License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
# SPDX-License-Identifier: GPL-2.0
|
2017-04-12 00:49:49 +08:00
|
|
|
obj-$(CONFIG_DAX) += dax.o
|
|
|
|
obj-$(CONFIG_DEV_DAX) += device_dax.o
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
obj-$(CONFIG_DEV_DAX_KMEM) += kmem.o
|
2021-11-16 05:20:57 +08:00
|
|
|
obj-$(CONFIG_DEV_DAX_PMEM) += dax_pmem.o
|
2023-02-10 17:07:19 +08:00
|
|
|
obj-$(CONFIG_DEV_DAX_CXL) += dax_cxl.o
|
2016-05-19 00:15:08 +08:00
|
|
|
|
2017-04-12 00:49:49 +08:00
|
|
|
dax-y := super.o
|
2017-07-13 08:58:21 +08:00
|
|
|
dax-y += bus.o
|
2017-04-12 00:49:49 +08:00
|
|
|
device_dax-y := device.o
|
2021-11-16 05:20:57 +08:00
|
|
|
dax_pmem-y := pmem.o
|
2023-02-10 17:07:19 +08:00
|
|
|
dax_cxl-y := cxl.o
|
2017-07-17 04:51:53 +08:00
|
|
|
|
2020-10-14 07:49:13 +08:00
|
|
|
obj-y += hmem/
|