linux/drivers/firmware/Kconfig

268 lines
9.2 KiB
Plaintext
Raw Normal View History

#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/kconfig-language.txt.
#
menu "Firmware Drivers"
config ARM_PSCI_FW
bool
drivers: psci: PSCI checker module On arm and arm64, PSCI is one of the possible firmware interfaces used for power management. This includes both turning CPUs on and off, and suspending them (entering idle states). This patch adds a PSCI checker module that enables basic testing of PSCI operations during startup. There are two main tests: CPU hotplugging and suspending. In the hotplug tests, the hotplug API is used to turn off and on again all CPUs in the system, and then all CPUs in each cluster, checking the consistency of the return codes. In the suspend tests, a high-priority thread is created on each core and uses low-level cpuidle functionalities to enter suspend, in all the possible states and multiple times. This should allow a maximum number of CPUs to enter the same sleep state at the same or slightly different time. In essence, the suspend tests use a principle similar to that of the intel_powerclamp driver (drivers/thermal/intel_powerclamp.c), but the threads are only kept for the duration of the test (they are already gone when userspace is started) and it does not require to stop/start the tick. While in theory power management PSCI functions (CPU_{ON,OFF,SUSPEND}) could be directly called, this proved too difficult as it would imply the duplication of all the logic used by the kernel to allow for a clean shutdown/bringup/suspend of the CPU (the deepest sleep states implying potentially the shutdown of the CPU). Note that this file cannot be compiled as a loadable module, since it uses a number of non-exported identifiers (essentially for PSCI-specific checks and direct use of cpuidle) and relies on the absence of userspace to avoid races when calling hotplug and cpuidle functions. For now at least, CONFIG_PSCI_CHECKER is mutually exclusive with CONFIG_TORTURE_TEST, because torture tests may also use hotplug and cause false positives in the hotplug tests. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kevin Hilman <khilman@kernel.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: James Morse <james.morse@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> [torture test config] Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com> [lpieralisi: added cpuidle locking, reworded commit log/kconfig entry] Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2016-11-09 01:55:46 +08:00
config ARM_PSCI_CHECKER
bool "ARM PSCI checker"
depends on ARM_PSCI_FW && HOTPLUG_CPU && CPU_IDLE && !TORTURE_TEST
drivers: psci: PSCI checker module On arm and arm64, PSCI is one of the possible firmware interfaces used for power management. This includes both turning CPUs on and off, and suspending them (entering idle states). This patch adds a PSCI checker module that enables basic testing of PSCI operations during startup. There are two main tests: CPU hotplugging and suspending. In the hotplug tests, the hotplug API is used to turn off and on again all CPUs in the system, and then all CPUs in each cluster, checking the consistency of the return codes. In the suspend tests, a high-priority thread is created on each core and uses low-level cpuidle functionalities to enter suspend, in all the possible states and multiple times. This should allow a maximum number of CPUs to enter the same sleep state at the same or slightly different time. In essence, the suspend tests use a principle similar to that of the intel_powerclamp driver (drivers/thermal/intel_powerclamp.c), but the threads are only kept for the duration of the test (they are already gone when userspace is started) and it does not require to stop/start the tick. While in theory power management PSCI functions (CPU_{ON,OFF,SUSPEND}) could be directly called, this proved too difficult as it would imply the duplication of all the logic used by the kernel to allow for a clean shutdown/bringup/suspend of the CPU (the deepest sleep states implying potentially the shutdown of the CPU). Note that this file cannot be compiled as a loadable module, since it uses a number of non-exported identifiers (essentially for PSCI-specific checks and direct use of cpuidle) and relies on the absence of userspace to avoid races when calling hotplug and cpuidle functions. For now at least, CONFIG_PSCI_CHECKER is mutually exclusive with CONFIG_TORTURE_TEST, because torture tests may also use hotplug and cause false positives in the hotplug tests. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kevin Hilman <khilman@kernel.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: James Morse <james.morse@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> [torture test config] Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com> [lpieralisi: added cpuidle locking, reworded commit log/kconfig entry] Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2016-11-09 01:55:46 +08:00
help
Run the PSCI checker during startup. This checks that hotplug and
suspend operations work correctly when using PSCI.
The torture tests may interfere with the PSCI checker by turning CPUs
on and off through hotplug, so for now torture tests and PSCI checker
are mutually exclusive.
config ARM_SCMI_PROTOCOL
bool "ARM System Control and Management Interface (SCMI) Message Protocol"
depends on ARM || ARM64 || COMPILE_TEST
depends on MAILBOX
help
ARM System Control and Management Interface (SCMI) protocol is a
set of operating system-independent software interfaces that are
used in system management. SCMI is extensible and currently provides
interfaces for: Discovery and self-description of the interfaces
it supports, Power domain management which is the ability to place
a given device or domain into the various power-saving states that
it supports, Performance management which is the ability to control
the performance of a domain that is composed of compute engines
such as application processors and other accelerators, Clock
management which is the ability to set and inquire rates on platform
managed clocks and Sensor management which is the ability to read
sensor data, and be notified of sensor value.
This protocol library provides interface for all the client drivers
making use of the features offered by the SCMI.
config ARM_SCMI_POWER_DOMAIN
tristate "SCMI power domain driver"
depends on ARM_SCMI_PROTOCOL || (COMPILE_TEST && OF)
default y
select PM_GENERIC_DOMAINS if PM
help
This enables support for the SCMI power domains which can be
enabled or disabled via the SCP firmware
This driver can also be built as a module. If so, the module
will be called scmi_pm_domain. Note this may needed early in boot
before rootfs may be available.
config ARM_SCPI_PROTOCOL
tristate "ARM System Control and Power Interface (SCPI) Message Protocol"
depends on ARM || ARM64 || COMPILE_TEST
depends on MAILBOX
help
System Control and Power Interface (SCPI) Message Protocol is
defined for the purpose of communication between the Application
Cores(AP) and the System Control Processor(SCP). The MHU peripheral
provides a mechanism for inter-processor communication between SCP
and AP.
SCP controls most of the power managament on the Application
Processors. It offers control and management of: the core/cluster
power states, various power domain DVFS including the core/cluster,
certain system clocks configuration, thermal sensors and many
others.
This protocol library provides interface for all the client drivers
making use of the features offered by the SCP.
config ARM_SCPI_POWER_DOMAIN
tristate "SCPI power domain driver"
depends on ARM_SCPI_PROTOCOL || (COMPILE_TEST && OF)
default y
select PM_GENERIC_DOMAINS if PM
help
This enables support for the SCPI power domains which can be
enabled or disabled via the SCP firmware
config ARM_SDE_INTERFACE
bool "ARM Software Delegated Exception Interface (SDEI)"
depends on ARM64
help
The Software Delegated Exception Interface (SDEI) is an ARM
standard for registering callbacks from the platform firmware
into the OS. This is typically used to implement RAS notifications.
config EDD
tristate "BIOS Enhanced Disk Drive calls determine boot disk"
depends on X86
help
Say Y or M here if you want to enable BIOS Enhanced Disk Drive
Services real mode BIOS calls to determine which disk
BIOS tries boot from. This information is then exported via sysfs.
This option is experimental and is known to fail to boot on some
obscure configurations. Most disk controller BIOS vendors do
not yet implement this feature.
config EDD_OFF
bool "Sets default behavior for EDD detection to off"
depends on EDD
default n
help
Say Y if you want EDD disabled by default, even though it is compiled into the
kernel. Say N if you want EDD enabled by default. EDD can be dynamically set
using the kernel parameter 'edd={on|skipmbr|off}'.
sysfs: add /sys/firmware/memmap This patch adds /sys/firmware/memmap interface that represents the BIOS (or Firmware) provided memory map. The tree looks like: /sys/firmware/memmap/0/start (hex number) end (hex number) type (string) ... /1/start end type With the following shell snippet one can print the memory map in the same form the kernel prints itself when booting on x86 (the E820 map). --------- 8< -------------------------- #!/bin/sh cd /sys/firmware/memmap for dir in * ; do start=$(cat $dir/start) end=$(cat $dir/end) type=$(cat $dir/type) printf "%016x-%016x (%s)\n" $start $[ $end +1] "$type" done --------- >8 -------------------------- That patch only provides the needed interface: 1. The sysfs interface. 2. The structure and enumeration definition. 3. The function firmware_map_add() and firmware_map_add_early() that should be called from architecture code (E820/EFI, for example) to add the contents to the interface. If the kernel is compiled without CONFIG_FIRMWARE_MEMMAP, the interface does nothing without cluttering the architecture-specific code with #ifdef's. The purpose of the new interface is kexec: While /proc/iomem represents the *used* memory map (e.g. modified via kernel parameters like 'memmap' and 'mem'), the /sys/firmware/memmap tree represents the unmodified memory map provided via the firmware. So kexec can: - use the original memory map for rebooting, - use the /proc/iomem for setting up the ELF core headers for kdump case that should only represent the memory of the system. The patch has been tested on i386 and x86_64. Signed-off-by: Bernhard Walle <bwalle@suse.de> Acked-by: Greg KH <gregkh@suse.de> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: kexec@lists.infradead.org Cc: yhlu.kernel@gmail.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 19:12:54 +08:00
config FIRMWARE_MEMMAP
bool "Add firmware-provided memory map to sysfs" if EXPERT
default X86
sysfs: add /sys/firmware/memmap This patch adds /sys/firmware/memmap interface that represents the BIOS (or Firmware) provided memory map. The tree looks like: /sys/firmware/memmap/0/start (hex number) end (hex number) type (string) ... /1/start end type With the following shell snippet one can print the memory map in the same form the kernel prints itself when booting on x86 (the E820 map). --------- 8< -------------------------- #!/bin/sh cd /sys/firmware/memmap for dir in * ; do start=$(cat $dir/start) end=$(cat $dir/end) type=$(cat $dir/type) printf "%016x-%016x (%s)\n" $start $[ $end +1] "$type" done --------- >8 -------------------------- That patch only provides the needed interface: 1. The sysfs interface. 2. The structure and enumeration definition. 3. The function firmware_map_add() and firmware_map_add_early() that should be called from architecture code (E820/EFI, for example) to add the contents to the interface. If the kernel is compiled without CONFIG_FIRMWARE_MEMMAP, the interface does nothing without cluttering the architecture-specific code with #ifdef's. The purpose of the new interface is kexec: While /proc/iomem represents the *used* memory map (e.g. modified via kernel parameters like 'memmap' and 'mem'), the /sys/firmware/memmap tree represents the unmodified memory map provided via the firmware. So kexec can: - use the original memory map for rebooting, - use the /proc/iomem for setting up the ELF core headers for kdump case that should only represent the memory of the system. The patch has been tested on i386 and x86_64. Signed-off-by: Bernhard Walle <bwalle@suse.de> Acked-by: Greg KH <gregkh@suse.de> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: kexec@lists.infradead.org Cc: yhlu.kernel@gmail.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 19:12:54 +08:00
help
Add the firmware-provided (unmodified) memory map to /sys/firmware/memmap.
That memory map is used for example by kexec to set up parameter area
for the next kernel, but can also be used for debugging purposes.
See also Documentation/ABI/testing/sysfs-firmware-memmap.
config EFI_PCDP
bool "Console device selection via EFI PCDP or HCDP table"
depends on ACPI && EFI && IA64
default y if IA64
help
If your firmware supplies the PCDP table, and you want to
automatically use the primary console device it describes
as the Linux console, say Y here.
If your firmware supplies the HCDP table, and you want to
use the first serial port it describes as the Linux console,
say Y here. If your EFI ConOut path contains only a UART
device, it will become the console automatically. Otherwise,
you must specify the "console=hcdp" kernel boot argument.
Neither the PCDP nor the HCDP affects naming of serial devices,
so a serial console may be /dev/ttyS0, /dev/ttyS1, etc, depending
on how the driver discovers devices.
You must also enable the appropriate drivers (serial, VGA, etc.)
See DIG64_HCDPv20_042804.pdf available from
<http://www.dig64.org/specifications/>
DMI-based module autoloading The patch below adds DMI/SMBIOS based module autoloading to the Linux kernel. The idea is to load laptop drivers automatically (and other drivers which cannot be autoloaded otherwise), based on the DMI system identification information of the BIOS. Right now most distros manually try to load all available laptop drivers on bootup in the hope that at least one of them loads successfully. This patch does away with all that, and uses udev to automatically load matching drivers on the right machines. Basically the patch just exports the DMI information that has been parsed by the kernel anyway to userspace via a sysfs device /sys/class/dmi/id and makes sure that proper modalias attributes are available. Besides adding the "modalias" attribute it also adds attributes for a few other DMI fields which might be useful for writing udev rules. This patch is not an attempt to export the entire DMI/SMBIOS data to userspace. We already have "dmidecode" which parses the complete DMI info from userspace. The purpose of this patch is machine model identification and good udev integration. To take advantage of DMI based module autoloading, a driver should export one or more MODULE_ALIAS fields similar to these: MODULE_ALIAS("dmi:*:svnMICRO-STARINT'LCO.,LTD:pnMS-1013:pvr0131*:cvnMICRO-STARINT'LCO.,LTD:ct10:*"); MODULE_ALIAS("dmi:*:svnMicro-StarInternational:pnMS-1058:pvr0581:rvnMSI:rnMS-1058:*:ct10:*"); MODULE_ALIAS("dmi:*:svnMicro-StarInternational:pnMS-1412:*:rvnMSI:rnMS-1412:*:cvnMICRO-STARINT'LCO.,LTD:ct10:*"); MODULE_ALIAS("dmi:*:svnNOTEBOOK:pnSAM2000:pvr0131*:cvnMICRO-STARINT'LCO.,LTD:ct10:*"); These lines are specific to my msi-laptop.c driver. They are basically just a concatenation of a few carefully selected DMI fields with all potentially bad characters stripped. Besides laptop drivers, modules like "hdaps", the i2c modules and the hwmon modules are good candidates for "dmi:" MODULE_ALIAS lines. Besides merely exporting the DMI data via sysfs the patch adds support for a few more DMI fields. Especially the CHASSIS fields are very useful to identify different laptop modules. The patch also adds working MODULE_ALIAS lines to my msi-laptop.c driver. I'd like to thank Kay Sievers for helping me to clean up this patch for posting it on lkml. Patch is against Linus' current GIT HEAD. Should probably apply to older kernels as well without modification. Signed-off-by: Lennart Poettering <mzxreary@0pointer.de> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-05-09 04:07:02 +08:00
config DMIID
bool "Export DMI identification via sysfs to userspace"
depends on DMI
default y
help
Say Y here if you want to query SMBIOS/DMI system identification
information from userspace through /sys/class/dmi/id/ or if you want
DMI-based module auto-loading.
config DMI_SYSFS
tristate "DMI table support in sysfs"
depends on SYSFS && DMI
default n
help
Say Y or M here to enable the exporting of the raw DMI table
data via sysfs. This is useful for consuming the data without
requiring any access to /dev/mem at all. Tables are found
under /sys/firmware/dmi when this option is enabled and
loaded.
config DMI_SCAN_MACHINE_NON_EFI_FALLBACK
bool
Firmware: add iSCSI iBFT Support Add /sysfs/firmware/ibft/[initiator|targetX|ethernetX] directories along with text properties which export the the iSCSI Boot Firmware Table (iBFT) structure. What is iSCSI Boot Firmware Table? It is a mechanism for the iSCSI tools to extract from the machine NICs the iSCSI connection information so that they can automagically mount the iSCSI share/target. Currently the iSCSI information is hard-coded in the initrd. The /sysfs entries are read-only one-name-and-value fields. The usual set of data exposed is: # for a in `find /sys/firmware/ibft/ -type f -print`; do echo -n "$a: "; cat $a; done /sys/firmware/ibft/target0/target-name: iqn.2007.com.intel-sbx44:storage-10gb /sys/firmware/ibft/target0/nic-assoc: 0 /sys/firmware/ibft/target0/chap-type: 0 /sys/firmware/ibft/target0/lun: 00000000 /sys/firmware/ibft/target0/port: 3260 /sys/firmware/ibft/target0/ip-addr: 192.168.79.116 /sys/firmware/ibft/target0/flags: 3 /sys/firmware/ibft/target0/index: 0 /sys/firmware/ibft/ethernet0/mac: 00:11:25:9d:8b:01 /sys/firmware/ibft/ethernet0/vlan: 0 /sys/firmware/ibft/ethernet0/gateway: 192.168.79.254 /sys/firmware/ibft/ethernet0/origin: 0 /sys/firmware/ibft/ethernet0/subnet-mask: 255.255.252.0 /sys/firmware/ibft/ethernet0/ip-addr: 192.168.77.41 /sys/firmware/ibft/ethernet0/flags: 7 /sys/firmware/ibft/ethernet0/index: 0 /sys/firmware/ibft/initiator/initiator-name: iqn.2007-07.com:konrad.initiator /sys/firmware/ibft/initiator/flags: 3 /sys/firmware/ibft/initiator/index: 0 For full details of the IBFT structure please take a look at: ftp://ftp.software.ibm.com/systems/support/system_x_pdf/ibm_iscsi_boot_firmware_table_v1.02.pdf [akpm@linux-foundation.org: fix build] Signed-off-by: Konrad Rzeszutek <konradr@linux.vnet.ibm.com> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Peter Jones <pjones@redhat.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-04-10 10:50:41 +08:00
config ISCSI_IBFT_FIND
bool "iSCSI Boot Firmware Table Attributes"
depends on X86 && ACPI
Firmware: add iSCSI iBFT Support Add /sysfs/firmware/ibft/[initiator|targetX|ethernetX] directories along with text properties which export the the iSCSI Boot Firmware Table (iBFT) structure. What is iSCSI Boot Firmware Table? It is a mechanism for the iSCSI tools to extract from the machine NICs the iSCSI connection information so that they can automagically mount the iSCSI share/target. Currently the iSCSI information is hard-coded in the initrd. The /sysfs entries are read-only one-name-and-value fields. The usual set of data exposed is: # for a in `find /sys/firmware/ibft/ -type f -print`; do echo -n "$a: "; cat $a; done /sys/firmware/ibft/target0/target-name: iqn.2007.com.intel-sbx44:storage-10gb /sys/firmware/ibft/target0/nic-assoc: 0 /sys/firmware/ibft/target0/chap-type: 0 /sys/firmware/ibft/target0/lun: 00000000 /sys/firmware/ibft/target0/port: 3260 /sys/firmware/ibft/target0/ip-addr: 192.168.79.116 /sys/firmware/ibft/target0/flags: 3 /sys/firmware/ibft/target0/index: 0 /sys/firmware/ibft/ethernet0/mac: 00:11:25:9d:8b:01 /sys/firmware/ibft/ethernet0/vlan: 0 /sys/firmware/ibft/ethernet0/gateway: 192.168.79.254 /sys/firmware/ibft/ethernet0/origin: 0 /sys/firmware/ibft/ethernet0/subnet-mask: 255.255.252.0 /sys/firmware/ibft/ethernet0/ip-addr: 192.168.77.41 /sys/firmware/ibft/ethernet0/flags: 7 /sys/firmware/ibft/ethernet0/index: 0 /sys/firmware/ibft/initiator/initiator-name: iqn.2007-07.com:konrad.initiator /sys/firmware/ibft/initiator/flags: 3 /sys/firmware/ibft/initiator/index: 0 For full details of the IBFT structure please take a look at: ftp://ftp.software.ibm.com/systems/support/system_x_pdf/ibm_iscsi_boot_firmware_table_v1.02.pdf [akpm@linux-foundation.org: fix build] Signed-off-by: Konrad Rzeszutek <konradr@linux.vnet.ibm.com> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Peter Jones <pjones@redhat.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-04-10 10:50:41 +08:00
default n
help
This option enables the kernel to find the region of memory
in which the ISCSI Boot Firmware Table (iBFT) resides. This
is necessary for iSCSI Boot Firmware Table Attributes module to work
properly.
config ISCSI_IBFT
tristate "iSCSI Boot Firmware Table Attributes module"
select ISCSI_BOOT_SYSFS
depends on ISCSI_IBFT_FIND && SCSI && SCSI_LOWLEVEL
Firmware: add iSCSI iBFT Support Add /sysfs/firmware/ibft/[initiator|targetX|ethernetX] directories along with text properties which export the the iSCSI Boot Firmware Table (iBFT) structure. What is iSCSI Boot Firmware Table? It is a mechanism for the iSCSI tools to extract from the machine NICs the iSCSI connection information so that they can automagically mount the iSCSI share/target. Currently the iSCSI information is hard-coded in the initrd. The /sysfs entries are read-only one-name-and-value fields. The usual set of data exposed is: # for a in `find /sys/firmware/ibft/ -type f -print`; do echo -n "$a: "; cat $a; done /sys/firmware/ibft/target0/target-name: iqn.2007.com.intel-sbx44:storage-10gb /sys/firmware/ibft/target0/nic-assoc: 0 /sys/firmware/ibft/target0/chap-type: 0 /sys/firmware/ibft/target0/lun: 00000000 /sys/firmware/ibft/target0/port: 3260 /sys/firmware/ibft/target0/ip-addr: 192.168.79.116 /sys/firmware/ibft/target0/flags: 3 /sys/firmware/ibft/target0/index: 0 /sys/firmware/ibft/ethernet0/mac: 00:11:25:9d:8b:01 /sys/firmware/ibft/ethernet0/vlan: 0 /sys/firmware/ibft/ethernet0/gateway: 192.168.79.254 /sys/firmware/ibft/ethernet0/origin: 0 /sys/firmware/ibft/ethernet0/subnet-mask: 255.255.252.0 /sys/firmware/ibft/ethernet0/ip-addr: 192.168.77.41 /sys/firmware/ibft/ethernet0/flags: 7 /sys/firmware/ibft/ethernet0/index: 0 /sys/firmware/ibft/initiator/initiator-name: iqn.2007-07.com:konrad.initiator /sys/firmware/ibft/initiator/flags: 3 /sys/firmware/ibft/initiator/index: 0 For full details of the IBFT structure please take a look at: ftp://ftp.software.ibm.com/systems/support/system_x_pdf/ibm_iscsi_boot_firmware_table_v1.02.pdf [akpm@linux-foundation.org: fix build] Signed-off-by: Konrad Rzeszutek <konradr@linux.vnet.ibm.com> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Peter Jones <pjones@redhat.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-04-10 10:50:41 +08:00
default n
help
This option enables support for detection and exposing of iSCSI
Boot Firmware Table (iBFT) via sysfs to userspace. If you wish to
detect iSCSI boot parameters dynamically during system boot, say Y.
Otherwise, say N.
config RASPBERRYPI_FIRMWARE
tristate "Raspberry Pi Firmware Driver"
depends on BCM2835_MBOX
help
This option enables support for communicating with the firmware on the
Raspberry Pi.
config FW_CFG_SYSFS
tristate "QEMU fw_cfg device support in sysfs"
depends on SYSFS && (ARM || ARM64 || PPC_PMAC || SPARC || X86)
depends on HAS_IOPORT_MAP
default n
help
Say Y or M here to enable the exporting of the QEMU firmware
configuration (fw_cfg) file entries via sysfs. Entries are
found under /sys/firmware/fw_cfg when this option is enabled
and loaded.
config FW_CFG_SYSFS_CMDLINE
bool "QEMU fw_cfg device parameter parsing"
depends on FW_CFG_SYSFS
help
Allow the qemu_fw_cfg device to be initialized via the kernel
command line or using a module parameter.
WARNING: Using incorrect parameters (base address in particular)
may crash your system.
config QCOM_SCM
bool
depends on ARM || ARM64
select RESET_CONTROLLER
config QCOM_SCM_32
def_bool y
depends on QCOM_SCM && ARM
config QCOM_SCM_64
def_bool y
depends on QCOM_SCM && ARM64
config QCOM_SCM_DOWNLOAD_MODE_DEFAULT
bool "Qualcomm download mode enabled by default"
depends on QCOM_SCM
help
A device with "download mode" enabled will upon an unexpected
warm-restart enter a special debug mode that allows the user to
"download" memory content over USB for offline postmortem analysis.
The feature can be enabled/disabled on the kernel command line.
Say Y here to enable "download mode" by default.
config TI_SCI_PROTOCOL
tristate "TI System Control Interface (TISCI) Message Protocol"
depends on TI_MESSAGE_MANAGER
help
TI System Control Interface (TISCI) Message Protocol is used to manage
compute systems such as ARM, DSP etc with the system controller in
complex System on Chip(SoC) such as those found on certain keystone
generation SoC from TI.
System controller provides various facilities including power
management function support.
This protocol library is used by client drivers to use the features
provided by the system controller.
config HAVE_ARM_SMCCC
bool
source "drivers/firmware/broadcom/Kconfig"
source "drivers/firmware/google/Kconfig"
source "drivers/firmware/efi/Kconfig"
source "drivers/firmware/meson/Kconfig"
source "drivers/firmware/tegra/Kconfig"
endmenu