linux/drivers/acpi/utils.c

1029 lines
27 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157 Based on 3 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [graeme] [gregory] [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema] [hk] [hemahk]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1105 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-27 14:55:06 +08:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* acpi_utils.c - ACPI Utility Functions ($Revision: 10 $)
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*/
#define pr_fmt(fmt) "ACPI: utils: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/types.h>
ACPI: Add acpi_handle_<level>() interfaces This patch introduces acpi_handle_<level>(), where <level> is a kernel message level such as err/warn/info, to support improved logging messages for ACPI, esp. hot-plug operations. acpi_handle_<level>() appends "ACPI" prefix and ACPI object path to the messages. This improves diagnosis of hotplug operations since an error message in a log file identifies an object that caused an issue. This interface acquires the global namespace mutex to obtain an object path. In interrupt context, it shows the object path as <n/a>. acpi_handle_<level>() takes acpi_handle as an argument, which is passed to ACPI hotplug notify handlers from the ACPICA. Therefore, it is always available unlike other kernel objects, such as device. For example: acpi_handle_err(handle, "Device don't exist, dropping EJECT\n"); logs an error message like this at KERN_ERR. ACPI: \_SB_.SCK4.CPU4: Device don't exist, dropping EJECT ACPI hot-plug drivers can use acpi_handle_<level>() when they need to identify a target ACPI object path in their messages, such as error cases. The usage model is similar to dev_<level>(). acpi_handle_<level>() can be used when a device is not created or is invalid during hot-plug operations. ACPI object path is also consistent on the platform, unlike device name that gets incremented over hotplug operations. ACPI drivers should use dev_<level>() when a device object is valid. Device name provides more user friendly information, and avoids acquiring the global ACPI namespace mutex. ACPI drivers also continue to use pr_<level>() when they do not need to specify device information, such as boot-up messages. Note: ACPI_[WARNING|INFO|ERROR]() are intended for the ACPICA and are not associated with the kernel message level. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Tested-by: Vijay Mohan Pandarathil <vijaymohan.pandarathil@hp.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-11-21 09:36:28 +08:00
#include <linux/hardirq.h>
#include <linux/acpi.h>
#include <linux/dynamic_debug.h>
#include "internal.h"
#include "sleep.h"
/* --------------------------------------------------------------------------
Object Evaluation Helpers
-------------------------------------------------------------------------- */
static void acpi_util_eval_error(acpi_handle h, acpi_string p, acpi_status s)
{
acpi_handle_debug(h, "Evaluate [%s]: %s\n", p, acpi_format_exception(s));
}
acpi_status
acpi_extract_package(union acpi_object *package,
struct acpi_buffer *format, struct acpi_buffer *buffer)
{
u32 size_required = 0;
u32 tail_offset = 0;
char *format_string = NULL;
u32 format_count = 0;
u32 i = 0;
u8 *head = NULL;
u8 *tail = NULL;
if (!package || (package->type != ACPI_TYPE_PACKAGE)
|| (package->package.count < 1)) {
pr_debug("Invalid package argument\n");
return AE_BAD_PARAMETER;
}
if (!format || !format->pointer || (format->length < 1)) {
pr_debug("Invalid format argument\n");
return AE_BAD_PARAMETER;
}
if (!buffer) {
pr_debug("Invalid buffer argument\n");
return AE_BAD_PARAMETER;
}
format_count = (format->length / sizeof(char)) - 1;
if (format_count > package->package.count) {
pr_debug("Format specifies more objects [%d] than present [%d]\n",
format_count, package->package.count);
return AE_BAD_DATA;
}
format_string = format->pointer;
/*
* Calculate size_required.
*/
for (i = 0; i < format_count; i++) {
union acpi_object *element = &(package->package.elements[i]);
switch (element->type) {
case ACPI_TYPE_INTEGER:
switch (format_string[i]) {
case 'N':
size_required += sizeof(u64);
tail_offset += sizeof(u64);
break;
case 'S':
size_required +=
sizeof(char *) + sizeof(u64) +
sizeof(char);
tail_offset += sizeof(char *);
break;
default:
pr_debug("Invalid package element [%d]: got number, expected [%c]\n",
i, format_string[i]);
return AE_BAD_DATA;
}
break;
case ACPI_TYPE_STRING:
case ACPI_TYPE_BUFFER:
switch (format_string[i]) {
case 'S':
size_required +=
sizeof(char *) +
(element->string.length * sizeof(char)) +
sizeof(char);
tail_offset += sizeof(char *);
break;
case 'B':
size_required +=
sizeof(u8 *) + element->buffer.length;
tail_offset += sizeof(u8 *);
break;
default:
pr_debug("Invalid package element [%d] got string/buffer, expected [%c]\n",
i, format_string[i]);
return AE_BAD_DATA;
}
break;
case ACPI_TYPE_LOCAL_REFERENCE:
switch (format_string[i]) {
case 'R':
size_required += sizeof(void *);
tail_offset += sizeof(void *);
break;
default:
pr_debug("Invalid package element [%d] got reference, expected [%c]\n",
i, format_string[i]);
return AE_BAD_DATA;
}
break;
case ACPI_TYPE_PACKAGE:
default:
pr_debug("Unsupported element at index=%d\n", i);
/* TBD: handle nested packages... */
return AE_SUPPORT;
}
}
/*
* Validate output buffer.
*/
if (buffer->length == ACPI_ALLOCATE_BUFFER) {
buffer->pointer = ACPI_ALLOCATE_ZEROED(size_required);
if (!buffer->pointer)
return AE_NO_MEMORY;
buffer->length = size_required;
} else {
if (buffer->length < size_required) {
buffer->length = size_required;
return AE_BUFFER_OVERFLOW;
} else if (buffer->length != size_required ||
!buffer->pointer) {
return AE_BAD_PARAMETER;
}
}
head = buffer->pointer;
tail = buffer->pointer + tail_offset;
/*
* Extract package data.
*/
for (i = 0; i < format_count; i++) {
u8 **pointer = NULL;
union acpi_object *element = &(package->package.elements[i]);
switch (element->type) {
case ACPI_TYPE_INTEGER:
switch (format_string[i]) {
case 'N':
*((u64 *) head) =
element->integer.value;
head += sizeof(u64);
break;
case 'S':
pointer = (u8 **) head;
*pointer = tail;
*((u64 *) tail) =
element->integer.value;
head += sizeof(u64 *);
tail += sizeof(u64);
/* NULL terminate string */
*tail = (char)0;
tail += sizeof(char);
break;
default:
/* Should never get here */
break;
}
break;
case ACPI_TYPE_STRING:
case ACPI_TYPE_BUFFER:
switch (format_string[i]) {
case 'S':
pointer = (u8 **) head;
*pointer = tail;
memcpy(tail, element->string.pointer,
element->string.length);
head += sizeof(char *);
tail += element->string.length * sizeof(char);
/* NULL terminate string */
*tail = (char)0;
tail += sizeof(char);
break;
case 'B':
pointer = (u8 **) head;
*pointer = tail;
memcpy(tail, element->buffer.pointer,
element->buffer.length);
head += sizeof(u8 *);
tail += element->buffer.length;
break;
default:
/* Should never get here */
break;
}
break;
case ACPI_TYPE_LOCAL_REFERENCE:
switch (format_string[i]) {
case 'R':
*(void **)head =
(void *)element->reference.handle;
head += sizeof(void *);
break;
default:
/* Should never get here */
break;
}
break;
case ACPI_TYPE_PACKAGE:
/* TBD: handle nested packages... */
default:
/* Should never get here */
break;
}
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_extract_package);
acpi_status
acpi_evaluate_integer(acpi_handle handle,
acpi_string pathname,
struct acpi_object_list *arguments, unsigned long long *data)
{
acpi_status status = AE_OK;
union acpi_object element;
struct acpi_buffer buffer = { 0, NULL };
if (!data)
return AE_BAD_PARAMETER;
buffer.length = sizeof(union acpi_object);
buffer.pointer = &element;
status = acpi_evaluate_object(handle, pathname, arguments, &buffer);
if (ACPI_FAILURE(status)) {
acpi_util_eval_error(handle, pathname, status);
return status;
}
if (element.type != ACPI_TYPE_INTEGER) {
acpi_util_eval_error(handle, pathname, AE_BAD_DATA);
return AE_BAD_DATA;
}
*data = element.integer.value;
acpi_handle_debug(handle, "Return value [%llu]\n", *data);
return AE_OK;
}
EXPORT_SYMBOL(acpi_evaluate_integer);
int acpi_get_local_address(acpi_handle handle, u32 *addr)
{
unsigned long long adr;
acpi_status status;
status = acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL, &adr);
if (ACPI_FAILURE(status))
return -ENODATA;
*addr = (u32)adr;
return 0;
}
EXPORT_SYMBOL(acpi_get_local_address);
#define ACPI_MAX_SUB_BUF_SIZE 9
const char *acpi_get_subsystem_id(acpi_handle handle)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
acpi_status status;
const char *sub;
size_t len;
status = acpi_evaluate_object(handle, METHOD_NAME__SUB, NULL, &buffer);
if (ACPI_FAILURE(status)) {
acpi_handle_debug(handle, "Reading ACPI _SUB failed: %#x\n", status);
return ERR_PTR(-ENODATA);
}
obj = buffer.pointer;
if (obj->type == ACPI_TYPE_STRING) {
len = strlen(obj->string.pointer);
if (len < ACPI_MAX_SUB_BUF_SIZE && len > 0) {
sub = kstrdup(obj->string.pointer, GFP_KERNEL);
if (!sub)
sub = ERR_PTR(-ENOMEM);
} else {
acpi_handle_err(handle, "ACPI _SUB Length %zu is Invalid\n", len);
sub = ERR_PTR(-ENODATA);
}
} else {
acpi_handle_warn(handle, "Warning ACPI _SUB did not return a string\n");
sub = ERR_PTR(-ENODATA);
}
acpi_os_free(buffer.pointer);
return sub;
}
EXPORT_SYMBOL_GPL(acpi_get_subsystem_id);
acpi_status
acpi_evaluate_reference(acpi_handle handle,
acpi_string pathname,
struct acpi_object_list *arguments,
struct acpi_handle_list *list)
{
acpi_status status = AE_OK;
union acpi_object *package = NULL;
union acpi_object *element = NULL;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
u32 i = 0;
if (!list) {
return AE_BAD_PARAMETER;
}
/* Evaluate object. */
status = acpi_evaluate_object(handle, pathname, arguments, &buffer);
if (ACPI_FAILURE(status))
goto end;
package = buffer.pointer;
if ((buffer.length == 0) || !package) {
status = AE_BAD_DATA;
acpi_util_eval_error(handle, pathname, status);
goto end;
}
if (package->type != ACPI_TYPE_PACKAGE) {
status = AE_BAD_DATA;
acpi_util_eval_error(handle, pathname, status);
goto end;
}
if (!package->package.count) {
status = AE_BAD_DATA;
acpi_util_eval_error(handle, pathname, status);
goto end;
}
if (package->package.count > ACPI_MAX_HANDLES) {
kfree(package);
return AE_NO_MEMORY;
}
list->count = package->package.count;
/* Extract package data. */
for (i = 0; i < list->count; i++) {
element = &(package->package.elements[i]);
if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
status = AE_BAD_DATA;
acpi_util_eval_error(handle, pathname, status);
break;
}
if (!element->reference.handle) {
status = AE_NULL_ENTRY;
acpi_util_eval_error(handle, pathname, status);
break;
}
/* Get the acpi_handle. */
list->handles[i] = element->reference.handle;
acpi_handle_debug(list->handles[i], "Found in reference list\n");
}
end:
if (ACPI_FAILURE(status)) {
list->count = 0;
//kfree(list->handles);
}
kfree(buffer.pointer);
return status;
}
EXPORT_SYMBOL(acpi_evaluate_reference);
acpi_status
acpi_get_physical_device_location(acpi_handle handle, struct acpi_pld_info **pld)
{
acpi_status status;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *output;
status = acpi_evaluate_object(handle, "_PLD", NULL, &buffer);
if (ACPI_FAILURE(status))
return status;
output = buffer.pointer;
if (!output || output->type != ACPI_TYPE_PACKAGE
|| !output->package.count
|| output->package.elements[0].type != ACPI_TYPE_BUFFER
|| output->package.elements[0].buffer.length < ACPI_PLD_REV1_BUFFER_SIZE) {
status = AE_TYPE;
goto out;
}
status = acpi_decode_pld_buffer(
output->package.elements[0].buffer.pointer,
output->package.elements[0].buffer.length,
pld);
out:
kfree(buffer.pointer);
return status;
}
EXPORT_SYMBOL(acpi_get_physical_device_location);
ACPI: Add an interface to evaluate _OST Added acpi_evaluate_hotplug_opt(). All ACPI hotplug handlers must call this function when evaluating _OST for hotplug operations. If the platform does not support _OST, this function returns AE_NOT_FOUND and has no effect on the platform. ACPI_HOTPLUG_OST is defined when all relevant ACPI hotplug operations, such as CPU, memory and container hotplug, are enabled. This assures consistent behavior among the hotplug operations with regarding the _OST support. When ACPI_HOTPLUG_OST is not defined, this function is a no-op. ACPI PCI hotplug is not enhanced to support _OST at this time since it is a legacy method being replaced by PCIe native hotplug. _OST support for ACPI PCI hotplug may be added in future if necessary. Some platforms may require the OS to support _OST in order to support ACPI hotplug operations. For example, if a platform has the management console where user can request a hotplug operation from, this _OST support would be required for the management console to show the result of the hotplug request to user. Added macro definitions of _OST source events and status codes. Also renamed OSC_SB_CPUHP_OST_SUPPORT to OSC_SB_HOTPLUG_OST_SUPPORT since this _OSC bit is not specific to CPU hotplug. This bit is defined in Table 6-147 of ACPI 5.0 as follows. Bits: 3 Field Name: Insertion / Ejection _OST Processing Support Definition: This bit is set if OSPM will evaluate the _OST object defined under a device when processing insertion and ejection source event codes. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Len Brown <len.brown@intel.com>
2012-05-24 10:25:19 +08:00
/**
* acpi_evaluate_ost: Evaluate _OST for hotplug operations
ACPI: Add an interface to evaluate _OST Added acpi_evaluate_hotplug_opt(). All ACPI hotplug handlers must call this function when evaluating _OST for hotplug operations. If the platform does not support _OST, this function returns AE_NOT_FOUND and has no effect on the platform. ACPI_HOTPLUG_OST is defined when all relevant ACPI hotplug operations, such as CPU, memory and container hotplug, are enabled. This assures consistent behavior among the hotplug operations with regarding the _OST support. When ACPI_HOTPLUG_OST is not defined, this function is a no-op. ACPI PCI hotplug is not enhanced to support _OST at this time since it is a legacy method being replaced by PCIe native hotplug. _OST support for ACPI PCI hotplug may be added in future if necessary. Some platforms may require the OS to support _OST in order to support ACPI hotplug operations. For example, if a platform has the management console where user can request a hotplug operation from, this _OST support would be required for the management console to show the result of the hotplug request to user. Added macro definitions of _OST source events and status codes. Also renamed OSC_SB_CPUHP_OST_SUPPORT to OSC_SB_HOTPLUG_OST_SUPPORT since this _OSC bit is not specific to CPU hotplug. This bit is defined in Table 6-147 of ACPI 5.0 as follows. Bits: 3 Field Name: Insertion / Ejection _OST Processing Support Definition: This bit is set if OSPM will evaluate the _OST object defined under a device when processing insertion and ejection source event codes. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Len Brown <len.brown@intel.com>
2012-05-24 10:25:19 +08:00
* @handle: ACPI device handle
* @source_event: source event code
* @status_code: status code
* @status_buf: optional detailed information (NULL if none)
*
* Evaluate _OST for hotplug operations. All ACPI hotplug handlers
* must call this function when evaluating _OST for hotplug operations.
* When the platform does not support _OST, this function has no effect.
*/
acpi_status
acpi_evaluate_ost(acpi_handle handle, u32 source_event, u32 status_code,
struct acpi_buffer *status_buf)
ACPI: Add an interface to evaluate _OST Added acpi_evaluate_hotplug_opt(). All ACPI hotplug handlers must call this function when evaluating _OST for hotplug operations. If the platform does not support _OST, this function returns AE_NOT_FOUND and has no effect on the platform. ACPI_HOTPLUG_OST is defined when all relevant ACPI hotplug operations, such as CPU, memory and container hotplug, are enabled. This assures consistent behavior among the hotplug operations with regarding the _OST support. When ACPI_HOTPLUG_OST is not defined, this function is a no-op. ACPI PCI hotplug is not enhanced to support _OST at this time since it is a legacy method being replaced by PCIe native hotplug. _OST support for ACPI PCI hotplug may be added in future if necessary. Some platforms may require the OS to support _OST in order to support ACPI hotplug operations. For example, if a platform has the management console where user can request a hotplug operation from, this _OST support would be required for the management console to show the result of the hotplug request to user. Added macro definitions of _OST source events and status codes. Also renamed OSC_SB_CPUHP_OST_SUPPORT to OSC_SB_HOTPLUG_OST_SUPPORT since this _OSC bit is not specific to CPU hotplug. This bit is defined in Table 6-147 of ACPI 5.0 as follows. Bits: 3 Field Name: Insertion / Ejection _OST Processing Support Definition: This bit is set if OSPM will evaluate the _OST object defined under a device when processing insertion and ejection source event codes. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Len Brown <len.brown@intel.com>
2012-05-24 10:25:19 +08:00
{
union acpi_object params[3] = {
{.type = ACPI_TYPE_INTEGER,},
{.type = ACPI_TYPE_INTEGER,},
{.type = ACPI_TYPE_BUFFER,}
};
struct acpi_object_list arg_list = {3, params};
params[0].integer.value = source_event;
params[1].integer.value = status_code;
if (status_buf != NULL) {
params[2].buffer.pointer = status_buf->pointer;
params[2].buffer.length = status_buf->length;
} else {
params[2].buffer.pointer = NULL;
params[2].buffer.length = 0;
}
return acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
ACPI: Add an interface to evaluate _OST Added acpi_evaluate_hotplug_opt(). All ACPI hotplug handlers must call this function when evaluating _OST for hotplug operations. If the platform does not support _OST, this function returns AE_NOT_FOUND and has no effect on the platform. ACPI_HOTPLUG_OST is defined when all relevant ACPI hotplug operations, such as CPU, memory and container hotplug, are enabled. This assures consistent behavior among the hotplug operations with regarding the _OST support. When ACPI_HOTPLUG_OST is not defined, this function is a no-op. ACPI PCI hotplug is not enhanced to support _OST at this time since it is a legacy method being replaced by PCIe native hotplug. _OST support for ACPI PCI hotplug may be added in future if necessary. Some platforms may require the OS to support _OST in order to support ACPI hotplug operations. For example, if a platform has the management console where user can request a hotplug operation from, this _OST support would be required for the management console to show the result of the hotplug request to user. Added macro definitions of _OST source events and status codes. Also renamed OSC_SB_CPUHP_OST_SUPPORT to OSC_SB_HOTPLUG_OST_SUPPORT since this _OSC bit is not specific to CPU hotplug. This bit is defined in Table 6-147 of ACPI 5.0 as follows. Bits: 3 Field Name: Insertion / Ejection _OST Processing Support Definition: This bit is set if OSPM will evaluate the _OST object defined under a device when processing insertion and ejection source event codes. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Len Brown <len.brown@intel.com>
2012-05-24 10:25:19 +08:00
}
EXPORT_SYMBOL(acpi_evaluate_ost);
ACPI: Add acpi_handle_<level>() interfaces This patch introduces acpi_handle_<level>(), where <level> is a kernel message level such as err/warn/info, to support improved logging messages for ACPI, esp. hot-plug operations. acpi_handle_<level>() appends "ACPI" prefix and ACPI object path to the messages. This improves diagnosis of hotplug operations since an error message in a log file identifies an object that caused an issue. This interface acquires the global namespace mutex to obtain an object path. In interrupt context, it shows the object path as <n/a>. acpi_handle_<level>() takes acpi_handle as an argument, which is passed to ACPI hotplug notify handlers from the ACPICA. Therefore, it is always available unlike other kernel objects, such as device. For example: acpi_handle_err(handle, "Device don't exist, dropping EJECT\n"); logs an error message like this at KERN_ERR. ACPI: \_SB_.SCK4.CPU4: Device don't exist, dropping EJECT ACPI hot-plug drivers can use acpi_handle_<level>() when they need to identify a target ACPI object path in their messages, such as error cases. The usage model is similar to dev_<level>(). acpi_handle_<level>() can be used when a device is not created or is invalid during hot-plug operations. ACPI object path is also consistent on the platform, unlike device name that gets incremented over hotplug operations. ACPI drivers should use dev_<level>() when a device object is valid. Device name provides more user friendly information, and avoids acquiring the global ACPI namespace mutex. ACPI drivers also continue to use pr_<level>() when they do not need to specify device information, such as boot-up messages. Note: ACPI_[WARNING|INFO|ERROR]() are intended for the ACPICA and are not associated with the kernel message level. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Tested-by: Vijay Mohan Pandarathil <vijaymohan.pandarathil@hp.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-11-21 09:36:28 +08:00
/**
* acpi_handle_path: Return the object path of handle
* @handle: ACPI device handle
*
* Caller must free the returned buffer
*/
static char *acpi_handle_path(acpi_handle handle)
{
struct acpi_buffer buffer = {
.length = ACPI_ALLOCATE_BUFFER,
.pointer = NULL
};
if (in_interrupt() ||
acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer) != AE_OK)
return NULL;
return buffer.pointer;
}
ACPI: Add acpi_handle_<level>() interfaces This patch introduces acpi_handle_<level>(), where <level> is a kernel message level such as err/warn/info, to support improved logging messages for ACPI, esp. hot-plug operations. acpi_handle_<level>() appends "ACPI" prefix and ACPI object path to the messages. This improves diagnosis of hotplug operations since an error message in a log file identifies an object that caused an issue. This interface acquires the global namespace mutex to obtain an object path. In interrupt context, it shows the object path as <n/a>. acpi_handle_<level>() takes acpi_handle as an argument, which is passed to ACPI hotplug notify handlers from the ACPICA. Therefore, it is always available unlike other kernel objects, such as device. For example: acpi_handle_err(handle, "Device don't exist, dropping EJECT\n"); logs an error message like this at KERN_ERR. ACPI: \_SB_.SCK4.CPU4: Device don't exist, dropping EJECT ACPI hot-plug drivers can use acpi_handle_<level>() when they need to identify a target ACPI object path in their messages, such as error cases. The usage model is similar to dev_<level>(). acpi_handle_<level>() can be used when a device is not created or is invalid during hot-plug operations. ACPI object path is also consistent on the platform, unlike device name that gets incremented over hotplug operations. ACPI drivers should use dev_<level>() when a device object is valid. Device name provides more user friendly information, and avoids acquiring the global ACPI namespace mutex. ACPI drivers also continue to use pr_<level>() when they do not need to specify device information, such as boot-up messages. Note: ACPI_[WARNING|INFO|ERROR]() are intended for the ACPICA and are not associated with the kernel message level. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Tested-by: Vijay Mohan Pandarathil <vijaymohan.pandarathil@hp.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-11-21 09:36:28 +08:00
/**
* acpi_handle_printk: Print message with ACPI prefix and object path
* @level: log level
* @handle: ACPI device handle
* @fmt: format string
ACPI: Add acpi_handle_<level>() interfaces This patch introduces acpi_handle_<level>(), where <level> is a kernel message level such as err/warn/info, to support improved logging messages for ACPI, esp. hot-plug operations. acpi_handle_<level>() appends "ACPI" prefix and ACPI object path to the messages. This improves diagnosis of hotplug operations since an error message in a log file identifies an object that caused an issue. This interface acquires the global namespace mutex to obtain an object path. In interrupt context, it shows the object path as <n/a>. acpi_handle_<level>() takes acpi_handle as an argument, which is passed to ACPI hotplug notify handlers from the ACPICA. Therefore, it is always available unlike other kernel objects, such as device. For example: acpi_handle_err(handle, "Device don't exist, dropping EJECT\n"); logs an error message like this at KERN_ERR. ACPI: \_SB_.SCK4.CPU4: Device don't exist, dropping EJECT ACPI hot-plug drivers can use acpi_handle_<level>() when they need to identify a target ACPI object path in their messages, such as error cases. The usage model is similar to dev_<level>(). acpi_handle_<level>() can be used when a device is not created or is invalid during hot-plug operations. ACPI object path is also consistent on the platform, unlike device name that gets incremented over hotplug operations. ACPI drivers should use dev_<level>() when a device object is valid. Device name provides more user friendly information, and avoids acquiring the global ACPI namespace mutex. ACPI drivers also continue to use pr_<level>() when they do not need to specify device information, such as boot-up messages. Note: ACPI_[WARNING|INFO|ERROR]() are intended for the ACPICA and are not associated with the kernel message level. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Tested-by: Vijay Mohan Pandarathil <vijaymohan.pandarathil@hp.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-11-21 09:36:28 +08:00
*
* This function is called through acpi_handle_<level> macros and prints
* a message with ACPI prefix and object path. This function acquires
* the global namespace mutex to obtain an object path. In interrupt
* context, it shows the object path as <n/a>.
*/
void
acpi_handle_printk(const char *level, acpi_handle handle, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
const char *path;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
path = acpi_handle_path(handle);
printk("%sACPI: %s: %pV", level, path ? path : "<n/a>" , &vaf);
ACPI: Add acpi_handle_<level>() interfaces This patch introduces acpi_handle_<level>(), where <level> is a kernel message level such as err/warn/info, to support improved logging messages for ACPI, esp. hot-plug operations. acpi_handle_<level>() appends "ACPI" prefix and ACPI object path to the messages. This improves diagnosis of hotplug operations since an error message in a log file identifies an object that caused an issue. This interface acquires the global namespace mutex to obtain an object path. In interrupt context, it shows the object path as <n/a>. acpi_handle_<level>() takes acpi_handle as an argument, which is passed to ACPI hotplug notify handlers from the ACPICA. Therefore, it is always available unlike other kernel objects, such as device. For example: acpi_handle_err(handle, "Device don't exist, dropping EJECT\n"); logs an error message like this at KERN_ERR. ACPI: \_SB_.SCK4.CPU4: Device don't exist, dropping EJECT ACPI hot-plug drivers can use acpi_handle_<level>() when they need to identify a target ACPI object path in their messages, such as error cases. The usage model is similar to dev_<level>(). acpi_handle_<level>() can be used when a device is not created or is invalid during hot-plug operations. ACPI object path is also consistent on the platform, unlike device name that gets incremented over hotplug operations. ACPI drivers should use dev_<level>() when a device object is valid. Device name provides more user friendly information, and avoids acquiring the global ACPI namespace mutex. ACPI drivers also continue to use pr_<level>() when they do not need to specify device information, such as boot-up messages. Note: ACPI_[WARNING|INFO|ERROR]() are intended for the ACPICA and are not associated with the kernel message level. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Tested-by: Vijay Mohan Pandarathil <vijaymohan.pandarathil@hp.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-11-21 09:36:28 +08:00
va_end(args);
kfree(path);
ACPI: Add acpi_handle_<level>() interfaces This patch introduces acpi_handle_<level>(), where <level> is a kernel message level such as err/warn/info, to support improved logging messages for ACPI, esp. hot-plug operations. acpi_handle_<level>() appends "ACPI" prefix and ACPI object path to the messages. This improves diagnosis of hotplug operations since an error message in a log file identifies an object that caused an issue. This interface acquires the global namespace mutex to obtain an object path. In interrupt context, it shows the object path as <n/a>. acpi_handle_<level>() takes acpi_handle as an argument, which is passed to ACPI hotplug notify handlers from the ACPICA. Therefore, it is always available unlike other kernel objects, such as device. For example: acpi_handle_err(handle, "Device don't exist, dropping EJECT\n"); logs an error message like this at KERN_ERR. ACPI: \_SB_.SCK4.CPU4: Device don't exist, dropping EJECT ACPI hot-plug drivers can use acpi_handle_<level>() when they need to identify a target ACPI object path in their messages, such as error cases. The usage model is similar to dev_<level>(). acpi_handle_<level>() can be used when a device is not created or is invalid during hot-plug operations. ACPI object path is also consistent on the platform, unlike device name that gets incremented over hotplug operations. ACPI drivers should use dev_<level>() when a device object is valid. Device name provides more user friendly information, and avoids acquiring the global ACPI namespace mutex. ACPI drivers also continue to use pr_<level>() when they do not need to specify device information, such as boot-up messages. Note: ACPI_[WARNING|INFO|ERROR]() are intended for the ACPICA and are not associated with the kernel message level. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Tested-by: Vijay Mohan Pandarathil <vijaymohan.pandarathil@hp.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-11-21 09:36:28 +08:00
}
EXPORT_SYMBOL(acpi_handle_printk);
#if defined(CONFIG_DYNAMIC_DEBUG)
/**
* __acpi_handle_debug: pr_debug with ACPI prefix and object path
* @descriptor: Dynamic Debug descriptor
* @handle: ACPI device handle
* @fmt: format string
*
* This function is called through acpi_handle_debug macro and debug
* prints a message with ACPI prefix and object path. This function
* acquires the global namespace mutex to obtain an object path. In
* interrupt context, it shows the object path as <n/a>.
*/
void
__acpi_handle_debug(struct _ddebug *descriptor, acpi_handle handle,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
const char *path;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
path = acpi_handle_path(handle);
__dynamic_pr_debug(descriptor, "ACPI: %s: %pV", path ? path : "<n/a>", &vaf);
va_end(args);
kfree(path);
}
EXPORT_SYMBOL(__acpi_handle_debug);
#endif
/**
* acpi_evaluation_failure_warn - Log evaluation failure warning.
* @handle: Parent object handle.
* @name: Name of the object whose evaluation has failed.
* @status: Status value returned by the failing object evaluation.
*/
void acpi_evaluation_failure_warn(acpi_handle handle, const char *name,
acpi_status status)
{
acpi_handle_warn(handle, "%s evaluation failed: %s\n", name,
acpi_format_exception(status));
}
EXPORT_SYMBOL_GPL(acpi_evaluation_failure_warn);
/**
* acpi_has_method: Check whether @handle has a method named @name
* @handle: ACPI device handle
* @name: name of object or method
*
* Check whether @handle has a method named @name.
*/
bool acpi_has_method(acpi_handle handle, char *name)
{
acpi_handle tmp;
return ACPI_SUCCESS(acpi_get_handle(handle, name, &tmp));
}
EXPORT_SYMBOL(acpi_has_method);
acpi_status acpi_execute_simple_method(acpi_handle handle, char *method,
u64 arg)
{
union acpi_object obj = { .type = ACPI_TYPE_INTEGER };
struct acpi_object_list arg_list = { .count = 1, .pointer = &obj, };
obj.integer.value = arg;
return acpi_evaluate_object(handle, method, &arg_list, NULL);
}
EXPORT_SYMBOL(acpi_execute_simple_method);
/**
* acpi_evaluate_ej0: Evaluate _EJ0 method for hotplug operations
* @handle: ACPI device handle
*
* Evaluate device's _EJ0 method for hotplug operations.
*/
acpi_status acpi_evaluate_ej0(acpi_handle handle)
{
acpi_status status;
status = acpi_execute_simple_method(handle, "_EJ0", 1);
if (status == AE_NOT_FOUND)
acpi_handle_warn(handle, "No _EJ0 support for device\n");
else if (ACPI_FAILURE(status))
acpi_handle_warn(handle, "Eject failed (0x%x)\n", status);
return status;
}
/**
* acpi_evaluate_lck: Evaluate _LCK method to lock/unlock device
* @handle: ACPI device handle
* @lock: lock device if non-zero, otherwise unlock device
*
* Evaluate device's _LCK method if present to lock/unlock device
*/
acpi_status acpi_evaluate_lck(acpi_handle handle, int lock)
{
acpi_status status;
status = acpi_execute_simple_method(handle, "_LCK", !!lock);
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
if (lock)
acpi_handle_warn(handle,
"Locking device failed (0x%x)\n", status);
else
acpi_handle_warn(handle,
"Unlocking device failed (0x%x)\n", status);
}
return status;
}
/**
* acpi_evaluate_reg: Evaluate _REG method to register OpRegion presence
* @handle: ACPI device handle
* @space_id: ACPI address space id to register OpRegion presence for
* @function: Parameter to pass to _REG one of ACPI_REG_CONNECT or
* ACPI_REG_DISCONNECT
*
* Evaluate device's _REG method to register OpRegion presence.
*/
acpi_status acpi_evaluate_reg(acpi_handle handle, u8 space_id, u32 function)
{
struct acpi_object_list arg_list;
union acpi_object params[2];
params[0].type = ACPI_TYPE_INTEGER;
params[0].integer.value = space_id;
params[1].type = ACPI_TYPE_INTEGER;
params[1].integer.value = function;
arg_list.count = 2;
arg_list.pointer = params;
return acpi_evaluate_object(handle, "_REG", &arg_list, NULL);
}
EXPORT_SYMBOL(acpi_evaluate_reg);
/**
* acpi_evaluate_dsm - evaluate device's _DSM method
* @handle: ACPI device handle
* @guid: GUID of requested functions, should be 16 bytes
* @rev: revision number of requested function
* @func: requested function number
* @argv4: the function specific parameter
*
* Evaluate device's _DSM method with specified GUID, revision id and
* function number. Caller needs to free the returned object.
*
* Though ACPI defines the fourth parameter for _DSM should be a package,
* some old BIOSes do expect a buffer or an integer etc.
*/
union acpi_object *
acpi_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func,
union acpi_object *argv4)
{
acpi_status ret;
struct acpi_buffer buf = {ACPI_ALLOCATE_BUFFER, NULL};
union acpi_object params[4];
struct acpi_object_list input = {
.count = 4,
.pointer = params,
};
params[0].type = ACPI_TYPE_BUFFER;
params[0].buffer.length = 16;
params[0].buffer.pointer = (u8 *)guid;
params[1].type = ACPI_TYPE_INTEGER;
params[1].integer.value = rev;
params[2].type = ACPI_TYPE_INTEGER;
params[2].integer.value = func;
if (argv4) {
params[3] = *argv4;
} else {
params[3].type = ACPI_TYPE_PACKAGE;
params[3].package.count = 0;
params[3].package.elements = NULL;
}
ret = acpi_evaluate_object(handle, "_DSM", &input, &buf);
if (ACPI_SUCCESS(ret))
return (union acpi_object *)buf.pointer;
if (ret != AE_NOT_FOUND)
acpi_handle_warn(handle,
"failed to evaluate _DSM %pUb (0x%x)\n", guid, ret);
return NULL;
}
EXPORT_SYMBOL(acpi_evaluate_dsm);
/**
* acpi_check_dsm - check if _DSM method supports requested functions.
* @handle: ACPI device handle
* @guid: GUID of requested functions, should be 16 bytes at least
* @rev: revision number of requested functions
* @funcs: bitmap of requested functions
*
* Evaluate device's _DSM method to check whether it supports requested
* functions. Currently only support 64 functions at maximum, should be
* enough for now.
*/
bool acpi_check_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 funcs)
{
int i;
u64 mask = 0;
union acpi_object *obj;
if (funcs == 0)
return false;
obj = acpi_evaluate_dsm(handle, guid, rev, 0, NULL);
if (!obj)
return false;
/* For compatibility, old BIOSes may return an integer */
if (obj->type == ACPI_TYPE_INTEGER)
mask = obj->integer.value;
else if (obj->type == ACPI_TYPE_BUFFER)
for (i = 0; i < obj->buffer.length && i < 8; i++)
mask |= (((u64)obj->buffer.pointer[i]) << (i * 8));
ACPI_FREE(obj);
/*
* Bit 0 indicates whether there's support for any functions other than
* function 0 for the specified GUID and revision.
*/
if ((mask & 0x1) && (mask & funcs) == funcs)
return true;
return false;
}
EXPORT_SYMBOL(acpi_check_dsm);
acpi-video-detect: video: Make video_detect code part of the video module This is a preparation patch for the backlight interface selection logic cleanup, there are 2 reasons to not always build the video_detect code into the kernel: 1) In order for the video_detect.c to also deal with / select native backlight interfaces on win8 systems, instead of doing this in video.c where it does not belong, video_detect.c needs to call into the backlight class code. Which cannot be done if it is builtin and the blacklight class is not. 2) Currently all the platform/x86 drivers which have quirks to prefer the vendor driver over acpi-video call acpi_video_unregister_backlight() to remove the acpi-video backlight interface, this logic really belongs in video_detect.c, which will cause video_detect.c to depend on symbols of video.c and video.c already depends on video_detect.c symbols, so they really need to be a single module. Note that this commits make 2 changes so as to maintain 100% kernel commandline compatibility: 1) The __setup call for the acpi_backlight= handling is moved to acpi/util.c as __setup may only be used by code which is alwasy builtin 2) video.c is renamed to acpi_video.c so that it can be combined with video_detect.c into video.ko This commit also makes changes to drivers/platform/x86/Kconfig to ensure that drivers which use acpi_video_backlight_support() from video_detect.c, will not be built-in when acpi_video is not built in. This also changes some "select" uses to "depends on" to avoid dependency loops. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Acked-by: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-16 22:27:47 +08:00
/**
* acpi_dev_hid_uid_match - Match device by supplied HID and UID
* @adev: ACPI device to match.
* @hid2: Hardware ID of the device.
* @uid2: Unique ID of the device, pass NULL to not check _UID.
*
* Matches HID and UID in @adev with given @hid2 and @uid2.
* Returns true if matches.
*/
bool acpi_dev_hid_uid_match(struct acpi_device *adev,
const char *hid2, const char *uid2)
{
const char *hid1 = acpi_device_hid(adev);
const char *uid1 = acpi_device_uid(adev);
if (strcmp(hid1, hid2))
return false;
if (!uid2)
return true;
return uid1 && !strcmp(uid1, uid2);
}
EXPORT_SYMBOL(acpi_dev_hid_uid_match);
/**
* acpi_dev_uid_to_integer - treat ACPI device _UID as integer
* @adev: ACPI device to get _UID from
* @integer: output buffer for integer
*
* Considers _UID as integer and converts it to @integer.
*
* Returns 0 on success, or negative error code otherwise.
*/
int acpi_dev_uid_to_integer(struct acpi_device *adev, u64 *integer)
{
const char *uid;
if (!adev)
return -ENODEV;
uid = acpi_device_uid(adev);
if (!uid)
return -ENODATA;
return kstrtou64(uid, 0, integer);
}
EXPORT_SYMBOL(acpi_dev_uid_to_integer);
/**
* acpi_dev_found - Detect presence of a given ACPI device in the namespace.
* @hid: Hardware ID of the device.
*
* Return %true if the device was present at the moment of invocation.
* Note that if the device is pluggable, it may since have disappeared.
*
* For this function to work, acpi_bus_scan() must have been executed
* which happens in the subsys_initcall() subsection. Hence, do not
* call from a subsys_initcall() or earlier (use acpi_get_devices()
* instead). Calling from module_init() is fine (which is synonymous
* with device_initcall()).
*/
bool acpi_dev_found(const char *hid)
{
struct acpi_device_bus_id *acpi_device_bus_id;
bool found = false;
mutex_lock(&acpi_device_lock);
list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
if (!strcmp(acpi_device_bus_id->bus_id, hid)) {
found = true;
break;
}
mutex_unlock(&acpi_device_lock);
return found;
}
EXPORT_SYMBOL(acpi_dev_found);
struct acpi_dev_match_info {
struct acpi_device_id hid[2];
const char *uid;
s64 hrv;
};
bus_find_device: Unify the match callback with class_find_device There is an arbitrary difference between the prototypes of bus_find_device() and class_find_device() preventing their callers from passing the same pair of data and match() arguments to both of them, which is the const qualifier used in the prototype of class_find_device(). If that qualifier is also used in the bus_find_device() prototype, it will be possible to pass the same match() callback function to both bus_find_device() and class_find_device(), which will allow some optimizations to be made in order to avoid code duplication going forward. Also with that, constify the "data" parameter as it is passed as a const to the match function. For this reason, change the prototype of bus_find_device() to match the prototype of class_find_device() and adjust its callers to use the const qualifier in accordance with the new prototype of it. Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Andreas Noever <andreas.noever@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Corey Minyard <minyard@acm.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David Kershner <david.kershner@unisys.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Airlie <airlied@linux.ie> Cc: Felipe Balbi <balbi@kernel.org> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Harald Freudenberger <freude@linux.ibm.com> Cc: Hartmut Knaack <knaack.h@gmx.de> Cc: Heiko Stuebner <heiko@sntech.de> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Cameron <jic23@kernel.org> Cc: "James E.J. Bottomley" <jejb@linux.ibm.com> Cc: Len Brown <lenb@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michael Jamet <michael.jamet@intel.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Peter Oberparleiter <oberpar@linux.ibm.com> Cc: Sebastian Ott <sebott@linux.ibm.com> Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Cc: Yehezkel Bernat <YehezkelShB@gmail.com> Cc: rafael@kernel.org Acked-by: Corey Minyard <minyard@acm.org> Acked-by: David Kershner <david.kershner@unisys.com> Acked-by: Mark Brown <broonie@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Acked-by: Wolfram Sang <wsa@the-dreams.de> # for the I2C parts Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-15 01:53:59 +08:00
static int acpi_dev_match_cb(struct device *dev, const void *data)
{
struct acpi_device *adev = to_acpi_device(dev);
bus_find_device: Unify the match callback with class_find_device There is an arbitrary difference between the prototypes of bus_find_device() and class_find_device() preventing their callers from passing the same pair of data and match() arguments to both of them, which is the const qualifier used in the prototype of class_find_device(). If that qualifier is also used in the bus_find_device() prototype, it will be possible to pass the same match() callback function to both bus_find_device() and class_find_device(), which will allow some optimizations to be made in order to avoid code duplication going forward. Also with that, constify the "data" parameter as it is passed as a const to the match function. For this reason, change the prototype of bus_find_device() to match the prototype of class_find_device() and adjust its callers to use the const qualifier in accordance with the new prototype of it. Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Andreas Noever <andreas.noever@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Corey Minyard <minyard@acm.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David Kershner <david.kershner@unisys.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Airlie <airlied@linux.ie> Cc: Felipe Balbi <balbi@kernel.org> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Harald Freudenberger <freude@linux.ibm.com> Cc: Hartmut Knaack <knaack.h@gmx.de> Cc: Heiko Stuebner <heiko@sntech.de> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Cameron <jic23@kernel.org> Cc: "James E.J. Bottomley" <jejb@linux.ibm.com> Cc: Len Brown <lenb@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michael Jamet <michael.jamet@intel.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Peter Oberparleiter <oberpar@linux.ibm.com> Cc: Sebastian Ott <sebott@linux.ibm.com> Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Cc: Yehezkel Bernat <YehezkelShB@gmail.com> Cc: rafael@kernel.org Acked-by: Corey Minyard <minyard@acm.org> Acked-by: David Kershner <david.kershner@unisys.com> Acked-by: Mark Brown <broonie@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Acked-by: Wolfram Sang <wsa@the-dreams.de> # for the I2C parts Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-15 01:53:59 +08:00
const struct acpi_dev_match_info *match = data;
unsigned long long hrv;
acpi_status status;
if (acpi_match_device_ids(adev, match->hid))
return 0;
if (match->uid && (!adev->pnp.unique_id ||
strcmp(adev->pnp.unique_id, match->uid)))
return 0;
if (match->hrv == -1)
return 1;
status = acpi_evaluate_integer(adev->handle, "_HRV", NULL, &hrv);
if (ACPI_FAILURE(status))
return 0;
return hrv == match->hrv;
}
/**
* acpi_dev_present - Detect that a given ACPI device is present
* @hid: Hardware ID of the device.
* @uid: Unique ID of the device, pass NULL to not check _UID
* @hrv: Hardware Revision of the device, pass -1 to not check _HRV
*
* Return %true if a matching device was present at the moment of invocation.
* Note that if the device is pluggable, it may since have disappeared.
*
* Note that unlike acpi_dev_found() this function checks the status
* of the device. So for devices which are present in the DSDT, but
* which are disabled (their _STA callback returns 0) this function
* will return false.
*
* For this function to work, acpi_bus_scan() must have been executed
* which happens in the subsys_initcall() subsection. Hence, do not
* call from a subsys_initcall() or earlier (use acpi_get_devices()
* instead). Calling from module_init() is fine (which is synonymous
* with device_initcall()).
*/
bool acpi_dev_present(const char *hid, const char *uid, s64 hrv)
{
struct acpi_dev_match_info match = {};
struct device *dev;
strscpy(match.hid[0].id, hid, sizeof(match.hid[0].id));
match.uid = uid;
match.hrv = hrv;
dev = bus_find_device(&acpi_bus_type, NULL, &match, acpi_dev_match_cb);
put_device(dev);
return !!dev;
}
EXPORT_SYMBOL(acpi_dev_present);
/**
* acpi_dev_get_next_match_dev - Return the next match of ACPI device
* @adev: Pointer to the previous ACPI device matching this @hid, @uid and @hrv
* @hid: Hardware ID of the device.
* @uid: Unique ID of the device, pass NULL to not check _UID
* @hrv: Hardware Revision of the device, pass -1 to not check _HRV
*
* Return the next match of ACPI device if another matching device was present
* at the moment of invocation, or NULL otherwise.
*
* The caller is responsible for invoking acpi_dev_put() on the returned device.
* On the other hand the function invokes acpi_dev_put() on the given @adev
* assuming that its reference counter had been increased beforehand.
*
* See additional information in acpi_dev_present() as well.
*/
struct acpi_device *
acpi_dev_get_next_match_dev(struct acpi_device *adev, const char *hid, const char *uid, s64 hrv)
{
struct device *start = adev ? &adev->dev : NULL;
struct acpi_dev_match_info match = {};
struct device *dev;
strscpy(match.hid[0].id, hid, sizeof(match.hid[0].id));
match.uid = uid;
match.hrv = hrv;
dev = bus_find_device(&acpi_bus_type, start, &match, acpi_dev_match_cb);
acpi_dev_put(adev);
return dev ? to_acpi_device(dev) : NULL;
}
EXPORT_SYMBOL(acpi_dev_get_next_match_dev);
/**
* acpi_dev_get_first_match_dev - Return the first match of ACPI device
* @hid: Hardware ID of the device.
* @uid: Unique ID of the device, pass NULL to not check _UID
* @hrv: Hardware Revision of the device, pass -1 to not check _HRV
*
* Return the first match of ACPI device if a matching device was present
* at the moment of invocation, or NULL otherwise.
*
* The caller is responsible for invoking acpi_dev_put() on the returned device.
*
* See additional information in acpi_dev_present() as well.
*/
struct acpi_device *
acpi_dev_get_first_match_dev(const char *hid, const char *uid, s64 hrv)
{
return acpi_dev_get_next_match_dev(NULL, hid, uid, hrv);
}
EXPORT_SYMBOL(acpi_dev_get_first_match_dev);
/**
* acpi_reduced_hardware - Return if this is an ACPI-reduced-hw machine
*
* Return true when running on an ACPI-reduced-hw machine, false otherwise.
*/
bool acpi_reduced_hardware(void)
{
return acpi_gbl_reduced_hardware;
}
EXPORT_SYMBOL_GPL(acpi_reduced_hardware);
acpi-video-detect: video: Make video_detect code part of the video module This is a preparation patch for the backlight interface selection logic cleanup, there are 2 reasons to not always build the video_detect code into the kernel: 1) In order for the video_detect.c to also deal with / select native backlight interfaces on win8 systems, instead of doing this in video.c where it does not belong, video_detect.c needs to call into the backlight class code. Which cannot be done if it is builtin and the blacklight class is not. 2) Currently all the platform/x86 drivers which have quirks to prefer the vendor driver over acpi-video call acpi_video_unregister_backlight() to remove the acpi-video backlight interface, this logic really belongs in video_detect.c, which will cause video_detect.c to depend on symbols of video.c and video.c already depends on video_detect.c symbols, so they really need to be a single module. Note that this commits make 2 changes so as to maintain 100% kernel commandline compatibility: 1) The __setup call for the acpi_backlight= handling is moved to acpi/util.c as __setup may only be used by code which is alwasy builtin 2) video.c is renamed to acpi_video.c so that it can be combined with video_detect.c into video.ko This commit also makes changes to drivers/platform/x86/Kconfig to ensure that drivers which use acpi_video_backlight_support() from video_detect.c, will not be built-in when acpi_video is not built in. This also changes some "select" uses to "depends on" to avoid dependency loops. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Acked-by: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-16 22:27:47 +08:00
/*
* acpi_backlight= handling, this is done here rather then in video_detect.c
* because __setup cannot be used in modules.
*/
char acpi_video_backlight_string[16];
EXPORT_SYMBOL(acpi_video_backlight_string);
static int __init acpi_backlight(char *str)
{
strscpy(acpi_video_backlight_string, str,
acpi-video-detect: video: Make video_detect code part of the video module This is a preparation patch for the backlight interface selection logic cleanup, there are 2 reasons to not always build the video_detect code into the kernel: 1) In order for the video_detect.c to also deal with / select native backlight interfaces on win8 systems, instead of doing this in video.c where it does not belong, video_detect.c needs to call into the backlight class code. Which cannot be done if it is builtin and the blacklight class is not. 2) Currently all the platform/x86 drivers which have quirks to prefer the vendor driver over acpi-video call acpi_video_unregister_backlight() to remove the acpi-video backlight interface, this logic really belongs in video_detect.c, which will cause video_detect.c to depend on symbols of video.c and video.c already depends on video_detect.c symbols, so they really need to be a single module. Note that this commits make 2 changes so as to maintain 100% kernel commandline compatibility: 1) The __setup call for the acpi_backlight= handling is moved to acpi/util.c as __setup may only be used by code which is alwasy builtin 2) video.c is renamed to acpi_video.c so that it can be combined with video_detect.c into video.ko This commit also makes changes to drivers/platform/x86/Kconfig to ensure that drivers which use acpi_video_backlight_support() from video_detect.c, will not be built-in when acpi_video is not built in. This also changes some "select" uses to "depends on" to avoid dependency loops. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Acked-by: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-16 22:27:47 +08:00
sizeof(acpi_video_backlight_string));
return 1;
}
__setup("acpi_backlight=", acpi_backlight);
/**
* acpi_match_platform_list - Check if the system matches with a given list
* @plat: pointer to acpi_platform_list table terminated by a NULL entry
*
* Return the matched index if the system is found in the platform list.
* Otherwise, return a negative error code.
*/
int acpi_match_platform_list(const struct acpi_platform_list *plat)
{
struct acpi_table_header hdr;
int idx = 0;
if (acpi_disabled)
return -ENODEV;
for (; plat->oem_id[0]; plat++, idx++) {
if (ACPI_FAILURE(acpi_get_table_header(plat->table, 0, &hdr)))
continue;
if (strncmp(plat->oem_id, hdr.oem_id, ACPI_OEM_ID_SIZE))
continue;
if (strncmp(plat->oem_table_id, hdr.oem_table_id, ACPI_OEM_TABLE_ID_SIZE))
continue;
if ((plat->pred == all_versions) ||
(plat->pred == less_than_or_equal && hdr.oem_revision <= plat->oem_revision) ||
(plat->pred == greater_than_or_equal && hdr.oem_revision >= plat->oem_revision) ||
(plat->pred == equal && hdr.oem_revision == plat->oem_revision))
return idx;
}
return -ENODEV;
}
EXPORT_SYMBOL(acpi_match_platform_list);