linux/tools/usb/usbip/libsrc/usbip_common.c

294 lines
6.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005-2007 Takahiro Hirofuchi
*/
#include <libudev.h>
#include "usbip_common.h"
#include "names.h"
#undef PROGNAME
#define PROGNAME "libusbip"
int usbip_use_syslog;
int usbip_use_stderr;
int usbip_use_debug;
extern struct udev *udev_context;
struct speed_string {
int num;
char *speed;
char *desc;
};
static const struct speed_string speed_strings[] = {
{ USB_SPEED_UNKNOWN, "unknown", "Unknown Speed"},
{ USB_SPEED_LOW, "1.5", "Low Speed(1.5Mbps)" },
{ USB_SPEED_FULL, "12", "Full Speed(12Mbps)" },
{ USB_SPEED_HIGH, "480", "High Speed(480Mbps)" },
{ USB_SPEED_WIRELESS, "53.3-480", "Wireless"},
{ USB_SPEED_SUPER, "5000", "Super Speed(5000Mbps)" },
{ 0, NULL, NULL }
};
struct portst_string {
int num;
char *desc;
};
static struct portst_string portst_strings[] = {
{ SDEV_ST_AVAILABLE, "Device Available" },
{ SDEV_ST_USED, "Device in Use" },
{ SDEV_ST_ERROR, "Device Error"},
{ VDEV_ST_NULL, "Port Available"},
{ VDEV_ST_NOTASSIGNED, "Port Initializing"},
{ VDEV_ST_USED, "Port in Use"},
{ VDEV_ST_ERROR, "Port Error"},
{ 0, NULL}
};
const char *usbip_status_string(int32_t status)
{
for (int i = 0; portst_strings[i].desc != NULL; i++)
if (portst_strings[i].num == status)
return portst_strings[i].desc;
return "Unknown Status";
}
const char *usbip_speed_string(int num)
{
for (int i = 0; speed_strings[i].speed != NULL; i++)
if (speed_strings[i].num == num)
return speed_strings[i].desc;
return "Unknown Speed";
}
#define DBG_UDEV_INTEGER(name)\
dbg("%-20s = %x", to_string(name), (int) udev->name)
#define DBG_UINF_INTEGER(name)\
dbg("%-20s = %x", to_string(name), (int) uinf->name)
void dump_usb_interface(struct usbip_usb_interface *uinf)
{
char buff[100];
usbip_names_get_class(buff, sizeof(buff),
uinf->bInterfaceClass,
uinf->bInterfaceSubClass,
uinf->bInterfaceProtocol);
dbg("%-20s = %s", "Interface(C/SC/P)", buff);
}
void dump_usb_device(struct usbip_usb_device *udev)
{
char buff[100];
dbg("%-20s = %s", "path", udev->path);
dbg("%-20s = %s", "busid", udev->busid);
usbip_names_get_class(buff, sizeof(buff),
udev->bDeviceClass,
udev->bDeviceSubClass,
udev->bDeviceProtocol);
dbg("%-20s = %s", "Device(C/SC/P)", buff);
DBG_UDEV_INTEGER(bcdDevice);
usbip_names_get_product(buff, sizeof(buff),
udev->idVendor,
udev->idProduct);
dbg("%-20s = %s", "Vendor/Product", buff);
DBG_UDEV_INTEGER(bNumConfigurations);
DBG_UDEV_INTEGER(bNumInterfaces);
dbg("%-20s = %s", "speed",
usbip_speed_string(udev->speed));
DBG_UDEV_INTEGER(busnum);
DBG_UDEV_INTEGER(devnum);
}
int read_attr_value(struct udev_device *dev, const char *name,
const char *format)
{
const char *attr;
int num = 0;
int ret;
attr = udev_device_get_sysattr_value(dev, name);
if (!attr) {
err("udev_device_get_sysattr_value failed");
goto err;
}
/* The client chooses the device configuration
* when attaching it so right after being bound
* to usbip-host on the server the device will
* have no configuration.
* Therefore, attributes such as bConfigurationValue
* and bNumInterfaces will not exist and sscanf will
* fail. Check for these cases and don't treat them
* as errors.
*/
ret = sscanf(attr, format, &num);
if (ret < 1) {
if (strcmp(name, "bConfigurationValue") &&
strcmp(name, "bNumInterfaces")) {
err("sscanf failed for attribute %s", name);
goto err;
}
}
err:
return num;
}
int read_attr_speed(struct udev_device *dev)
{
const char *speed;
speed = udev_device_get_sysattr_value(dev, "speed");
if (!speed) {
err("udev_device_get_sysattr_value failed");
goto err;
}
for (int i = 0; speed_strings[i].speed != NULL; i++) {
if (!strcmp(speed, speed_strings[i].speed))
return speed_strings[i].num;
}
err:
return USB_SPEED_UNKNOWN;
}
#define READ_ATTR(object, type, dev, name, format) \
do { \
(object)->name = (type) read_attr_value(dev, to_string(name), \
format); \
} while (0)
int read_usb_device(struct udev_device *sdev, struct usbip_usb_device *udev)
{
uint32_t busnum, devnum;
const char *path, *name;
READ_ATTR(udev, uint8_t, sdev, bDeviceClass, "%02x\n");
READ_ATTR(udev, uint8_t, sdev, bDeviceSubClass, "%02x\n");
READ_ATTR(udev, uint8_t, sdev, bDeviceProtocol, "%02x\n");
READ_ATTR(udev, uint16_t, sdev, idVendor, "%04x\n");
READ_ATTR(udev, uint16_t, sdev, idProduct, "%04x\n");
READ_ATTR(udev, uint16_t, sdev, bcdDevice, "%04x\n");
READ_ATTR(udev, uint8_t, sdev, bConfigurationValue, "%02x\n");
READ_ATTR(udev, uint8_t, sdev, bNumConfigurations, "%02x\n");
READ_ATTR(udev, uint8_t, sdev, bNumInterfaces, "%02x\n");
READ_ATTR(udev, uint8_t, sdev, devnum, "%d\n");
udev->speed = read_attr_speed(sdev);
path = udev_device_get_syspath(sdev);
name = udev_device_get_sysname(sdev);
strncpy(udev->path, path, SYSFS_PATH_MAX);
strncpy(udev->busid, name, SYSFS_BUS_ID_SIZE);
sscanf(name, "%u-%u", &busnum, &devnum);
udev->busnum = busnum;
return 0;
}
int read_usb_interface(struct usbip_usb_device *udev, int i,
struct usbip_usb_interface *uinf)
{
char busid[SYSFS_BUS_ID_SIZE];
int size;
struct udev_device *sif;
size = snprintf(busid, sizeof(busid), "%s:%d.%d",
udev->busid, udev->bConfigurationValue, i);
if (size < 0 || (unsigned int)size >= sizeof(busid)) {
err("busid length %i >= %lu or < 0", size,
(long unsigned)sizeof(busid));
return -1;
}
sif = udev_device_new_from_subsystem_sysname(udev_context, "usb", busid);
if (!sif) {
err("udev_device_new_from_subsystem_sysname %s failed", busid);
return -1;
}
READ_ATTR(uinf, uint8_t, sif, bInterfaceClass, "%02x\n");
READ_ATTR(uinf, uint8_t, sif, bInterfaceSubClass, "%02x\n");
READ_ATTR(uinf, uint8_t, sif, bInterfaceProtocol, "%02x\n");
return 0;
}
int usbip_names_init(char *f)
{
return names_init(f);
}
void usbip_names_free(void)
{
names_free();
}
void usbip_names_get_product(char *buff, size_t size, uint16_t vendor,
uint16_t product)
{
const char *prod, *vend;
prod = names_product(vendor, product);
if (!prod)
prod = "unknown product";
vend = names_vendor(vendor);
if (!vend)
vend = "unknown vendor";
snprintf(buff, size, "%s : %s (%04x:%04x)", vend, prod, vendor, product);
}
void usbip_names_get_class(char *buff, size_t size, uint8_t class,
uint8_t subclass, uint8_t protocol)
{
const char *c, *s, *p;
if (class == 0 && subclass == 0 && protocol == 0) {
snprintf(buff, size, "(Defined at Interface level) (%02x/%02x/%02x)", class, subclass, protocol);
return;
}
p = names_protocol(class, subclass, protocol);
if (!p)
p = "unknown protocol";
s = names_subclass(class, subclass);
if (!s)
s = "unknown subclass";
c = names_class(class);
if (!c)
c = "unknown class";
snprintf(buff, size, "%s / %s / %s (%02x/%02x/%02x)", c, s, p, class, subclass, protocol);
}