce,
.set_coalesce = sky2_set_coalesce,
.get_ringparam = sky2_get_ringparam,
.set_ringparam = sky2_set_ringparam,
.get_pauseparam = sky2_get_pauseparam,
.set_pauseparam = sky2_set_pauseparam,
.phys_id = sky2_phys_id,
.get_sset_count = sky2_get_sset_count,
.get_ethtool_stats = sky2_get_ethtool_stats,
};
#ifdef CONFIG_SKY2_DEBUG
static struct dentry *sky2_debug;
static int sky2_debug_show(struct seq_file *seq, void *v)
{
struct net_device *dev = seq->private;
const struct sky2_port *sky2 = netdev_priv(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
unsigned idx, last;
int sop;
if (!netif_running(dev))
return -ENETDOWN;
seq_printf(seq, "IRQ src=%x mask=%x control=%x\n",
sky2_read32(hw, B0_ISRC),
sky2_read32(hw, B0_IMSK),
sky2_read32(hw, B0_Y2_SP_ICR));
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_disable(&hw->napi);
last = sky2_read16(hw, STAT_PUT_IDX);
if (hw->st_idx == last)
seq_puts(seq, "Status ring (empty)\n");
else {
seq_puts(seq, "Status ring\n");
for (idx = hw->st_idx; idx != last && idx < STATUS_RING_SIZE;
idx = RING_NEXT(idx, STATUS_RING_SIZE)) {
const struct sky2_status_le *le = hw->st_le + idx;
seq_printf(seq, "[%d] %#x %d %#x\n",
idx, le->opcode, le->length, le->status);
}
seq_puts(seq, "\n");
}
seq_printf(seq, "Tx ring pending=%u...%u report=%d done=%d\n",
sky2->tx_cons, sky2->tx_prod,
sky2_read16(hw, port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX),
sky2_read16(hw, Q_ADDR(txqaddr[port], Q_DONE)));
/* Dump contents of tx ring */
sop = 1;
for (idx = sky2->tx_next; idx != sky2->tx_prod && idx < TX_RING_SIZE;
idx = RING_NEXT(idx, TX_RING_SIZE)) {
const struct sky2_tx_le *le = sky2->tx_le + idx;
u32 a = le32_to_cpu(le->addr);
if (sop)
seq_printf(seq, "%u:", idx);
sop = 0;
switch(le->opcode & ~HW_OWNER) {
case OP_ADDR64:
seq_printf(seq, " %#x:", a);
break;
case OP_LRGLEN:
seq_printf(seq, " mtu=%d", a);
break;
case OP_VLAN:
seq_printf(seq, " vlan=%d", be16_to_cpu(le->length));
break;
case OP_TCPLISW:
seq_printf(seq, " csum=%#x", a);
break;
case OP_LARGESEND:
seq_printf(seq, " tso=%#x(%d)", a, le16_to_cpu(le->length));
break;
case OP_PACKET:
seq_printf(seq, " %#x(%d)", a, le16_to_cpu(le->length));
break;
case OP_BUFFER:
seq_printf(seq, " frag=%#x(%d)", a, le16_to_cpu(le->length));
break;
default:
seq_printf(seq, " op=%#x,%#x(%d)", le->opcode,
a, le16_to_cpu(le->length));
}
if (le->ctrl & EOP) {
seq_putc(seq, '\n');
sop = 1;
}
}
seq_printf(seq, "\nRx ring hw get=%d put=%d last=%d\n",
sky2_read16(hw, Y2_QADDR(rxqaddr[port], PREF_UNIT_GET_IDX)),
last = sky2_read16(hw, Y2_QADDR(rxqaddr[port], PREF_UNIT_PUT_IDX)),
sky2_read16(hw, Y2_QADDR(rxqaddr[port], PREF_UNIT_LAST_IDX)));
sky2_read32(hw, B0_Y2_SP_LISR);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_enable(&hw->napi);
return 0;
}
static int sky2_debug_open(struct inode *inode, struct file *file)
{
return single_open(file, sky2_debug_show, inode->i_private);
}
static const struct file_operations sky2_debug_fops = {
.owner = THIS_MODULE,
.open = sky2_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/*
* Use network device events to create/remove/rename
* debugfs file entries
*/
static int sky2_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = ptr;
struct sky2_port *sky2 = netdev_priv(dev);
if (dev->netdev_ops->ndo_open != sky2_up || !sky2_debug)
return NOTIFY_DONE;
switch(event) {
case NETDEV_CHANGENAME:
if (sky2->debugfs) {
sky2->debugfs = debugfs_rename(sky2_debug, sky2->debugfs,
sky2_debug, dev->name);
}
break;
case NETDEV_GOING_DOWN:
if (sky2->debugfs) {
printk(KERN_DEBUG PFX "%s: remove debugfs\n",
dev->name);
debugfs_remove(sky2->debugfs);
sky2->debugfs = NULL;
}
break;
case NETDEV_UP:
sky2->debugfs = debugfs_create_file(dev->name, S_IRUGO,
sky2_debug, dev,
&sky2_debug_fops);
if (IS_ERR(sky2->debugfs))
sky2->debugfs = NULL;
}
return NOTIFY_DONE;
}
static struct notifier_block sky2_notifier = {
.notifier_call = sky2_device_event,
};
static __init void sky2_debug_init(void)
{
struct dentry *ent;
ent = debugfs_create_dir("sky2", NULL);
if (!ent || IS_ERR(ent))
return;
sky2_debug = ent;
register_netdevice_notifier(&sky2_notifier);
}
static __exit void sky2_debug_cleanup(void)
{
if (sky2_debug) {
unregister_netdevice_notifier(&sky2_notifier);
debugfs_remove(sky2_debug);
sky2_debug = NULL;
}
}
#else
#define sky2_debug_init()
#define sky2_debug_cleanup()
#endif
/* Two copies of network device operations to handle special case of
not allowing netpoll on second port */
static const struct net_device_ops sky2_netdev_ops[2] = {
{
.ndo_open = sky2_up,
.ndo_stop = sky2_down,
.ndo_start_xmit = sky2_xmit_frame,
.ndo_do_ioctl = sky2_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = sky2_set_mac_address,
.ndo_set_multicast_list = sky2_set_multicast,
.ndo_change_mtu = sky2_change_mtu,
.ndo_tx_timeout = sky2_tx_timeout,
#ifdef SKY2_VLAN_TAG_USED
.ndo_vlan_rx_register = sky2_vlan_rx_register,
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = sky2_netpoll,
#endif
},
{
.ndo_open = sky2_up,
.ndo_stop = sky2_down,
.ndo_start_xmit = sky2_xmit_frame,
.ndo_do_ioctl = sky2_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = sky2_set_mac_address,
.ndo_set_multicast_list = sky2_set_multicast,
.ndo_change_mtu = sky2_change_mtu,
.ndo_tx_timeout = sky2_tx_timeout,
#ifdef SKY2_VLAN_TAG_USED
.ndo_vlan_rx_register = sky2_vlan_rx_register,
#endif
},
};
/* Initialize network device */
static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
unsigned port,
int highmem, int wol)
{
struct sky2_port *sky2;
struct net_device *dev = alloc_etherdev(sizeof(*sky2));
if (!dev) {
dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
return NULL;
}
SET_NETDEV_DEV(dev, &hw->pdev->dev);
dev->irq = hw->pdev->irq;
SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
dev->watchdog_timeo = TX_WATCHDOG;
dev->netdev_ops = &sky2_netdev_ops[port];
sky2 = netdev_priv(dev);
sky2->netdev = dev;
sky2->hw = hw;
sky2->msg_enable = netif_msg_init(debug, default_msg);
/* Auto speed and flow control */
sky2->autoneg = AUTONEG_ENABLE;
sky2->flow_mode = FC_BOTH;
sky2->duplex = -1;
sky2->speed = -1;
sky2->advertising = sky2_supported_modes(hw);
sky2->rx_csum = (hw->chip_id != CHIP_ID_YUKON_XL);
sky2->wol = wol;
spin_lock_init(&sky2->phy_lock);
sky2->tx_pending = TX_DEF_PENDING;
sky2->rx_pending = RX_DEF_PENDING;
hw->dev[port] = dev;
sky2->port = port;
dev->features |= NETIF_F_TSO | NETIF_F_IP_CSUM | NETIF_F_SG;
if (highmem)
dev->features |= NETIF_F_HIGHDMA;
#ifdef SKY2_VLAN_TAG_USED
/* The workaround for FE+ status conflicts with VLAN tag detection. */
if (!(sky2->hw->chip_id == CHIP_ID_YUKON_FE_P &&
sky2->hw->chip_rev == CHIP_REV_YU_FE2_A0)) {
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
}
#endif
/* read the mac address */
memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
return dev;
}
static void __devinit sky2_show_addr(struct net_device *dev)
{
const struct sky2_port *sky2 = netdev_priv(dev);
if (netif_msg_probe(sky2))
printk(KERN_INFO PFX "%s: addr %pM\n",
dev->name, dev->dev_addr);
}
/* Handle software interrupt used during MSI test */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id)
{
struct sky2_hw *hw = dev_id;
u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
if (status == 0)
return IRQ_NONE;
if (status & Y2_IS_IRQ_SW) {
hw->flags |= SKY2_HW_USE_MSI;
wake_up(&hw->msi_wait);
sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
}
sky2_write32(hw, B0_Y2_SP_ICR, 2);
return IRQ_HANDLED;
}
/* Test interrupt path by forcing a a software IRQ */
static int __devinit sky2_test_msi(struct sky2_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
int err;
init_waitqueue_head (&hw->msi_wait);
sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
err = request_irq(pdev->irq, sky2_test_intr, 0, DRV_NAME, hw);
if (err) {
dev_err(&pdev->dev, "cannot assign irq %d\n", pdev->irq);
return err;
}
sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
sky2_read8(hw, B0_CTST);
wait_event_timeout(hw->msi_wait, (hw->flags & SKY2_HW_USE_MSI), HZ/10);
if (!(hw->flags & SKY2_HW_USE_MSI)) {
/* MSI test failed, go back to INTx mode */
dev_info(&pdev->dev, "No interrupt generated using MSI, "
"switching to INTx mode.\n");
err = -EOPNOTSUPP;
sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
}
sky2_write32(hw, B0_IMSK, 0);
sky2_read32(hw, B0_IMSK);
free_irq(pdev->irq, hw);
return err;
}
/*
* Read and parse the first part of Vital Product Data
*/
#define VPD_SIZE 128
#define VPD_MAGIC 0x82
static void __devinit sky2_vpd_info(struct sky2_hw *hw)
{
int cap = pci_find_capability(hw->pdev, PCI_CAP_ID_VPD);
const u8 *p;
u8 *vpd_buf = NULL;
u16 len;
static struct vpd_tag {
char tag[2];
char *label;
} vpd_tags[] = {
{ "PN", "Part Number" },
{ "EC", "Engineering Level" },
{ "MN", "Manufacturer" },
};
if (!cap)
goto out;
vpd_buf = kmalloc(VPD_SIZE, GFP_KERNEL);
if (!vpd_buf)
goto out;
if (sky2_vpd_read(hw, cap, vpd_buf, 0, VPD_SIZE))
goto out;
if (vpd_buf[0] != VPD_MAGIC)
goto out;
len = vpd_buf[1];
if (len == 0 || len > VPD_SIZE - 4)
goto out;
p = vpd_buf + 3;
dev_info(&hw->pdev->dev, "%.*s\n", len, p);
p += len;
while (p < vpd_buf + VPD_SIZE - 4) {
int i;
if (!memcmp("RW", p, 2)) /* end marker */
break;
len = p[2];
if (len > (p - vpd_buf) - 4)
break;
for (i = 0; i < ARRAY_SIZE(vpd_tags); i++) {
if (!memcmp(vpd_tags[i].tag, p, 2)) {
printk(KERN_DEBUG " %s: %.*s\n",
vpd_tags[i].label, len, p + 3);
break;
}
}
p += len + 3;
}
out:
kfree(vpd_buf);
}
/* This driver supports yukon2 chipset only */
static const char *sky2_name(u8 chipid, char *buf, int sz)
{
const char *name[] = {
"XL", /* 0xb3 */
"EC Ultra", /* 0xb4 */
"Extreme", /* 0xb5 */
"EC", /* 0xb6 */
"FE", /* 0xb7 */
"FE+", /* 0xb8 */
"Supreme", /* 0xb9 */
"UL 2", /* 0xba */
};
if (chipid >= CHIP_ID_YUKON_XL && chipid < CHIP_ID_YUKON_UL_2)
strncpy(buf, name[chipid - CHIP_ID_YUKON_XL], sz);
else
snprintf(buf, sz, "(chip %#x)", chipid);
return buf;
}
static int __devinit sky2_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
struct sky2_hw *hw;
int err, using_dac = 0, wol_default;
char buf1[16];
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "cannot enable PCI device\n");
goto err_out;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "cannot obtain PCI resources\n");
goto err_out_disable;
}
pci_set_master(pdev);
if (sizeof(dma_addr_t) > sizeof(u32) &&
!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
if (err < 0) {
dev_err(&pdev->dev, "unable to obtain 64 bit DMA "
"for consistent allocations\n");
goto err_out_free_regions;
}
} else {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
dev_err(&pdev->dev, "no usable DMA configuration\n");
goto err_out_free_regions;
}
}
wol_default = device_may_wakeup(&pdev->dev) ? WAKE_MAGIC : 0;
err = -ENOMEM;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
if (!hw) {
dev_err(&pdev->dev, "cannot allocate hardware struct\n");
goto err_out_free_regions;
}
hw->pdev = pdev;
hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
if (!hw->regs) {
dev_err(&pdev->dev, "cannot map device registers\n");
goto err_out_free_hw;
}
#ifdef __BIG_ENDIAN
/* The sk98lin vendor driver uses hardware byte swapping but
* this driver uses software swapping.
*/
{
u32 reg;
reg = sky2_pci_read32(hw, PCI_DEV_REG2);
reg &= ~PCI_REV_DESC;
sky2_pci_write32(hw, PCI_DEV_REG2, reg);
}
#endif
/* ring for status responses */
hw->st_le = pci_alloc_consistent(pdev, STATUS_LE_BYTES, &hw->st_dma);
if (!hw->st_le)
goto err_out_iounmap;
err = sky2_init(hw);
if (err)
goto err_out_iounmap;
dev_info(&pdev->dev, "Yukon-2 %s chip revision %d\n",
sky2_name(hw->chip_id, buf1, sizeof(buf1)), hw->chip_rev);
sky2_reset(hw);
sky2_vpd_info(hw);
dev = sky2_init_netdev(hw, 0, using_dac, wol_default);
if (!dev) {
err = -ENOMEM;
goto err_out_free_pci;
}
if (!disable_msi && pci_enable_msi(pdev) == 0) {
err = sky2_test_msi(hw);
if (err == -EOPNOTSUPP)
pci_disable_msi(pdev);
else if (err)
goto err_out_free_netdev;
}
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "cannot register net device\n");
goto err_out_free_netdev;
}
netif_napi_add(dev, &hw->napi, sky2_poll, NAPI_WEIGHT);
err = request_irq(pdev->irq, sky2_intr,
(hw->flags & SKY2_HW_USE_MSI) ? 0 : IRQF_SHARED,
dev->name, hw);
if (err) {
dev_err(&pdev->dev, "cannot assign irq %d\n", pdev->irq);
goto err_out_unregister;
}
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
napi_enable(&hw->napi);
sky2_show_addr(dev);
if (hw->ports > 1) {
struct net_device *dev1;
dev1 = sky2_init_netdev(hw, 1, using_dac, wol_default);
if (!dev1)
dev_warn(&pdev->dev, "allocation for second device failed\n");
else if ((err = register_netdev(dev1))) {
dev_warn(&pdev->dev,
"register of second port failed (%d)\n", err);
hw->dev[1] = NULL;
free_netdev(dev1);
} else
sky2_show_addr(dev1);
}
setup_timer(&hw->watchdog_timer, sky2_watchdog, (unsigned long) hw);
INIT_WORK(&hw->restart_work, sky2_restart);
pci_set_drvdata(pdev, hw);
return 0;
err_out_unregister:
if (hw->flags & SKY2_HW_USE_MSI)
pci_disable_msi(pdev);
unregister_netdev(dev);
err_out_free_netdev:
free_netdev(dev);
err_out_free_pci:
sky2_write8(hw, B0_CTST, CS_RST_SET);
pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
err_out_iounmap:
iounmap(hw->regs);
err_out_free_hw:
kfree(hw);
err_out_free_regions:
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
err_out:
pci_set_drvdata(pdev, NULL);
return err;
}
static void __devexit sky2_remove(struct pci_dev *pdev)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int i;
if (!hw)
return;
del_timer_sync(&hw->watchdog_timer);
cancel_work_sync(&hw->restart_work);
for (i = hw->ports-1; i >= 0; --i)
unregister_netdev(hw->dev[i]);
sky2_write32(hw, B0_IMSK, 0);
sky2_power_aux(hw);
sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
sky2_write8(hw, B0_CTST, CS_RST_SET);
sky2_read8(hw, B0_CTST);
free_irq(pdev->irq, hw);
if (hw->flags & SKY2_HW_USE_MSI)
pci_disable_msi(pdev);
pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
pci_release_regions(pdev);
pci_disable_device(pdev);
for (i = hw->ports-1; i >= 0; --i)
free_netdev(hw->dev[i]);
iounmap(hw->regs);
kfree(hw);
pci_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM
static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int i, wol = 0;
if (!hw)
return 0;
del_timer_sync(&hw->watchdog_timer);
cancel_work_sync(&hw->restart_work);
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct sky2_port *sky2 = netdev_priv(dev);
netif_device_detach(dev);
if (netif_running(dev))
sky2_down(dev);
if (sky2->wol)
sky2_wol_init(sky2);
wol |= sky2->wol;
}
sky2_write32(hw, B0_IMSK, 0);
napi_disable(&hw->napi);
sky2_power_aux(hw);
pci_save_state(pdev);
pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int sky2_resume(struct pci_dev *pdev)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int i, err;
if (!hw)
return 0;
err = pci_set_power_state(pdev, PCI_D0);
if (err)
goto out;
err = pci_restore_state(pdev);
if (err)
goto out;
pci_enable_wake(pdev, PCI_D0, 0);
/* Re-enable all clocks */
if (hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_EC_U ||
hw->chip_id == CHIP_ID_YUKON_FE_P)
sky2_pci_write32(hw, PCI_DEV_REG3, 0);
sky2_reset(hw);
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
napi_enable(&hw->napi);
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
netif_device_attach(dev);
if (netif_running(dev)) {
err = sky2_up(dev);
if (err) {
printk(KERN_ERR PFX "%s: could not up: %d\n",
dev->name, err);
rtnl_lock();
dev_close(dev);
rtnl_unlock();
goto out;
}
}
}
return 0;
out:
dev_err(&pdev->dev, "resume failed (%d)\n", err);
pci_disable_device(pdev);
return err;
}
#endif
static void sky2_shutdown(struct pci_dev *pdev)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int i, wol = 0;
if (!hw)
return;
del_timer_sync(&hw->watchdog_timer);
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct sky2_port *sky2 = netdev_priv(dev);
if (sky2->wol) {
wol = 1;
sky2_wol_init(sky2);
}
}
if (wol)
sky2_power_aux(hw);
pci_enable_wake(pdev, PCI_D3hot, wol);
pci_enable_wake(pdev, PCI_D3cold, wol);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
}
static struct pci_driver sky2_driver = {
.name = DRV_NAME,
.id_table = sky2_id_table,
.probe = sky2_probe,
.remove = __devexit_p(sky2_remove),
#ifdef CONFIG_PM
.suspend = sky2_suspend,
.resume = sky2_resume,
#endif
.shutdown = sky2_shutdown,
};
static int __init sky2_init_module(void)
{
pr_info(PFX "driver version " DRV_VERSION "\n");
sky2_debug_init();
return pci_register_driver(&sky2_driver);
}
static void __exit sky2_cleanup_module(void)
{
pci_unregister_driver(&sky2_driver);
sky2_debug_cleanup();
}
module_init(sky2_init_module);
module_exit(sky2_cleanup_module);
MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);