linux/arch/x86/kernel/kvmclock.c

338 lines
8.2 KiB
C
Raw Normal View History

/* KVM paravirtual clock driver. A clocksource implementation
Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/clocksource.h>
#include <linux/kvm_para.h>
#include <asm/pvclock.h>
#include <asm/msr.h>
#include <asm/apic.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/memblock.h>
x86: kvmclock: set scheduler clock stable If you try to enable NOHZ_FULL on a guest today, you'll get the following error when the guest tries to deactivate the scheduler tick: WARNING: CPU: 3 PID: 2182 at kernel/time/tick-sched.c:192 can_stop_full_tick+0xb9/0x290() NO_HZ FULL will not work with unstable sched clock CPU: 3 PID: 2182 Comm: kworker/3:1 Not tainted 4.0.0-10545-gb9bb6fb #204 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Workqueue: events flush_to_ldisc ffffffff8162a0c7 ffff88011f583e88 ffffffff814e6ba0 0000000000000002 ffff88011f583ed8 ffff88011f583ec8 ffffffff8104d095 ffff88011f583eb8 0000000000000000 0000000000000003 0000000000000001 0000000000000001 Call Trace: <IRQ> [<ffffffff814e6ba0>] dump_stack+0x4f/0x7b [<ffffffff8104d095>] warn_slowpath_common+0x85/0xc0 [<ffffffff8104d146>] warn_slowpath_fmt+0x46/0x50 [<ffffffff810bd2a9>] can_stop_full_tick+0xb9/0x290 [<ffffffff810bd9ed>] tick_nohz_irq_exit+0x8d/0xb0 [<ffffffff810511c5>] irq_exit+0xc5/0x130 [<ffffffff814f180a>] smp_apic_timer_interrupt+0x4a/0x60 [<ffffffff814eff5e>] apic_timer_interrupt+0x6e/0x80 <EOI> [<ffffffff814ee5d1>] ? _raw_spin_unlock_irqrestore+0x31/0x60 [<ffffffff8108bbc8>] __wake_up+0x48/0x60 [<ffffffff8134836c>] n_tty_receive_buf_common+0x49c/0xba0 [<ffffffff8134a6bf>] ? tty_ldisc_ref+0x1f/0x70 [<ffffffff81348a84>] n_tty_receive_buf2+0x14/0x20 [<ffffffff8134b390>] flush_to_ldisc+0xe0/0x120 [<ffffffff81064d05>] process_one_work+0x1d5/0x540 [<ffffffff81064c81>] ? process_one_work+0x151/0x540 [<ffffffff81065191>] worker_thread+0x121/0x470 [<ffffffff81065070>] ? process_one_work+0x540/0x540 [<ffffffff8106b4df>] kthread+0xef/0x110 [<ffffffff8106b3f0>] ? __kthread_parkme+0xa0/0xa0 [<ffffffff814ef4f2>] ret_from_fork+0x42/0x70 [<ffffffff8106b3f0>] ? __kthread_parkme+0xa0/0xa0 ---[ end trace 06e3507544a38866 ]--- However, it turns out that kvmclock does provide a stable sched_clock callback. So, let the scheduler know this which in turn makes NOHZ_FULL work in the guest. Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-29 07:20:40 +08:00
#include <linux/sched.h>
#include <asm/x86_init.h>
#include <asm/reboot.h>
static int kvmclock = 1;
static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
static cycle_t kvm_sched_clock_offset;
static int parse_no_kvmclock(char *arg)
{
kvmclock = 0;
return 0;
}
early_param("no-kvmclock", parse_no_kvmclock);
/* The hypervisor will put information about time periodically here */
static struct pvclock_vsyscall_time_info *hv_clock;
static struct pvclock_wall_clock wall_clock;
struct pvclock_vsyscall_time_info *pvclock_pvti_cpu0_va(void)
{
return hv_clock;
}
/*
* The wallclock is the time of day when we booted. Since then, some time may
* have elapsed since the hypervisor wrote the data. So we try to account for
* that with system time
*/
static void kvm_get_wallclock(struct timespec *now)
{
struct pvclock_vcpu_time_info *vcpu_time;
int low, high;
int cpu;
low = (int)__pa_symbol(&wall_clock);
high = ((u64)__pa_symbol(&wall_clock) >> 32);
native_write_msr(msr_kvm_wall_clock, low, high);
cpu = get_cpu();
vcpu_time = &hv_clock[cpu].pvti;
pvclock_read_wallclock(&wall_clock, vcpu_time, now);
put_cpu();
}
static int kvm_set_wallclock(const struct timespec *now)
{
return -1;
}
static cycle_t kvm_clock_read(void)
{
struct pvclock_vcpu_time_info *src;
cycle_t ret;
int cpu;
preempt_disable_notrace();
cpu = smp_processor_id();
src = &hv_clock[cpu].pvti;
ret = pvclock_clocksource_read(src);
preempt_enable_notrace();
return ret;
}
static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
{
return kvm_clock_read();
}
static cycle_t kvm_sched_clock_read(void)
{
return kvm_clock_read() - kvm_sched_clock_offset;
}
static inline void kvm_sched_clock_init(bool stable)
{
if (!stable) {
pv_time_ops.sched_clock = kvm_clock_read;
return;
}
kvm_sched_clock_offset = kvm_clock_read();
pv_time_ops.sched_clock = kvm_sched_clock_read;
set_sched_clock_stable();
printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
kvm_sched_clock_offset);
BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
}
/*
* If we don't do that, there is the possibility that the guest
* will calibrate under heavy load - thus, getting a lower lpj -
* and execute the delays themselves without load. This is wrong,
* because no delay loop can finish beforehand.
* Any heuristics is subject to fail, because ultimately, a large
* poll of guests can be running and trouble each other. So we preset
* lpj here
*/
static unsigned long kvm_get_tsc_khz(void)
{
struct pvclock_vcpu_time_info *src;
int cpu;
unsigned long tsc_khz;
cpu = get_cpu();
src = &hv_clock[cpu].pvti;
tsc_khz = pvclock_tsc_khz(src);
put_cpu();
return tsc_khz;
}
static void kvm_get_preset_lpj(void)
{
unsigned long khz;
u64 lpj;
khz = kvm_get_tsc_khz();
lpj = ((u64)khz * 1000);
do_div(lpj, HZ);
preset_lpj = lpj;
}
bool kvm_check_and_clear_guest_paused(void)
{
bool ret = false;
struct pvclock_vcpu_time_info *src;
int cpu = smp_processor_id();
if (!hv_clock)
return ret;
src = &hv_clock[cpu].pvti;
if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
src->flags &= ~PVCLOCK_GUEST_STOPPED;
pvclock_touch_watchdogs();
ret = true;
}
return ret;
}
static struct clocksource kvm_clock = {
.name = "kvm-clock",
.read = kvm_clock_get_cycles,
.rating = 400,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
int kvm_register_clock(char *txt)
{
int cpu = smp_processor_id();
int low, high, ret;
struct pvclock_vcpu_time_info *src;
if (!hv_clock)
return 0;
src = &hv_clock[cpu].pvti;
x86, kvm: Fix kvm's use of __pa() on percpu areas In short, it is illegal to call __pa() on an address holding a percpu variable. This replaces those __pa() calls with slow_virt_to_phys(). All of the cases in this patch are in boot time (or CPU hotplug time at worst) code, so the slow pagetable walking in slow_virt_to_phys() is not expected to have a performance impact. The times when this actually matters are pretty obscure (certain 32-bit NUMA systems), but it _does_ happen. It is important to keep KVM guests working on these systems because the real hardware is getting harder and harder to find. This bug manifested first by me seeing a plain hang at boot after this message: CPU 0 irqstacks, hard=f3018000 soft=f301a000 or, sometimes, it would actually make it out to the console: [ 0.000000] BUG: unable to handle kernel paging request at ffffffff I eventually traced it down to the KVM async pagefault code. This can be worked around by disabling that code either at compile-time, or on the kernel command-line. The kvm async pagefault code was injecting page faults in to the guest which the guest misinterpreted because its "reason" was not being properly sent from the host. The guest passes a physical address of an per-cpu async page fault structure via an MSR to the host. Since __pa() is broken on percpu data, the physical address it sent was bascially bogus and the host went scribbling on random data. The guest never saw the real reason for the page fault (it was injected by the host), assumed that the kernel had taken a _real_ page fault, and panic()'d. The behavior varied, though, depending on what got corrupted by the bad write. Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20130122212435.4905663F@kernel.stglabs.ibm.com Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-23 05:24:35 +08:00
low = (int)slow_virt_to_phys(src) | 1;
high = ((u64)slow_virt_to_phys(src) >> 32);
ret = native_write_msr_safe(msr_kvm_system_time, low, high);
printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
cpu, high, low, txt);
return ret;
}
static void kvm_save_sched_clock_state(void)
{
}
static void kvm_restore_sched_clock_state(void)
{
kvm_register_clock("primary cpu clock, resume");
}
#ifdef CONFIG_X86_LOCAL_APIC
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 06:23:59 +08:00
static void kvm_setup_secondary_clock(void)
{
/*
* Now that the first cpu already had this clocksource initialized,
* we shouldn't fail.
*/
WARN_ON(kvm_register_clock("secondary cpu clock"));
}
#endif
/*
* After the clock is registered, the host will keep writing to the
* registered memory location. If the guest happens to shutdown, this memory
* won't be valid. In cases like kexec, in which you install a new kernel, this
* means a random memory location will be kept being written. So before any
* kind of shutdown from our side, we unregister the clock by writing anything
* that does not have the 'enable' bit set in the msr
*/
2015-09-10 06:38:55 +08:00
#ifdef CONFIG_KEXEC_CORE
static void kvm_crash_shutdown(struct pt_regs *regs)
{
native_write_msr(msr_kvm_system_time, 0, 0);
kvm_disable_steal_time();
native_machine_crash_shutdown(regs);
}
#endif
static void kvm_shutdown(void)
{
native_write_msr(msr_kvm_system_time, 0, 0);
kvm_disable_steal_time();
native_machine_shutdown();
}
void __init kvmclock_init(void)
{
x86: kvmclock: set scheduler clock stable If you try to enable NOHZ_FULL on a guest today, you'll get the following error when the guest tries to deactivate the scheduler tick: WARNING: CPU: 3 PID: 2182 at kernel/time/tick-sched.c:192 can_stop_full_tick+0xb9/0x290() NO_HZ FULL will not work with unstable sched clock CPU: 3 PID: 2182 Comm: kworker/3:1 Not tainted 4.0.0-10545-gb9bb6fb #204 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Workqueue: events flush_to_ldisc ffffffff8162a0c7 ffff88011f583e88 ffffffff814e6ba0 0000000000000002 ffff88011f583ed8 ffff88011f583ec8 ffffffff8104d095 ffff88011f583eb8 0000000000000000 0000000000000003 0000000000000001 0000000000000001 Call Trace: <IRQ> [<ffffffff814e6ba0>] dump_stack+0x4f/0x7b [<ffffffff8104d095>] warn_slowpath_common+0x85/0xc0 [<ffffffff8104d146>] warn_slowpath_fmt+0x46/0x50 [<ffffffff810bd2a9>] can_stop_full_tick+0xb9/0x290 [<ffffffff810bd9ed>] tick_nohz_irq_exit+0x8d/0xb0 [<ffffffff810511c5>] irq_exit+0xc5/0x130 [<ffffffff814f180a>] smp_apic_timer_interrupt+0x4a/0x60 [<ffffffff814eff5e>] apic_timer_interrupt+0x6e/0x80 <EOI> [<ffffffff814ee5d1>] ? _raw_spin_unlock_irqrestore+0x31/0x60 [<ffffffff8108bbc8>] __wake_up+0x48/0x60 [<ffffffff8134836c>] n_tty_receive_buf_common+0x49c/0xba0 [<ffffffff8134a6bf>] ? tty_ldisc_ref+0x1f/0x70 [<ffffffff81348a84>] n_tty_receive_buf2+0x14/0x20 [<ffffffff8134b390>] flush_to_ldisc+0xe0/0x120 [<ffffffff81064d05>] process_one_work+0x1d5/0x540 [<ffffffff81064c81>] ? process_one_work+0x151/0x540 [<ffffffff81065191>] worker_thread+0x121/0x470 [<ffffffff81065070>] ? process_one_work+0x540/0x540 [<ffffffff8106b4df>] kthread+0xef/0x110 [<ffffffff8106b3f0>] ? __kthread_parkme+0xa0/0xa0 [<ffffffff814ef4f2>] ret_from_fork+0x42/0x70 [<ffffffff8106b3f0>] ? __kthread_parkme+0xa0/0xa0 ---[ end trace 06e3507544a38866 ]--- However, it turns out that kvmclock does provide a stable sched_clock callback. So, let the scheduler know this which in turn makes NOHZ_FULL work in the guest. Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-29 07:20:40 +08:00
struct pvclock_vcpu_time_info *vcpu_time;
unsigned long mem;
x86: kvmclock: set scheduler clock stable If you try to enable NOHZ_FULL on a guest today, you'll get the following error when the guest tries to deactivate the scheduler tick: WARNING: CPU: 3 PID: 2182 at kernel/time/tick-sched.c:192 can_stop_full_tick+0xb9/0x290() NO_HZ FULL will not work with unstable sched clock CPU: 3 PID: 2182 Comm: kworker/3:1 Not tainted 4.0.0-10545-gb9bb6fb #204 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Workqueue: events flush_to_ldisc ffffffff8162a0c7 ffff88011f583e88 ffffffff814e6ba0 0000000000000002 ffff88011f583ed8 ffff88011f583ec8 ffffffff8104d095 ffff88011f583eb8 0000000000000000 0000000000000003 0000000000000001 0000000000000001 Call Trace: <IRQ> [<ffffffff814e6ba0>] dump_stack+0x4f/0x7b [<ffffffff8104d095>] warn_slowpath_common+0x85/0xc0 [<ffffffff8104d146>] warn_slowpath_fmt+0x46/0x50 [<ffffffff810bd2a9>] can_stop_full_tick+0xb9/0x290 [<ffffffff810bd9ed>] tick_nohz_irq_exit+0x8d/0xb0 [<ffffffff810511c5>] irq_exit+0xc5/0x130 [<ffffffff814f180a>] smp_apic_timer_interrupt+0x4a/0x60 [<ffffffff814eff5e>] apic_timer_interrupt+0x6e/0x80 <EOI> [<ffffffff814ee5d1>] ? _raw_spin_unlock_irqrestore+0x31/0x60 [<ffffffff8108bbc8>] __wake_up+0x48/0x60 [<ffffffff8134836c>] n_tty_receive_buf_common+0x49c/0xba0 [<ffffffff8134a6bf>] ? tty_ldisc_ref+0x1f/0x70 [<ffffffff81348a84>] n_tty_receive_buf2+0x14/0x20 [<ffffffff8134b390>] flush_to_ldisc+0xe0/0x120 [<ffffffff81064d05>] process_one_work+0x1d5/0x540 [<ffffffff81064c81>] ? process_one_work+0x151/0x540 [<ffffffff81065191>] worker_thread+0x121/0x470 [<ffffffff81065070>] ? process_one_work+0x540/0x540 [<ffffffff8106b4df>] kthread+0xef/0x110 [<ffffffff8106b3f0>] ? __kthread_parkme+0xa0/0xa0 [<ffffffff814ef4f2>] ret_from_fork+0x42/0x70 [<ffffffff8106b3f0>] ? __kthread_parkme+0xa0/0xa0 ---[ end trace 06e3507544a38866 ]--- However, it turns out that kvmclock does provide a stable sched_clock callback. So, let the scheduler know this which in turn makes NOHZ_FULL work in the guest. Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-29 07:20:40 +08:00
int size, cpu;
u8 flags;
size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
if (!kvm_para_available())
return;
if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
return;
printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
msr_kvm_system_time, msr_kvm_wall_clock);
mem = memblock_alloc(size, PAGE_SIZE);
if (!mem)
return;
hv_clock = __va(mem);
memset(hv_clock, 0, size);
if (kvm_register_clock("primary cpu clock")) {
hv_clock = NULL;
memblock_free(mem, size);
return;
}
if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
cpu = get_cpu();
vcpu_time = &hv_clock[cpu].pvti;
flags = pvclock_read_flags(vcpu_time);
kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
put_cpu();
x86_platform.calibrate_tsc = kvm_get_tsc_khz;
x86_platform.get_wallclock = kvm_get_wallclock;
x86_platform.set_wallclock = kvm_set_wallclock;
#ifdef CONFIG_X86_LOCAL_APIC
x86: Introduce x86_cpuinit.early_percpu_clock_init hook When kvm guest uses kvmclock, it may hang on vcpu hot-plug. This is caused by an overflow in pvclock_get_nsec_offset, u64 delta = tsc - shadow->tsc_timestamp; which in turn is caused by an undefined values from percpu hv_clock that hasn't been initialized yet. Uninitialized clock on being booted cpu is accessed from start_secondary -> smp_callin -> smp_store_cpu_info -> identify_secondary_cpu -> mtrr_ap_init -> mtrr_restore -> stop_machine_from_inactive_cpu -> queue_stop_cpus_work ... -> sched_clock -> kvm_clock_read which is well before x86_cpuinit.setup_percpu_clockev call in start_secondary, where percpu clock is initialized. This patch introduces a hook that allows to setup/initialize per_cpu clock early and avoid overflow due to reading - undefined values - old values if cpu was offlined and then onlined again Another possible early user of this clock source is ftrace that accesses it to get timestamps for ring buffer entries. So if mtrr_ap_init is moved from identify_secondary_cpu to past x86_cpuinit.setup_percpu_clockev in start_secondary, ftrace may cause the same overflow/hang on cpu hot-plug anyway. More complete description of the problem: https://lkml.org/lkml/2012/2/2/101 Credits to Marcelo Tosatti <mtosatti@redhat.com> for hook idea. Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-02-07 22:52:44 +08:00
x86_cpuinit.early_percpu_clock_init =
kvm_setup_secondary_clock;
#endif
x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
machine_ops.shutdown = kvm_shutdown;
2015-09-10 06:38:55 +08:00
#ifdef CONFIG_KEXEC_CORE
machine_ops.crash_shutdown = kvm_crash_shutdown;
#endif
kvm_get_preset_lpj();
clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
pv_info.name = "KVM";
}
int __init kvm_setup_vsyscall_timeinfo(void)
{
#ifdef CONFIG_X86_64
int cpu;
u8 flags;
struct pvclock_vcpu_time_info *vcpu_time;
unsigned int size;
if (!hv_clock)
return 0;
size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
cpu = get_cpu();
vcpu_time = &hv_clock[cpu].pvti;
flags = pvclock_read_flags(vcpu_time);
if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
put_cpu();
return 1;
}
put_cpu();
kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
#endif
return 0;
}