linux/net/sched/act_ipt.c

465 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_ipt.c iptables target interface
*
*TODO: Add other tables. For now we only support the ipv4 table targets
*
* Copyright: Jamal Hadi Salim (2002-13)
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/module.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <linux/tc_act/tc_ipt.h>
#include <net/tc_act/tc_ipt.h>
#include <net/tc_wrapper.h>
#include <net/ip.h>
#include <linux/netfilter_ipv4/ip_tables.h>
static struct tc_action_ops act_ipt_ops;
static struct tc_action_ops act_xt_ops;
static int ipt_init_target(struct net *net, struct xt_entry_target *t,
char *table, unsigned int hook)
{
struct xt_tgchk_param par;
struct xt_target *target;
struct ipt_entry e = {};
int ret = 0;
target = xt_request_find_target(AF_INET, t->u.user.name,
t->u.user.revision);
if (IS_ERR(target))
return PTR_ERR(target);
t->u.kernel.target = target;
memset(&par, 0, sizeof(par));
par.net = net;
par.table = table;
par.entryinfo = &e;
par.target = target;
par.targinfo = t->data;
par.hook_mask = 1 << hook;
par.family = NFPROTO_IPV4;
ret = xt_check_target(&par, t->u.target_size - sizeof(*t), 0, false);
if (ret < 0) {
module_put(t->u.kernel.target->me);
return ret;
}
return 0;
}
static void ipt_destroy_target(struct xt_entry_target *t, struct net *net)
{
struct xt_tgdtor_param par = {
.target = t->u.kernel.target,
.targinfo = t->data,
.family = NFPROTO_IPV4,
.net = net,
};
if (par.target->destroy != NULL)
par.target->destroy(&par);
module_put(par.target->me);
}
static void tcf_ipt_release(struct tc_action *a)
{
struct tcf_ipt *ipt = to_ipt(a);
net/sched: fix idr leak in the error path of __tcf_ipt_init() __tcf_ipt_init() can fail after the idr has been successfully reserved. When this happens, subsequent attempts to configure xt/ipt rules using the same idr value systematically fail with -ENOSPC: # tc action add action xt -j LOG --log-prefix test1 index 100 tablename: mangle hook: NF_IP_POST_ROUTING target: LOG level warning prefix "test1" index 100 RTNETLINK answers: Cannot allocate memory We have an error talking to the kernel Command "(null)" is unknown, try "tc actions help". # tc action add action xt -j LOG --log-prefix test1 index 100 tablename: mangle hook: NF_IP_POST_ROUTING target: LOG level warning prefix "test1" index 100 RTNETLINK answers: No space left on device We have an error talking to the kernel Command "(null)" is unknown, try "tc actions help". # tc action add action xt -j LOG --log-prefix test1 index 100 tablename: mangle hook: NF_IP_POST_ROUTING target: LOG level warning prefix "test1" index 100 RTNETLINK answers: No space left on device We have an error talking to the kernel ... Fix this in the error path of __tcf_ipt_init(), calling tcf_idr_release() in place of tcf_idr_cleanup(). Since tcf_ipt_release() can now be called when tcfi_t is NULL, we also need to protect calls to ipt_destroy_target() to avoid NULL pointer dereference. Fixes: 65a206c01e8e ("net/sched: Change act_api and act_xxx modules to use IDR") Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Davide Caratti <dcaratti@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-19 22:31:26 +08:00
if (ipt->tcfi_t) {
ipt_destroy_target(ipt->tcfi_t, a->idrinfo->net);
net/sched: fix idr leak in the error path of __tcf_ipt_init() __tcf_ipt_init() can fail after the idr has been successfully reserved. When this happens, subsequent attempts to configure xt/ipt rules using the same idr value systematically fail with -ENOSPC: # tc action add action xt -j LOG --log-prefix test1 index 100 tablename: mangle hook: NF_IP_POST_ROUTING target: LOG level warning prefix "test1" index 100 RTNETLINK answers: Cannot allocate memory We have an error talking to the kernel Command "(null)" is unknown, try "tc actions help". # tc action add action xt -j LOG --log-prefix test1 index 100 tablename: mangle hook: NF_IP_POST_ROUTING target: LOG level warning prefix "test1" index 100 RTNETLINK answers: No space left on device We have an error talking to the kernel Command "(null)" is unknown, try "tc actions help". # tc action add action xt -j LOG --log-prefix test1 index 100 tablename: mangle hook: NF_IP_POST_ROUTING target: LOG level warning prefix "test1" index 100 RTNETLINK answers: No space left on device We have an error talking to the kernel ... Fix this in the error path of __tcf_ipt_init(), calling tcf_idr_release() in place of tcf_idr_cleanup(). Since tcf_ipt_release() can now be called when tcfi_t is NULL, we also need to protect calls to ipt_destroy_target() to avoid NULL pointer dereference. Fixes: 65a206c01e8e ("net/sched: Change act_api and act_xxx modules to use IDR") Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Davide Caratti <dcaratti@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-19 22:31:26 +08:00
kfree(ipt->tcfi_t);
}
kfree(ipt->tcfi_tname);
}
static const struct nla_policy ipt_policy[TCA_IPT_MAX + 1] = {
[TCA_IPT_TABLE] = { .type = NLA_STRING, .len = IFNAMSIZ },
[TCA_IPT_HOOK] = NLA_POLICY_RANGE(NLA_U32, NF_INET_PRE_ROUTING,
NF_INET_NUMHOOKS),
[TCA_IPT_INDEX] = { .type = NLA_U32 },
[TCA_IPT_TARG] = { .len = sizeof(struct xt_entry_target) },
};
static int __tcf_ipt_init(struct net *net, unsigned int id, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
const struct tc_action_ops *ops,
struct tcf_proto *tp, u32 flags)
{
struct tc_action_net *tn = net_generic(net, id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_IPT_MAX + 1];
struct tcf_ipt *ipt;
struct xt_entry_target *td, *t;
char *tname;
bool exists = false;
int ret = 0, err;
u32 hook = 0;
u32 index = 0;
if (nla == NULL)
return -EINVAL;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 20:07:28 +08:00
err = nla_parse_nested_deprecated(tb, TCA_IPT_MAX, nla, ipt_policy,
NULL);
if (err < 0)
return err;
if (tb[TCA_IPT_INDEX] != NULL)
index = nla_get_u32(tb[TCA_IPT_INDEX]);
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
exists = err;
if (exists && bind)
return 0;
if (tb[TCA_IPT_HOOK] == NULL || tb[TCA_IPT_TARG] == NULL) {
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EINVAL;
}
td = (struct xt_entry_target *)nla_data(tb[TCA_IPT_TARG]);
if (nla_len(tb[TCA_IPT_TARG]) != td->u.target_size) {
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EINVAL;
}
if (!exists) {
ret = tcf_idr_create(tn, index, est, a, ops, bind,
false, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else {
if (bind)/* dont override defaults */
return 0;
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
}
err = -EINVAL;
hook = nla_get_u32(tb[TCA_IPT_HOOK]);
switch (hook) {
case NF_INET_PRE_ROUTING:
break;
case NF_INET_POST_ROUTING:
break;
default:
goto err1;
}
if (tb[TCA_IPT_TABLE]) {
/* mangle only for now */
if (nla_strcmp(tb[TCA_IPT_TABLE], "mangle"))
goto err1;
}
tname = kstrdup("mangle", GFP_KERNEL);
if (unlikely(!tname))
goto err1;
t = kmemdup(td, td->u.target_size, GFP_KERNEL);
if (unlikely(!t))
goto err2;
err = ipt_init_target(net, t, tname, hook);
if (err < 0)
goto err3;
ipt = to_ipt(*a);
spin_lock_bh(&ipt->tcf_lock);
if (ret != ACT_P_CREATED) {
ipt_destroy_target(ipt->tcfi_t, net);
kfree(ipt->tcfi_tname);
kfree(ipt->tcfi_t);
}
ipt->tcfi_tname = tname;
ipt->tcfi_t = t;
ipt->tcfi_hook = hook;
spin_unlock_bh(&ipt->tcf_lock);
return ret;
err3:
kfree(t);
err2:
kfree(tname);
err1:
tcf_idr_release(*a, bind);
return err;
}
static int tcf_ipt_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp,
u32 flags, struct netlink_ext_ack *extack)
{
return __tcf_ipt_init(net, act_ipt_ops.net_id, nla, est,
a, &act_ipt_ops, tp, flags);
}
static int tcf_xt_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp,
u32 flags, struct netlink_ext_ack *extack)
{
return __tcf_ipt_init(net, act_xt_ops.net_id, nla, est,
a, &act_xt_ops, tp, flags);
}
static bool tcf_ipt_act_check(struct sk_buff *skb)
{
const struct iphdr *iph;
unsigned int nhoff, len;
if (!pskb_may_pull(skb, sizeof(struct iphdr)))
return false;
nhoff = skb_network_offset(skb);
iph = ip_hdr(skb);
if (iph->ihl < 5 || iph->version != 4)
return false;
len = skb_ip_totlen(skb);
if (skb->len < nhoff + len || len < (iph->ihl * 4u))
return false;
return pskb_may_pull(skb, iph->ihl * 4u);
}
TC_INDIRECT_SCOPE int tcf_ipt_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
char saved_cb[sizeof_field(struct sk_buff, cb)];
int ret = 0, result = 0;
struct tcf_ipt *ipt = to_ipt(a);
struct xt_action_param par;
struct nf_hook_state state = {
.net = dev_net(skb->dev),
.in = skb->dev,
.hook = ipt->tcfi_hook,
.pf = NFPROTO_IPV4,
};
if (skb_protocol(skb, false) != htons(ETH_P_IP))
return TC_ACT_UNSPEC;
if (skb_unclone(skb, GFP_ATOMIC))
return TC_ACT_UNSPEC;
if (!tcf_ipt_act_check(skb))
return TC_ACT_UNSPEC;
if (state.hook == NF_INET_POST_ROUTING) {
if (!skb_dst(skb))
return TC_ACT_UNSPEC;
state.out = skb->dev;
}
memcpy(saved_cb, skb->cb, sizeof(saved_cb));
spin_lock(&ipt->tcf_lock);
tcf_lastuse_update(&ipt->tcf_tm);
bstats_update(&ipt->tcf_bstats, skb);
/* yes, we have to worry about both in and out dev
* worry later - danger - this API seems to have changed
* from earlier kernels
*/
par.state = &state;
par.target = ipt->tcfi_t->u.kernel.target;
par.targinfo = ipt->tcfi_t->data;
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
ret = par.target->target(skb, &par);
switch (ret) {
case NF_ACCEPT:
result = TC_ACT_OK;
break;
case NF_DROP:
result = TC_ACT_SHOT;
ipt->tcf_qstats.drops++;
break;
case XT_CONTINUE:
result = TC_ACT_PIPE;
break;
default:
net_notice_ratelimited("tc filter: Bogus netfilter code %d assume ACCEPT\n",
ret);
result = TC_ACT_OK;
break;
}
spin_unlock(&ipt->tcf_lock);
memcpy(skb->cb, saved_cb, sizeof(skb->cb));
return result;
}
static int tcf_ipt_dump(struct sk_buff *skb, struct tc_action *a, int bind,
int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_ipt *ipt = to_ipt(a);
struct xt_entry_target *t;
struct tcf_t tm;
struct tc_cnt c;
/* for simple targets kernel size == user size
* user name = target name
* for foolproof you need to not assume this
*/
spin_lock_bh(&ipt->tcf_lock);
t = kmemdup(ipt->tcfi_t, ipt->tcfi_t->u.user.target_size, GFP_ATOMIC);
if (unlikely(!t))
goto nla_put_failure;
c.bindcnt = atomic_read(&ipt->tcf_bindcnt) - bind;
c.refcnt = refcount_read(&ipt->tcf_refcnt) - ref;
strcpy(t->u.user.name, ipt->tcfi_t->u.kernel.target->name);
if (nla_put(skb, TCA_IPT_TARG, ipt->tcfi_t->u.user.target_size, t) ||
nla_put_u32(skb, TCA_IPT_INDEX, ipt->tcf_index) ||
nla_put_u32(skb, TCA_IPT_HOOK, ipt->tcfi_hook) ||
nla_put(skb, TCA_IPT_CNT, sizeof(struct tc_cnt), &c) ||
nla_put_string(skb, TCA_IPT_TABLE, ipt->tcfi_tname))
goto nla_put_failure;
tcf_tm_dump(&tm, &ipt->tcf_tm);
if (nla_put_64bit(skb, TCA_IPT_TM, sizeof(tm), &tm, TCA_IPT_PAD))
goto nla_put_failure;
spin_unlock_bh(&ipt->tcf_lock);
kfree(t);
return skb->len;
nla_put_failure:
spin_unlock_bh(&ipt->tcf_lock);
nlmsg_trim(skb, b);
kfree(t);
return -1;
}
static struct tc_action_ops act_ipt_ops = {
.kind = "ipt",
.id = TCA_ID_IPT,
.owner = THIS_MODULE,
.act = tcf_ipt_act,
.dump = tcf_ipt_dump,
.cleanup = tcf_ipt_release,
.init = tcf_ipt_init,
.size = sizeof(struct tcf_ipt),
};
static __net_init int ipt_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_ipt_ops.net_id);
return tc_action_net_init(net, tn, &act_ipt_ops);
}
static void __net_exit ipt_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_ipt_ops.net_id);
}
static struct pernet_operations ipt_net_ops = {
.init = ipt_init_net,
.exit_batch = ipt_exit_net,
.id = &act_ipt_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static struct tc_action_ops act_xt_ops = {
.kind = "xt",
.id = TCA_ID_XT,
.owner = THIS_MODULE,
.act = tcf_ipt_act,
.dump = tcf_ipt_dump,
.cleanup = tcf_ipt_release,
.init = tcf_xt_init,
.size = sizeof(struct tcf_ipt),
};
static __net_init int xt_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_xt_ops.net_id);
return tc_action_net_init(net, tn, &act_xt_ops);
}
static void __net_exit xt_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_xt_ops.net_id);
}
static struct pernet_operations xt_net_ops = {
.init = xt_init_net,
.exit_batch = xt_exit_net,
.id = &act_xt_ops.net_id,
.size = sizeof(struct tc_action_net),
};
MODULE_AUTHOR("Jamal Hadi Salim(2002-13)");
MODULE_DESCRIPTION("Iptables target actions");
MODULE_LICENSE("GPL");
MODULE_ALIAS("act_xt");
static int __init ipt_init_module(void)
{
int ret1, ret2;
ret1 = tcf_register_action(&act_xt_ops, &xt_net_ops);
if (ret1 < 0)
pr_err("Failed to load xt action\n");
ret2 = tcf_register_action(&act_ipt_ops, &ipt_net_ops);
if (ret2 < 0)
pr_err("Failed to load ipt action\n");
if (ret1 < 0 && ret2 < 0) {
return ret1;
} else
return 0;
}
static void __exit ipt_cleanup_module(void)
{
tcf_unregister_action(&act_ipt_ops, &ipt_net_ops);
tcf_unregister_action(&act_xt_ops, &xt_net_ops);
}
module_init(ipt_init_module);
module_exit(ipt_cleanup_module);