linux/lib/sbitmap.c

582 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (C) 2016 Facebook
* Copyright (C) 2013-2014 Jens Axboe
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <linux/sched.h>
#include <linux/random.h>
#include <linux/sbitmap.h>
#include <linux/seq_file.h>
int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
gfp_t flags, int node)
{
unsigned int bits_per_word;
unsigned int i;
if (shift < 0) {
shift = ilog2(BITS_PER_LONG);
/*
* If the bitmap is small, shrink the number of bits per word so
* we spread over a few cachelines, at least. If less than 4
* bits, just forget about it, it's not going to work optimally
* anyway.
*/
if (depth >= 4) {
while ((4U << shift) > depth)
shift--;
}
}
bits_per_word = 1U << shift;
if (bits_per_word > BITS_PER_LONG)
return -EINVAL;
sb->shift = shift;
sb->depth = depth;
sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
if (depth == 0) {
sb->map = NULL;
return 0;
}
treewide: kzalloc_node() -> kcalloc_node() The kzalloc_node() function has a 2-factor argument form, kcalloc_node(). This patch replaces cases of: kzalloc_node(a * b, gfp, node) with: kcalloc_node(a * b, gfp, node) as well as handling cases of: kzalloc_node(a * b * c, gfp, node) with: kzalloc_node(array3_size(a, b, c), gfp, node) as it's slightly less ugly than: kcalloc_node(array_size(a, b), c, gfp, node) This does, however, attempt to ignore constant size factors like: kzalloc_node(4 * 1024, gfp, node) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc_node( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc_node( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc_node( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc_node( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc_node( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc_node( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc_node( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc_node( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc_node( - sizeof(char) * COUNT + COUNT , ...) | kzalloc_node( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc_node + kcalloc_node ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc_node( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc_node( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc_node( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc_node( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc_node( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc_node( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc_node( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc_node( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc_node( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc_node( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc_node( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc_node( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc_node( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc_node( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc_node( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc_node(C1 * C2 * C3, ...) | kzalloc_node( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc_node( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc_node( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc_node( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc_node(sizeof(THING) * C2, ...) | kzalloc_node(sizeof(TYPE) * C2, ...) | kzalloc_node(C1 * C2 * C3, ...) | kzalloc_node(C1 * C2, ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - (E1) * E2 + E1, E2 , ...) | - kzalloc_node + kcalloc_node ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc_node + kcalloc_node ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:04:20 +08:00
sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
if (!sb->map)
return -ENOMEM;
for (i = 0; i < sb->map_nr; i++) {
sb->map[i].depth = min(depth, bits_per_word);
depth -= sb->map[i].depth;
}
return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_init_node);
void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
{
unsigned int bits_per_word = 1U << sb->shift;
unsigned int i;
sb->depth = depth;
sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
for (i = 0; i < sb->map_nr; i++) {
sb->map[i].depth = min(depth, bits_per_word);
depth -= sb->map[i].depth;
}
}
EXPORT_SYMBOL_GPL(sbitmap_resize);
static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
unsigned int hint, bool wrap)
{
unsigned int orig_hint = hint;
int nr;
while (1) {
nr = find_next_zero_bit(word, depth, hint);
if (unlikely(nr >= depth)) {
/*
* We started with an offset, and we didn't reset the
* offset to 0 in a failure case, so start from 0 to
* exhaust the map.
*/
if (orig_hint && hint && wrap) {
hint = orig_hint = 0;
continue;
}
return -1;
}
if (!test_and_set_bit_lock(nr, word))
break;
hint = nr + 1;
if (hint >= depth - 1)
hint = 0;
}
return nr;
}
int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
{
unsigned int i, index;
int nr = -1;
index = SB_NR_TO_INDEX(sb, alloc_hint);
for (i = 0; i < sb->map_nr; i++) {
nr = __sbitmap_get_word(&sb->map[index].word,
sb->map[index].depth,
SB_NR_TO_BIT(sb, alloc_hint),
!round_robin);
if (nr != -1) {
nr += index << sb->shift;
break;
}
/* Jump to next index. */
index++;
alloc_hint = index << sb->shift;
if (index >= sb->map_nr) {
index = 0;
alloc_hint = 0;
}
}
return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get);
int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint,
unsigned long shallow_depth)
{
unsigned int i, index;
int nr = -1;
index = SB_NR_TO_INDEX(sb, alloc_hint);
for (i = 0; i < sb->map_nr; i++) {
nr = __sbitmap_get_word(&sb->map[index].word,
min(sb->map[index].depth, shallow_depth),
SB_NR_TO_BIT(sb, alloc_hint), true);
if (nr != -1) {
nr += index << sb->shift;
break;
}
/* Jump to next index. */
index++;
alloc_hint = index << sb->shift;
if (index >= sb->map_nr) {
index = 0;
alloc_hint = 0;
}
}
return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
bool sbitmap_any_bit_set(const struct sbitmap *sb)
{
unsigned int i;
for (i = 0; i < sb->map_nr; i++) {
if (sb->map[i].word)
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
bool sbitmap_any_bit_clear(const struct sbitmap *sb)
{
unsigned int i;
for (i = 0; i < sb->map_nr; i++) {
const struct sbitmap_word *word = &sb->map[i];
unsigned long ret;
ret = find_first_zero_bit(&word->word, word->depth);
if (ret < word->depth)
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear);
unsigned int sbitmap_weight(const struct sbitmap *sb)
{
unsigned int i, weight = 0;
for (i = 0; i < sb->map_nr; i++) {
const struct sbitmap_word *word = &sb->map[i];
weight += bitmap_weight(&word->word, word->depth);
}
return weight;
}
EXPORT_SYMBOL_GPL(sbitmap_weight);
void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
{
seq_printf(m, "depth=%u\n", sb->depth);
seq_printf(m, "busy=%u\n", sbitmap_weight(sb));
seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
seq_printf(m, "map_nr=%u\n", sb->map_nr);
}
EXPORT_SYMBOL_GPL(sbitmap_show);
static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
{
if ((offset & 0xf) == 0) {
if (offset != 0)
seq_putc(m, '\n');
seq_printf(m, "%08x:", offset);
}
if ((offset & 0x1) == 0)
seq_putc(m, ' ');
seq_printf(m, "%02x", byte);
}
void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
{
u8 byte = 0;
unsigned int byte_bits = 0;
unsigned int offset = 0;
int i;
for (i = 0; i < sb->map_nr; i++) {
unsigned long word = READ_ONCE(sb->map[i].word);
unsigned int word_bits = READ_ONCE(sb->map[i].depth);
while (word_bits > 0) {
unsigned int bits = min(8 - byte_bits, word_bits);
byte |= (word & (BIT(bits) - 1)) << byte_bits;
byte_bits += bits;
if (byte_bits == 8) {
emit_byte(m, offset, byte);
byte = 0;
byte_bits = 0;
offset++;
}
word >>= bits;
word_bits -= bits;
}
}
if (byte_bits) {
emit_byte(m, offset, byte);
offset++;
}
if (offset)
seq_putc(m, '\n');
}
EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
unsigned int depth)
{
unsigned int wake_batch;
unsigned int shallow_depth;
/*
* For each batch, we wake up one queue. We need to make sure that our
* batch size is small enough that the full depth of the bitmap,
* potentially limited by a shallow depth, is enough to wake up all of
* the queues.
*
* Each full word of the bitmap has bits_per_word bits, and there might
* be a partial word. There are depth / bits_per_word full words and
* depth % bits_per_word bits left over. In bitwise arithmetic:
*
* bits_per_word = 1 << shift
* depth / bits_per_word = depth >> shift
* depth % bits_per_word = depth & ((1 << shift) - 1)
*
* Each word can be limited to sbq->min_shallow_depth bits.
*/
shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
depth = ((depth >> sbq->sb.shift) * shallow_depth +
min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
SBQ_WAKE_BATCH);
return wake_batch;
}
int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
int shift, bool round_robin, gfp_t flags, int node)
{
int ret;
int i;
ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
if (ret)
return ret;
sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
if (!sbq->alloc_hint) {
sbitmap_free(&sbq->sb);
return -ENOMEM;
}
if (depth && !round_robin) {
for_each_possible_cpu(i)
*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
}
sbq->min_shallow_depth = UINT_MAX;
sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
atomic_set(&sbq->wake_index, 0);
sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
if (!sbq->ws) {
free_percpu(sbq->alloc_hint);
sbitmap_free(&sbq->sb);
return -ENOMEM;
}
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
init_waitqueue_head(&sbq->ws[i].wait);
atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
}
sbq->round_robin = round_robin;
return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
unsigned int depth)
{
unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
int i;
if (sbq->wake_batch != wake_batch) {
WRITE_ONCE(sbq->wake_batch, wake_batch);
/*
* Pairs with the memory barrier in sbitmap_queue_wake_up()
* to ensure that the batch size is updated before the wait
* counts.
*/
smp_mb__before_atomic();
for (i = 0; i < SBQ_WAIT_QUEUES; i++)
atomic_set(&sbq->ws[i].wait_cnt, 1);
}
}
void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
{
sbitmap_queue_update_wake_batch(sbq, depth);
sbitmap_resize(&sbq->sb, depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
int __sbitmap_queue_get(struct sbitmap_queue *sbq)
{
unsigned int hint, depth;
int nr;
hint = this_cpu_read(*sbq->alloc_hint);
depth = READ_ONCE(sbq->sb.depth);
if (unlikely(hint >= depth)) {
hint = depth ? prandom_u32() % depth : 0;
this_cpu_write(*sbq->alloc_hint, hint);
}
nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
if (nr == -1) {
/* If the map is full, a hint won't do us much good. */
this_cpu_write(*sbq->alloc_hint, 0);
} else if (nr == hint || unlikely(sbq->round_robin)) {
/* Only update the hint if we used it. */
hint = nr + 1;
if (hint >= depth - 1)
hint = 0;
this_cpu_write(*sbq->alloc_hint, hint);
}
return nr;
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
unsigned int shallow_depth)
{
unsigned int hint, depth;
int nr;
WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
hint = this_cpu_read(*sbq->alloc_hint);
depth = READ_ONCE(sbq->sb.depth);
if (unlikely(hint >= depth)) {
hint = depth ? prandom_u32() % depth : 0;
this_cpu_write(*sbq->alloc_hint, hint);
}
nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth);
if (nr == -1) {
/* If the map is full, a hint won't do us much good. */
this_cpu_write(*sbq->alloc_hint, 0);
} else if (nr == hint || unlikely(sbq->round_robin)) {
/* Only update the hint if we used it. */
hint = nr + 1;
if (hint >= depth - 1)
hint = 0;
this_cpu_write(*sbq->alloc_hint, hint);
}
return nr;
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
unsigned int min_shallow_depth)
{
sbq->min_shallow_depth = min_shallow_depth;
sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
{
int i, wake_index;
wake_index = atomic_read(&sbq->wake_index);
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
struct sbq_wait_state *ws = &sbq->ws[wake_index];
if (waitqueue_active(&ws->wait)) {
int o = atomic_read(&sbq->wake_index);
if (wake_index != o)
atomic_cmpxchg(&sbq->wake_index, o, wake_index);
return ws;
}
wake_index = sbq_index_inc(wake_index);
}
return NULL;
}
static bool __sbq_wake_up(struct sbitmap_queue *sbq)
{
struct sbq_wait_state *ws;
unsigned int wake_batch;
int wait_cnt;
ws = sbq_wake_ptr(sbq);
if (!ws)
return false;
wait_cnt = atomic_dec_return(&ws->wait_cnt);
if (wait_cnt <= 0) {
int ret;
wake_batch = READ_ONCE(sbq->wake_batch);
/*
* Pairs with the memory barrier in sbitmap_queue_resize() to
* ensure that we see the batch size update before the wait
* count is reset.
*/
smp_mb__before_atomic();
/*
* For concurrent callers of this, the one that failed the
* atomic_cmpxhcg() race should call this function again
* to wakeup a new batch on a different 'ws'.
*/
ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
if (ret == wait_cnt) {
sbq_index_atomic_inc(&sbq->wake_index);
wake_up_nr(&ws->wait, wake_batch);
return false;
}
return true;
}
return false;
}
void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
{
while (__sbq_wake_up(sbq))
;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
unsigned int cpu)
{
sbitmap_clear_bit_unlock(&sbq->sb, nr);
/*
* Pairs with the memory barrier in set_current_state() to ensure the
* proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
* and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
* waiter. See the comment on waitqueue_active().
*/
smp_mb__after_atomic();
sbitmap_queue_wake_up(sbq);
if (likely(!sbq->round_robin && nr < sbq->sb.depth))
*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
{
int i, wake_index;
/*
* Pairs with the memory barrier in set_current_state() like in
* sbitmap_queue_wake_up().
*/
smp_mb();
wake_index = atomic_read(&sbq->wake_index);
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
struct sbq_wait_state *ws = &sbq->ws[wake_index];
if (waitqueue_active(&ws->wait))
wake_up(&ws->wait);
wake_index = sbq_index_inc(wake_index);
}
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
{
bool first;
int i;
sbitmap_show(&sbq->sb, m);
seq_puts(m, "alloc_hint={");
first = true;
for_each_possible_cpu(i) {
if (!first)
seq_puts(m, ", ");
first = false;
seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
}
seq_puts(m, "}\n");
seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
seq_puts(m, "ws={\n");
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
struct sbq_wait_state *ws = &sbq->ws[i];
seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
atomic_read(&ws->wait_cnt),
waitqueue_active(&ws->wait) ? "active" : "inactive");
}
seq_puts(m, "}\n");
seq_printf(m, "round_robin=%d\n", sbq->round_robin);
seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_show);