linux/security/commoncap.c

1484 lines
43 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/* Common capabilities, needed by capability.o.
*/
#include <linux/capability.h>
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
#include <linux/audit.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/lsm_hooks.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/ptrace.h>
#include <linux/xattr.h>
#include <linux/hugetlb.h>
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
#include <linux/mount.h>
pid namespaces: define is_global_init() and is_container_init() is_init() is an ambiguous name for the pid==1 check. Split it into is_global_init() and is_container_init(). A cgroup init has it's tsk->pid == 1. A global init also has it's tsk->pid == 1 and it's active pid namespace is the init_pid_ns. But rather than check the active pid namespace, compare the task structure with 'init_pid_ns.child_reaper', which is initialized during boot to the /sbin/init process and never changes. Changelog: 2.6.22-rc4-mm2-pidns1: - Use 'init_pid_ns.child_reaper' to determine if a given task is the global init (/sbin/init) process. This would improve performance and remove dependence on the task_pid(). 2.6.21-mm2-pidns2: - [Sukadev Bhattiprolu] Changed is_container_init() calls in {powerpc, ppc,avr32}/traps.c for the _exception() call to is_global_init(). This way, we kill only the cgroup if the cgroup's init has a bug rather than force a kernel panic. [akpm@linux-foundation.org: fix comment] [sukadev@us.ibm.com: Use is_global_init() in arch/m32r/mm/fault.c] [bunk@stusta.de: kernel/pid.c: remove unused exports] [sukadev@us.ibm.com: Fix capability.c to work with threaded init] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com> Acked-by: Pavel Emelianov <xemul@openvz.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Herbert Poetzel <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:52 +08:00
#include <linux/sched.h>
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
#include <linux/prctl.h>
#include <linux/securebits.h>
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:43:17 +08:00
#include <linux/user_namespace.h>
#include <linux/binfmts.h>
#include <linux/personality.h>
#include <linux/mnt_idmapping.h>
LSM: Identify modules by more than name Create a struct lsm_id to contain identifying information about Linux Security Modules (LSMs). At inception this contains the name of the module and an identifier associated with the security module. Change the security_add_hooks() interface to use this structure. Change the individual modules to maintain their own struct lsm_id and pass it to security_add_hooks(). The values are for LSM identifiers are defined in a new UAPI header file linux/lsm.h. Each existing LSM has been updated to include it's LSMID in the lsm_id. The LSM ID values are sequential, with the oldest module LSM_ID_CAPABILITY being the lowest value and the existing modules numbered in the order they were included in the main line kernel. This is an arbitrary convention for assigning the values, but none better presents itself. The value 0 is defined as being invalid. The values 1-99 are reserved for any special case uses which may arise in the future. This may include attributes of the LSM infrastructure itself, possibly related to namespacing or network attribute management. A special range is identified for such attributes to help reduce confusion for developers unfamiliar with LSMs. LSM attribute values are defined for the attributes presented by modules that are available today. As with the LSM IDs, The value 0 is defined as being invalid. The values 1-99 are reserved for any special case uses which may arise in the future. Cc: linux-security-module <linux-security-module@vger.kernel.org> Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: Mickael Salaun <mic@digikod.net> Reviewed-by: John Johansen <john.johansen@canonical.com> Signed-off-by: Kees Cook <keescook@chromium.org> Nacked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> [PM: forward ported beyond v6.6 due merge window changes] Signed-off-by: Paul Moore <paul@paul-moore.com>
2023-09-13 04:56:46 +08:00
#include <uapi/linux/lsm.h>
V3 file capabilities: alter behavior of cap_setpcap The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1, can change the capabilities of another process, p2. This is not the meaning that was intended for this capability at all, and this implementation came about purely because, without filesystem capabilities, there was no way to use capabilities without one process bestowing them on another. Since we now have a filesystem support for capabilities we can fix the implementation of CAP_SETPCAP. The most significant thing about this change is that, with it in effect, no process can set the capabilities of another process. The capabilities of a program are set via the capability convolution rules: pI(post-exec) = pI(pre-exec) pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI) pE(post-exec) = fE ? pP(post-exec) : 0 at exec() time. As such, the only influence the pre-exec() program can have on the post-exec() program's capabilities are through the pI capability set. The correct implementation for CAP_SETPCAP (and that enabled by this patch) is that it can be used to add extra pI capabilities to the current process - to be picked up by subsequent exec()s when the above convolution rules are applied. Here is how it works: Let's say we have a process, p. It has capability sets, pE, pP and pI. Generally, p, can change the value of its own pI to pI' where (pI' & ~pI) & ~pP = 0. That is, the only new things in pI' that were not present in pI need to be present in pP. The role of CAP_SETPCAP is basically to permit changes to pI beyond the above: if (pE & CAP_SETPCAP) { pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */ } This capability is useful for things like login, which (say, via pam_cap) might want to raise certain inheritable capabilities for use by the children of the logged-in user's shell, but those capabilities are not useful to or needed by the login program itself. One such use might be to limit who can run ping. You set the capabilities of the 'ping' program to be "= cap_net_raw+i", and then only shells that have (pI & CAP_NET_RAW) will be able to run it. Without CAP_SETPCAP implemented as described above, login(pam_cap) would have to also have (pP & CAP_NET_RAW) in order to raise this capability and pass it on through the inheritable set. Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 18:05:59 +08:00
/*
* If a non-root user executes a setuid-root binary in
* !secure(SECURE_NOROOT) mode, then we raise capabilities.
* However if fE is also set, then the intent is for only
* the file capabilities to be applied, and the setuid-root
* bit is left on either to change the uid (plausible) or
* to get full privilege on a kernel without file capabilities
* support. So in that case we do not raise capabilities.
*
* Warn if that happens, once per boot.
*/
static void warn_setuid_and_fcaps_mixed(const char *fname)
{
static int warned;
if (!warned) {
printk(KERN_INFO "warning: `%s' has both setuid-root and"
" effective capabilities. Therefore not raising all"
" capabilities.\n", fname);
warned = 1;
}
}
/**
* cap_capable - Determine whether a task has a particular effective capability
CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3] Fix a regression in cap_capable() due to: commit 3b11a1decef07c19443d24ae926982bc8ec9f4c0 Author: David Howells <dhowells@redhat.com> Date: Fri Nov 14 10:39:26 2008 +1100 CRED: Differentiate objective and effective subjective credentials on a task The problem is that the above patch allows a process to have two sets of credentials, and for the most part uses the subjective credentials when accessing current's creds. There is, however, one exception: cap_capable(), and thus capable(), uses the real/objective credentials of the target task, whether or not it is the current task. Ordinarily this doesn't matter, since usually the two cred pointers in current point to the same set of creds. However, sys_faccessat() makes use of this facility to override the credentials of the calling process to make its test, without affecting the creds as seen from other processes. One of the things sys_faccessat() does is to make an adjustment to the effective capabilities mask, which cap_capable(), as it stands, then ignores. The affected capability check is in generic_permission(): if (!(mask & MAY_EXEC) || execute_ok(inode)) if (capable(CAP_DAC_OVERRIDE)) return 0; This change passes the set of credentials to be tested down into the commoncap and SELinux code. The security functions called by capable() and has_capability() select the appropriate set of credentials from the process being checked. This can be tested by compiling the following program from the XFS testsuite: /* * t_access_root.c - trivial test program to show permission bug. * * Written by Michael Kerrisk - copyright ownership not pursued. * Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html */ #include <limits.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <sys/stat.h> #define UID 500 #define GID 100 #define PERM 0 #define TESTPATH "/tmp/t_access" static void errExit(char *msg) { perror(msg); exit(EXIT_FAILURE); } /* errExit */ static void accessTest(char *file, int mask, char *mstr) { printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask)); } /* accessTest */ int main(int argc, char *argv[]) { int fd, perm, uid, gid; char *testpath; char cmd[PATH_MAX + 20]; testpath = (argc > 1) ? argv[1] : TESTPATH; perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM; uid = (argc > 3) ? atoi(argv[3]) : UID; gid = (argc > 4) ? atoi(argv[4]) : GID; unlink(testpath); fd = open(testpath, O_RDWR | O_CREAT, 0); if (fd == -1) errExit("open"); if (fchown(fd, uid, gid) == -1) errExit("fchown"); if (fchmod(fd, perm) == -1) errExit("fchmod"); close(fd); snprintf(cmd, sizeof(cmd), "ls -l %s", testpath); system(cmd); if (seteuid(uid) == -1) errExit("seteuid"); accessTest(testpath, 0, "0"); accessTest(testpath, R_OK, "R_OK"); accessTest(testpath, W_OK, "W_OK"); accessTest(testpath, X_OK, "X_OK"); accessTest(testpath, R_OK | W_OK, "R_OK | W_OK"); accessTest(testpath, R_OK | X_OK, "R_OK | X_OK"); accessTest(testpath, W_OK | X_OK, "W_OK | X_OK"); accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK"); exit(EXIT_SUCCESS); } /* main */ This can be run against an Ext3 filesystem as well as against an XFS filesystem. If successful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns 0 access(/tmp/xxx, W_OK) returns 0 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns 0 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 If unsuccessful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns -1 access(/tmp/xxx, W_OK) returns -1 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns -1 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 I've also tested the fix with the SELinux and syscalls LTP testsuites. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: J. Bruce Fields <bfields@citi.umich.edu> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-01-07 06:27:01 +08:00
* @cred: The credentials to use
* @targ_ns: The user namespace in which we need the capability
* @cap: The capability to check for
* @opts: Bitmask of options defined in include/linux/security.h
*
* Determine whether the nominated task has the specified capability amongst
* its effective set, returning 0 if it does, -ve if it does not.
*
CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3] Fix a regression in cap_capable() due to: commit 3b11a1decef07c19443d24ae926982bc8ec9f4c0 Author: David Howells <dhowells@redhat.com> Date: Fri Nov 14 10:39:26 2008 +1100 CRED: Differentiate objective and effective subjective credentials on a task The problem is that the above patch allows a process to have two sets of credentials, and for the most part uses the subjective credentials when accessing current's creds. There is, however, one exception: cap_capable(), and thus capable(), uses the real/objective credentials of the target task, whether or not it is the current task. Ordinarily this doesn't matter, since usually the two cred pointers in current point to the same set of creds. However, sys_faccessat() makes use of this facility to override the credentials of the calling process to make its test, without affecting the creds as seen from other processes. One of the things sys_faccessat() does is to make an adjustment to the effective capabilities mask, which cap_capable(), as it stands, then ignores. The affected capability check is in generic_permission(): if (!(mask & MAY_EXEC) || execute_ok(inode)) if (capable(CAP_DAC_OVERRIDE)) return 0; This change passes the set of credentials to be tested down into the commoncap and SELinux code. The security functions called by capable() and has_capability() select the appropriate set of credentials from the process being checked. This can be tested by compiling the following program from the XFS testsuite: /* * t_access_root.c - trivial test program to show permission bug. * * Written by Michael Kerrisk - copyright ownership not pursued. * Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html */ #include <limits.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <sys/stat.h> #define UID 500 #define GID 100 #define PERM 0 #define TESTPATH "/tmp/t_access" static void errExit(char *msg) { perror(msg); exit(EXIT_FAILURE); } /* errExit */ static void accessTest(char *file, int mask, char *mstr) { printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask)); } /* accessTest */ int main(int argc, char *argv[]) { int fd, perm, uid, gid; char *testpath; char cmd[PATH_MAX + 20]; testpath = (argc > 1) ? argv[1] : TESTPATH; perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM; uid = (argc > 3) ? atoi(argv[3]) : UID; gid = (argc > 4) ? atoi(argv[4]) : GID; unlink(testpath); fd = open(testpath, O_RDWR | O_CREAT, 0); if (fd == -1) errExit("open"); if (fchown(fd, uid, gid) == -1) errExit("fchown"); if (fchmod(fd, perm) == -1) errExit("fchmod"); close(fd); snprintf(cmd, sizeof(cmd), "ls -l %s", testpath); system(cmd); if (seteuid(uid) == -1) errExit("seteuid"); accessTest(testpath, 0, "0"); accessTest(testpath, R_OK, "R_OK"); accessTest(testpath, W_OK, "W_OK"); accessTest(testpath, X_OK, "X_OK"); accessTest(testpath, R_OK | W_OK, "R_OK | W_OK"); accessTest(testpath, R_OK | X_OK, "R_OK | X_OK"); accessTest(testpath, W_OK | X_OK, "W_OK | X_OK"); accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK"); exit(EXIT_SUCCESS); } /* main */ This can be run against an Ext3 filesystem as well as against an XFS filesystem. If successful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns 0 access(/tmp/xxx, W_OK) returns 0 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns 0 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 If unsuccessful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns -1 access(/tmp/xxx, W_OK) returns -1 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns -1 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 I've also tested the fix with the SELinux and syscalls LTP testsuites. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: J. Bruce Fields <bfields@citi.umich.edu> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-01-07 06:27:01 +08:00
* NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
* and has_capability() functions. That is, it has the reverse semantics:
* cap_has_capability() returns 0 when a task has a capability, but the
* kernel's capable() and has_capability() returns 1 for this case.
*/
int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
int cap, unsigned int opts)
{
Fix cap_capable to only allow owners in the parent user namespace to have caps. Andy Lutomirski pointed out that the current behavior of allowing the owner of a user namespace to have all caps when that owner is not in a parent user namespace is wrong. Add a test to ensure the owner of a user namespace is in the parent of the user namespace to fix this bug. Thankfully this bug did not apply to the initial user namespace, keeping the mischief that can be caused by this bug quite small. This is bug was introduced in v3.5 by commit 783291e6900 "Simplify the user_namespace by making userns->creator a kuid." But did not matter until the permisions required to create a user namespace were relaxed allowing a user namespace to be created inside of a user namespace. The bug made it possible for the owner of a user namespace to be present in a child user namespace. Since the owner of a user nameapce is granted all capabilities it became possible for users in a grandchild user namespace to have all privilges over their parent user namspace. Reorder the checks in cap_capable. This should make the common case faster and make it clear that nothing magic happens in the initial user namespace. The reordering is safe because cred->user_ns can only be in targ_ns or targ_ns->parent but not both. Add a comment a the top of the loop to make the logic of the code clear. Add a distinct variable ns that changes as we walk up the user namespace hierarchy to make it clear which variable is changing. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2012-12-14 10:06:40 +08:00
struct user_namespace *ns = targ_ns;
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:43:17 +08:00
Fix cap_capable to only allow owners in the parent user namespace to have caps. Andy Lutomirski pointed out that the current behavior of allowing the owner of a user namespace to have all caps when that owner is not in a parent user namespace is wrong. Add a test to ensure the owner of a user namespace is in the parent of the user namespace to fix this bug. Thankfully this bug did not apply to the initial user namespace, keeping the mischief that can be caused by this bug quite small. This is bug was introduced in v3.5 by commit 783291e6900 "Simplify the user_namespace by making userns->creator a kuid." But did not matter until the permisions required to create a user namespace were relaxed allowing a user namespace to be created inside of a user namespace. The bug made it possible for the owner of a user namespace to be present in a child user namespace. Since the owner of a user nameapce is granted all capabilities it became possible for users in a grandchild user namespace to have all privilges over their parent user namspace. Reorder the checks in cap_capable. This should make the common case faster and make it clear that nothing magic happens in the initial user namespace. The reordering is safe because cred->user_ns can only be in targ_ns or targ_ns->parent but not both. Add a comment a the top of the loop to make the logic of the code clear. Add a distinct variable ns that changes as we walk up the user namespace hierarchy to make it clear which variable is changing. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2012-12-14 10:06:40 +08:00
/* See if cred has the capability in the target user namespace
* by examining the target user namespace and all of the target
* user namespace's parents.
*/
for (;;) {
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:43:17 +08:00
/* Do we have the necessary capabilities? */
Fix cap_capable to only allow owners in the parent user namespace to have caps. Andy Lutomirski pointed out that the current behavior of allowing the owner of a user namespace to have all caps when that owner is not in a parent user namespace is wrong. Add a test to ensure the owner of a user namespace is in the parent of the user namespace to fix this bug. Thankfully this bug did not apply to the initial user namespace, keeping the mischief that can be caused by this bug quite small. This is bug was introduced in v3.5 by commit 783291e6900 "Simplify the user_namespace by making userns->creator a kuid." But did not matter until the permisions required to create a user namespace were relaxed allowing a user namespace to be created inside of a user namespace. The bug made it possible for the owner of a user namespace to be present in a child user namespace. Since the owner of a user nameapce is granted all capabilities it became possible for users in a grandchild user namespace to have all privilges over their parent user namspace. Reorder the checks in cap_capable. This should make the common case faster and make it clear that nothing magic happens in the initial user namespace. The reordering is safe because cred->user_ns can only be in targ_ns or targ_ns->parent but not both. Add a comment a the top of the loop to make the logic of the code clear. Add a distinct variable ns that changes as we walk up the user namespace hierarchy to make it clear which variable is changing. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2012-12-14 10:06:40 +08:00
if (ns == cred->user_ns)
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:43:17 +08:00
return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
/*
* If we're already at a lower level than we're looking for,
* we're done searching.
*/
if (ns->level <= cred->user_ns->level)
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:43:17 +08:00
return -EPERM;
Fix cap_capable to only allow owners in the parent user namespace to have caps. Andy Lutomirski pointed out that the current behavior of allowing the owner of a user namespace to have all caps when that owner is not in a parent user namespace is wrong. Add a test to ensure the owner of a user namespace is in the parent of the user namespace to fix this bug. Thankfully this bug did not apply to the initial user namespace, keeping the mischief that can be caused by this bug quite small. This is bug was introduced in v3.5 by commit 783291e6900 "Simplify the user_namespace by making userns->creator a kuid." But did not matter until the permisions required to create a user namespace were relaxed allowing a user namespace to be created inside of a user namespace. The bug made it possible for the owner of a user namespace to be present in a child user namespace. Since the owner of a user nameapce is granted all capabilities it became possible for users in a grandchild user namespace to have all privilges over their parent user namspace. Reorder the checks in cap_capable. This should make the common case faster and make it clear that nothing magic happens in the initial user namespace. The reordering is safe because cred->user_ns can only be in targ_ns or targ_ns->parent but not both. Add a comment a the top of the loop to make the logic of the code clear. Add a distinct variable ns that changes as we walk up the user namespace hierarchy to make it clear which variable is changing. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2012-12-14 10:06:40 +08:00
/*
* The owner of the user namespace in the parent of the
* user namespace has all caps.
*/
if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
return 0;
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:43:17 +08:00
/*
Fix cap_capable to only allow owners in the parent user namespace to have caps. Andy Lutomirski pointed out that the current behavior of allowing the owner of a user namespace to have all caps when that owner is not in a parent user namespace is wrong. Add a test to ensure the owner of a user namespace is in the parent of the user namespace to fix this bug. Thankfully this bug did not apply to the initial user namespace, keeping the mischief that can be caused by this bug quite small. This is bug was introduced in v3.5 by commit 783291e6900 "Simplify the user_namespace by making userns->creator a kuid." But did not matter until the permisions required to create a user namespace were relaxed allowing a user namespace to be created inside of a user namespace. The bug made it possible for the owner of a user namespace to be present in a child user namespace. Since the owner of a user nameapce is granted all capabilities it became possible for users in a grandchild user namespace to have all privilges over their parent user namspace. Reorder the checks in cap_capable. This should make the common case faster and make it clear that nothing magic happens in the initial user namespace. The reordering is safe because cred->user_ns can only be in targ_ns or targ_ns->parent but not both. Add a comment a the top of the loop to make the logic of the code clear. Add a distinct variable ns that changes as we walk up the user namespace hierarchy to make it clear which variable is changing. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2012-12-14 10:06:40 +08:00
* If you have a capability in a parent user ns, then you have
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:43:17 +08:00
* it over all children user namespaces as well.
*/
Fix cap_capable to only allow owners in the parent user namespace to have caps. Andy Lutomirski pointed out that the current behavior of allowing the owner of a user namespace to have all caps when that owner is not in a parent user namespace is wrong. Add a test to ensure the owner of a user namespace is in the parent of the user namespace to fix this bug. Thankfully this bug did not apply to the initial user namespace, keeping the mischief that can be caused by this bug quite small. This is bug was introduced in v3.5 by commit 783291e6900 "Simplify the user_namespace by making userns->creator a kuid." But did not matter until the permisions required to create a user namespace were relaxed allowing a user namespace to be created inside of a user namespace. The bug made it possible for the owner of a user namespace to be present in a child user namespace. Since the owner of a user nameapce is granted all capabilities it became possible for users in a grandchild user namespace to have all privilges over their parent user namspace. Reorder the checks in cap_capable. This should make the common case faster and make it clear that nothing magic happens in the initial user namespace. The reordering is safe because cred->user_ns can only be in targ_ns or targ_ns->parent but not both. Add a comment a the top of the loop to make the logic of the code clear. Add a distinct variable ns that changes as we walk up the user namespace hierarchy to make it clear which variable is changing. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2012-12-14 10:06:40 +08:00
ns = ns->parent;
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:43:17 +08:00
}
/* We never get here */
}
/**
* cap_settime - Determine whether the current process may set the system clock
* @ts: The time to set
* @tz: The timezone to set
*
* Determine whether the current process may set the system clock and timezone
* information, returning 0 if permission granted, -ve if denied.
*/
int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
{
if (!capable(CAP_SYS_TIME))
return -EPERM;
return 0;
}
/**
* cap_ptrace_access_check - Determine whether the current process may access
* another
* @child: The process to be accessed
* @mode: The mode of attachment.
*
* If we are in the same or an ancestor user_ns and have all the target
* task's capabilities, then ptrace access is allowed.
* If we have the ptrace capability to the target user_ns, then ptrace
* access is allowed.
* Else denied.
*
* Determine whether a process may access another, returning 0 if permission
* granted, -ve if denied.
*/
int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
int ret = 0;
const struct cred *cred, *child_cred;
ptrace: use fsuid, fsgid, effective creds for fs access checks By checking the effective credentials instead of the real UID / permitted capabilities, ensure that the calling process actually intended to use its credentials. To ensure that all ptrace checks use the correct caller credentials (e.g. in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS flag), use two new flags and require one of them to be set. The problem was that when a privileged task had temporarily dropped its privileges, e.g. by calling setreuid(0, user_uid), with the intent to perform following syscalls with the credentials of a user, it still passed ptrace access checks that the user would not be able to pass. While an attacker should not be able to convince the privileged task to perform a ptrace() syscall, this is a problem because the ptrace access check is reused for things in procfs. In particular, the following somewhat interesting procfs entries only rely on ptrace access checks: /proc/$pid/stat - uses the check for determining whether pointers should be visible, useful for bypassing ASLR /proc/$pid/maps - also useful for bypassing ASLR /proc/$pid/cwd - useful for gaining access to restricted directories that contain files with lax permissions, e.g. in this scenario: lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar drwx------ root root /root drwxr-xr-x root root /root/foobar -rw-r--r-- root root /root/foobar/secret Therefore, on a system where a root-owned mode 6755 binary changes its effective credentials as described and then dumps a user-specified file, this could be used by an attacker to reveal the memory layout of root's processes or reveal the contents of files he is not allowed to access (through /proc/$pid/cwd). [akpm@linux-foundation.org: fix warning] Signed-off-by: Jann Horn <jann@thejh.net> Acked-by: Kees Cook <keescook@chromium.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 07:00:04 +08:00
const kernel_cap_t *caller_caps;
rcu_read_lock();
cred = current_cred();
child_cred = __task_cred(child);
ptrace: use fsuid, fsgid, effective creds for fs access checks By checking the effective credentials instead of the real UID / permitted capabilities, ensure that the calling process actually intended to use its credentials. To ensure that all ptrace checks use the correct caller credentials (e.g. in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS flag), use two new flags and require one of them to be set. The problem was that when a privileged task had temporarily dropped its privileges, e.g. by calling setreuid(0, user_uid), with the intent to perform following syscalls with the credentials of a user, it still passed ptrace access checks that the user would not be able to pass. While an attacker should not be able to convince the privileged task to perform a ptrace() syscall, this is a problem because the ptrace access check is reused for things in procfs. In particular, the following somewhat interesting procfs entries only rely on ptrace access checks: /proc/$pid/stat - uses the check for determining whether pointers should be visible, useful for bypassing ASLR /proc/$pid/maps - also useful for bypassing ASLR /proc/$pid/cwd - useful for gaining access to restricted directories that contain files with lax permissions, e.g. in this scenario: lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar drwx------ root root /root drwxr-xr-x root root /root/foobar -rw-r--r-- root root /root/foobar/secret Therefore, on a system where a root-owned mode 6755 binary changes its effective credentials as described and then dumps a user-specified file, this could be used by an attacker to reveal the memory layout of root's processes or reveal the contents of files he is not allowed to access (through /proc/$pid/cwd). [akpm@linux-foundation.org: fix warning] Signed-off-by: Jann Horn <jann@thejh.net> Acked-by: Kees Cook <keescook@chromium.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 07:00:04 +08:00
if (mode & PTRACE_MODE_FSCREDS)
caller_caps = &cred->cap_effective;
else
caller_caps = &cred->cap_permitted;
if (cred->user_ns == child_cred->user_ns &&
ptrace: use fsuid, fsgid, effective creds for fs access checks By checking the effective credentials instead of the real UID / permitted capabilities, ensure that the calling process actually intended to use its credentials. To ensure that all ptrace checks use the correct caller credentials (e.g. in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS flag), use two new flags and require one of them to be set. The problem was that when a privileged task had temporarily dropped its privileges, e.g. by calling setreuid(0, user_uid), with the intent to perform following syscalls with the credentials of a user, it still passed ptrace access checks that the user would not be able to pass. While an attacker should not be able to convince the privileged task to perform a ptrace() syscall, this is a problem because the ptrace access check is reused for things in procfs. In particular, the following somewhat interesting procfs entries only rely on ptrace access checks: /proc/$pid/stat - uses the check for determining whether pointers should be visible, useful for bypassing ASLR /proc/$pid/maps - also useful for bypassing ASLR /proc/$pid/cwd - useful for gaining access to restricted directories that contain files with lax permissions, e.g. in this scenario: lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar drwx------ root root /root drwxr-xr-x root root /root/foobar -rw-r--r-- root root /root/foobar/secret Therefore, on a system where a root-owned mode 6755 binary changes its effective credentials as described and then dumps a user-specified file, this could be used by an attacker to reveal the memory layout of root's processes or reveal the contents of files he is not allowed to access (through /proc/$pid/cwd). [akpm@linux-foundation.org: fix warning] Signed-off-by: Jann Horn <jann@thejh.net> Acked-by: Kees Cook <keescook@chromium.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 07:00:04 +08:00
cap_issubset(child_cred->cap_permitted, *caller_caps))
goto out;
if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
goto out;
ret = -EPERM;
out:
rcu_read_unlock();
return ret;
security: Fix setting of PF_SUPERPRIV by __capable() Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags the target process if that is not the current process and it is trying to change its own flags in a different way at the same time. __capable() is using neither atomic ops nor locking to protect t->flags. This patch removes __capable() and introduces has_capability() that doesn't set PF_SUPERPRIV on the process being queried. This patch further splits security_ptrace() in two: (1) security_ptrace_may_access(). This passes judgement on whether one process may access another only (PTRACE_MODE_ATTACH for ptrace() and PTRACE_MODE_READ for /proc), and takes a pointer to the child process. current is the parent. (2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only, and takes only a pointer to the parent process. current is the child. In Smack and commoncap, this uses has_capability() to determine whether the parent will be permitted to use PTRACE_ATTACH if normal checks fail. This does not set PF_SUPERPRIV. Two of the instances of __capable() actually only act on current, and so have been changed to calls to capable(). Of the places that were using __capable(): (1) The OOM killer calls __capable() thrice when weighing the killability of a process. All of these now use has_capability(). (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see whether the parent was allowed to trace any process. As mentioned above, these have been split. For PTRACE_ATTACH and /proc, capable() is now used, and for PTRACE_TRACEME, has_capability() is used. (3) cap_safe_nice() only ever saw current, so now uses capable(). (4) smack_setprocattr() rejected accesses to tasks other than current just after calling __capable(), so the order of these two tests have been switched and capable() is used instead. (5) In smack_file_send_sigiotask(), we need to allow privileged processes to receive SIGIO on files they're manipulating. (6) In smack_task_wait(), we let a process wait for a privileged process, whether or not the process doing the waiting is privileged. I've tested this with the LTP SELinux and syscalls testscripts. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 18:37:28 +08:00
}
/**
* cap_ptrace_traceme - Determine whether another process may trace the current
* @parent: The task proposed to be the tracer
*
* If parent is in the same or an ancestor user_ns and has all current's
* capabilities, then ptrace access is allowed.
* If parent has the ptrace capability to current's user_ns, then ptrace
* access is allowed.
* Else denied.
*
* Determine whether the nominated task is permitted to trace the current
* process, returning 0 if permission is granted, -ve if denied.
*/
security: Fix setting of PF_SUPERPRIV by __capable() Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags the target process if that is not the current process and it is trying to change its own flags in a different way at the same time. __capable() is using neither atomic ops nor locking to protect t->flags. This patch removes __capable() and introduces has_capability() that doesn't set PF_SUPERPRIV on the process being queried. This patch further splits security_ptrace() in two: (1) security_ptrace_may_access(). This passes judgement on whether one process may access another only (PTRACE_MODE_ATTACH for ptrace() and PTRACE_MODE_READ for /proc), and takes a pointer to the child process. current is the parent. (2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only, and takes only a pointer to the parent process. current is the child. In Smack and commoncap, this uses has_capability() to determine whether the parent will be permitted to use PTRACE_ATTACH if normal checks fail. This does not set PF_SUPERPRIV. Two of the instances of __capable() actually only act on current, and so have been changed to calls to capable(). Of the places that were using __capable(): (1) The OOM killer calls __capable() thrice when weighing the killability of a process. All of these now use has_capability(). (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see whether the parent was allowed to trace any process. As mentioned above, these have been split. For PTRACE_ATTACH and /proc, capable() is now used, and for PTRACE_TRACEME, has_capability() is used. (3) cap_safe_nice() only ever saw current, so now uses capable(). (4) smack_setprocattr() rejected accesses to tasks other than current just after calling __capable(), so the order of these two tests have been switched and capable() is used instead. (5) In smack_file_send_sigiotask(), we need to allow privileged processes to receive SIGIO on files they're manipulating. (6) In smack_task_wait(), we let a process wait for a privileged process, whether or not the process doing the waiting is privileged. I've tested this with the LTP SELinux and syscalls testscripts. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 18:37:28 +08:00
int cap_ptrace_traceme(struct task_struct *parent)
{
int ret = 0;
const struct cred *cred, *child_cred;
rcu_read_lock();
cred = __task_cred(parent);
child_cred = current_cred();
if (cred->user_ns == child_cred->user_ns &&
cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
goto out;
if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
goto out;
ret = -EPERM;
out:
rcu_read_unlock();
return ret;
}
/**
* cap_capget - Retrieve a task's capability sets
* @target: The task from which to retrieve the capability sets
* @effective: The place to record the effective set
* @inheritable: The place to record the inheritable set
* @permitted: The place to record the permitted set
*
* This function retrieves the capabilities of the nominated task and returns
* them to the caller.
*/
int cap_capget(const struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
const struct cred *cred;
/* Derived from kernel/capability.c:sys_capget. */
rcu_read_lock();
cred = __task_cred(target);
*effective = cred->cap_effective;
*inheritable = cred->cap_inheritable;
*permitted = cred->cap_permitted;
rcu_read_unlock();
return 0;
}
/*
* Determine whether the inheritable capabilities are limited to the old
* permitted set. Returns 1 if they are limited, 0 if they are not.
*/
V3 file capabilities: alter behavior of cap_setpcap The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1, can change the capabilities of another process, p2. This is not the meaning that was intended for this capability at all, and this implementation came about purely because, without filesystem capabilities, there was no way to use capabilities without one process bestowing them on another. Since we now have a filesystem support for capabilities we can fix the implementation of CAP_SETPCAP. The most significant thing about this change is that, with it in effect, no process can set the capabilities of another process. The capabilities of a program are set via the capability convolution rules: pI(post-exec) = pI(pre-exec) pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI) pE(post-exec) = fE ? pP(post-exec) : 0 at exec() time. As such, the only influence the pre-exec() program can have on the post-exec() program's capabilities are through the pI capability set. The correct implementation for CAP_SETPCAP (and that enabled by this patch) is that it can be used to add extra pI capabilities to the current process - to be picked up by subsequent exec()s when the above convolution rules are applied. Here is how it works: Let's say we have a process, p. It has capability sets, pE, pP and pI. Generally, p, can change the value of its own pI to pI' where (pI' & ~pI) & ~pP = 0. That is, the only new things in pI' that were not present in pI need to be present in pP. The role of CAP_SETPCAP is basically to permit changes to pI beyond the above: if (pE & CAP_SETPCAP) { pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */ } This capability is useful for things like login, which (say, via pam_cap) might want to raise certain inheritable capabilities for use by the children of the logged-in user's shell, but those capabilities are not useful to or needed by the login program itself. One such use might be to limit who can run ping. You set the capabilities of the 'ping' program to be "= cap_net_raw+i", and then only shells that have (pI & CAP_NET_RAW) will be able to run it. Without CAP_SETPCAP implemented as described above, login(pam_cap) would have to also have (pP & CAP_NET_RAW) in order to raise this capability and pass it on through the inheritable set. Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 18:05:59 +08:00
static inline int cap_inh_is_capped(void)
{
/* they are so limited unless the current task has the CAP_SETPCAP
* capability
*/
if (cap_capable(current_cred(), current_cred()->user_ns,
CAP_SETPCAP, CAP_OPT_NONE) == 0)
return 0;
return 1;
}
V3 file capabilities: alter behavior of cap_setpcap The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1, can change the capabilities of another process, p2. This is not the meaning that was intended for this capability at all, and this implementation came about purely because, without filesystem capabilities, there was no way to use capabilities without one process bestowing them on another. Since we now have a filesystem support for capabilities we can fix the implementation of CAP_SETPCAP. The most significant thing about this change is that, with it in effect, no process can set the capabilities of another process. The capabilities of a program are set via the capability convolution rules: pI(post-exec) = pI(pre-exec) pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI) pE(post-exec) = fE ? pP(post-exec) : 0 at exec() time. As such, the only influence the pre-exec() program can have on the post-exec() program's capabilities are through the pI capability set. The correct implementation for CAP_SETPCAP (and that enabled by this patch) is that it can be used to add extra pI capabilities to the current process - to be picked up by subsequent exec()s when the above convolution rules are applied. Here is how it works: Let's say we have a process, p. It has capability sets, pE, pP and pI. Generally, p, can change the value of its own pI to pI' where (pI' & ~pI) & ~pP = 0. That is, the only new things in pI' that were not present in pI need to be present in pP. The role of CAP_SETPCAP is basically to permit changes to pI beyond the above: if (pE & CAP_SETPCAP) { pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */ } This capability is useful for things like login, which (say, via pam_cap) might want to raise certain inheritable capabilities for use by the children of the logged-in user's shell, but those capabilities are not useful to or needed by the login program itself. One such use might be to limit who can run ping. You set the capabilities of the 'ping' program to be "= cap_net_raw+i", and then only shells that have (pI & CAP_NET_RAW) will be able to run it. Without CAP_SETPCAP implemented as described above, login(pam_cap) would have to also have (pP & CAP_NET_RAW) in order to raise this capability and pass it on through the inheritable set. Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 18:05:59 +08:00
/**
* cap_capset - Validate and apply proposed changes to current's capabilities
* @new: The proposed new credentials; alterations should be made here
* @old: The current task's current credentials
* @effective: A pointer to the proposed new effective capabilities set
* @inheritable: A pointer to the proposed new inheritable capabilities set
* @permitted: A pointer to the proposed new permitted capabilities set
*
* This function validates and applies a proposed mass change to the current
* process's capability sets. The changes are made to the proposed new
* credentials, and assuming no error, will be committed by the caller of LSM.
*/
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
int cap_capset(struct cred *new,
const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
if (cap_inh_is_capped() &&
!cap_issubset(*inheritable,
cap_combine(old->cap_inheritable,
old->cap_permitted)))
V3 file capabilities: alter behavior of cap_setpcap The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1, can change the capabilities of another process, p2. This is not the meaning that was intended for this capability at all, and this implementation came about purely because, without filesystem capabilities, there was no way to use capabilities without one process bestowing them on another. Since we now have a filesystem support for capabilities we can fix the implementation of CAP_SETPCAP. The most significant thing about this change is that, with it in effect, no process can set the capabilities of another process. The capabilities of a program are set via the capability convolution rules: pI(post-exec) = pI(pre-exec) pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI) pE(post-exec) = fE ? pP(post-exec) : 0 at exec() time. As such, the only influence the pre-exec() program can have on the post-exec() program's capabilities are through the pI capability set. The correct implementation for CAP_SETPCAP (and that enabled by this patch) is that it can be used to add extra pI capabilities to the current process - to be picked up by subsequent exec()s when the above convolution rules are applied. Here is how it works: Let's say we have a process, p. It has capability sets, pE, pP and pI. Generally, p, can change the value of its own pI to pI' where (pI' & ~pI) & ~pP = 0. That is, the only new things in pI' that were not present in pI need to be present in pP. The role of CAP_SETPCAP is basically to permit changes to pI beyond the above: if (pE & CAP_SETPCAP) { pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */ } This capability is useful for things like login, which (say, via pam_cap) might want to raise certain inheritable capabilities for use by the children of the logged-in user's shell, but those capabilities are not useful to or needed by the login program itself. One such use might be to limit who can run ping. You set the capabilities of the 'ping' program to be "= cap_net_raw+i", and then only shells that have (pI & CAP_NET_RAW) will be able to run it. Without CAP_SETPCAP implemented as described above, login(pam_cap) would have to also have (pP & CAP_NET_RAW) in order to raise this capability and pass it on through the inheritable set. Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 18:05:59 +08:00
/* incapable of using this inheritable set */
return -EPERM;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
capabilities: introduce per-process capability bounding set The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:45 +08:00
if (!cap_issubset(*inheritable,
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
cap_combine(old->cap_inheritable,
old->cap_bset)))
capabilities: introduce per-process capability bounding set The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:45 +08:00
/* no new pI capabilities outside bounding set */
return -EPERM;
/* verify restrictions on target's new Permitted set */
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
if (!cap_issubset(*permitted, old->cap_permitted))
return -EPERM;
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
if (!cap_issubset(*effective, *permitted))
return -EPERM;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
new->cap_effective = *effective;
new->cap_inheritable = *inheritable;
new->cap_permitted = *permitted;
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
/*
* Mask off ambient bits that are no longer both permitted and
* inheritable.
*/
new->cap_ambient = cap_intersect(new->cap_ambient,
cap_intersect(*permitted,
*inheritable));
if (WARN_ON(!cap_ambient_invariant_ok(new)))
return -EINVAL;
return 0;
}
/**
* cap_inode_need_killpriv - Determine if inode change affects privileges
* @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
*
* Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
* affects the security markings on that inode, and if it is, should
* inode_killpriv() be invoked or the change rejected.
*
* Return: 1 if security.capability has a value, meaning inode_killpriv()
* is required, 0 otherwise, meaning inode_killpriv() is not required.
*/
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
int cap_inode_need_killpriv(struct dentry *dentry)
{
struct inode *inode = d_backing_inode(dentry);
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
int error;
error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
return error > 0;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
}
/**
* cap_inode_killpriv - Erase the security markings on an inode
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
*
* @idmap: idmap of the mount the inode was found from
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
* @dentry: The inode/dentry to alter
*
* Erase the privilege-enhancing security markings on an inode.
*
* If the inode has been found through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then
* take care to map the inode according to @idmap before checking
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
* permissions. On non-idmapped mounts or if permission checking is to be
* performed on the raw inode simply pass @nop_mnt_idmap.
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
*
* Return: 0 if successful, -ve on error.
*/
int cap_inode_killpriv(struct mnt_idmap *idmap, struct dentry *dentry)
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
{
int error;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
error = __vfs_removexattr(idmap, dentry, XATTR_NAME_CAPS);
if (error == -EOPNOTSUPP)
error = 0;
return error;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
}
static bool rootid_owns_currentns(vfsuid_t rootvfsuid)
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
{
struct user_namespace *ns;
kuid_t kroot;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
if (!vfsuid_valid(rootvfsuid))
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
return false;
kroot = vfsuid_into_kuid(rootvfsuid);
for (ns = current_user_ns();; ns = ns->parent) {
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
if (from_kuid(ns, kroot) == 0)
return true;
if (ns == &init_user_ns)
break;
}
return false;
}
static __u32 sansflags(__u32 m)
{
return m & ~VFS_CAP_FLAGS_EFFECTIVE;
}
static bool is_v2header(int size, const struct vfs_cap_data *cap)
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
{
if (size != XATTR_CAPS_SZ_2)
return false;
capabilities: fix buffer overread on very short xattr If userspace attempted to set a "security.capability" xattr shorter than 4 bytes (e.g. 'setfattr -n security.capability -v x file'), then cap_convert_nscap() read past the end of the buffer containing the xattr value because it accessed the ->magic_etc field without verifying that the xattr value is long enough to contain that field. Fix it by validating the xattr value size first. This bug was found using syzkaller with KASAN. The KASAN report was as follows (cleaned up slightly): BUG: KASAN: slab-out-of-bounds in cap_convert_nscap+0x514/0x630 security/commoncap.c:498 Read of size 4 at addr ffff88002d8741c0 by task syz-executor1/2852 CPU: 0 PID: 2852 Comm: syz-executor1 Not tainted 4.15.0-rc6-00200-gcc0aac99d977 #253 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-20171110_100015-anatol 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0xe3/0x195 lib/dump_stack.c:53 print_address_description+0x73/0x260 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x235/0x350 mm/kasan/report.c:409 cap_convert_nscap+0x514/0x630 security/commoncap.c:498 setxattr+0x2bd/0x350 fs/xattr.c:446 path_setxattr+0x168/0x1b0 fs/xattr.c:472 SYSC_setxattr fs/xattr.c:487 [inline] SyS_setxattr+0x36/0x50 fs/xattr.c:483 entry_SYSCALL_64_fastpath+0x18/0x85 Fixes: 8db6c34f1dbc ("Introduce v3 namespaced file capabilities") Cc: <stable@vger.kernel.org> # v4.14+ Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2018-01-01 23:28:31 +08:00
return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
}
static bool is_v3header(int size, const struct vfs_cap_data *cap)
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
{
if (size != XATTR_CAPS_SZ_3)
return false;
capabilities: fix buffer overread on very short xattr If userspace attempted to set a "security.capability" xattr shorter than 4 bytes (e.g. 'setfattr -n security.capability -v x file'), then cap_convert_nscap() read past the end of the buffer containing the xattr value because it accessed the ->magic_etc field without verifying that the xattr value is long enough to contain that field. Fix it by validating the xattr value size first. This bug was found using syzkaller with KASAN. The KASAN report was as follows (cleaned up slightly): BUG: KASAN: slab-out-of-bounds in cap_convert_nscap+0x514/0x630 security/commoncap.c:498 Read of size 4 at addr ffff88002d8741c0 by task syz-executor1/2852 CPU: 0 PID: 2852 Comm: syz-executor1 Not tainted 4.15.0-rc6-00200-gcc0aac99d977 #253 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-20171110_100015-anatol 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0xe3/0x195 lib/dump_stack.c:53 print_address_description+0x73/0x260 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x235/0x350 mm/kasan/report.c:409 cap_convert_nscap+0x514/0x630 security/commoncap.c:498 setxattr+0x2bd/0x350 fs/xattr.c:446 path_setxattr+0x168/0x1b0 fs/xattr.c:472 SYSC_setxattr fs/xattr.c:487 [inline] SyS_setxattr+0x36/0x50 fs/xattr.c:483 entry_SYSCALL_64_fastpath+0x18/0x85 Fixes: 8db6c34f1dbc ("Introduce v3 namespaced file capabilities") Cc: <stable@vger.kernel.org> # v4.14+ Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2018-01-01 23:28:31 +08:00
return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
}
/*
* getsecurity: We are called for security.* before any attempt to read the
* xattr from the inode itself.
*
* This gives us a chance to read the on-disk value and convert it. If we
* return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
*
* Note we are not called by vfs_getxattr_alloc(), but that is only called
* by the integrity subsystem, which really wants the unconverted values -
* so that's good.
*/
int cap_inode_getsecurity(struct mnt_idmap *idmap,
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
struct inode *inode, const char *name, void **buffer,
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
bool alloc)
{
int size;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
kuid_t kroot;
vfsuid_t vfsroot;
u32 nsmagic, magic;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
uid_t root, mappedroot;
char *tmpbuf = NULL;
struct vfs_cap_data *cap;
struct vfs_ns_cap_data *nscap = NULL;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
struct dentry *dentry;
struct user_namespace *fs_ns;
if (strcmp(name, "capability") != 0)
return -EOPNOTSUPP;
cap_inode_getsecurity: use d_find_any_alias() instead of d_find_alias() The code in cap_inode_getsecurity(), introduced by commit 8db6c34f1dbc ("Introduce v3 namespaced file capabilities"), should use d_find_any_alias() instead of d_find_alias() do handle unhashed dentry correctly. This is needed, for example, if execveat() is called with an open but unlinked overlayfs file, because overlayfs unhashes dentry on unlink. This is a regression of real life application, first reported at https://www.spinics.net/lists/linux-unionfs/msg05363.html Below reproducer and setup can reproduce the case. const char* exec="echo"; const char *newargv[] = { "echo", "hello", NULL}; const char *newenviron[] = { NULL }; int fd, err; fd = open(exec, O_PATH); unlink(exec); err = syscall(322/*SYS_execveat*/, fd, "", newargv, newenviron, AT_EMPTY_PATH); if(err<0) fprintf(stderr, "execveat: %s\n", strerror(errno)); gcc compile into ~/test/a.out mount -t overlay -orw,lowerdir=/mnt/l,upperdir=/mnt/u,workdir=/mnt/w none /mnt/m cd /mnt/m cp /bin/echo . ~/test/a.out Expected result: hello Actually result: execveat: Invalid argument dmesg: Invalid argument reading file caps for /dev/fd/3 The 2nd reproducer and setup emulates similar case but for regular filesystem: const char* exec="echo"; int fd, err; char buf[256]; fd = open(exec, O_RDONLY); unlink(exec); err = fgetxattr(fd, "security.capability", buf, 256); if(err<0) fprintf(stderr, "fgetxattr: %s\n", strerror(errno)); gcc compile into ~/test_fgetxattr cd /tmp cp /bin/echo . ~/test_fgetxattr Result: fgetxattr: Invalid argument On regular filesystem, for example, ext4 read xattr from disk and return to execveat(), will not trigger this issue, however, the overlay attr handler pass real dentry to vfs_getxattr() will. This reproducer calls fgetxattr() with an unlinked fd, involkes vfs_getxattr() then reproduced the case that d_find_alias() in cap_inode_getsecurity() can't find the unlinked dentry. Suggested-by: Amir Goldstein <amir73il@gmail.com> Acked-by: Amir Goldstein <amir73il@gmail.com> Acked-by: Serge E. Hallyn <serge@hallyn.com> Fixes: 8db6c34f1dbc ("Introduce v3 namespaced file capabilities") Cc: <stable@vger.kernel.org> # v4.14 Signed-off-by: Eddie Horng <eddie.horng@mediatek.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2018-07-20 15:30:00 +08:00
dentry = d_find_any_alias(inode);
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
if (!dentry)
return -EINVAL;
size = vfs_getxattr_alloc(idmap, dentry, XATTR_NAME_CAPS, &tmpbuf,
sizeof(struct vfs_ns_cap_data), GFP_NOFS);
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
dput(dentry);
/* gcc11 complains if we don't check for !tmpbuf */
if (size < 0 || !tmpbuf)
goto out_free;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
fs_ns = inode->i_sb->s_user_ns;
cap = (struct vfs_cap_data *) tmpbuf;
if (is_v2header(size, cap)) {
root = 0;
} else if (is_v3header(size, cap)) {
nscap = (struct vfs_ns_cap_data *) tmpbuf;
root = le32_to_cpu(nscap->rootid);
} else {
size = -EINVAL;
goto out_free;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
}
kroot = make_kuid(fs_ns, root);
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
/* If this is an idmapped mount shift the kuid. */
vfsroot = make_vfsuid(idmap, fs_ns, kroot);
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
/* If the root kuid maps to a valid uid in current ns, then return
* this as a nscap. */
mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot));
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
size = sizeof(struct vfs_ns_cap_data);
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
if (alloc) {
if (!nscap) {
/* v2 -> v3 conversion */
nscap = kzalloc(size, GFP_ATOMIC);
if (!nscap) {
size = -ENOMEM;
goto out_free;
}
nsmagic = VFS_CAP_REVISION_3;
magic = le32_to_cpu(cap->magic_etc);
if (magic & VFS_CAP_FLAGS_EFFECTIVE)
nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
nscap->magic_etc = cpu_to_le32(nsmagic);
} else {
/* use allocated v3 buffer */
tmpbuf = NULL;
}
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
nscap->rootid = cpu_to_le32(mappedroot);
*buffer = nscap;
}
goto out_free;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
}
if (!rootid_owns_currentns(vfsroot)) {
size = -EOVERFLOW;
goto out_free;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
}
/* This comes from a parent namespace. Return as a v2 capability */
size = sizeof(struct vfs_cap_data);
if (alloc) {
if (nscap) {
/* v3 -> v2 conversion */
cap = kzalloc(size, GFP_ATOMIC);
if (!cap) {
size = -ENOMEM;
goto out_free;
}
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
magic = VFS_CAP_REVISION_2;
nsmagic = le32_to_cpu(nscap->magic_etc);
if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
magic |= VFS_CAP_FLAGS_EFFECTIVE;
memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
cap->magic_etc = cpu_to_le32(magic);
} else {
/* use unconverted v2 */
tmpbuf = NULL;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
}
*buffer = cap;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
}
out_free:
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
kfree(tmpbuf);
return size;
}
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:27 +08:00
/**
* rootid_from_xattr - translate root uid of vfs caps
*
* @value: vfs caps value which may be modified by this function
* @size: size of @ivalue
* @task_ns: user namespace of the caller
*/
static vfsuid_t rootid_from_xattr(const void *value, size_t size,
struct user_namespace *task_ns)
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
{
const struct vfs_ns_cap_data *nscap = value;
uid_t rootid = 0;
if (size == XATTR_CAPS_SZ_3)
rootid = le32_to_cpu(nscap->rootid);
return VFSUIDT_INIT(make_kuid(task_ns, rootid));
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
}
capabilities: fix buffer overread on very short xattr If userspace attempted to set a "security.capability" xattr shorter than 4 bytes (e.g. 'setfattr -n security.capability -v x file'), then cap_convert_nscap() read past the end of the buffer containing the xattr value because it accessed the ->magic_etc field without verifying that the xattr value is long enough to contain that field. Fix it by validating the xattr value size first. This bug was found using syzkaller with KASAN. The KASAN report was as follows (cleaned up slightly): BUG: KASAN: slab-out-of-bounds in cap_convert_nscap+0x514/0x630 security/commoncap.c:498 Read of size 4 at addr ffff88002d8741c0 by task syz-executor1/2852 CPU: 0 PID: 2852 Comm: syz-executor1 Not tainted 4.15.0-rc6-00200-gcc0aac99d977 #253 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-20171110_100015-anatol 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0xe3/0x195 lib/dump_stack.c:53 print_address_description+0x73/0x260 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x235/0x350 mm/kasan/report.c:409 cap_convert_nscap+0x514/0x630 security/commoncap.c:498 setxattr+0x2bd/0x350 fs/xattr.c:446 path_setxattr+0x168/0x1b0 fs/xattr.c:472 SYSC_setxattr fs/xattr.c:487 [inline] SyS_setxattr+0x36/0x50 fs/xattr.c:483 entry_SYSCALL_64_fastpath+0x18/0x85 Fixes: 8db6c34f1dbc ("Introduce v3 namespaced file capabilities") Cc: <stable@vger.kernel.org> # v4.14+ Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2018-01-01 23:28:31 +08:00
static bool validheader(size_t size, const struct vfs_cap_data *cap)
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
{
capabilities: fix buffer overread on very short xattr If userspace attempted to set a "security.capability" xattr shorter than 4 bytes (e.g. 'setfattr -n security.capability -v x file'), then cap_convert_nscap() read past the end of the buffer containing the xattr value because it accessed the ->magic_etc field without verifying that the xattr value is long enough to contain that field. Fix it by validating the xattr value size first. This bug was found using syzkaller with KASAN. The KASAN report was as follows (cleaned up slightly): BUG: KASAN: slab-out-of-bounds in cap_convert_nscap+0x514/0x630 security/commoncap.c:498 Read of size 4 at addr ffff88002d8741c0 by task syz-executor1/2852 CPU: 0 PID: 2852 Comm: syz-executor1 Not tainted 4.15.0-rc6-00200-gcc0aac99d977 #253 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-20171110_100015-anatol 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0xe3/0x195 lib/dump_stack.c:53 print_address_description+0x73/0x260 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x235/0x350 mm/kasan/report.c:409 cap_convert_nscap+0x514/0x630 security/commoncap.c:498 setxattr+0x2bd/0x350 fs/xattr.c:446 path_setxattr+0x168/0x1b0 fs/xattr.c:472 SYSC_setxattr fs/xattr.c:487 [inline] SyS_setxattr+0x36/0x50 fs/xattr.c:483 entry_SYSCALL_64_fastpath+0x18/0x85 Fixes: 8db6c34f1dbc ("Introduce v3 namespaced file capabilities") Cc: <stable@vger.kernel.org> # v4.14+ Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2018-01-01 23:28:31 +08:00
return is_v2header(size, cap) || is_v3header(size, cap);
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
}
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:27 +08:00
/**
* cap_convert_nscap - check vfs caps
*
* @idmap: idmap of the mount the inode was found from
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:27 +08:00
* @dentry: used to retrieve inode to check permissions on
* @ivalue: vfs caps value which may be modified by this function
* @size: size of @ivalue
*
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
* User requested a write of security.capability. If needed, update the
* xattr to change from v2 to v3, or to fixup the v3 rootid.
*
* If the inode has been found through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then
* take care to map the inode according to @idmap before checking
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:27 +08:00
* permissions. On non-idmapped mounts or if permission checking is to be
* performed on the raw inode simply pass @nop_mnt_idmap.
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:27 +08:00
*
* Return: On success, return the new size; on error, return < 0.
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
*/
int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry,
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:27 +08:00
const void **ivalue, size_t size)
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
{
struct vfs_ns_cap_data *nscap;
uid_t nsrootid;
const struct vfs_cap_data *cap = *ivalue;
__u32 magic, nsmagic;
struct inode *inode = d_backing_inode(dentry);
struct user_namespace *task_ns = current_user_ns(),
*fs_ns = inode->i_sb->s_user_ns;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
kuid_t rootid;
vfsuid_t vfsrootid;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
size_t newsize;
if (!*ivalue)
return -EINVAL;
capabilities: fix buffer overread on very short xattr If userspace attempted to set a "security.capability" xattr shorter than 4 bytes (e.g. 'setfattr -n security.capability -v x file'), then cap_convert_nscap() read past the end of the buffer containing the xattr value because it accessed the ->magic_etc field without verifying that the xattr value is long enough to contain that field. Fix it by validating the xattr value size first. This bug was found using syzkaller with KASAN. The KASAN report was as follows (cleaned up slightly): BUG: KASAN: slab-out-of-bounds in cap_convert_nscap+0x514/0x630 security/commoncap.c:498 Read of size 4 at addr ffff88002d8741c0 by task syz-executor1/2852 CPU: 0 PID: 2852 Comm: syz-executor1 Not tainted 4.15.0-rc6-00200-gcc0aac99d977 #253 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-20171110_100015-anatol 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0xe3/0x195 lib/dump_stack.c:53 print_address_description+0x73/0x260 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x235/0x350 mm/kasan/report.c:409 cap_convert_nscap+0x514/0x630 security/commoncap.c:498 setxattr+0x2bd/0x350 fs/xattr.c:446 path_setxattr+0x168/0x1b0 fs/xattr.c:472 SYSC_setxattr fs/xattr.c:487 [inline] SyS_setxattr+0x36/0x50 fs/xattr.c:483 entry_SYSCALL_64_fastpath+0x18/0x85 Fixes: 8db6c34f1dbc ("Introduce v3 namespaced file capabilities") Cc: <stable@vger.kernel.org> # v4.14+ Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2018-01-01 23:28:31 +08:00
if (!validheader(size, cap))
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
return -EINVAL;
if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
return -EPERM;
if (size == XATTR_CAPS_SZ_2 && (idmap == &nop_mnt_idmap))
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
/* user is privileged, just write the v2 */
return size;
vfsrootid = rootid_from_xattr(*ivalue, size, task_ns);
if (!vfsuid_valid(vfsrootid))
return -EINVAL;
rootid = from_vfsuid(idmap, fs_ns, vfsrootid);
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
if (!uid_valid(rootid))
return -EINVAL;
nsrootid = from_kuid(fs_ns, rootid);
if (nsrootid == -1)
return -EINVAL;
newsize = sizeof(struct vfs_ns_cap_data);
nscap = kmalloc(newsize, GFP_ATOMIC);
if (!nscap)
return -ENOMEM;
nscap->rootid = cpu_to_le32(nsrootid);
nsmagic = VFS_CAP_REVISION_3;
magic = le32_to_cpu(cap->magic_etc);
if (magic & VFS_CAP_FLAGS_EFFECTIVE)
nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
nscap->magic_etc = cpu_to_le32(nsmagic);
memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
*ivalue = nscap;
return newsize;
}
/*
* Calculate the new process capability sets from the capability sets attached
* to a file.
*/
static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
struct linux_binprm *bprm,
bool *effective,
bool *has_fcap)
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
{
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
struct cred *new = bprm->cred;
int ret = 0;
if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
*effective = true;
if (caps->magic_etc & VFS_CAP_REVISION_MASK)
*has_fcap = true;
capability: just use a 'u64' instead of a 'u32[2]' array Back in 2008 we extended the capability bits from 32 to 64, and we did it by extending the single 32-bit capability word from one word to an array of two words. It was then obfuscated by hiding the "2" behind two macro expansions, with the reasoning being that maybe it gets extended further some day. That reasoning may have been valid at the time, but the last thing we want to do is to extend the capability set any more. And the array of values not only causes source code oddities (with loops to deal with it), but also results in worse code generation. It's a lose-lose situation. So just change the 'u32[2]' into a 'u64' and be done with it. We still have to deal with the fact that the user space interface is designed around an array of these 32-bit values, but that was the case before too, since the array layouts were different (ie user space doesn't use an array of 32-bit values for individual capability masks, but an array of 32-bit slices of multiple masks). So that marshalling of data is actually simplified too, even if it does remain somewhat obscure and odd. This was all triggered by my reaction to the new "cap_isidentical()" introduced recently. By just using a saner data structure, it went from unsigned __capi; CAP_FOR_EACH_U32(__capi) { if (a.cap[__capi] != b.cap[__capi]) return false; } return true; to just being return a.val == b.val; instead. Which is rather more obvious both to humans and to compilers. Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Serge Hallyn <serge@hallyn.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Paul Moore <paul@paul-moore.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-01 03:39:09 +08:00
/*
* pP' = (X & fP) | (pI & fI)
* The addition of pA' is handled later.
*/
new->cap_permitted.val =
(new->cap_bset.val & caps->permitted.val) |
(new->cap_inheritable.val & caps->inheritable.val);
capability: just use a 'u64' instead of a 'u32[2]' array Back in 2008 we extended the capability bits from 32 to 64, and we did it by extending the single 32-bit capability word from one word to an array of two words. It was then obfuscated by hiding the "2" behind two macro expansions, with the reasoning being that maybe it gets extended further some day. That reasoning may have been valid at the time, but the last thing we want to do is to extend the capability set any more. And the array of values not only causes source code oddities (with loops to deal with it), but also results in worse code generation. It's a lose-lose situation. So just change the 'u32[2]' into a 'u64' and be done with it. We still have to deal with the fact that the user space interface is designed around an array of these 32-bit values, but that was the case before too, since the array layouts were different (ie user space doesn't use an array of 32-bit values for individual capability masks, but an array of 32-bit slices of multiple masks). So that marshalling of data is actually simplified too, even if it does remain somewhat obscure and odd. This was all triggered by my reaction to the new "cap_isidentical()" introduced recently. By just using a saner data structure, it went from unsigned __capi; CAP_FOR_EACH_U32(__capi) { if (a.cap[__capi] != b.cap[__capi]) return false; } return true; to just being return a.val == b.val; instead. Which is rather more obvious both to humans and to compilers. Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Serge Hallyn <serge@hallyn.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Paul Moore <paul@paul-moore.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-01 03:39:09 +08:00
if (caps->permitted.val & ~new->cap_permitted.val)
/* insufficient to execute correctly */
ret = -EPERM;
/*
* For legacy apps, with no internal support for recognizing they
* do not have enough capabilities, we return an error if they are
* missing some "forced" (aka file-permitted) capabilities.
*/
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
return *effective ? ret : 0;
}
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
/**
* get_vfs_caps_from_disk - retrieve vfs caps from disk
*
* @idmap: idmap of the mount the inode was found from
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
* @dentry: dentry from which @inode is retrieved
* @cpu_caps: vfs capabilities
*
* Extract the on-exec-apply capability sets for an executable file.
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
*
* If the inode has been found through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then
* take care to map the inode according to @idmap before checking
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
* permissions. On non-idmapped mounts or if permission checking is to be
* performed on the raw inode simply pass @nop_mnt_idmap.
*/
int get_vfs_caps_from_disk(struct mnt_idmap *idmap,
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
const struct dentry *dentry,
struct cpu_vfs_cap_data *cpu_caps)
{
struct inode *inode = d_backing_inode(dentry);
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
__u32 magic_etc;
int size;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
struct vfs_ns_cap_data data, *nscaps = &data;
struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
kuid_t rootkuid;
vfsuid_t rootvfsuid;
struct user_namespace *fs_ns;
memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
if (!inode)
return -ENODATA;
fs_ns = inode->i_sb->s_user_ns;
size = __vfs_getxattr((struct dentry *)dentry, inode,
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
if (size == -ENODATA || size == -EOPNOTSUPP)
/* no data, that's ok */
return -ENODATA;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
if (size < 0)
return size;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
if (size < sizeof(magic_etc))
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
return -EINVAL;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
rootkuid = make_kuid(fs_ns, 0);
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
switch (magic_etc & VFS_CAP_REVISION_MASK) {
case VFS_CAP_REVISION_1:
if (size != XATTR_CAPS_SZ_1)
return -EINVAL;
break;
case VFS_CAP_REVISION_2:
if (size != XATTR_CAPS_SZ_2)
return -EINVAL;
break;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
case VFS_CAP_REVISION_3:
if (size != XATTR_CAPS_SZ_3)
return -EINVAL;
rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
break;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
default:
return -EINVAL;
}
rootvfsuid = make_vfsuid(idmap, fs_ns, rootkuid);
if (!vfsuid_valid(rootvfsuid))
return -ENODATA;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
/* Limit the caps to the mounter of the filesystem
* or the more limited uid specified in the xattr.
*/
if (!rootid_owns_currentns(rootvfsuid))
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
return -ENODATA;
capability: just use a 'u64' instead of a 'u32[2]' array Back in 2008 we extended the capability bits from 32 to 64, and we did it by extending the single 32-bit capability word from one word to an array of two words. It was then obfuscated by hiding the "2" behind two macro expansions, with the reasoning being that maybe it gets extended further some day. That reasoning may have been valid at the time, but the last thing we want to do is to extend the capability set any more. And the array of values not only causes source code oddities (with loops to deal with it), but also results in worse code generation. It's a lose-lose situation. So just change the 'u32[2]' into a 'u64' and be done with it. We still have to deal with the fact that the user space interface is designed around an array of these 32-bit values, but that was the case before too, since the array layouts were different (ie user space doesn't use an array of 32-bit values for individual capability masks, but an array of 32-bit slices of multiple masks). So that marshalling of data is actually simplified too, even if it does remain somewhat obscure and odd. This was all triggered by my reaction to the new "cap_isidentical()" introduced recently. By just using a saner data structure, it went from unsigned __capi; CAP_FOR_EACH_U32(__capi) { if (a.cap[__capi] != b.cap[__capi]) return false; } return true; to just being return a.val == b.val; instead. Which is rather more obvious both to humans and to compilers. Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Serge Hallyn <serge@hallyn.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Paul Moore <paul@paul-moore.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-01 03:39:09 +08:00
cpu_caps->permitted.val = le32_to_cpu(caps->data[0].permitted);
cpu_caps->inheritable.val = le32_to_cpu(caps->data[0].inheritable);
/*
* Rev1 had just a single 32-bit word, later expanded
* to a second one for the high bits
*/
if ((magic_etc & VFS_CAP_REVISION_MASK) != VFS_CAP_REVISION_1) {
cpu_caps->permitted.val += (u64)le32_to_cpu(caps->data[1].permitted) << 32;
cpu_caps->inheritable.val += (u64)le32_to_cpu(caps->data[1].inheritable) << 32;
}
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
capability: just use a 'u64' instead of a 'u32[2]' array Back in 2008 we extended the capability bits from 32 to 64, and we did it by extending the single 32-bit capability word from one word to an array of two words. It was then obfuscated by hiding the "2" behind two macro expansions, with the reasoning being that maybe it gets extended further some day. That reasoning may have been valid at the time, but the last thing we want to do is to extend the capability set any more. And the array of values not only causes source code oddities (with loops to deal with it), but also results in worse code generation. It's a lose-lose situation. So just change the 'u32[2]' into a 'u64' and be done with it. We still have to deal with the fact that the user space interface is designed around an array of these 32-bit values, but that was the case before too, since the array layouts were different (ie user space doesn't use an array of 32-bit values for individual capability masks, but an array of 32-bit slices of multiple masks). So that marshalling of data is actually simplified too, even if it does remain somewhat obscure and odd. This was all triggered by my reaction to the new "cap_isidentical()" introduced recently. By just using a saner data structure, it went from unsigned __capi; CAP_FOR_EACH_U32(__capi) { if (a.cap[__capi] != b.cap[__capi]) return false; } return true; to just being return a.val == b.val; instead. Which is rather more obvious both to humans and to compilers. Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Serge Hallyn <serge@hallyn.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Paul Moore <paul@paul-moore.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-01 03:39:09 +08:00
cpu_caps->permitted.val &= CAP_VALID_MASK;
cpu_caps->inheritable.val &= CAP_VALID_MASK;
CAPABILITIES: remove undefined caps from all processes This is effectively a revert of 7b9a7ec565505699f503b4fcf61500dceb36e744 plus fixing it a different way... We found, when trying to run an application from an application which had dropped privs that the kernel does security checks on undefined capability bits. This was ESPECIALLY difficult to debug as those undefined bits are hidden from /proc/$PID/status. Consider a root application which drops all capabilities from ALL 4 capability sets. We assume, since the application is going to set eff/perm/inh from an array that it will clear not only the defined caps less than CAP_LAST_CAP, but also the higher 28ish bits which are undefined future capabilities. The BSET gets cleared differently. Instead it is cleared one bit at a time. The problem here is that in security/commoncap.c::cap_task_prctl() we actually check the validity of a capability being read. So any task which attempts to 'read all things set in bset' followed by 'unset all things set in bset' will not even attempt to unset the undefined bits higher than CAP_LAST_CAP. So the 'parent' will look something like: CapInh: 0000000000000000 CapPrm: 0000000000000000 CapEff: 0000000000000000 CapBnd: ffffffc000000000 All of this 'should' be fine. Given that these are undefined bits that aren't supposed to have anything to do with permissions. But they do... So lets now consider a task which cleared the eff/perm/inh completely and cleared all of the valid caps in the bset (but not the invalid caps it couldn't read out of the kernel). We know that this is exactly what the libcap-ng library does and what the go capabilities library does. They both leave you in that above situation if you try to clear all of you capapabilities from all 4 sets. If that root task calls execve() the child task will pick up all caps not blocked by the bset. The bset however does not block bits higher than CAP_LAST_CAP. So now the child task has bits in eff which are not in the parent. These are 'meaningless' undefined bits, but still bits which the parent doesn't have. The problem is now in cred_cap_issubset() (or any operation which does a subset test) as the child, while a subset for valid cap bits, is not a subset for invalid cap bits! So now we set durring commit creds that the child is not dumpable. Given it is 'more priv' than its parent. It also means the parent cannot ptrace the child and other stupidity. The solution here: 1) stop hiding capability bits in status This makes debugging easier! 2) stop giving any task undefined capability bits. it's simple, it you don't put those invalid bits in CAP_FULL_SET you won't get them in init and you won't get them in any other task either. This fixes the cap_issubset() tests and resulting fallout (which made the init task in a docker container untraceable among other things) 3) mask out undefined bits when sys_capset() is called as it might use ~0, ~0 to denote 'all capabilities' for backward/forward compatibility. This lets 'capsh --caps="all=eip" -- -c /bin/bash' run. 4) mask out undefined bit when we read a file capability off of disk as again likely all bits are set in the xattr for forward/backward compatibility. This lets 'setcap all+pe /bin/bash; /bin/bash' run Signed-off-by: Eric Paris <eparis@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Andrew Vagin <avagin@openvz.org> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Serge E. Hallyn <serge.hallyn@canonical.com> Cc: Kees Cook <keescook@chromium.org> Cc: Steve Grubb <sgrubb@redhat.com> Cc: Dan Walsh <dwalsh@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: James Morris <james.l.morris@oracle.com>
2014-07-24 03:36:26 +08:00
cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid);
return 0;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
}
/*
* Attempt to get the on-exec apply capability sets for an executable file from
* its xattrs and, if present, apply them to the proposed credentials being
* constructed by execve().
*/
static int get_file_caps(struct linux_binprm *bprm, const struct file *file,
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
bool *effective, bool *has_fcap)
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
{
int rc = 0;
struct cpu_vfs_cap_data vcaps;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
cap_clear(bprm->cred->cap_permitted);
file capabilities: add no_file_caps switch (v4) Add a no_file_caps boot option when file capabilities are compiled into the kernel (CONFIG_SECURITY_FILE_CAPABILITIES=y). This allows distributions to ship a kernel with file capabilities compiled in, without forcing users to use (and understand and trust) them. When no_file_caps is specified at boot, then when a process executes a file, any file capabilities stored with that file will not be used in the calculation of the process' new capability sets. This means that booting with the no_file_caps boot option will not be the same as booting a kernel with file capabilities compiled out - in particular a task with CAP_SETPCAP will not have any chance of passing capabilities to another task (which isn't "really" possible anyway, and which may soon by killed altogether by David Howells in any case), and it will instead be able to put new capabilities in its pI. However since fI will always be empty and pI is masked with fI, it gains the task nothing. We also support the extra prctl options, setting securebits and dropping capabilities from the per-process bounding set. The other remaining difference is that killpriv, task_setscheduler, setioprio, and setnice will continue to be hooked. That will be noticable in the case where a root task changed its uid while keeping some caps, and another task owned by the new uid tries to change settings for the more privileged task. Changelog: Nov 05 2008: (v4) trivial port on top of always-start-\ with-clear-caps patch Sep 23 2008: nixed file_caps_enabled when file caps are not compiled in as it isn't used. Document no_file_caps in kernel-parameters.txt. Signed-off-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-06 06:08:52 +08:00
if (!file_caps_enabled)
return 0;
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
if (!mnt_may_suid(file->f_path.mnt))
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
return 0;
fs: Treat foreign mounts as nosuid If a process gets access to a mount from a different user namespace, that process should not be able to take advantage of setuid files or selinux entrypoints from that filesystem. Prevent this by treating mounts from other mount namespaces and those not owned by current_user_ns() or an ancestor as nosuid. This will make it safer to allow more complex filesystems to be mounted in non-root user namespaces. This does not remove the need for MNT_LOCK_NOSUID. The setuid, setgid, and file capability bits can no longer be abused if code in a user namespace were to clear nosuid on an untrusted filesystem, but this patch, by itself, is insufficient to protect the system from abuse of files that, when execed, would increase MAC privilege. As a more concrete explanation, any task that can manipulate a vfsmount associated with a given user namespace already has capabilities in that namespace and all of its descendents. If they can cause a malicious setuid, setgid, or file-caps executable to appear in that mount, then that executable will only allow them to elevate privileges in exactly the set of namespaces in which they are already privileges. On the other hand, if they can cause a malicious executable to appear with a dangerous MAC label, running it could change the caller's security context in a way that should not have been possible, even inside the namespace in which the task is confined. As a hardening measure, this would have made CVE-2014-5207 much more difficult to exploit. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2016-06-24 05:41:05 +08:00
/*
* This check is redundant with mnt_may_suid() but is kept to make
* explicit that capability bits are limited to s_user_ns and its
* descendants.
*/
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
return 0;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
rc = get_vfs_caps_from_disk(file_mnt_idmap(file),
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
file->f_path.dentry, &vcaps);
if (rc < 0) {
if (rc == -EINVAL)
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
bprm->filename);
else if (rc == -ENODATA)
rc = 0;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
goto out;
}
rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
out:
if (rc)
cap_clear(bprm->cred->cap_permitted);
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
return rc;
}
static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
static inline bool __is_real(kuid_t uid, struct cred *cred)
{ return uid_eq(cred->uid, uid); }
static inline bool __is_eff(kuid_t uid, struct cred *cred)
{ return uid_eq(cred->euid, uid); }
static inline bool __is_suid(kuid_t uid, struct cred *cred)
{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
/*
* handle_privileged_root - Handle case of privileged root
* @bprm: The execution parameters, including the proposed creds
* @has_fcap: Are any file capabilities set?
* @effective: Do we have effective root privilege?
* @root_uid: This namespace' root UID WRT initial USER namespace
*
* Handle the case where root is privileged and hasn't been neutered by
* SECURE_NOROOT. If file capabilities are set, they won't be combined with
* set UID root and nothing is changed. If we are root, cap_permitted is
* updated. If we have become set UID root, the effective bit is set.
*/
static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
bool *effective, kuid_t root_uid)
{
const struct cred *old = current_cred();
struct cred *new = bprm->cred;
if (!root_privileged())
return;
/*
* If the legacy file capability is set, then don't set privs
* for a setuid root binary run by a non-root user. Do set it
* for a root user just to cause least surprise to an admin.
*/
if (has_fcap && __is_suid(root_uid, new)) {
warn_setuid_and_fcaps_mixed(bprm->filename);
return;
}
/*
* To support inheritance of root-permissions and suid-root
* executables under compatibility mode, we override the
* capability sets for the file.
*/
if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
/* pP' = (cap_bset & ~0) | (pI & ~0) */
new->cap_permitted = cap_combine(old->cap_bset,
old->cap_inheritable);
}
/*
* If only the real uid is 0, we do not set the effective bit.
*/
if (__is_eff(root_uid, new))
*effective = true;
}
#define __cap_gained(field, target, source) \
!cap_issubset(target->cap_##field, source->cap_##field)
#define __cap_grew(target, source, cred) \
!cap_issubset(cred->cap_##target, cred->cap_##source)
#define __cap_full(field, cred) \
cap_issubset(CAP_FULL_SET, cred->cap_##field)
static inline bool __is_setuid(struct cred *new, const struct cred *old)
{ return !uid_eq(new->euid, old->uid); }
static inline bool __is_setgid(struct cred *new, const struct cred *old)
{ return !gid_eq(new->egid, old->gid); }
/*
capabilities: audit log other surprising conditions The existing condition tested for process effective capabilities set by file attributes but intended to ignore the change if the result was unsurprisingly an effective full set in the case root is special with a setuid root executable file and we are root. Stated again: - When you execute a setuid root application, it is no surprise and expected that it got all capabilities, so we do not want capabilities recorded. if (pE_grew && !(pE_fullset && (eff_root || real_root) && root_priveleged) ) Now make sure we cover other cases: - If something prevented a setuid root app getting all capabilities and it wound up with one capability only, then it is a surprise and should be logged. When it is a setuid root file, we only want capabilities when the process does not get full capabilities.. root_priveleged && setuid_root && !pE_fullset - Similarly if a non-setuid program does pick up capabilities due to file system based capabilities, then we want to know what capabilities were picked up. When it has file system based capabilities we want the capabilities. !is_setuid && (has_fcap && pP_gained) - If it is a non-setuid file and it gets ambient capabilities, we want the capabilities. !is_setuid && pA_gained - These last two are combined into one due to the common first parameter. Related: https://github.com/linux-audit/audit-kernel/issues/16 Signed-off-by: Richard Guy Briggs <rgb@redhat.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Paul Moore <paul@paul-moore.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-10-12 08:57:14 +08:00
* 1) Audit candidate if current->cap_effective is set
*
* We do not bother to audit if 3 things are true:
* 1) cap_effective has all caps
* 2) we became root *OR* are were already root
* 3) root is supposed to have all caps (SECURE_NOROOT)
* Since this is just a normal root execing a process.
*
* Number 1 above might fail if you don't have a full bset, but I think
* that is interesting information to audit.
capabilities: audit log other surprising conditions The existing condition tested for process effective capabilities set by file attributes but intended to ignore the change if the result was unsurprisingly an effective full set in the case root is special with a setuid root executable file and we are root. Stated again: - When you execute a setuid root application, it is no surprise and expected that it got all capabilities, so we do not want capabilities recorded. if (pE_grew && !(pE_fullset && (eff_root || real_root) && root_priveleged) ) Now make sure we cover other cases: - If something prevented a setuid root app getting all capabilities and it wound up with one capability only, then it is a surprise and should be logged. When it is a setuid root file, we only want capabilities when the process does not get full capabilities.. root_priveleged && setuid_root && !pE_fullset - Similarly if a non-setuid program does pick up capabilities due to file system based capabilities, then we want to know what capabilities were picked up. When it has file system based capabilities we want the capabilities. !is_setuid && (has_fcap && pP_gained) - If it is a non-setuid file and it gets ambient capabilities, we want the capabilities. !is_setuid && pA_gained - These last two are combined into one due to the common first parameter. Related: https://github.com/linux-audit/audit-kernel/issues/16 Signed-off-by: Richard Guy Briggs <rgb@redhat.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Paul Moore <paul@paul-moore.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-10-12 08:57:14 +08:00
*
* A number of other conditions require logging:
* 2) something prevented setuid root getting all caps
* 3) non-setuid root gets fcaps
* 4) non-setuid root gets ambient
*/
capabilities: audit log other surprising conditions The existing condition tested for process effective capabilities set by file attributes but intended to ignore the change if the result was unsurprisingly an effective full set in the case root is special with a setuid root executable file and we are root. Stated again: - When you execute a setuid root application, it is no surprise and expected that it got all capabilities, so we do not want capabilities recorded. if (pE_grew && !(pE_fullset && (eff_root || real_root) && root_priveleged) ) Now make sure we cover other cases: - If something prevented a setuid root app getting all capabilities and it wound up with one capability only, then it is a surprise and should be logged. When it is a setuid root file, we only want capabilities when the process does not get full capabilities.. root_priveleged && setuid_root && !pE_fullset - Similarly if a non-setuid program does pick up capabilities due to file system based capabilities, then we want to know what capabilities were picked up. When it has file system based capabilities we want the capabilities. !is_setuid && (has_fcap && pP_gained) - If it is a non-setuid file and it gets ambient capabilities, we want the capabilities. !is_setuid && pA_gained - These last two are combined into one due to the common first parameter. Related: https://github.com/linux-audit/audit-kernel/issues/16 Signed-off-by: Richard Guy Briggs <rgb@redhat.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Paul Moore <paul@paul-moore.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-10-12 08:57:14 +08:00
static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
kuid_t root, bool has_fcap)
{
bool ret = false;
capabilities: audit log other surprising conditions The existing condition tested for process effective capabilities set by file attributes but intended to ignore the change if the result was unsurprisingly an effective full set in the case root is special with a setuid root executable file and we are root. Stated again: - When you execute a setuid root application, it is no surprise and expected that it got all capabilities, so we do not want capabilities recorded. if (pE_grew && !(pE_fullset && (eff_root || real_root) && root_priveleged) ) Now make sure we cover other cases: - If something prevented a setuid root app getting all capabilities and it wound up with one capability only, then it is a surprise and should be logged. When it is a setuid root file, we only want capabilities when the process does not get full capabilities.. root_priveleged && setuid_root && !pE_fullset - Similarly if a non-setuid program does pick up capabilities due to file system based capabilities, then we want to know what capabilities were picked up. When it has file system based capabilities we want the capabilities. !is_setuid && (has_fcap && pP_gained) - If it is a non-setuid file and it gets ambient capabilities, we want the capabilities. !is_setuid && pA_gained - These last two are combined into one due to the common first parameter. Related: https://github.com/linux-audit/audit-kernel/issues/16 Signed-off-by: Richard Guy Briggs <rgb@redhat.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Paul Moore <paul@paul-moore.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-10-12 08:57:14 +08:00
if ((__cap_grew(effective, ambient, new) &&
!(__cap_full(effective, new) &&
(__is_eff(root, new) || __is_real(root, new)) &&
root_privileged())) ||
(root_privileged() &&
__is_suid(root, new) &&
!__cap_full(effective, new)) ||
(!__is_setuid(new, old) &&
((has_fcap &&
__cap_gained(permitted, new, old)) ||
__cap_gained(ambient, new, old))))
ret = true;
capabilities: audit log other surprising conditions The existing condition tested for process effective capabilities set by file attributes but intended to ignore the change if the result was unsurprisingly an effective full set in the case root is special with a setuid root executable file and we are root. Stated again: - When you execute a setuid root application, it is no surprise and expected that it got all capabilities, so we do not want capabilities recorded. if (pE_grew && !(pE_fullset && (eff_root || real_root) && root_priveleged) ) Now make sure we cover other cases: - If something prevented a setuid root app getting all capabilities and it wound up with one capability only, then it is a surprise and should be logged. When it is a setuid root file, we only want capabilities when the process does not get full capabilities.. root_priveleged && setuid_root && !pE_fullset - Similarly if a non-setuid program does pick up capabilities due to file system based capabilities, then we want to know what capabilities were picked up. When it has file system based capabilities we want the capabilities. !is_setuid && (has_fcap && pP_gained) - If it is a non-setuid file and it gets ambient capabilities, we want the capabilities. !is_setuid && pA_gained - These last two are combined into one due to the common first parameter. Related: https://github.com/linux-audit/audit-kernel/issues/16 Signed-off-by: Richard Guy Briggs <rgb@redhat.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Paul Moore <paul@paul-moore.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-10-12 08:57:14 +08:00
return ret;
}
/**
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
* cap_bprm_creds_from_file - Set up the proposed credentials for execve().
* @bprm: The execution parameters, including the proposed creds
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
* @file: The file to pull the credentials from
*
* Set up the proposed credentials for a new execution context being
* constructed by execve(). The proposed creds in @bprm->cred is altered,
* which won't take effect immediately.
*
* Return: 0 if successful, -ve on error.
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
*/
int cap_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
{
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
/* Process setpcap binaries and capabilities for uid 0 */
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
const struct cred *old = current_cred();
struct cred *new = bprm->cred;
bool effective = false, has_fcap = false, is_setid;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
int ret;
kuid_t root_uid;
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
if (WARN_ON(!cap_ambient_invariant_ok(old)))
return -EPERM;
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
ret = get_file_caps(bprm, file, &effective, &has_fcap);
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
if (ret < 0)
return ret;
root_uid = make_kuid(new->user_ns, 0);
handle_privileged_root(bprm, has_fcap, &effective, root_uid);
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
/* if we have fs caps, clear dangerous personality flags */
if (__cap_gained(permitted, new, old))
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
bprm->per_clear |= PER_CLEAR_ON_SETID;
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
/* Don't let someone trace a set[ug]id/setpcap binary with the revised
Add PR_{GET,SET}_NO_NEW_PRIVS to prevent execve from granting privs With this change, calling prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) disables privilege granting operations at execve-time. For example, a process will not be able to execute a setuid binary to change their uid or gid if this bit is set. The same is true for file capabilities. Additionally, LSM_UNSAFE_NO_NEW_PRIVS is defined to ensure that LSMs respect the requested behavior. To determine if the NO_NEW_PRIVS bit is set, a task may call prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0); It returns 1 if set and 0 if it is not set. If any of the arguments are non-zero, it will return -1 and set errno to -EINVAL. (PR_SET_NO_NEW_PRIVS behaves similarly.) This functionality is desired for the proposed seccomp filter patch series. By using PR_SET_NO_NEW_PRIVS, it allows a task to modify the system call behavior for itself and its child tasks without being able to impact the behavior of a more privileged task. Another potential use is making certain privileged operations unprivileged. For example, chroot may be considered "safe" if it cannot affect privileged tasks. Note, this patch causes execve to fail when PR_SET_NO_NEW_PRIVS is set and AppArmor is in use. It is fixed in a subsequent patch. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Will Drewry <wad@chromium.org> Acked-by: Eric Paris <eparis@redhat.com> Acked-by: Kees Cook <keescook@chromium.org> v18: updated change desc v17: using new define values as per 3.4 Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-04-13 05:47:50 +08:00
* credentials unless they have the appropriate permit.
*
* In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
*/
is_setid = __is_setuid(new, old) || __is_setgid(new, old);
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
if ((is_setid || __cap_gained(permitted, new, old)) &&
((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
!ptracer_capable(current, new->user_ns))) {
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
/* downgrade; they get no more than they had, and maybe less */
if (!ns_capable(new->user_ns, CAP_SETUID) ||
Add PR_{GET,SET}_NO_NEW_PRIVS to prevent execve from granting privs With this change, calling prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) disables privilege granting operations at execve-time. For example, a process will not be able to execute a setuid binary to change their uid or gid if this bit is set. The same is true for file capabilities. Additionally, LSM_UNSAFE_NO_NEW_PRIVS is defined to ensure that LSMs respect the requested behavior. To determine if the NO_NEW_PRIVS bit is set, a task may call prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0); It returns 1 if set and 0 if it is not set. If any of the arguments are non-zero, it will return -1 and set errno to -EINVAL. (PR_SET_NO_NEW_PRIVS behaves similarly.) This functionality is desired for the proposed seccomp filter patch series. By using PR_SET_NO_NEW_PRIVS, it allows a task to modify the system call behavior for itself and its child tasks without being able to impact the behavior of a more privileged task. Another potential use is making certain privileged operations unprivileged. For example, chroot may be considered "safe" if it cannot affect privileged tasks. Note, this patch causes execve to fail when PR_SET_NO_NEW_PRIVS is set and AppArmor is in use. It is fixed in a subsequent patch. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Will Drewry <wad@chromium.org> Acked-by: Eric Paris <eparis@redhat.com> Acked-by: Kees Cook <keescook@chromium.org> v18: updated change desc v17: using new define values as per 3.4 Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-04-13 05:47:50 +08:00
(bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
new->euid = new->uid;
new->egid = new->gid;
}
2009-11-24 06:21:30 +08:00
new->cap_permitted = cap_intersect(new->cap_permitted,
old->cap_permitted);
}
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
new->suid = new->fsuid = new->euid;
new->sgid = new->fsgid = new->egid;
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
/* File caps or setid cancels ambient. */
if (has_fcap || is_setid)
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
cap_clear(new->cap_ambient);
/*
* Now that we've computed pA', update pP' to give:
* pP' = (X & fP) | (pI & fI) | pA'
*/
new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
/*
* Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
* this is the same as pE' = (fE ? pP' : 0) | pA'.
*/
if (effective)
new->cap_effective = new->cap_permitted;
else
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
new->cap_effective = new->cap_ambient;
if (WARN_ON(!cap_ambient_invariant_ok(new)))
return -EPERM;
capabilities: audit log other surprising conditions The existing condition tested for process effective capabilities set by file attributes but intended to ignore the change if the result was unsurprisingly an effective full set in the case root is special with a setuid root executable file and we are root. Stated again: - When you execute a setuid root application, it is no surprise and expected that it got all capabilities, so we do not want capabilities recorded. if (pE_grew && !(pE_fullset && (eff_root || real_root) && root_priveleged) ) Now make sure we cover other cases: - If something prevented a setuid root app getting all capabilities and it wound up with one capability only, then it is a surprise and should be logged. When it is a setuid root file, we only want capabilities when the process does not get full capabilities.. root_priveleged && setuid_root && !pE_fullset - Similarly if a non-setuid program does pick up capabilities due to file system based capabilities, then we want to know what capabilities were picked up. When it has file system based capabilities we want the capabilities. !is_setuid && (has_fcap && pP_gained) - If it is a non-setuid file and it gets ambient capabilities, we want the capabilities. !is_setuid && pA_gained - These last two are combined into one due to the common first parameter. Related: https://github.com/linux-audit/audit-kernel/issues/16 Signed-off-by: Richard Guy Briggs <rgb@redhat.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Paul Moore <paul@paul-moore.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-10-12 08:57:14 +08:00
if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
ret = audit_log_bprm_fcaps(bprm, new, old);
if (ret < 0)
return ret;
Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a non-zero pE we will crate a new audit record which contains the entire set of known information about the executable in question, fP, fI, fE, fversion and includes the process's pE, pI, pP. Before and after the bprm capability are applied. This record type will only be emitted from execve syscalls. an example of making ping use fcaps instead of setuid: setcap "cat_net_raw+pe" /bin/ping type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null) type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000 type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1" type=CWD msg=audit(1225742021.015:236): cwd="/home/test" type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2 type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-11 18:48:18 +08:00
}
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
if (WARN_ON(!cap_ambient_invariant_ok(new)))
return -EPERM;
/* Check for privilege-elevated exec. */
if (is_setid ||
(!__is_real(root_uid, new) &&
(effective ||
__cap_grew(permitted, ambient, new))))
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
bprm->secureexec = 1;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
return 0;
}
/**
* cap_inode_setxattr - Determine whether an xattr may be altered
* @dentry: The inode/dentry being altered
* @name: The name of the xattr to be changed
* @value: The value that the xattr will be changed to
* @size: The size of value
* @flags: The replacement flag
*
* Determine whether an xattr may be altered or set on an inode, returning 0 if
* permission is granted, -ve if denied.
*
* This is used to make sure security xattrs don't get updated or set by those
* who aren't privileged to do so.
*/
int cap_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
/* Ignore non-security xattrs */
if (strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN) != 0)
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
return 0;
/*
* For XATTR_NAME_CAPS the check will be done in
* cap_convert_nscap(), called by setxattr()
*/
if (strcmp(name, XATTR_NAME_CAPS) == 0)
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
return 0;
if (!ns_capable(user_ns, CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
/**
* cap_inode_removexattr - Determine whether an xattr may be removed
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
*
* @idmap: idmap of the mount the inode was found from
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
* @dentry: The inode/dentry being altered
* @name: The name of the xattr to be changed
*
* Determine whether an xattr may be removed from an inode, returning 0 if
* permission is granted, -ve if denied.
*
* If the inode has been found through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then
* take care to map the inode according to @idmap before checking
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
* permissions. On non-idmapped mounts or if permission checking is to be
* performed on the raw inode simply pass @nop_mnt_idmap.
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
*
* This is used to make sure security xattrs don't get removed by those who
* aren't privileged to remove them.
*/
int cap_inode_removexattr(struct mnt_idmap *idmap,
commoncap: handle idmapped mounts When interacting with user namespace and non-user namespace aware filesystem capabilities the vfs will perform various security checks to determine whether or not the filesystem capabilities can be used by the caller, whether they need to be removed and so on. The main infrastructure for this resides in the capability codepaths but they are called through the LSM security infrastructure even though they are not technically an LSM or optional. This extends the existing security hooks security_inode_removexattr(), security_inode_killpriv(), security_inode_getsecurity() to pass down the mount's user namespace and makes them aware of idmapped mounts. In order to actually get filesystem capabilities from disk the capability infrastructure exposes the get_vfs_caps_from_disk() helper. For user namespace aware filesystem capabilities a root uid is stored alongside the capabilities. In order to determine whether the caller can make use of the filesystem capability or whether it needs to be ignored it is translated according to the superblock's user namespace. If it can be translated to uid 0 according to that id mapping the caller can use the filesystem capabilities stored on disk. If we are accessing the inode that holds the filesystem capabilities through an idmapped mount we map the root uid according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts: reading filesystem caps from disk enforces that the root uid associated with the filesystem capability must have a mapping in the superblock's user namespace and that the caller is either in the same user namespace or is a descendant of the superblock's user namespace. For filesystems that are mountable inside user namespace the caller can just mount the filesystem and won't usually need to idmap it. If they do want to idmap it they can create an idmapped mount and mark it with a user namespace they created and which is thus a descendant of s_user_ns. For filesystems that are not mountable inside user namespaces the descendant rule is trivially true because the s_user_ns will be the initial user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:29 +08:00
struct dentry *dentry, const char *name)
{
struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
/* Ignore non-security xattrs */
if (strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN) != 0)
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
return 0;
if (strcmp(name, XATTR_NAME_CAPS) == 0) {
/* security.capability gets namespaced */
struct inode *inode = d_backing_inode(dentry);
if (!inode)
return -EINVAL;
if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
return -EPERM;
return 0;
}
if (!ns_capable(user_ns, CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
/*
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
* a process after a call to setuid, setreuid, or setresuid.
*
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
* {r,e,s}uid != 0, the permitted and effective capabilities are
* cleared.
*
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
* capabilities of the process are cleared.
*
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
* capabilities are set to the permitted capabilities.
*
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
* never happen.
*
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:24 +08:00
* -astor
*
* cevans - New behaviour, Oct '99
* A process may, via prctl(), elect to keep its capabilities when it
* calls setuid() and switches away from uid==0. Both permitted and
* effective sets will be retained.
* Without this change, it was impossible for a daemon to drop only some
* of its privilege. The call to setuid(!=0) would drop all privileges!
* Keeping uid 0 is not an option because uid 0 owns too many vital
* files..
* Thanks to Olaf Kirch and Peter Benie for spotting this.
*/
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
{
kuid_t root_uid = make_kuid(old->user_ns, 0);
if ((uid_eq(old->uid, root_uid) ||
uid_eq(old->euid, root_uid) ||
uid_eq(old->suid, root_uid)) &&
(!uid_eq(new->uid, root_uid) &&
!uid_eq(new->euid, root_uid) &&
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
!uid_eq(new->suid, root_uid))) {
if (!issecure(SECURE_KEEP_CAPS)) {
cap_clear(new->cap_permitted);
cap_clear(new->cap_effective);
}
/*
* Pre-ambient programs expect setresuid to nonroot followed
* by exec to drop capabilities. We should make sure that
* this remains the case.
*/
cap_clear(new->cap_ambient);
}
if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
cap_clear(new->cap_effective);
if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
new->cap_effective = new->cap_permitted;
}
/**
* cap_task_fix_setuid - Fix up the results of setuid() call
* @new: The proposed credentials
* @old: The current task's current credentials
* @flags: Indications of what has changed
*
* Fix up the results of setuid() call before the credential changes are
* actually applied.
*
* Return: 0 to grant the changes, -ve to deny them.
*/
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
{
switch (flags) {
case LSM_SETID_RE:
case LSM_SETID_ID:
case LSM_SETID_RES:
/* juggle the capabilities to follow [RES]UID changes unless
* otherwise suppressed */
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
if (!issecure(SECURE_NO_SETUID_FIXUP))
cap_emulate_setxuid(new, old);
break;
case LSM_SETID_FS:
/* juggle the capabilities to follow FSUID changes, unless
* otherwise suppressed
*
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
* if not, we might be a bit too harsh here.
*/
if (!issecure(SECURE_NO_SETUID_FIXUP)) {
kuid_t root_uid = make_kuid(old->user_ns, 0);
if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
new->cap_effective =
cap_drop_fs_set(new->cap_effective);
if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
new->cap_effective =
cap_raise_fs_set(new->cap_effective,
new->cap_permitted);
}
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
break;
default:
return -EINVAL;
}
return 0;
}
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
/*
* Rationale: code calling task_setscheduler, task_setioprio, and
* task_setnice, assumes that
* . if capable(cap_sys_nice), then those actions should be allowed
* . if not capable(cap_sys_nice), but acting on your own processes,
* then those actions should be allowed
* This is insufficient now since you can call code without suid, but
* yet with increased caps.
* So we check for increased caps on the target process.
*/
static int cap_safe_nice(struct task_struct *p)
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
{
int is_subset, ret = 0;
rcu_read_lock();
is_subset = cap_issubset(__task_cred(p)->cap_permitted,
current_cred()->cap_permitted);
if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
ret = -EPERM;
rcu_read_unlock();
return ret;
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
}
/**
* cap_task_setscheduler - Determine if scheduler policy change is permitted
* @p: The task to affect
*
* Determine if the requested scheduler policy change is permitted for the
* specified task.
*
* Return: 0 if permission is granted, -ve if denied.
*/
int cap_task_setscheduler(struct task_struct *p)
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
{
return cap_safe_nice(p);
}
/**
* cap_task_setioprio - Determine if I/O priority change is permitted
* @p: The task to affect
* @ioprio: The I/O priority to set
*
* Determine if the requested I/O priority change is permitted for the specified
* task.
*
* Return: 0 if permission is granted, -ve if denied.
*/
int cap_task_setioprio(struct task_struct *p, int ioprio)
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
{
return cap_safe_nice(p);
}
/**
* cap_task_setnice - Determine if task priority change is permitted
* @p: The task to affect
* @nice: The nice value to set
*
* Determine if the requested task priority change is permitted for the
* specified task.
*
* Return: 0 if permission is granted, -ve if denied.
*/
int cap_task_setnice(struct task_struct *p, int nice)
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:31:36 +08:00
{
return cap_safe_nice(p);
}
capabilities: introduce per-process capability bounding set The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:45 +08:00
/*
* Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
* the current task's bounding set. Returns 0 on success, -ve on error.
capabilities: introduce per-process capability bounding set The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:45 +08:00
*/
static int cap_prctl_drop(unsigned long cap)
capabilities: introduce per-process capability bounding set The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:45 +08:00
{
struct cred *new;
if (!ns_capable(current_user_ns(), CAP_SETPCAP))
capabilities: introduce per-process capability bounding set The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:45 +08:00
return -EPERM;
if (!cap_valid(cap))
return -EINVAL;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
new = prepare_creds();
if (!new)
return -ENOMEM;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
cap_lower(new->cap_bset, cap);
return commit_creds(new);
capabilities: introduce per-process capability bounding set The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:45 +08:00
}
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
/**
* cap_task_prctl - Implement process control functions for this security module
* @option: The process control function requested
* @arg2: The argument data for this function
* @arg3: The argument data for this function
* @arg4: The argument data for this function
* @arg5: The argument data for this function
*
* Allow process control functions (sys_prctl()) to alter capabilities; may
* also deny access to other functions not otherwise implemented here.
*
* Return: 0 or +ve on success, -ENOSYS if this function is not implemented
* here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
* modules will consider performing the function.
*/
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
unsigned long arg4, unsigned long arg5)
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
{
const struct cred *old = current_cred();
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
struct cred *new;
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
switch (option) {
case PR_CAPBSET_READ:
if (!cap_valid(arg2))
return -EINVAL;
return !!cap_raised(old->cap_bset, arg2);
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
case PR_CAPBSET_DROP:
return cap_prctl_drop(arg2);
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
/*
* The next four prctl's remain to assist with transitioning a
* system from legacy UID=0 based privilege (when filesystem
* capabilities are not in use) to a system using filesystem
* capabilities only - as the POSIX.1e draft intended.
*
* Note:
*
* PR_SET_SECUREBITS =
* issecure_mask(SECURE_KEEP_CAPS_LOCKED)
* | issecure_mask(SECURE_NOROOT)
* | issecure_mask(SECURE_NOROOT_LOCKED)
* | issecure_mask(SECURE_NO_SETUID_FIXUP)
* | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
*
* will ensure that the current process and all of its
* children will be locked into a pure
* capability-based-privilege environment.
*/
case PR_SET_SECUREBITS:
if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
& (old->securebits ^ arg2)) /*[1]*/
|| ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
|| (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
|| (cap_capable(current_cred(),
current_cred()->user_ns,
CAP_SETPCAP,
CAP_OPT_NONE) != 0) /*[4]*/
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
/*
* [1] no changing of bits that are locked
* [2] no unlocking of locks
* [3] no setting of unsupported bits
* [4] doing anything requires privilege (go read about
* the "sendmail capabilities bug")
*/
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
)
/* cannot change a locked bit */
return -EPERM;
new = prepare_creds();
if (!new)
return -ENOMEM;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
new->securebits = arg2;
return commit_creds(new);
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
case PR_GET_SECUREBITS:
return old->securebits;
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
case PR_GET_KEEPCAPS:
return !!issecure(SECURE_KEEP_CAPS);
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
case PR_SET_KEEPCAPS:
if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
return -EINVAL;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
if (issecure(SECURE_KEEP_CAPS_LOCKED))
return -EPERM;
new = prepare_creds();
if (!new)
return -ENOMEM;
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
if (arg2)
new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
else
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
return commit_creds(new);
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
case PR_CAP_AMBIENT:
if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
if (arg3 | arg4 | arg5)
return -EINVAL;
new = prepare_creds();
if (!new)
return -ENOMEM;
cap_clear(new->cap_ambient);
return commit_creds(new);
}
if (((!cap_valid(arg3)) | arg4 | arg5))
return -EINVAL;
if (arg2 == PR_CAP_AMBIENT_IS_SET) {
return !!cap_raised(current_cred()->cap_ambient, arg3);
} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
arg2 != PR_CAP_AMBIENT_LOWER) {
return -EINVAL;
} else {
if (arg2 == PR_CAP_AMBIENT_RAISE &&
(!cap_raised(current_cred()->cap_permitted, arg3) ||
!cap_raised(current_cred()->cap_inheritable,
arg3) ||
issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
capabilities: ambient capabilities Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:42:45 +08:00
return -EPERM;
new = prepare_creds();
if (!new)
return -ENOMEM;
if (arg2 == PR_CAP_AMBIENT_RAISE)
cap_raise(new->cap_ambient, arg3);
else
cap_lower(new->cap_ambient, arg3);
return commit_creds(new);
}
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
default:
/* No functionality available - continue with default */
return -ENOSYS;
capabilities: implement per-process securebits Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:40 +08:00
}
}
/**
* cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
* @mm: The VM space in which the new mapping is to be made
* @pages: The size of the mapping
*
* Determine whether the allocation of a new virtual mapping by the current
* task is permitted.
*
* Return: 1 if permission is granted, 0 if not.
*/
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
{
int cap_sys_admin = 0;
if (cap_capable(current_cred(), &init_user_ns,
CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
cap_sys_admin = 1;
return cap_sys_admin;
}
/**
* cap_mmap_addr - check if able to map given addr
* @addr: address attempting to be mapped
*
* If the process is attempting to map memory below dac_mmap_min_addr they need
* CAP_SYS_RAWIO. The other parameters to this function are unused by the
* capability security module.
*
* Return: 0 if this mapping should be allowed or -EPERM if not.
*/
int cap_mmap_addr(unsigned long addr)
{
int ret = 0;
if (addr < dac_mmap_min_addr) {
ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
CAP_OPT_NONE);
/* set PF_SUPERPRIV if it turns out we allow the low mmap */
if (ret == 0)
current->flags |= PF_SUPERPRIV;
}
return ret;
}
int cap_mmap_file(struct file *file, unsigned long reqprot,
unsigned long prot, unsigned long flags)
{
return 0;
}
#ifdef CONFIG_SECURITY
static const struct lsm_id capability_lsmid = {
LSM: Identify modules by more than name Create a struct lsm_id to contain identifying information about Linux Security Modules (LSMs). At inception this contains the name of the module and an identifier associated with the security module. Change the security_add_hooks() interface to use this structure. Change the individual modules to maintain their own struct lsm_id and pass it to security_add_hooks(). The values are for LSM identifiers are defined in a new UAPI header file linux/lsm.h. Each existing LSM has been updated to include it's LSMID in the lsm_id. The LSM ID values are sequential, with the oldest module LSM_ID_CAPABILITY being the lowest value and the existing modules numbered in the order they were included in the main line kernel. This is an arbitrary convention for assigning the values, but none better presents itself. The value 0 is defined as being invalid. The values 1-99 are reserved for any special case uses which may arise in the future. This may include attributes of the LSM infrastructure itself, possibly related to namespacing or network attribute management. A special range is identified for such attributes to help reduce confusion for developers unfamiliar with LSMs. LSM attribute values are defined for the attributes presented by modules that are available today. As with the LSM IDs, The value 0 is defined as being invalid. The values 1-99 are reserved for any special case uses which may arise in the future. Cc: linux-security-module <linux-security-module@vger.kernel.org> Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: Mickael Salaun <mic@digikod.net> Reviewed-by: John Johansen <john.johansen@canonical.com> Signed-off-by: Kees Cook <keescook@chromium.org> Nacked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> [PM: forward ported beyond v6.6 due merge window changes] Signed-off-by: Paul Moore <paul@paul-moore.com>
2023-09-13 04:56:46 +08:00
.name = "capability",
.id = LSM_ID_CAPABILITY,
};
selinux: remove the runtime disable functionality After working with the larger SELinux-based distros for several years, we're finally at a place where we can disable the SELinux runtime disable functionality. The existing kernel deprecation notice explains the functionality and why we want to remove it: The selinuxfs "disable" node allows SELinux to be disabled at runtime prior to a policy being loaded into the kernel. If disabled via this mechanism, SELinux will remain disabled until the system is rebooted. The preferred method of disabling SELinux is via the "selinux=0" boot parameter, but the selinuxfs "disable" node was created to make it easier for systems with primitive bootloaders that did not allow for easy modification of the kernel command line. Unfortunately, allowing for SELinux to be disabled at runtime makes it difficult to secure the kernel's LSM hooks using the "__ro_after_init" feature. It is that last sentence, mentioning the '__ro_after_init' hardening, which is the real motivation for this change, and if you look at the diffstat you'll see that the impact of this patch reaches across all the different LSMs, helping prevent tampering at the LSM hook level. From a SELinux perspective, it is important to note that if you continue to disable SELinux via "/etc/selinux/config" it may appear that SELinux is disabled, but it is simply in an uninitialized state. If you load a policy with `load_policy -i`, you will see SELinux come alive just as if you had loaded the policy during early-boot. It is also worth noting that the "/sys/fs/selinux/disable" file is always writable now, regardless of the Kconfig settings, but writing to the file has no effect on the system, other than to display an error on the console if a non-zero/true value is written. Finally, in the several years where we have been working on deprecating this functionality, there has only been one instance of someone mentioning any user visible breakage. In this particular case it was an individual's kernel test system, and the workaround documented in the deprecation notice ("selinux=0" on the kernel command line) resolved the issue without problem. Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2023-03-18 00:43:07 +08:00
static struct security_hook_list capability_hooks[] __ro_after_init = {
LSM_HOOK_INIT(capable, cap_capable),
LSM_HOOK_INIT(settime, cap_settime),
LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
LSM_HOOK_INIT(capget, cap_capget),
LSM_HOOK_INIT(capset, cap_capset),
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 11:00:54 +08:00
LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
Introduce v3 namespaced file capabilities Root in a non-initial user ns cannot be trusted to write a traditional security.capability xattr. If it were allowed to do so, then any unprivileged user on the host could map his own uid to root in a private namespace, write the xattr, and execute the file with privilege on the host. However supporting file capabilities in a user namespace is very desirable. Not doing so means that any programs designed to run with limited privilege must continue to support other methods of gaining and dropping privilege. For instance a program installer must detect whether file capabilities can be assigned, and assign them if so but set setuid-root otherwise. The program in turn must know how to drop partial capabilities, and do so only if setuid-root. This patch introduces v3 of the security.capability xattr. It builds a vfs_ns_cap_data struct by appending a uid_t rootid to struct vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user namespace which mounted the filesystem, usually init_user_ns) of the root id in whose namespaces the file capabilities may take effect. When a task asks to write a v2 security.capability xattr, if it is privileged with respect to the userns which mounted the filesystem, then nothing should change. Otherwise, the kernel will transparently rewrite the xattr as a v3 with the appropriate rootid. This is done during the execution of setxattr() to catch user-space-initiated capability writes. Subsequently, any task executing the file which has the noted kuid as its root uid, or which is in a descendent user_ns of such a user_ns, will run the file with capabilities. Similarly when asking to read file capabilities, a v3 capability will be presented as v2 if it applies to the caller's namespace. If a task writes a v3 security.capability, then it can provide a uid for the xattr so long as the uid is valid in its own user namespace, and it is privileged with CAP_SETFCAP over its namespace. The kernel will translate that rootid to an absolute uid, and write that to disk. After this, a task in the writer's namespace will not be able to use those capabilities (unless rootid was 0), but a task in a namespace where the given uid is root will. Only a single security.capability xattr may exist at a time for a given file. A task may overwrite an existing xattr so long as it is privileged over the inode. Note this is a departure from previous semantics, which required privilege to remove a security.capability xattr. This check can be re-added if deemed useful. This allows a simple setxattr to work, allows tar/untar to work, and allows us to tar in one namespace and untar in another while preserving the capability, without risking leaking privilege into a parent namespace. Example using tar: $ cp /bin/sleep sleepx $ mkdir b1 b2 $ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1 $ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2 $ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx $ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar $ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx b2/sleepx = cap_sys_admin+ep # /opt/ltp/testcases/bin/getv3xattr b2/sleepx v3 xattr, rootid is 100001 A patch to linux-test-project adding a new set of tests for this functionality is in the nsfscaps branch at github.com/hallyn/ltp Changelog: Nov 02 2016: fix invalid check at refuse_fcap_overwrite() Nov 07 2016: convert rootid from and to fs user_ns (From ebiederm: mar 28 2017) commoncap.c: fix typos - s/v4/v3 get_vfs_caps_from_disk: clarify the fs_ns root access check nsfscaps: change the code split for cap_inode_setxattr() Apr 09 2017: don't return v3 cap for caps owned by current root. return a v2 cap for a true v2 cap in non-init ns Apr 18 2017: . Change the flow of fscap writing to support s_user_ns writing. . Remove refuse_fcap_overwrite(). The value of the previous xattr doesn't matter. Apr 24 2017: . incorporate Eric's incremental diff . move cap_convert_nscap to setxattr and simplify its usage May 8, 2017: . fix leaking dentry refcount in cap_inode_getsecurity Signed-off-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 02:11:56 +08:00
LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
LSM_HOOK_INIT(mmap_file, cap_mmap_file),
LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
LSM_HOOK_INIT(task_prctl, cap_task_prctl),
LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
LSM_HOOK_INIT(task_setnice, cap_task_setnice),
LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
};
static int __init capability_init(void)
{
security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
LSM: Identify modules by more than name Create a struct lsm_id to contain identifying information about Linux Security Modules (LSMs). At inception this contains the name of the module and an identifier associated with the security module. Change the security_add_hooks() interface to use this structure. Change the individual modules to maintain their own struct lsm_id and pass it to security_add_hooks(). The values are for LSM identifiers are defined in a new UAPI header file linux/lsm.h. Each existing LSM has been updated to include it's LSMID in the lsm_id. The LSM ID values are sequential, with the oldest module LSM_ID_CAPABILITY being the lowest value and the existing modules numbered in the order they were included in the main line kernel. This is an arbitrary convention for assigning the values, but none better presents itself. The value 0 is defined as being invalid. The values 1-99 are reserved for any special case uses which may arise in the future. This may include attributes of the LSM infrastructure itself, possibly related to namespacing or network attribute management. A special range is identified for such attributes to help reduce confusion for developers unfamiliar with LSMs. LSM attribute values are defined for the attributes presented by modules that are available today. As with the LSM IDs, The value 0 is defined as being invalid. The values 1-99 are reserved for any special case uses which may arise in the future. Cc: linux-security-module <linux-security-module@vger.kernel.org> Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: Mickael Salaun <mic@digikod.net> Reviewed-by: John Johansen <john.johansen@canonical.com> Signed-off-by: Kees Cook <keescook@chromium.org> Nacked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> [PM: forward ported beyond v6.6 due merge window changes] Signed-off-by: Paul Moore <paul@paul-moore.com>
2023-09-13 04:56:46 +08:00
&capability_lsmid);
return 0;
}
DEFINE_LSM(capability) = {
.name = "capability",
.order = LSM_ORDER_FIRST,
.init = capability_init,
};
#endif /* CONFIG_SECURITY */