linux/fs/bcachefs/fs-io.c

3088 lines
73 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#ifndef NO_BCACHEFS_FS
#include "bcachefs.h"
#include "alloc_foreground.h"
#include "btree_update.h"
#include "buckets.h"
#include "clock.h"
#include "error.h"
#include "extents.h"
#include "fs.h"
#include "fs-io.h"
#include "fsck.h"
#include "inode.h"
#include "journal.h"
#include "io.h"
#include "keylist.h"
#include "quota.h"
#include "reflink.h"
#include "trace.h"
#include <linux/aio.h>
#include <linux/backing-dev.h>
#include <linux/falloc.h>
#include <linux/migrate.h>
#include <linux/mmu_context.h>
#include <linux/pagevec.h>
#include <linux/sched/signal.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/uio.h>
#include <linux/writeback.h>
#include <trace/events/writeback.h>
static inline bool bio_full(struct bio *bio, unsigned len)
{
if (bio->bi_vcnt >= bio->bi_max_vecs)
return true;
if (bio->bi_iter.bi_size > UINT_MAX - len)
return true;
return false;
}
struct quota_res {
u64 sectors;
};
struct bch_writepage_io {
struct closure cl;
struct bch_inode_info *inode;
/* must be last: */
struct bch_write_op op;
};
struct dio_write {
struct closure cl;
struct kiocb *req;
struct mm_struct *mm;
unsigned loop:1,
sync:1,
free_iov:1;
struct quota_res quota_res;
struct iov_iter iter;
struct iovec inline_vecs[2];
/* must be last: */
struct bch_write_op op;
};
struct dio_read {
struct closure cl;
struct kiocb *req;
long ret;
struct bch_read_bio rbio;
};
/* pagecache_block must be held */
static int write_invalidate_inode_pages_range(struct address_space *mapping,
loff_t start, loff_t end)
{
int ret;
/*
* XXX: the way this is currently implemented, we can spin if a process
* is continually redirtying a specific page
*/
do {
if (!mapping->nrpages)
return 0;
ret = filemap_write_and_wait_range(mapping, start, end);
if (ret)
break;
if (!mapping->nrpages)
return 0;
ret = invalidate_inode_pages2_range(mapping,
start >> PAGE_SHIFT,
end >> PAGE_SHIFT);
} while (ret == -EBUSY);
return ret;
}
/* quotas */
#ifdef CONFIG_BCACHEFS_QUOTA
static void bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res)
{
if (!res->sectors)
return;
mutex_lock(&inode->ei_quota_lock);
BUG_ON(res->sectors > inode->ei_quota_reserved);
bch2_quota_acct(c, inode->ei_qid, Q_SPC,
-((s64) res->sectors), KEY_TYPE_QUOTA_PREALLOC);
inode->ei_quota_reserved -= res->sectors;
mutex_unlock(&inode->ei_quota_lock);
res->sectors = 0;
}
static int bch2_quota_reservation_add(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res,
unsigned sectors,
bool check_enospc)
{
int ret;
mutex_lock(&inode->ei_quota_lock);
ret = bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors,
check_enospc ? KEY_TYPE_QUOTA_PREALLOC : KEY_TYPE_QUOTA_NOCHECK);
if (likely(!ret)) {
inode->ei_quota_reserved += sectors;
res->sectors += sectors;
}
mutex_unlock(&inode->ei_quota_lock);
return ret;
}
#else
static void bch2_quota_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res)
{
}
static int bch2_quota_reservation_add(struct bch_fs *c,
struct bch_inode_info *inode,
struct quota_res *res,
unsigned sectors,
bool check_enospc)
{
return 0;
}
#endif
/* i_size updates: */
struct inode_new_size {
loff_t new_size;
u64 now;
unsigned fields;
};
static int inode_set_size(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct inode_new_size *s = p;
bi->bi_size = s->new_size;
if (s->fields & ATTR_ATIME)
bi->bi_atime = s->now;
if (s->fields & ATTR_MTIME)
bi->bi_mtime = s->now;
if (s->fields & ATTR_CTIME)
bi->bi_ctime = s->now;
return 0;
}
int __must_check bch2_write_inode_size(struct bch_fs *c,
struct bch_inode_info *inode,
loff_t new_size, unsigned fields)
{
struct inode_new_size s = {
.new_size = new_size,
.now = bch2_current_time(c),
.fields = fields,
};
return bch2_write_inode(c, inode, inode_set_size, &s, fields);
}
static void i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode,
struct quota_res *quota_res, s64 sectors)
{
if (!sectors)
return;
mutex_lock(&inode->ei_quota_lock);
#ifdef CONFIG_BCACHEFS_QUOTA
if (quota_res && sectors > 0) {
BUG_ON(sectors > quota_res->sectors);
BUG_ON(sectors > inode->ei_quota_reserved);
quota_res->sectors -= sectors;
inode->ei_quota_reserved -= sectors;
} else {
bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, KEY_TYPE_QUOTA_WARN);
}
#endif
inode->v.i_blocks += sectors;
mutex_unlock(&inode->ei_quota_lock);
}
/* page state: */
/* stored in page->private: */
struct bch_page_sector {
/* Uncompressed, fully allocated replicas: */
unsigned nr_replicas:3;
/* Owns PAGE_SECTORS * replicas_reserved sized reservation: */
unsigned replicas_reserved:3;
/* i_sectors: */
enum {
SECTOR_UNALLOCATED,
SECTOR_RESERVED,
SECTOR_DIRTY,
SECTOR_ALLOCATED,
} state:2;
};
struct bch_page_state {
spinlock_t lock;
atomic_t write_count;
struct bch_page_sector s[PAGE_SECTORS];
};
static inline struct bch_page_state *__bch2_page_state(struct page *page)
{
return page_has_private(page)
? (struct bch_page_state *) page_private(page)
: NULL;
}
static inline struct bch_page_state *bch2_page_state(struct page *page)
{
EBUG_ON(!PageLocked(page));
return __bch2_page_state(page);
}
/* for newly allocated pages: */
static void __bch2_page_state_release(struct page *page)
{
struct bch_page_state *s = __bch2_page_state(page);
if (!s)
return;
ClearPagePrivate(page);
set_page_private(page, 0);
put_page(page);
kfree(s);
}
static void bch2_page_state_release(struct page *page)
{
struct bch_page_state *s = bch2_page_state(page);
if (!s)
return;
ClearPagePrivate(page);
set_page_private(page, 0);
put_page(page);
kfree(s);
}
/* for newly allocated pages: */
static struct bch_page_state *__bch2_page_state_create(struct page *page,
gfp_t gfp)
{
struct bch_page_state *s;
s = kzalloc(sizeof(*s), GFP_NOFS|gfp);
if (!s)
return NULL;
spin_lock_init(&s->lock);
/*
* migrate_page_move_mapping() assumes that pages with private data
* have their count elevated by 1.
*/
get_page(page);
set_page_private(page, (unsigned long) s);
SetPagePrivate(page);
return s;
}
static struct bch_page_state *bch2_page_state_create(struct page *page,
gfp_t gfp)
{
return bch2_page_state(page) ?: __bch2_page_state_create(page, gfp);
}
static inline unsigned inode_nr_replicas(struct bch_fs *c, struct bch_inode_info *inode)
{
/* XXX: this should not be open coded */
return inode->ei_inode.bi_data_replicas
? inode->ei_inode.bi_data_replicas - 1
: c->opts.data_replicas;
}
static inline unsigned sectors_to_reserve(struct bch_page_sector *s,
unsigned nr_replicas)
{
return max(0, (int) nr_replicas -
s->nr_replicas -
s->replicas_reserved);
}
static int bch2_get_page_disk_reservation(struct bch_fs *c,
struct bch_inode_info *inode,
struct page *page, bool check_enospc)
{
struct bch_page_state *s = bch2_page_state_create(page, 0);
unsigned nr_replicas = inode_nr_replicas(c, inode);
struct disk_reservation disk_res = { 0 };
unsigned i, disk_res_sectors = 0;
int ret;
if (!s)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(s->s); i++)
disk_res_sectors += sectors_to_reserve(&s->s[i], nr_replicas);
if (!disk_res_sectors)
return 0;
ret = bch2_disk_reservation_get(c, &disk_res,
disk_res_sectors, 1,
!check_enospc
? BCH_DISK_RESERVATION_NOFAIL
: 0);
if (unlikely(ret))
return ret;
for (i = 0; i < ARRAY_SIZE(s->s); i++)
s->s[i].replicas_reserved +=
sectors_to_reserve(&s->s[i], nr_replicas);
return 0;
}
struct bch2_page_reservation {
struct disk_reservation disk;
struct quota_res quota;
};
static void bch2_page_reservation_init(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch2_page_reservation *res)
{
memset(res, 0, sizeof(*res));
res->disk.nr_replicas = inode_nr_replicas(c, inode);
}
static void bch2_page_reservation_put(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch2_page_reservation *res)
{
bch2_disk_reservation_put(c, &res->disk);
bch2_quota_reservation_put(c, inode, &res->quota);
}
static int bch2_page_reservation_get(struct bch_fs *c,
struct bch_inode_info *inode, struct page *page,
struct bch2_page_reservation *res,
unsigned offset, unsigned len, bool check_enospc)
{
struct bch_page_state *s = bch2_page_state_create(page, 0);
unsigned i, disk_sectors = 0, quota_sectors = 0;
int ret;
if (!s)
return -ENOMEM;
for (i = round_down(offset, block_bytes(c)) >> 9;
i < round_up(offset + len, block_bytes(c)) >> 9;
i++) {
disk_sectors += sectors_to_reserve(&s->s[i],
res->disk.nr_replicas);
quota_sectors += s->s[i].state == SECTOR_UNALLOCATED;
}
if (disk_sectors) {
ret = bch2_disk_reservation_add(c, &res->disk,
disk_sectors,
!check_enospc
? BCH_DISK_RESERVATION_NOFAIL
: 0);
if (unlikely(ret))
return ret;
}
if (quota_sectors) {
ret = bch2_quota_reservation_add(c, inode, &res->quota,
quota_sectors,
check_enospc);
if (unlikely(ret)) {
struct disk_reservation tmp = {
.sectors = disk_sectors
};
bch2_disk_reservation_put(c, &tmp);
res->disk.sectors -= disk_sectors;
return ret;
}
}
return 0;
}
static void bch2_clear_page_bits(struct page *page)
{
struct bch_inode_info *inode = to_bch_ei(page->mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_page_state *s = bch2_page_state(page);
struct disk_reservation disk_res = { 0 };
int i, dirty_sectors = 0;
if (!s)
return;
EBUG_ON(!PageLocked(page));
EBUG_ON(PageWriteback(page));
for (i = 0; i < ARRAY_SIZE(s->s); i++) {
disk_res.sectors += s->s[i].replicas_reserved;
s->s[i].replicas_reserved = 0;
if (s->s[i].state == SECTOR_DIRTY) {
dirty_sectors++;
s->s[i].state = SECTOR_UNALLOCATED;
}
}
bch2_disk_reservation_put(c, &disk_res);
if (dirty_sectors)
i_sectors_acct(c, inode, NULL, -dirty_sectors);
bch2_page_state_release(page);
}
static void bch2_set_page_dirty(struct bch_fs *c,
struct bch_inode_info *inode, struct page *page,
struct bch2_page_reservation *res,
unsigned offset, unsigned len)
{
struct bch_page_state *s = bch2_page_state(page);
unsigned i, dirty_sectors = 0;
WARN_ON((u64) page_offset(page) + offset + len >
round_up((u64) i_size_read(&inode->v), block_bytes(c)));
spin_lock(&s->lock);
for (i = round_down(offset, block_bytes(c)) >> 9;
i < round_up(offset + len, block_bytes(c)) >> 9;
i++) {
unsigned sectors = sectors_to_reserve(&s->s[i],
res->disk.nr_replicas);
BUG_ON(sectors > res->disk.sectors);
s->s[i].replicas_reserved += sectors;
res->disk.sectors -= sectors;
if (s->s[i].state == SECTOR_UNALLOCATED)
dirty_sectors++;
s->s[i].state = max_t(unsigned, s->s[i].state, SECTOR_DIRTY);
}
spin_unlock(&s->lock);
if (dirty_sectors)
i_sectors_acct(c, inode, &res->quota, dirty_sectors);
if (!PageDirty(page))
filemap_dirty_folio(inode->v.i_mapping, page_folio(page));
}
vm_fault_t bch2_page_fault(struct vm_fault *vmf)
{
struct file *file = vmf->vma->vm_file;
struct bch_inode_info *inode = file_bch_inode(file);
int ret;
bch2_pagecache_add_get(&inode->ei_pagecache_lock);
ret = filemap_fault(vmf);
bch2_pagecache_add_put(&inode->ei_pagecache_lock);
return ret;
}
vm_fault_t bch2_page_mkwrite(struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct file *file = vmf->vma->vm_file;
struct bch_inode_info *inode = file_bch_inode(file);
struct address_space *mapping = file->f_mapping;
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch2_page_reservation res;
unsigned len;
loff_t isize;
int ret = VM_FAULT_LOCKED;
bch2_page_reservation_init(c, inode, &res);
sb_start_pagefault(inode->v.i_sb);
file_update_time(file);
/*
* Not strictly necessary, but helps avoid dio writes livelocking in
* write_invalidate_inode_pages_range() - can drop this if/when we get
* a write_invalidate_inode_pages_range() that works without dropping
* page lock before invalidating page
*/
bch2_pagecache_add_get(&inode->ei_pagecache_lock);
lock_page(page);
isize = i_size_read(&inode->v);
if (page->mapping != mapping || page_offset(page) >= isize) {
unlock_page(page);
ret = VM_FAULT_NOPAGE;
goto out;
}
len = min_t(loff_t, PAGE_SIZE, isize - page_offset(page));
if (bch2_page_reservation_get(c, inode, page, &res, 0, len, true)) {
unlock_page(page);
ret = VM_FAULT_SIGBUS;
goto out;
}
bch2_set_page_dirty(c, inode, page, &res, 0, len);
wait_for_stable_page(page);
out:
bch2_pagecache_add_put(&inode->ei_pagecache_lock);
sb_end_pagefault(inode->v.i_sb);
bch2_page_reservation_put(c, inode, &res);
return ret;
}
void bch2_invalidate_folio(struct folio *folio, size_t offset, size_t length)
{
if (offset || length < folio_size(folio))
return;
bch2_clear_page_bits(&folio->page);
}
bool bch2_release_folio(struct folio *folio, gfp_t gfp_mask)
{
if (folio_test_dirty(folio) || folio_test_writeback(folio))
return false;
bch2_clear_page_bits(&folio->page);
return true;
}
/* readpage(s): */
static void bch2_readpages_end_io(struct bio *bio)
{
struct bvec_iter_all iter;
struct bio_vec *bv;
bio_for_each_segment_all(bv, bio, iter) {
struct page *page = bv->bv_page;
if (!bio->bi_status) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
}
bio_put(bio);
}
static inline void page_state_init_for_read(struct page *page)
{
SetPagePrivate(page);
page->private = 0;
}
struct readpages_iter {
struct address_space *mapping;
struct page **pages;
unsigned nr_pages;
unsigned idx;
pgoff_t offset;
};
static int readpages_iter_init(struct readpages_iter *iter,
struct readahead_control *ractl)
{
unsigned i, nr_pages = readahead_count(ractl);
memset(iter, 0, sizeof(*iter));
iter->mapping = ractl->mapping;
iter->offset = readahead_index(ractl);
iter->nr_pages = nr_pages;
iter->pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS);
if (!iter->pages)
return -ENOMEM;
__readahead_batch(ractl, iter->pages, nr_pages);
for (i = 0; i < nr_pages; i++) {
__bch2_page_state_create(iter->pages[i], __GFP_NOFAIL);
put_page(iter->pages[i]);
}
return 0;
}
static inline struct page *readpage_iter_next(struct readpages_iter *iter)
{
if (iter->idx >= iter->nr_pages)
return NULL;
EBUG_ON(iter->pages[iter->idx]->index != iter->offset + iter->idx);
return iter->pages[iter->idx];
}
static void bch2_add_page_sectors(struct bio *bio, struct bkey_s_c k)
{
struct bvec_iter iter;
struct bio_vec bv;
unsigned nr_ptrs = k.k->type == KEY_TYPE_reflink_v
? 0 : bch2_bkey_nr_ptrs_allocated(k);
unsigned state = k.k->type == KEY_TYPE_reservation
? SECTOR_RESERVED
: SECTOR_ALLOCATED;
bio_for_each_segment(bv, bio, iter) {
struct bch_page_state *s = bch2_page_state(bv.bv_page);
unsigned i;
for (i = bv.bv_offset >> 9;
i < (bv.bv_offset + bv.bv_len) >> 9;
i++) {
s->s[i].nr_replicas = nr_ptrs;
s->s[i].state = state;
}
}
}
static void readpage_bio_extend(struct readpages_iter *iter,
struct bio *bio,
unsigned sectors_this_extent,
bool get_more)
{
while (bio_sectors(bio) < sectors_this_extent &&
bio->bi_vcnt < bio->bi_max_vecs) {
pgoff_t page_offset = bio_end_sector(bio) >> PAGE_SECTOR_SHIFT;
struct page *page = readpage_iter_next(iter);
int ret;
if (page) {
if (iter->offset + iter->idx != page_offset)
break;
iter->idx++;
} else {
if (!get_more)
break;
page = xa_load(&iter->mapping->i_pages, page_offset);
if (page && !xa_is_value(page))
break;
page = __page_cache_alloc(readahead_gfp_mask(iter->mapping));
if (!page)
break;
if (!__bch2_page_state_create(page, 0)) {
put_page(page);
break;
}
ret = add_to_page_cache_lru(page, iter->mapping,
page_offset, GFP_NOFS);
if (ret) {
__bch2_page_state_release(page);
put_page(page);
break;
}
put_page(page);
}
BUG_ON(!bio_add_page(bio, page, PAGE_SIZE, 0));
}
}
static void bchfs_read(struct btree_trans *trans, struct btree_iter *iter,
struct bch_read_bio *rbio, u64 inum,
struct readpages_iter *readpages_iter)
{
struct bch_fs *c = trans->c;
int flags = BCH_READ_RETRY_IF_STALE|
BCH_READ_MAY_PROMOTE;
int ret = 0;
rbio->c = c;
rbio->start_time = local_clock();
retry:
while (1) {
BKEY_PADDED(k) tmp;
struct bkey_s_c k;
unsigned bytes, sectors, offset_into_extent;
bch2_btree_iter_set_pos(iter,
POS(inum, rbio->bio.bi_iter.bi_sector));
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret)
break;
bkey_reassemble(&tmp.k, k);
k = bkey_i_to_s_c(&tmp.k);
offset_into_extent = iter->pos.offset -
bkey_start_offset(k.k);
sectors = k.k->size - offset_into_extent;
ret = bch2_read_indirect_extent(trans,
&offset_into_extent, &tmp.k);
if (ret)
break;
sectors = min(sectors, k.k->size - offset_into_extent);
bch2_trans_unlock(trans);
if (readpages_iter) {
bool want_full_extent = false;
if (bkey_extent_is_data(k.k)) {
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *i;
struct extent_ptr_decoded p;
bkey_for_each_ptr_decode(k.k, ptrs, p, i)
want_full_extent |= ((p.crc.csum_type != 0) |
(p.crc.compression_type != 0));
}
readpage_bio_extend(readpages_iter, &rbio->bio,
sectors, want_full_extent);
}
bytes = min(sectors, bio_sectors(&rbio->bio)) << 9;
swap(rbio->bio.bi_iter.bi_size, bytes);
if (rbio->bio.bi_iter.bi_size == bytes)
flags |= BCH_READ_LAST_FRAGMENT;
if (bkey_extent_is_allocation(k.k))
bch2_add_page_sectors(&rbio->bio, k);
bch2_read_extent(c, rbio, k, offset_into_extent, flags);
if (flags & BCH_READ_LAST_FRAGMENT)
return;
swap(rbio->bio.bi_iter.bi_size, bytes);
bio_advance(&rbio->bio, bytes);
}
if (ret == -EINTR)
goto retry;
bcache_io_error(c, &rbio->bio, "btree IO error %i", ret);
bio_endio(&rbio->bio);
}
void bch2_readahead(struct readahead_control *ractl)
{
struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_io_opts opts = io_opts(c, &inode->ei_inode);
struct btree_trans trans;
struct btree_iter *iter;
struct page *page;
struct readpages_iter readpages_iter;
int ret;
ret = readpages_iter_init(&readpages_iter, ractl);
BUG_ON(ret);
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS_MIN,
BTREE_ITER_SLOTS);
bch2_pagecache_add_get(&inode->ei_pagecache_lock);
while ((page = readpage_iter_next(&readpages_iter))) {
pgoff_t index = readpages_iter.offset + readpages_iter.idx;
unsigned n = min_t(unsigned,
readpages_iter.nr_pages -
readpages_iter.idx,
BIO_MAX_VECS);
struct bch_read_bio *rbio =
rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ,
GFP_NOFS, &c->bio_read),
opts);
readpages_iter.idx++;
rbio->bio.bi_iter.bi_sector = (sector_t) index << PAGE_SECTOR_SHIFT;
rbio->bio.bi_end_io = bch2_readpages_end_io;
BUG_ON(!bio_add_page(&rbio->bio, page, PAGE_SIZE, 0));
bchfs_read(&trans, iter, rbio, inode->v.i_ino,
&readpages_iter);
}
bch2_pagecache_add_put(&inode->ei_pagecache_lock);
bch2_trans_exit(&trans);
kfree(readpages_iter.pages);
}
static void __bchfs_readpage(struct bch_fs *c, struct bch_read_bio *rbio,
u64 inum, struct page *page)
{
struct btree_trans trans;
struct btree_iter *iter;
bch2_page_state_create(page, __GFP_NOFAIL);
rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC;
rbio->bio.bi_iter.bi_sector =
(sector_t) page->index << PAGE_SECTOR_SHIFT;
BUG_ON(!bio_add_page(&rbio->bio, page, PAGE_SIZE, 0));
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS_MIN,
BTREE_ITER_SLOTS);
bchfs_read(&trans, iter, rbio, inum, NULL);
bch2_trans_exit(&trans);
}
static void bch2_read_single_page_end_io(struct bio *bio)
{
complete(bio->bi_private);
}
static int bch2_read_single_page(struct page *page,
struct address_space *mapping)
{
struct bch_inode_info *inode = to_bch_ei(mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_read_bio *rbio;
int ret;
DECLARE_COMPLETION_ONSTACK(done);
rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, &c->bio_read),
io_opts(c, &inode->ei_inode));
rbio->bio.bi_private = &done;
rbio->bio.bi_end_io = bch2_read_single_page_end_io;
__bchfs_readpage(c, rbio, inode->v.i_ino, page);
wait_for_completion(&done);
ret = blk_status_to_errno(rbio->bio.bi_status);
bio_put(&rbio->bio);
if (ret < 0)
return ret;
SetPageUptodate(page);
return 0;
}
int bch2_read_folio(struct file *file, struct folio *folio)
{
struct page *page = &folio->page;
int ret;
ret = bch2_read_single_page(page, page->mapping);
folio_unlock(folio);
return ret;
}
/* writepages: */
struct bch_writepage_state {
struct bch_writepage_io *io;
struct bch_io_opts opts;
};
static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c,
struct bch_inode_info *inode)
{
return (struct bch_writepage_state) {
.opts = io_opts(c, &inode->ei_inode)
};
}
static void bch2_writepage_io_free(struct closure *cl)
{
struct bch_writepage_io *io = container_of(cl,
struct bch_writepage_io, cl);
bio_put(&io->op.wbio.bio);
}
static void bch2_writepage_io_done(struct closure *cl)
{
struct bch_writepage_io *io = container_of(cl,
struct bch_writepage_io, cl);
struct bch_fs *c = io->op.c;
struct bio *bio = &io->op.wbio.bio;
struct bvec_iter_all iter;
struct bio_vec *bvec;
unsigned i;
if (io->op.error) {
bio_for_each_segment_all(bvec, bio, iter) {
struct bch_page_state *s;
SetPageError(bvec->bv_page);
mapping_set_error(bvec->bv_page->mapping, -EIO);
s = __bch2_page_state(bvec->bv_page);
spin_lock(&s->lock);
for (i = 0; i < PAGE_SECTORS; i++)
s->s[i].nr_replicas = 0;
spin_unlock(&s->lock);
}
}
/*
* racing with fallocate can cause us to add fewer sectors than
* expected - but we shouldn't add more sectors than expected:
*/
BUG_ON(io->op.i_sectors_delta > 0);
/*
* (error (due to going RO) halfway through a page can screw that up
* slightly)
* XXX wtf?
BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS);
*/
/*
* PageWriteback is effectively our ref on the inode - fixup i_blocks
* before calling end_page_writeback:
*/
i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta);
bio_for_each_segment_all(bvec, bio, iter) {
struct bch_page_state *s = __bch2_page_state(bvec->bv_page);
if (atomic_dec_and_test(&s->write_count))
end_page_writeback(bvec->bv_page);
}
closure_return_with_destructor(&io->cl, bch2_writepage_io_free);
}
static void bch2_writepage_do_io(struct bch_writepage_state *w)
{
struct bch_writepage_io *io = w->io;
w->io = NULL;
closure_call(&io->op.cl, bch2_write, NULL, &io->cl);
continue_at(&io->cl, bch2_writepage_io_done, NULL);
}
/*
* Get a bch_writepage_io and add @page to it - appending to an existing one if
* possible, else allocating a new one:
*/
static void bch2_writepage_io_alloc(struct bch_fs *c,
struct bch_writepage_state *w,
struct bch_inode_info *inode,
u64 sector,
unsigned nr_replicas)
{
struct bch_write_op *op;
w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS,
REQ_OP_WRITE,
GFP_NOFS,
&c->writepage_bioset),
struct bch_writepage_io, op.wbio.bio);
closure_init(&w->io->cl, NULL);
w->io->inode = inode;
op = &w->io->op;
bch2_write_op_init(op, c, w->opts);
op->target = w->opts.foreground_target;
op_journal_seq_set(op, &inode->ei_journal_seq);
op->nr_replicas = nr_replicas;
op->res.nr_replicas = nr_replicas;
op->write_point = writepoint_hashed(inode->ei_last_dirtied);
op->pos = POS(inode->v.i_ino, sector);
op->wbio.bio.bi_iter.bi_sector = sector;
}
static int __bch2_writepage(struct folio *folio,
struct writeback_control *wbc,
void *data)
{
struct page *page = &folio->page;
struct bch_inode_info *inode = to_bch_ei(page->mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_writepage_state *w = data;
struct bch_page_state *s, orig;
unsigned i, offset, nr_replicas_this_write = U32_MAX;
loff_t i_size = i_size_read(&inode->v);
pgoff_t end_index = i_size >> PAGE_SHIFT;
int ret;
EBUG_ON(!PageUptodate(page));
/* Is the page fully inside i_size? */
if (page->index < end_index)
goto do_io;
/* Is the page fully outside i_size? (truncate in progress) */
offset = i_size & (PAGE_SIZE - 1);
if (page->index > end_index || !offset) {
unlock_page(page);
return 0;
}
/*
* The page straddles i_size. It must be zeroed out on each and every
* writepage invocation because it may be mmapped. "A file is mapped
* in multiples of the page size. For a file that is not a multiple of
* the page size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
zero_user_segment(page, offset, PAGE_SIZE);
do_io:
s = bch2_page_state_create(page, __GFP_NOFAIL);
ret = bch2_get_page_disk_reservation(c, inode, page, true);
if (ret) {
SetPageError(page);
mapping_set_error(page->mapping, ret);
unlock_page(page);
return 0;
}
/* Before unlocking the page, get copy of reservations: */
orig = *s;
for (i = 0; i < PAGE_SECTORS; i++) {
if (s->s[i].state < SECTOR_DIRTY)
continue;
nr_replicas_this_write =
min_t(unsigned, nr_replicas_this_write,
s->s[i].nr_replicas +
s->s[i].replicas_reserved);
}
for (i = 0; i < PAGE_SECTORS; i++) {
if (s->s[i].state < SECTOR_DIRTY)
continue;
s->s[i].nr_replicas = w->opts.compression
? 0 : nr_replicas_this_write;
s->s[i].replicas_reserved = 0;
s->s[i].state = SECTOR_ALLOCATED;
}
BUG_ON(atomic_read(&s->write_count));
atomic_set(&s->write_count, 1);
BUG_ON(PageWriteback(page));
set_page_writeback(page);
unlock_page(page);
offset = 0;
while (1) {
unsigned sectors = 1, dirty_sectors = 0, reserved_sectors = 0;
u64 sector;
while (offset < PAGE_SECTORS &&
orig.s[offset].state < SECTOR_DIRTY)
offset++;
if (offset == PAGE_SECTORS)
break;
sector = ((u64) page->index << PAGE_SECTOR_SHIFT) + offset;
while (offset + sectors < PAGE_SECTORS &&
orig.s[offset + sectors].state >= SECTOR_DIRTY)
sectors++;
for (i = offset; i < offset + sectors; i++) {
reserved_sectors += orig.s[i].replicas_reserved;
dirty_sectors += orig.s[i].state == SECTOR_DIRTY;
}
if (w->io &&
(w->io->op.res.nr_replicas != nr_replicas_this_write ||
bio_full(&w->io->op.wbio.bio, PAGE_SIZE) ||
w->io->op.wbio.bio.bi_iter.bi_size >= (256U << 20) ||
bio_end_sector(&w->io->op.wbio.bio) != sector))
bch2_writepage_do_io(w);
if (!w->io)
bch2_writepage_io_alloc(c, w, inode, sector,
nr_replicas_this_write);
atomic_inc(&s->write_count);
BUG_ON(inode != w->io->inode);
BUG_ON(!bio_add_page(&w->io->op.wbio.bio, page,
sectors << 9, offset << 9));
/* Check for writing past i_size: */
WARN_ON((bio_end_sector(&w->io->op.wbio.bio) << 9) >
round_up(i_size, block_bytes(c)));
w->io->op.res.sectors += reserved_sectors;
w->io->op.i_sectors_delta -= dirty_sectors;
w->io->op.new_i_size = i_size;
if (wbc->sync_mode == WB_SYNC_ALL)
w->io->op.wbio.bio.bi_opf |= REQ_SYNC;
offset += sectors;
}
if (atomic_dec_and_test(&s->write_count))
end_page_writeback(page);
return 0;
}
int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
struct bch_fs *c = mapping->host->i_sb->s_fs_info;
struct bch_writepage_state w =
bch_writepage_state_init(c, to_bch_ei(mapping->host));
struct blk_plug plug;
int ret;
blk_start_plug(&plug);
ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w);
if (w.io)
bch2_writepage_do_io(&w);
blk_finish_plug(&plug);
return ret;
}
int bch2_writepage(struct page *page, struct writeback_control *wbc)
{
struct bch_fs *c = page->mapping->host->i_sb->s_fs_info;
struct bch_writepage_state w =
bch_writepage_state_init(c, to_bch_ei(page->mapping->host));
int ret;
ret = __bch2_writepage(page_folio(page), wbc, &w);
if (w.io)
bch2_writepage_do_io(&w);
return ret;
}
/* buffered writes: */
int bch2_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len,
struct page **pagep, void **fsdata)
{
struct bch_inode_info *inode = to_bch_ei(mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch2_page_reservation *res;
pgoff_t index = pos >> PAGE_SHIFT;
unsigned offset = pos & (PAGE_SIZE - 1);
struct page *page;
int ret = -ENOMEM;
res = kmalloc(sizeof(*res), GFP_KERNEL);
if (!res)
return -ENOMEM;
bch2_page_reservation_init(c, inode, res);
*fsdata = res;
bch2_pagecache_add_get(&inode->ei_pagecache_lock);
page = grab_cache_page_write_begin(mapping, index);
if (!page)
goto err_unlock;
if (PageUptodate(page))
goto out;
/* If we're writing entire page, don't need to read it in first: */
if (len == PAGE_SIZE)
goto out;
if (!offset && pos + len >= inode->v.i_size) {
zero_user_segment(page, len, PAGE_SIZE);
flush_dcache_page(page);
goto out;
}
if (index > inode->v.i_size >> PAGE_SHIFT) {
zero_user_segments(page, 0, offset, offset + len, PAGE_SIZE);
flush_dcache_page(page);
goto out;
}
readpage:
ret = bch2_read_single_page(page, mapping);
if (ret)
goto err;
out:
ret = bch2_page_reservation_get(c, inode, page, res,
offset, len, true);
if (ret) {
if (!PageUptodate(page)) {
/*
* If the page hasn't been read in, we won't know if we
* actually need a reservation - we don't actually need
* to read here, we just need to check if the page is
* fully backed by uncompressed data:
*/
goto readpage;
}
goto err;
}
*pagep = page;
return 0;
err:
unlock_page(page);
put_page(page);
*pagep = NULL;
err_unlock:
bch2_pagecache_add_put(&inode->ei_pagecache_lock);
kfree(res);
*fsdata = NULL;
return ret;
}
int bch2_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct bch_inode_info *inode = to_bch_ei(mapping->host);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch2_page_reservation *res = fsdata;
unsigned offset = pos & (PAGE_SIZE - 1);
lockdep_assert_held(&inode->v.i_rwsem);
if (unlikely(copied < len && !PageUptodate(page))) {
/*
* The page needs to be read in, but that would destroy
* our partial write - simplest thing is to just force
* userspace to redo the write:
*/
zero_user(page, 0, PAGE_SIZE);
flush_dcache_page(page);
copied = 0;
}
spin_lock(&inode->v.i_lock);
if (pos + copied > inode->v.i_size)
i_size_write(&inode->v, pos + copied);
spin_unlock(&inode->v.i_lock);
if (copied) {
if (!PageUptodate(page))
SetPageUptodate(page);
bch2_set_page_dirty(c, inode, page, res, offset, copied);
inode->ei_last_dirtied = (unsigned long) current;
}
unlock_page(page);
put_page(page);
bch2_pagecache_add_put(&inode->ei_pagecache_lock);
bch2_page_reservation_put(c, inode, res);
kfree(res);
return copied;
}
#define WRITE_BATCH_PAGES 32
static int __bch2_buffered_write(struct bch_inode_info *inode,
struct address_space *mapping,
struct iov_iter *iter,
loff_t pos, unsigned len)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct page *pages[WRITE_BATCH_PAGES];
struct bch2_page_reservation res;
unsigned long index = pos >> PAGE_SHIFT;
unsigned offset = pos & (PAGE_SIZE - 1);
unsigned nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
unsigned i, reserved = 0, set_dirty = 0;
unsigned copied = 0, nr_pages_copied = 0;
int ret = 0;
BUG_ON(!len);
BUG_ON(nr_pages > ARRAY_SIZE(pages));
bch2_page_reservation_init(c, inode, &res);
for (i = 0; i < nr_pages; i++) {
pages[i] = grab_cache_page_write_begin(mapping, index + i);
if (!pages[i]) {
nr_pages = i;
if (!i) {
ret = -ENOMEM;
goto out;
}
len = min_t(unsigned, len,
nr_pages * PAGE_SIZE - offset);
break;
}
}
if (offset && !PageUptodate(pages[0])) {
ret = bch2_read_single_page(pages[0], mapping);
if (ret)
goto out;
}
if ((pos + len) & (PAGE_SIZE - 1) &&
!PageUptodate(pages[nr_pages - 1])) {
if ((index + nr_pages - 1) << PAGE_SHIFT >= inode->v.i_size) {
zero_user(pages[nr_pages - 1], 0, PAGE_SIZE);
} else {
ret = bch2_read_single_page(pages[nr_pages - 1], mapping);
if (ret)
goto out;
}
}
while (reserved < len) {
struct page *page = pages[(offset + reserved) >> PAGE_SHIFT];
unsigned pg_offset = (offset + reserved) & (PAGE_SIZE - 1);
unsigned pg_len = min_t(unsigned, len - reserved,
PAGE_SIZE - pg_offset);
retry_reservation:
ret = bch2_page_reservation_get(c, inode, page, &res,
pg_offset, pg_len, true);
if (ret && !PageUptodate(page)) {
ret = bch2_read_single_page(page, mapping);
if (!ret)
goto retry_reservation;
}
if (ret)
goto out;
reserved += pg_len;
}
if (mapping_writably_mapped(mapping))
for (i = 0; i < nr_pages; i++)
flush_dcache_page(pages[i]);
while (copied < len) {
struct page *page = pages[(offset + copied) >> PAGE_SHIFT];
unsigned pg_offset = (offset + copied) & (PAGE_SIZE - 1);
unsigned pg_len = min_t(unsigned, len - copied,
PAGE_SIZE - pg_offset);
unsigned pg_copied = copy_page_from_iter_atomic(page,
pg_offset, pg_len, iter);
if (!pg_copied)
break;
flush_dcache_page(page);
copied += pg_copied;
}
if (!copied)
goto out;
if (copied < len &&
((offset + copied) & (PAGE_SIZE - 1))) {
struct page *page = pages[(offset + copied) >> PAGE_SHIFT];
if (!PageUptodate(page)) {
zero_user(page, 0, PAGE_SIZE);
copied -= (offset + copied) & (PAGE_SIZE - 1);
}
}
spin_lock(&inode->v.i_lock);
if (pos + copied > inode->v.i_size)
i_size_write(&inode->v, pos + copied);
spin_unlock(&inode->v.i_lock);
while (set_dirty < copied) {
struct page *page = pages[(offset + set_dirty) >> PAGE_SHIFT];
unsigned pg_offset = (offset + set_dirty) & (PAGE_SIZE - 1);
unsigned pg_len = min_t(unsigned, copied - set_dirty,
PAGE_SIZE - pg_offset);
if (!PageUptodate(page))
SetPageUptodate(page);
bch2_set_page_dirty(c, inode, page, &res, pg_offset, pg_len);
unlock_page(page);
put_page(page);
set_dirty += pg_len;
}
nr_pages_copied = DIV_ROUND_UP(offset + copied, PAGE_SIZE);
inode->ei_last_dirtied = (unsigned long) current;
out:
for (i = nr_pages_copied; i < nr_pages; i++) {
unlock_page(pages[i]);
put_page(pages[i]);
}
bch2_page_reservation_put(c, inode, &res);
return copied ?: ret;
}
static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct bch_inode_info *inode = file_bch_inode(file);
loff_t pos = iocb->ki_pos;
ssize_t written = 0;
int ret = 0;
bch2_pagecache_add_get(&inode->ei_pagecache_lock);
do {
unsigned offset = pos & (PAGE_SIZE - 1);
unsigned bytes = min_t(unsigned long, iov_iter_count(iter),
PAGE_SIZE * WRITE_BATCH_PAGES - offset);
again:
/*
* Bring in the user page that we will copy from _first_.
* Otherwise there's a nasty deadlock on copying from the
* same page as we're writing to, without it being marked
* up-to-date.
*
* Not only is this an optimisation, but it is also required
* to check that the address is actually valid, when atomic
* usercopies are used, below.
*/
if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
bytes = min_t(unsigned long, iov_iter_count(iter),
PAGE_SIZE - offset);
if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
ret = -EFAULT;
break;
}
}
if (unlikely(fatal_signal_pending(current))) {
ret = -EINTR;
break;
}
ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes);
if (unlikely(ret < 0))
break;
cond_resched();
if (unlikely(ret == 0)) {
/*
* If we were unable to copy any data at all, we must
* fall back to a single segment length write.
*
* If we didn't fallback here, we could livelock
* because not all segments in the iov can be copied at
* once without a pagefault.
*/
bytes = min_t(unsigned long, PAGE_SIZE - offset,
iov_iter_single_seg_count(iter));
goto again;
}
pos += ret;
written += ret;
balance_dirty_pages_ratelimited(mapping);
} while (iov_iter_count(iter));
bch2_pagecache_add_put(&inode->ei_pagecache_lock);
return written ? written : ret;
}
/* O_DIRECT reads */
static void bch2_dio_read_complete(struct closure *cl)
{
struct dio_read *dio = container_of(cl, struct dio_read, cl);
dio->req->ki_complete(dio->req, dio->ret);
bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */
}
static void bch2_direct_IO_read_endio(struct bio *bio)
{
struct dio_read *dio = bio->bi_private;
if (bio->bi_status)
dio->ret = blk_status_to_errno(bio->bi_status);
closure_put(&dio->cl);
}
static void bch2_direct_IO_read_split_endio(struct bio *bio)
{
bch2_direct_IO_read_endio(bio);
bio_check_pages_dirty(bio); /* transfers ownership */
}
static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter)
{
struct file *file = req->ki_filp;
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_io_opts opts = io_opts(c, &inode->ei_inode);
struct dio_read *dio;
struct bio *bio;
loff_t offset = req->ki_pos;
bool sync = is_sync_kiocb(req);
size_t shorten;
ssize_t ret;
if ((offset|iter->count) & (block_bytes(c) - 1))
return -EINVAL;
ret = min_t(loff_t, iter->count,
max_t(loff_t, 0, i_size_read(&inode->v) - offset));
if (!ret)
return ret;
shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c));
iter->count -= shorten;
bio = bio_alloc_bioset(NULL,
iov_iter_npages(iter, BIO_MAX_VECS),
REQ_OP_READ,
GFP_KERNEL,
&c->dio_read_bioset);
bio->bi_end_io = bch2_direct_IO_read_endio;
dio = container_of(bio, struct dio_read, rbio.bio);
closure_init(&dio->cl, NULL);
/*
* this is a _really_ horrible hack just to avoid an atomic sub at the
* end:
*/
if (!sync) {
set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL);
atomic_set(&dio->cl.remaining,
CLOSURE_REMAINING_INITIALIZER -
CLOSURE_RUNNING +
CLOSURE_DESTRUCTOR);
} else {
atomic_set(&dio->cl.remaining,
CLOSURE_REMAINING_INITIALIZER + 1);
}
dio->req = req;
dio->ret = ret;
goto start;
while (iter->count) {
bio = bio_alloc_bioset(NULL,
iov_iter_npages(iter, BIO_MAX_VECS),
REQ_OP_READ,
GFP_KERNEL,
&c->bio_read);
bio->bi_end_io = bch2_direct_IO_read_split_endio;
start:
bio->bi_opf = REQ_OP_READ|REQ_SYNC;
bio->bi_iter.bi_sector = offset >> 9;
bio->bi_private = dio;
ret = bio_iov_iter_get_pages(bio, iter);
if (ret < 0) {
/* XXX: fault inject this path */
bio->bi_status = BLK_STS_RESOURCE;
bio_endio(bio);
break;
}
offset += bio->bi_iter.bi_size;
bio_set_pages_dirty(bio);
if (iter->count)
closure_get(&dio->cl);
bch2_read(c, rbio_init(bio, opts), inode->v.i_ino);
}
iter->count += shorten;
if (sync) {
closure_sync(&dio->cl);
closure_debug_destroy(&dio->cl);
ret = dio->ret;
bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */
return ret;
} else {
return -EIOCBQUEUED;
}
}
ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct bch_inode_info *inode = file_bch_inode(file);
struct address_space *mapping = file->f_mapping;
size_t count = iov_iter_count(iter);
ssize_t ret;
if (!count)
return 0; /* skip atime */
if (iocb->ki_flags & IOCB_DIRECT) {
struct blk_plug plug;
ret = filemap_write_and_wait_range(mapping,
iocb->ki_pos,
iocb->ki_pos + count - 1);
if (ret < 0)
return ret;
file_accessed(file);
blk_start_plug(&plug);
ret = bch2_direct_IO_read(iocb, iter);
blk_finish_plug(&plug);
if (ret >= 0)
iocb->ki_pos += ret;
} else {
bch2_pagecache_add_get(&inode->ei_pagecache_lock);
ret = generic_file_read_iter(iocb, iter);
bch2_pagecache_add_put(&inode->ei_pagecache_lock);
}
return ret;
}
/* O_DIRECT writes */
/*
* We're going to return -EIOCBQUEUED, but we haven't finished consuming the
* iov_iter yet, so we need to stash a copy of the iovec: it might be on the
* caller's stack, we're not guaranteed that it will live for the duration of
* the IO:
*/
static noinline int bch2_dio_write_copy_iov(struct dio_write *dio)
{
struct iovec *iov = dio->inline_vecs;
/*
* iov_iter has a single embedded iovec - nothing to do:
*/
if (iter_is_ubuf(&dio->iter))
return 0;
/*
* We don't currently handle non-iovec iov_iters here - return an error,
* and we'll fall back to doing the IO synchronously:
*/
if (!iter_is_iovec(&dio->iter))
return -1;
if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) {
iov = kmalloc_array(dio->iter.nr_segs, sizeof(*iov),
GFP_KERNEL);
if (unlikely(!iov))
return -ENOMEM;
dio->free_iov = true;
}
memcpy(iov, dio->iter.__iov, dio->iter.nr_segs * sizeof(*iov));
dio->iter.__iov = iov;
return 0;
}
static void bch2_dio_write_loop_async(struct closure *);
static long bch2_dio_write_loop(struct dio_write *dio)
{
bool kthread = (current->flags & PF_KTHREAD) != 0;
struct bch_fs *c = dio->op.c;
struct kiocb *req = dio->req;
struct address_space *mapping = req->ki_filp->f_mapping;
struct bch_inode_info *inode = file_bch_inode(req->ki_filp);
struct bio *bio = &dio->op.wbio.bio;
struct bvec_iter_all iter;
struct bio_vec *bv;
unsigned unaligned;
u64 new_i_size;
loff_t offset;
bool sync;
long ret;
if (dio->loop)
goto loop;
inode_dio_begin(&inode->v);
bch2_pagecache_block_get(&inode->ei_pagecache_lock);
/* Write and invalidate pagecache range that we're writing to: */
offset = req->ki_pos + (dio->op.written << 9);
ret = write_invalidate_inode_pages_range(mapping,
offset,
offset + iov_iter_count(&dio->iter) - 1);
if (unlikely(ret))
goto err;
while (1) {
offset = req->ki_pos + (dio->op.written << 9);
if (kthread)
kthread_use_mm(dio->mm);
BUG_ON(current->faults_disabled_mapping);
current->faults_disabled_mapping = mapping;
ret = bio_iov_iter_get_pages(bio, &dio->iter);
current->faults_disabled_mapping = NULL;
if (kthread)
kthread_unuse_mm(dio->mm);
if (unlikely(ret < 0))
goto err;
unaligned = bio->bi_iter.bi_size & (block_bytes(c) - 1);
bio->bi_iter.bi_size -= unaligned;
iov_iter_revert(&dio->iter, unaligned);
if (!bio->bi_iter.bi_size) {
/*
* bio_iov_iter_get_pages was only able to get <
* blocksize worth of pages:
*/
bio_for_each_segment_all(bv, bio, iter)
put_page(bv->bv_page);
ret = -EFAULT;
goto err;
}
/* gup might have faulted pages back in: */
ret = write_invalidate_inode_pages_range(mapping,
offset,
offset + bio->bi_iter.bi_size - 1);
if (unlikely(ret))
goto err;
dio->op.pos = POS(inode->v.i_ino, offset >> 9);
task_io_account_write(bio->bi_iter.bi_size);
closure_call(&dio->op.cl, bch2_write, NULL, &dio->cl);
if (!dio->sync && !dio->loop && dio->iter.count) {
if (bch2_dio_write_copy_iov(dio)) {
dio->op.error = -ENOMEM;
goto err_wait_io;
}
}
err_wait_io:
dio->loop = true;
if (!dio->sync) {
continue_at(&dio->cl, bch2_dio_write_loop_async, NULL);
return -EIOCBQUEUED;
}
closure_sync(&dio->cl);
loop:
i_sectors_acct(c, inode, &dio->quota_res,
dio->op.i_sectors_delta);
dio->op.i_sectors_delta = 0;
new_i_size = req->ki_pos + ((u64) dio->op.written << 9);
spin_lock(&inode->v.i_lock);
if (new_i_size > inode->v.i_size)
i_size_write(&inode->v, new_i_size);
spin_unlock(&inode->v.i_lock);
bio_for_each_segment_all(bv, bio, iter)
put_page(bv->bv_page);
if (!dio->iter.count || dio->op.error)
break;
bio_reset(bio, NULL, REQ_OP_WRITE);
}
ret = dio->op.error ?: ((long) dio->op.written << 9);
err:
bch2_pagecache_block_put(&inode->ei_pagecache_lock);
bch2_disk_reservation_put(c, &dio->op.res);
bch2_quota_reservation_put(c, inode, &dio->quota_res);
if (dio->free_iov)
kfree(dio->iter.__iov);
closure_debug_destroy(&dio->cl);
sync = dio->sync;
bio_put(bio);
/* inode->i_dio_count is our ref on inode and thus bch_fs */
inode_dio_end(&inode->v);
if (!sync) {
req->ki_complete(req, ret);
ret = -EIOCBQUEUED;
}
return ret;
}
static void bch2_dio_write_loop_async(struct closure *cl)
{
struct dio_write *dio = container_of(cl, struct dio_write, cl);
bch2_dio_write_loop(dio);
}
static noinline
ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter)
{
struct file *file = req->ki_filp;
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_io_opts opts = io_opts(c, &inode->ei_inode);
struct dio_write *dio;
struct bio *bio;
ssize_t ret;
lockdep_assert_held(&inode->v.i_rwsem);
if (unlikely(!iter->count))
return 0;
if (unlikely((req->ki_pos|iter->count) & (block_bytes(c) - 1)))
return -EINVAL;
bio = bio_alloc_bioset(NULL,
iov_iter_npages(iter, BIO_MAX_VECS),
REQ_OP_WRITE,
GFP_KERNEL,
&c->dio_write_bioset);
dio = container_of(bio, struct dio_write, op.wbio.bio);
closure_init(&dio->cl, NULL);
dio->req = req;
dio->mm = current->mm;
dio->loop = false;
dio->sync = is_sync_kiocb(req) ||
req->ki_pos + iter->count > inode->v.i_size;
dio->free_iov = false;
dio->quota_res.sectors = 0;
dio->iter = *iter;
bch2_write_op_init(&dio->op, c, opts);
dio->op.target = opts.foreground_target;
op_journal_seq_set(&dio->op, &inode->ei_journal_seq);
dio->op.write_point = writepoint_hashed((unsigned long) current);
dio->op.flags |= BCH_WRITE_NOPUT_RESERVATION;
if ((req->ki_flags & IOCB_DSYNC) &&
!c->opts.journal_flush_disabled)
dio->op.flags |= BCH_WRITE_FLUSH;
ret = bch2_quota_reservation_add(c, inode, &dio->quota_res,
iter->count >> 9, true);
if (unlikely(ret))
goto err;
dio->op.nr_replicas = dio->op.opts.data_replicas;
ret = bch2_disk_reservation_get(c, &dio->op.res, iter->count >> 9,
dio->op.opts.data_replicas, 0);
if (unlikely(ret) &&
!bch2_check_range_allocated(c, POS(inode->v.i_ino,
req->ki_pos >> 9),
iter->count >> 9,
dio->op.opts.data_replicas))
goto err;
return bch2_dio_write_loop(dio);
err:
bch2_disk_reservation_put(c, &dio->op.res);
bch2_quota_reservation_put(c, inode, &dio->quota_res);
closure_debug_destroy(&dio->cl);
bio_put(bio);
return ret;
}
static ssize_t __bch2_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
ssize_t ret;
if (iocb->ki_flags & IOCB_DIRECT)
return bch2_direct_write(iocb, from);
ret = file_remove_privs(file);
if (ret)
return ret;
ret = file_update_time(file);
if (ret)
return ret;
ret = iocb->ki_flags & IOCB_DIRECT
? bch2_direct_write(iocb, from)
: bch2_buffered_write(iocb, from);
if (likely(ret > 0))
iocb->ki_pos += ret;
return ret;
}
ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct bch_inode_info *inode = file_bch_inode(iocb->ki_filp);
bool direct = iocb->ki_flags & IOCB_DIRECT;
ssize_t ret;
inode_lock(&inode->v);
ret = generic_write_checks(iocb, from);
if (ret > 0)
ret = __bch2_write_iter(iocb, from);
inode_unlock(&inode->v);
if (ret > 0 && !direct)
ret = generic_write_sync(iocb, ret);
return ret;
}
/* fsync: */
int bch2_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
int ret, ret2;
ret = file_write_and_wait_range(file, start, end);
if (ret)
return ret;
if (datasync && !(inode->v.i_state & I_DIRTY_DATASYNC))
goto out;
ret = sync_inode_metadata(&inode->v, 1);
if (ret)
return ret;
out:
if (!c->opts.journal_flush_disabled)
ret = bch2_journal_flush_seq(&c->journal,
inode->ei_journal_seq);
ret2 = file_check_and_advance_wb_err(file);
return ret ?: ret2;
}
/* truncate: */
static inline int range_has_data(struct bch_fs *c,
struct bpos start,
struct bpos end)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, start, 0, k, ret) {
if (bkey_cmp(bkey_start_pos(k.k), end) >= 0)
break;
if (bkey_extent_is_data(k.k)) {
ret = 1;
break;
}
}
return bch2_trans_exit(&trans) ?: ret;
}
static int __bch2_truncate_page(struct bch_inode_info *inode,
pgoff_t index, loff_t start, loff_t end)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct address_space *mapping = inode->v.i_mapping;
struct bch_page_state *s;
unsigned start_offset = start & (PAGE_SIZE - 1);
unsigned end_offset = ((end - 1) & (PAGE_SIZE - 1)) + 1;
unsigned i;
struct page *page;
int ret = 0;
/* Page boundary? Nothing to do */
if (!((index == start >> PAGE_SHIFT && start_offset) ||
(index == end >> PAGE_SHIFT && end_offset != PAGE_SIZE)))
return 0;
/* Above i_size? */
if (index << PAGE_SHIFT >= inode->v.i_size)
return 0;
page = find_lock_page(mapping, index);
if (!page) {
/*
* XXX: we're doing two index lookups when we end up reading the
* page
*/
ret = range_has_data(c,
POS(inode->v.i_ino, index << PAGE_SECTOR_SHIFT),
POS(inode->v.i_ino, (index + 1) << PAGE_SECTOR_SHIFT));
if (ret <= 0)
return ret;
page = find_or_create_page(mapping, index, GFP_KERNEL);
if (unlikely(!page)) {
ret = -ENOMEM;
goto out;
}
}
s = bch2_page_state_create(page, 0);
if (!s) {
ret = -ENOMEM;
goto unlock;
}
if (!PageUptodate(page)) {
ret = bch2_read_single_page(page, mapping);
if (ret)
goto unlock;
}
if (index != start >> PAGE_SHIFT)
start_offset = 0;
if (index != end >> PAGE_SHIFT)
end_offset = PAGE_SIZE;
for (i = round_up(start_offset, block_bytes(c)) >> 9;
i < round_down(end_offset, block_bytes(c)) >> 9;
i++) {
s->s[i].nr_replicas = 0;
s->s[i].state = SECTOR_UNALLOCATED;
}
zero_user_segment(page, start_offset, end_offset);
/*
* Bit of a hack - we don't want truncate to fail due to -ENOSPC.
*
* XXX: because we aren't currently tracking whether the page has actual
* data in it (vs. just 0s, or only partially written) this wrong. ick.
*/
ret = bch2_get_page_disk_reservation(c, inode, page, false);
BUG_ON(ret);
filemap_dirty_folio(mapping, page_folio(page));
unlock:
unlock_page(page);
put_page(page);
out:
return ret;
}
static int bch2_truncate_page(struct bch_inode_info *inode, loff_t from)
{
return __bch2_truncate_page(inode, from >> PAGE_SHIFT,
from, round_up(from, PAGE_SIZE));
}
static int bch2_extend(struct bch_inode_info *inode,
struct bch_inode_unpacked *inode_u,
struct iattr *iattr)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct address_space *mapping = inode->v.i_mapping;
int ret;
/*
* sync appends:
*
* this has to be done _before_ extending i_size:
*/
ret = filemap_write_and_wait_range(mapping, inode_u->bi_size, S64_MAX);
if (ret)
return ret;
truncate_setsize(&inode->v, iattr->ia_size);
/* ATTR_MODE will never be set here, ns argument isn't needed: */
setattr_copy(NULL, &inode->v, iattr);
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode_size(c, inode, inode->v.i_size,
ATTR_MTIME|ATTR_CTIME);
mutex_unlock(&inode->ei_update_lock);
return ret;
}
static int bch2_truncate_finish_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
bi->bi_flags &= ~BCH_INODE_I_SIZE_DIRTY;
bi->bi_mtime = bi->bi_ctime = bch2_current_time(c);
return 0;
}
static int bch2_truncate_start_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi, void *p)
{
u64 *new_i_size = p;
bi->bi_flags |= BCH_INODE_I_SIZE_DIRTY;
bi->bi_size = *new_i_size;
return 0;
}
int bch2_truncate(struct bch_inode_info *inode, struct iattr *iattr)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct address_space *mapping = inode->v.i_mapping;
struct bch_inode_unpacked inode_u;
struct btree_trans trans;
struct btree_iter *iter;
u64 new_i_size = iattr->ia_size;
s64 i_sectors_delta = 0;
int ret = 0;
inode_dio_wait(&inode->v);
bch2_pagecache_block_get(&inode->ei_pagecache_lock);
/*
* fetch current on disk i_size: inode is locked, i_size can only
* increase underneath us:
*/
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_inode_peek(&trans, &inode_u, inode->v.i_ino, 0);
ret = PTR_ERR_OR_ZERO(iter);
bch2_trans_exit(&trans);
if (ret)
goto err;
BUG_ON(inode->v.i_size < inode_u.bi_size);
if (iattr->ia_size > inode->v.i_size) {
ret = bch2_extend(inode, &inode_u, iattr);
goto err;
}
ret = bch2_truncate_page(inode, iattr->ia_size);
if (unlikely(ret))
goto err;
/*
* When extending, we're going to write the new i_size to disk
* immediately so we need to flush anything above the current on disk
* i_size first:
*
* Also, when extending we need to flush the page that i_size currently
* straddles - if it's mapped to userspace, we need to ensure that
* userspace has to redirty it and call .mkwrite -> set_page_dirty
* again to allocate the part of the page that was extended.
*/
if (iattr->ia_size > inode_u.bi_size)
ret = filemap_write_and_wait_range(mapping,
inode_u.bi_size,
iattr->ia_size - 1);
else if (iattr->ia_size & (PAGE_SIZE - 1))
ret = filemap_write_and_wait_range(mapping,
round_down(iattr->ia_size, PAGE_SIZE),
iattr->ia_size - 1);
if (ret)
goto err;
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode(c, inode, bch2_truncate_start_fn,
&new_i_size, 0);
mutex_unlock(&inode->ei_update_lock);
if (unlikely(ret))
goto err;
truncate_setsize(&inode->v, iattr->ia_size);
ret = bch2_fpunch(c, inode->v.i_ino,
round_up(iattr->ia_size, block_bytes(c)) >> 9,
U64_MAX, &inode->ei_journal_seq, &i_sectors_delta);
i_sectors_acct(c, inode, NULL, i_sectors_delta);
if (unlikely(ret))
goto err;
/* ATTR_MODE will never be set here, ns argument isn't needed: */
setattr_copy(NULL, &inode->v, iattr);
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode(c, inode, bch2_truncate_finish_fn, NULL,
ATTR_MTIME|ATTR_CTIME);
mutex_unlock(&inode->ei_update_lock);
err:
bch2_pagecache_block_put(&inode->ei_pagecache_lock);
return ret;
}
/* fallocate: */
static long bchfs_fpunch(struct bch_inode_info *inode, loff_t offset, loff_t len)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
u64 discard_start = round_up(offset, block_bytes(c)) >> 9;
u64 discard_end = round_down(offset + len, block_bytes(c)) >> 9;
int ret = 0;
inode_lock(&inode->v);
inode_dio_wait(&inode->v);
bch2_pagecache_block_get(&inode->ei_pagecache_lock);
ret = __bch2_truncate_page(inode,
offset >> PAGE_SHIFT,
offset, offset + len);
if (unlikely(ret))
goto err;
if (offset >> PAGE_SHIFT !=
(offset + len) >> PAGE_SHIFT) {
ret = __bch2_truncate_page(inode,
(offset + len) >> PAGE_SHIFT,
offset, offset + len);
if (unlikely(ret))
goto err;
}
truncate_pagecache_range(&inode->v, offset, offset + len - 1);
if (discard_start < discard_end) {
s64 i_sectors_delta = 0;
ret = bch2_fpunch(c, inode->v.i_ino,
discard_start, discard_end,
&inode->ei_journal_seq,
&i_sectors_delta);
i_sectors_acct(c, inode, NULL, i_sectors_delta);
}
err:
bch2_pagecache_block_put(&inode->ei_pagecache_lock);
inode_unlock(&inode->v);
return ret;
}
static long bchfs_fcollapse_finsert(struct bch_inode_info *inode,
loff_t offset, loff_t len,
bool insert)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct address_space *mapping = inode->v.i_mapping;
struct btree_trans trans;
struct btree_iter *src, *dst, *del = NULL;
loff_t shift, new_size;
u64 src_start;
int ret;
if ((offset | len) & (block_bytes(c) - 1))
return -EINVAL;
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 256);
/*
* We need i_mutex to keep the page cache consistent with the extents
* btree, and the btree consistent with i_size - we don't need outside
* locking for the extents btree itself, because we're using linked
* iterators
*/
inode_lock(&inode->v);
inode_dio_wait(&inode->v);
bch2_pagecache_block_get(&inode->ei_pagecache_lock);
if (insert) {
ret = -EFBIG;
if (inode->v.i_sb->s_maxbytes - inode->v.i_size < len)
goto err;
ret = -EINVAL;
if (offset >= inode->v.i_size)
goto err;
src_start = U64_MAX;
shift = len;
} else {
ret = -EINVAL;
if (offset + len >= inode->v.i_size)
goto err;
src_start = offset + len;
shift = -len;
}
new_size = inode->v.i_size + shift;
ret = write_invalidate_inode_pages_range(mapping, offset, LLONG_MAX);
if (ret)
goto err;
if (insert) {
i_size_write(&inode->v, new_size);
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode_size(c, inode, new_size,
ATTR_MTIME|ATTR_CTIME);
mutex_unlock(&inode->ei_update_lock);
} else {
s64 i_sectors_delta = 0;
ret = bch2_fpunch(c, inode->v.i_ino,
offset >> 9, (offset + len) >> 9,
&inode->ei_journal_seq,
&i_sectors_delta);
i_sectors_acct(c, inode, NULL, i_sectors_delta);
if (ret)
goto err;
}
src = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
POS(inode->v.i_ino, src_start >> 9),
BTREE_ITER_INTENT);
BUG_ON(IS_ERR_OR_NULL(src));
dst = bch2_trans_copy_iter(&trans, src);
BUG_ON(IS_ERR_OR_NULL(dst));
while (1) {
struct disk_reservation disk_res =
bch2_disk_reservation_init(c, 0);
BKEY_PADDED(k) copy;
struct bkey_i delete;
struct bkey_s_c k;
struct bpos next_pos;
struct bpos move_pos = POS(inode->v.i_ino, offset >> 9);
struct bpos atomic_end;
unsigned commit_flags = BTREE_INSERT_NOFAIL|
BTREE_INSERT_ATOMIC|
BTREE_INSERT_USE_RESERVE;
k = insert
? bch2_btree_iter_peek_prev(src)
: bch2_btree_iter_peek(src);
if ((ret = bkey_err(k)))
goto bkey_err;
if (!k.k || k.k->p.inode != inode->v.i_ino)
break;
BUG_ON(bkey_cmp(src->pos, bkey_start_pos(k.k)));
if (insert &&
bkey_cmp(k.k->p, POS(inode->v.i_ino, offset >> 9)) <= 0)
break;
reassemble:
bkey_reassemble(&copy.k, k);
if (insert &&
bkey_cmp(bkey_start_pos(k.k), move_pos) < 0) {
bch2_cut_front(move_pos, &copy.k);
bch2_btree_iter_set_pos(src, bkey_start_pos(&copy.k.k));
}
copy.k.k.p.offset += shift >> 9;
bch2_btree_iter_set_pos(dst, bkey_start_pos(&copy.k.k));
ret = bch2_extent_atomic_end(dst, &copy.k, &atomic_end);
if (ret)
goto bkey_err;
if (bkey_cmp(atomic_end, copy.k.k.p)) {
if (insert) {
move_pos = atomic_end;
move_pos.offset -= shift >> 9;
goto reassemble;
} else {
bch2_cut_back(atomic_end, &copy.k.k);
}
}
bkey_init(&delete.k);
delete.k.p = src->pos;
bch2_key_resize(&delete.k, copy.k.k.size);
next_pos = insert ? bkey_start_pos(&delete.k) : delete.k.p;
/*
* If the new and old keys overlap (because we're moving an
* extent that's bigger than the amount we're collapsing by),
* we need to trim the delete key here so they don't overlap
* because overlaps on insertions aren't handled before
* triggers are run, so the overwrite will get double counted
* by the triggers machinery:
*/
if (insert &&
bkey_cmp(bkey_start_pos(&copy.k.k), delete.k.p) < 0) {
bch2_cut_back(bkey_start_pos(&copy.k.k), &delete.k);
} else if (!insert &&
bkey_cmp(copy.k.k.p,
bkey_start_pos(&delete.k)) > 0) {
bch2_cut_front(copy.k.k.p, &delete);
del = bch2_trans_copy_iter(&trans, src);
BUG_ON(IS_ERR_OR_NULL(del));
bch2_btree_iter_set_pos(del,
bkey_start_pos(&delete.k));
}
bch2_trans_update(&trans, dst, &copy.k);
bch2_trans_update(&trans, del ?: src, &delete);
if (copy.k.k.size == k.k->size) {
/*
* If we're moving the entire extent, we can skip
* running triggers:
*/
commit_flags |= BTREE_INSERT_NOMARK;
} else {
/* We might end up splitting compressed extents: */
unsigned nr_ptrs =
bch2_bkey_nr_dirty_ptrs(bkey_i_to_s_c(&copy.k));
ret = bch2_disk_reservation_get(c, &disk_res,
copy.k.k.size, nr_ptrs,
BCH_DISK_RESERVATION_NOFAIL);
BUG_ON(ret);
}
ret = bch2_trans_commit(&trans, &disk_res,
&inode->ei_journal_seq,
commit_flags);
bch2_disk_reservation_put(c, &disk_res);
bkey_err:
if (del)
bch2_trans_iter_put(&trans, del);
del = NULL;
if (!ret)
bch2_btree_iter_set_pos(src, next_pos);
if (ret == -EINTR)
ret = 0;
if (ret)
goto err;
bch2_trans_cond_resched(&trans);
}
bch2_trans_unlock(&trans);
if (!insert) {
i_size_write(&inode->v, new_size);
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode_size(c, inode, new_size,
ATTR_MTIME|ATTR_CTIME);
mutex_unlock(&inode->ei_update_lock);
}
err:
bch2_trans_exit(&trans);
bch2_pagecache_block_put(&inode->ei_pagecache_lock);
inode_unlock(&inode->v);
return ret;
}
static long bchfs_fallocate(struct bch_inode_info *inode, int mode,
loff_t offset, loff_t len)
{
struct address_space *mapping = inode->v.i_mapping;
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct btree_trans trans;
struct btree_iter *iter;
struct bpos end_pos;
loff_t end = offset + len;
loff_t block_start = round_down(offset, block_bytes(c));
loff_t block_end = round_up(end, block_bytes(c));
unsigned sectors;
unsigned replicas = io_opts(c, &inode->ei_inode).data_replicas;
int ret;
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0);
inode_lock(&inode->v);
inode_dio_wait(&inode->v);
bch2_pagecache_block_get(&inode->ei_pagecache_lock);
if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) {
ret = inode_newsize_ok(&inode->v, end);
if (ret)
goto err;
}
if (mode & FALLOC_FL_ZERO_RANGE) {
ret = __bch2_truncate_page(inode,
offset >> PAGE_SHIFT,
offset, end);
if (!ret &&
offset >> PAGE_SHIFT != end >> PAGE_SHIFT)
ret = __bch2_truncate_page(inode,
end >> PAGE_SHIFT,
offset, end);
if (unlikely(ret))
goto err;
truncate_pagecache_range(&inode->v, offset, end - 1);
}
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
POS(inode->v.i_ino, block_start >> 9),
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
end_pos = POS(inode->v.i_ino, block_end >> 9);
while (bkey_cmp(iter->pos, end_pos) < 0) {
s64 i_sectors_delta = 0;
struct disk_reservation disk_res = { 0 };
struct quota_res quota_res = { 0 };
struct bkey_i_reservation reservation;
struct bkey_s_c k;
k = bch2_btree_iter_peek_slot(iter);
if ((ret = bkey_err(k)))
goto bkey_err;
/* already reserved */
if (k.k->type == KEY_TYPE_reservation &&
bkey_s_c_to_reservation(k).v->nr_replicas >= replicas) {
bch2_btree_iter_next_slot(iter);
continue;
}
if (bkey_extent_is_data(k.k) &&
!(mode & FALLOC_FL_ZERO_RANGE)) {
bch2_btree_iter_next_slot(iter);
continue;
}
bkey_reservation_init(&reservation.k_i);
reservation.k.type = KEY_TYPE_reservation;
reservation.k.p = k.k->p;
reservation.k.size = k.k->size;
bch2_cut_front(iter->pos, &reservation.k_i);
bch2_cut_back(end_pos, &reservation.k);
sectors = reservation.k.size;
reservation.v.nr_replicas = bch2_bkey_nr_dirty_ptrs(k);
if (!bkey_extent_is_allocation(k.k)) {
ret = bch2_quota_reservation_add(c, inode,
&quota_res,
sectors, true);
if (unlikely(ret))
goto bkey_err;
}
if (reservation.v.nr_replicas < replicas ||
bch2_extent_is_compressed(k)) {
ret = bch2_disk_reservation_get(c, &disk_res, sectors,
replicas, 0);
if (unlikely(ret))
goto bkey_err;
reservation.v.nr_replicas = disk_res.nr_replicas;
}
bch2_trans_begin_updates(&trans);
ret = bch2_extent_update(&trans, iter, &reservation.k_i,
&disk_res, &inode->ei_journal_seq,
0, &i_sectors_delta);
i_sectors_acct(c, inode, &quota_res, i_sectors_delta);
bkey_err:
bch2_quota_reservation_put(c, inode, &quota_res);
bch2_disk_reservation_put(c, &disk_res);
if (ret == -EINTR)
ret = 0;
if (ret)
goto err;
}
/*
* Do we need to extend the file?
*
* If we zeroed up to the end of the file, we dropped whatever writes
* were going to write out the current i_size, so we have to extend
* manually even if FL_KEEP_SIZE was set:
*/
if (end >= inode->v.i_size &&
(!(mode & FALLOC_FL_KEEP_SIZE) ||
(mode & FALLOC_FL_ZERO_RANGE))) {
struct btree_iter *inode_iter;
struct bch_inode_unpacked inode_u;
do {
bch2_trans_begin(&trans);
inode_iter = bch2_inode_peek(&trans, &inode_u,
inode->v.i_ino, 0);
ret = PTR_ERR_OR_ZERO(inode_iter);
} while (ret == -EINTR);
bch2_trans_unlock(&trans);
if (ret)
goto err;
/*
* Sync existing appends before extending i_size,
* as in bch2_extend():
*/
ret = filemap_write_and_wait_range(mapping,
inode_u.bi_size, S64_MAX);
if (ret)
goto err;
if (mode & FALLOC_FL_KEEP_SIZE)
end = inode->v.i_size;
else
i_size_write(&inode->v, end);
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode_size(c, inode, end, 0);
mutex_unlock(&inode->ei_update_lock);
}
err:
bch2_trans_exit(&trans);
bch2_pagecache_block_put(&inode->ei_pagecache_lock);
inode_unlock(&inode->v);
return ret;
}
long bch2_fallocate_dispatch(struct file *file, int mode,
loff_t offset, loff_t len)
{
struct bch_inode_info *inode = file_bch_inode(file);
if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE)))
return bchfs_fallocate(inode, mode, offset, len);
if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE))
return bchfs_fpunch(inode, offset, len);
if (mode == FALLOC_FL_INSERT_RANGE)
return bchfs_fcollapse_finsert(inode, offset, len, true);
if (mode == FALLOC_FL_COLLAPSE_RANGE)
return bchfs_fcollapse_finsert(inode, offset, len, false);
return -EOPNOTSUPP;
}
static void mark_range_unallocated(struct bch_inode_info *inode,
loff_t start, loff_t end)
{
pgoff_t index = start >> PAGE_SHIFT;
pgoff_t end_index = (end - 1) >> PAGE_SHIFT;
struct folio_batch fbatch;
unsigned i, j;
folio_batch_init(&fbatch);
while (filemap_get_folios(inode->v.i_mapping,
&index, end_index, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
struct bch_page_state *s;
folio_lock(folio);
s = bch2_page_state(&folio->page);
if (s) {
spin_lock(&s->lock);
for (j = 0; j < PAGE_SECTORS; j++)
s->s[j].nr_replicas = 0;
spin_unlock(&s->lock);
}
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
}
}
loff_t bch2_remap_file_range(struct file *file_src, loff_t pos_src,
struct file *file_dst, loff_t pos_dst,
loff_t len, unsigned remap_flags)
{
struct bch_inode_info *src = file_bch_inode(file_src);
struct bch_inode_info *dst = file_bch_inode(file_dst);
struct bch_fs *c = src->v.i_sb->s_fs_info;
s64 i_sectors_delta = 0;
loff_t ret = 0;
loff_t aligned_len;
if (remap_flags & ~(REMAP_FILE_DEDUP|REMAP_FILE_ADVISORY))
return -EINVAL;
if (remap_flags & REMAP_FILE_DEDUP)
return -EOPNOTSUPP;
if ((pos_src & (block_bytes(c) - 1)) ||
(pos_dst & (block_bytes(c) - 1)))
return -EINVAL;
if (src == dst &&
abs(pos_src - pos_dst) < len)
return -EINVAL;
bch2_lock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst);
file_update_time(file_dst);
inode_dio_wait(&src->v);
inode_dio_wait(&dst->v);
ret = generic_remap_file_range_prep(file_src, pos_src,
file_dst, pos_dst,
&len, remap_flags);
if (ret < 0 || len == 0)
goto err;
aligned_len = round_up(len, block_bytes(c));
ret = write_invalidate_inode_pages_range(dst->v.i_mapping,
pos_dst, pos_dst + aligned_len);
if (ret)
goto err;
mark_range_unallocated(src, pos_src, pos_src + aligned_len);
ret = bch2_remap_range(c,
POS(dst->v.i_ino, pos_dst >> 9),
POS(src->v.i_ino, pos_src >> 9),
aligned_len >> 9,
&dst->ei_journal_seq,
pos_dst + len, &i_sectors_delta);
if (ret < 0)
goto err;
ret <<= 9;
/*
* due to alignment, we might have remapped slightly more than requsted
*/
ret = min(ret, len);
/* XXX get a quota reservation */
i_sectors_acct(c, dst, NULL, i_sectors_delta);
spin_lock(&dst->v.i_lock);
if (pos_dst + len > dst->v.i_size)
i_size_write(&dst->v, pos_dst + len);
spin_unlock(&dst->v.i_lock);
err:
bch2_unlock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst);
return ret;
}
/* fseek: */
static int folio_data_offset(struct folio *folio, unsigned offset)
{
struct bch_page_state *s = bch2_page_state(&folio->page);
unsigned i;
if (s)
for (i = offset >> 9; i < PAGE_SECTORS; i++)
if (s->s[i].state >= SECTOR_DIRTY)
return i << 9;
return -1;
}
static loff_t bch2_seek_pagecache_data(struct inode *vinode,
loff_t start_offset,
loff_t end_offset)
{
struct folio_batch fbatch;
pgoff_t start_index = start_offset >> PAGE_SHIFT;
pgoff_t end_index = end_offset >> PAGE_SHIFT;
pgoff_t index = start_index;
unsigned i;
loff_t ret;
int offset;
folio_batch_init(&fbatch);
while (filemap_get_folios(vinode->i_mapping,
&index, end_index, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
folio_lock(folio);
offset = folio_data_offset(folio,
folio->index == start_index
? start_offset & (PAGE_SIZE - 1)
: 0);
if (offset >= 0) {
ret = clamp(((loff_t) folio->index << PAGE_SHIFT) +
offset,
start_offset, end_offset);
folio_unlock(folio);
folio_batch_release(&fbatch);
return ret;
}
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
}
return end_offset;
}
static loff_t bch2_seek_data(struct file *file, u64 offset)
{
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
u64 isize, next_data = MAX_LFS_FILESIZE;
int ret;
isize = i_size_read(&inode->v);
if (offset >= isize)
return -ENXIO;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS,
POS(inode->v.i_ino, offset >> 9), 0, k, ret) {
if (k.k->p.inode != inode->v.i_ino) {
break;
} else if (bkey_extent_is_data(k.k)) {
next_data = max(offset, bkey_start_offset(k.k) << 9);
break;
} else if (k.k->p.offset >> 9 > isize)
break;
}
ret = bch2_trans_exit(&trans) ?: ret;
if (ret)
return ret;
if (next_data > offset)
next_data = bch2_seek_pagecache_data(&inode->v,
offset, next_data);
if (next_data >= isize)
return -ENXIO;
return vfs_setpos(file, next_data, MAX_LFS_FILESIZE);
}
static int __page_hole_offset(struct page *page, unsigned offset)
{
struct bch_page_state *s = bch2_page_state(page);
unsigned i;
if (!s)
return 0;
for (i = offset >> 9; i < PAGE_SECTORS; i++)
if (s->s[i].state < SECTOR_DIRTY)
return i << 9;
return -1;
}
static loff_t page_hole_offset(struct address_space *mapping, loff_t offset)
{
pgoff_t index = offset >> PAGE_SHIFT;
struct page *page;
int pg_offset;
loff_t ret = -1;
page = find_lock_page(mapping, index);
if (!page)
return offset;
pg_offset = __page_hole_offset(page, offset & (PAGE_SIZE - 1));
if (pg_offset >= 0)
ret = ((loff_t) index << PAGE_SHIFT) + pg_offset;
unlock_page(page);
return ret;
}
static loff_t bch2_seek_pagecache_hole(struct inode *vinode,
loff_t start_offset,
loff_t end_offset)
{
struct address_space *mapping = vinode->i_mapping;
loff_t offset = start_offset, hole;
while (offset < end_offset) {
hole = page_hole_offset(mapping, offset);
if (hole >= 0 && hole <= end_offset)
return max(start_offset, hole);
offset += PAGE_SIZE;
offset &= PAGE_MASK;
}
return end_offset;
}
static loff_t bch2_seek_hole(struct file *file, u64 offset)
{
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
u64 isize, next_hole = MAX_LFS_FILESIZE;
int ret;
isize = i_size_read(&inode->v);
if (offset >= isize)
return -ENXIO;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS,
POS(inode->v.i_ino, offset >> 9),
BTREE_ITER_SLOTS, k, ret) {
if (k.k->p.inode != inode->v.i_ino) {
next_hole = bch2_seek_pagecache_hole(&inode->v,
offset, MAX_LFS_FILESIZE);
break;
} else if (!bkey_extent_is_data(k.k)) {
next_hole = bch2_seek_pagecache_hole(&inode->v,
max(offset, bkey_start_offset(k.k) << 9),
k.k->p.offset << 9);
if (next_hole < k.k->p.offset << 9)
break;
} else {
offset = max(offset, bkey_start_offset(k.k) << 9);
}
}
ret = bch2_trans_exit(&trans) ?: ret;
if (ret)
return ret;
if (next_hole > isize)
next_hole = isize;
return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE);
}
loff_t bch2_llseek(struct file *file, loff_t offset, int whence)
{
switch (whence) {
case SEEK_SET:
case SEEK_CUR:
case SEEK_END:
return generic_file_llseek(file, offset, whence);
case SEEK_DATA:
return bch2_seek_data(file, offset);
case SEEK_HOLE:
return bch2_seek_hole(file, offset);
}
return -EINVAL;
}
void bch2_fs_fsio_exit(struct bch_fs *c)
{
bioset_exit(&c->dio_write_bioset);
bioset_exit(&c->dio_read_bioset);
bioset_exit(&c->writepage_bioset);
}
int bch2_fs_fsio_init(struct bch_fs *c)
{
int ret = 0;
pr_verbose_init(c->opts, "");
if (bioset_init(&c->writepage_bioset,
4, offsetof(struct bch_writepage_io, op.wbio.bio),
BIOSET_NEED_BVECS) ||
bioset_init(&c->dio_read_bioset,
4, offsetof(struct dio_read, rbio.bio),
BIOSET_NEED_BVECS) ||
bioset_init(&c->dio_write_bioset,
4, offsetof(struct dio_write, op.wbio.bio),
BIOSET_NEED_BVECS))
ret = -ENOMEM;
pr_verbose_init(c->opts, "ret %i", ret);
return ret;
}
#endif /* NO_BCACHEFS_FS */