linux/Documentation/kbuild/modules.rst

573 lines
18 KiB
ReStructuredText
Raw Normal View History

=========================
Building External Modules
=========================
This document describes how to build an out-of-tree kernel module.
.. Table of Contents
=== 1 Introduction
=== 2 How to Build External Modules
--- 2.1 Command Syntax
--- 2.2 Options
--- 2.3 Targets
--- 2.4 Building Separate Files
=== 3. Creating a Kbuild File for an External Module
--- 3.1 Shared Makefile
--- 3.2 Separate Kbuild file and Makefile
--- 3.3 Binary Blobs
--- 3.4 Building Multiple Modules
=== 4. Include Files
--- 4.1 Kernel Includes
--- 4.2 Single Subdirectory
--- 4.3 Several Subdirectories
=== 5. Module Installation
--- 5.1 INSTALL_MOD_PATH
--- 5.2 INSTALL_MOD_DIR
=== 6. Module Versioning
--- 6.1 Symbols From the Kernel (vmlinux + modules)
--- 6.2 Symbols and External Modules
--- 6.3 Symbols From Another External Module
=== 7. Tips & Tricks
--- 7.1 Testing for CONFIG_FOO_BAR
1. Introduction
===============
"kbuild" is the build system used by the Linux kernel. Modules must use
kbuild to stay compatible with changes in the build infrastructure and
to pick up the right flags to "gcc." Functionality for building modules
both in-tree and out-of-tree is provided. The method for building
either is similar, and all modules are initially developed and built
out-of-tree.
Covered in this document is information aimed at developers interested
in building out-of-tree (or "external") modules. The author of an
external module should supply a makefile that hides most of the
complexity, so one only has to type "make" to build the module. This is
easily accomplished, and a complete example will be presented in
section 3.
2. How to Build External Modules
================================
To build external modules, you must have a prebuilt kernel available
that contains the configuration and header files used in the build.
Also, the kernel must have been built with modules enabled. If you are
using a distribution kernel, there will be a package for the kernel you
are running provided by your distribution.
An alternative is to use the "make" target "modules_prepare." This will
make sure the kernel contains the information required. The target
exists solely as a simple way to prepare a kernel source tree for
building external modules.
NOTE: "modules_prepare" will not build Module.symvers even if
CONFIG_MODVERSIONS is set; therefore, a full kernel build needs to be
executed to make module versioning work.
2.1 Command Syntax
==================
The command to build an external module is::
$ make -C <path_to_kernel_src> M=$PWD
The kbuild system knows that an external module is being built
due to the "M=<dir>" option given in the command.
To build against the running kernel use::
$ make -C /lib/modules/`uname -r`/build M=$PWD
Then to install the module(s) just built, add the target
"modules_install" to the command::
$ make -C /lib/modules/`uname -r`/build M=$PWD modules_install
2.2 Options
===========
($KDIR refers to the path of the kernel source directory.)
make -C $KDIR M=$PWD
-C $KDIR
The directory where the kernel source is located.
"make" will actually change to the specified directory
when executing and will change back when finished.
M=$PWD
Informs kbuild that an external module is being built.
The value given to "M" is the absolute path of the
directory where the external module (kbuild file) is
located.
2.3 Targets
===========
When building an external module, only a subset of the "make"
targets are available.
make -C $KDIR M=$PWD [target]
The default will build the module(s) located in the current
directory, so a target does not need to be specified. All
output files will also be generated in this directory. No
attempts are made to update the kernel source, and it is a
precondition that a successful "make" has been executed for the
kernel.
modules
The default target for external modules. It has the
same functionality as if no target was specified. See
description above.
modules_install
Install the external module(s). The default location is
/lib/modules/<kernel_release>/extra/, but a prefix may
be added with INSTALL_MOD_PATH (discussed in section 5).
clean
Remove all generated files in the module directory only.
help
List the available targets for external modules.
2.4 Building Separate Files
===========================
It is possible to build single files that are part of a module.
This works equally well for the kernel, a module, and even for
external modules.
Example (The module foo.ko, consist of bar.o and baz.o)::
make -C $KDIR M=$PWD bar.lst
make -C $KDIR M=$PWD baz.o
make -C $KDIR M=$PWD foo.ko
make -C $KDIR M=$PWD ./
3. Creating a Kbuild File for an External Module
================================================
In the last section we saw the command to build a module for the
running kernel. The module is not actually built, however, because a
build file is required. Contained in this file will be the name of
the module(s) being built, along with the list of requisite source
files. The file may be as simple as a single line::
obj-m := <module_name>.o
The kbuild system will build <module_name>.o from <module_name>.c,
and, after linking, will result in the kernel module <module_name>.ko.
The above line can be put in either a "Kbuild" file or a "Makefile."
When the module is built from multiple sources, an additional line is
needed listing the files::
<module_name>-y := <src1>.o <src2>.o ...
NOTE: Further documentation describing the syntax used by kbuild is
located in Documentation/kbuild/makefiles.rst.
The examples below demonstrate how to create a build file for the
module 8123.ko, which is built from the following files::
8123_if.c
8123_if.h
8123_pci.c
8123_bin.o_shipped <= Binary blob
--- 3.1 Shared Makefile
An external module always includes a wrapper makefile that
supports building the module using "make" with no arguments.
This target is not used by kbuild; it is only for convenience.
Additional functionality, such as test targets, can be included
but should be filtered out from kbuild due to possible name
clashes.
Example 1::
--> filename: Makefile
ifneq ($(KERNELRELEASE),)
# kbuild part of makefile
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
else
# normal makefile
KDIR ?= /lib/modules/`uname -r`/build
default:
$(MAKE) -C $(KDIR) M=$$PWD
# Module specific targets
genbin:
echo "X" > 8123_bin.o_shipped
endif
The check for KERNELRELEASE is used to separate the two parts
of the makefile. In the example, kbuild will only see the two
assignments, whereas "make" will see everything except these
two assignments. This is due to two passes made on the file:
the first pass is by the "make" instance run on the command
line; the second pass is by the kbuild system, which is
initiated by the parameterized "make" in the default target.
3.2 Separate Kbuild File and Makefile
-------------------------------------
In newer versions of the kernel, kbuild will first look for a
file named "Kbuild," and only if that is not found, will it
then look for a makefile. Utilizing a "Kbuild" file allows us
to split up the makefile from example 1 into two files:
Example 2::
--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
--> filename: Makefile
KDIR ?= /lib/modules/`uname -r`/build
default:
$(MAKE) -C $(KDIR) M=$$PWD
# Module specific targets
genbin:
echo "X" > 8123_bin.o_shipped
The split in example 2 is questionable due to the simplicity of
each file; however, some external modules use makefiles
consisting of several hundred lines, and here it really pays
off to separate the kbuild part from the rest.
The next example shows a backward compatible version.
Example 3::
--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
--> filename: Makefile
ifneq ($(KERNELRELEASE),)
# kbuild part of makefile
include Kbuild
else
# normal makefile
KDIR ?= /lib/modules/`uname -r`/build
default:
$(MAKE) -C $(KDIR) M=$$PWD
# Module specific targets
genbin:
echo "X" > 8123_bin.o_shipped
endif
Here the "Kbuild" file is included from the makefile. This
allows an older version of kbuild, which only knows of
makefiles, to be used when the "make" and kbuild parts are
split into separate files.
3.3 Binary Blobs
----------------
Some external modules need to include an object file as a blob.
kbuild has support for this, but requires the blob file to be
named <filename>_shipped. When the kbuild rules kick in, a copy
of <filename>_shipped is created with _shipped stripped off,
giving us <filename>. This shortened filename can be used in
the assignment to the module.
Throughout this section, 8123_bin.o_shipped has been used to
build the kernel module 8123.ko; it has been included as
8123_bin.o::
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
Although there is no distinction between the ordinary source
files and the binary file, kbuild will pick up different rules
when creating the object file for the module.
3.4 Building Multiple Modules
=============================
kbuild supports building multiple modules with a single build
file. For example, if you wanted to build two modules, foo.ko
and bar.ko, the kbuild lines would be::
obj-m := foo.o bar.o
foo-y := <foo_srcs>
bar-y := <bar_srcs>
It is that simple!
4. Include Files
================
Within the kernel, header files are kept in standard locations
according to the following rule:
* If the header file only describes the internal interface of a
module, then the file is placed in the same directory as the
source files.
* If the header file describes an interface used by other parts
of the kernel that are located in different directories, then
the file is placed in include/linux/.
NOTE:
There are two notable exceptions to this rule: larger
subsystems have their own directory under include/, such as
include/scsi; and architecture specific headers are located
under arch/$(ARCH)/include/.
4.1 Kernel Includes
-------------------
To include a header file located under include/linux/, simply
use::
#include <linux/module.h>
kbuild will add options to "gcc" so the relevant directories
are searched.
4.2 Single Subdirectory
-----------------------
External modules tend to place header files in a separate
include/ directory where their source is located, although this
is not the usual kernel style. To inform kbuild of the
directory, use either ccflags-y or CFLAGS_<filename>.o.
Using the example from section 3, if we moved 8123_if.h to a
subdirectory named include, the resulting kbuild file would
look like::
--> filename: Kbuild
obj-m := 8123.o
ccflags-y := -Iinclude
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
Note that in the assignment there is no space between -I and
the path. This is a limitation of kbuild: there must be no
space present.
4.3 Several Subdirectories
--------------------------
kbuild can handle files that are spread over several directories.
Consider the following example::
.
|__ src
| |__ complex_main.c
| |__ hal
| |__ hardwareif.c
| |__ include
| |__ hardwareif.h
|__ include
|__ complex.h
To build the module complex.ko, we then need the following
kbuild file::
--> filename: Kbuild
obj-m := complex.o
complex-y := src/complex_main.o
complex-y += src/hal/hardwareif.o
ccflags-y := -I$(src)/include
ccflags-y += -I$(src)/src/hal/include
As you can see, kbuild knows how to handle object files located
in other directories. The trick is to specify the directory
relative to the kbuild file's location. That being said, this
is NOT recommended practice.
For the header files, kbuild must be explicitly told where to
look. When kbuild executes, the current directory is always the
root of the kernel tree (the argument to "-C") and therefore an
absolute path is needed. $(src) provides the absolute path by
pointing to the directory where the currently executing kbuild
file is located.
5. Module Installation
======================
Modules which are included in the kernel are installed in the
directory:
/lib/modules/$(KERNELRELEASE)/kernel/
And external modules are installed in:
/lib/modules/$(KERNELRELEASE)/extra/
5.1 INSTALL_MOD_PATH
--------------------
Above are the default directories but as always some level of
customization is possible. A prefix can be added to the
installation path using the variable INSTALL_MOD_PATH::
$ make INSTALL_MOD_PATH=/frodo modules_install
=> Install dir: /frodo/lib/modules/$(KERNELRELEASE)/kernel/
INSTALL_MOD_PATH may be set as an ordinary shell variable or,
as shown above, can be specified on the command line when
calling "make." This has effect when installing both in-tree
and out-of-tree modules.
5.2 INSTALL_MOD_DIR
-------------------
External modules are by default installed to a directory under
/lib/modules/$(KERNELRELEASE)/extra/, but you may wish to
locate modules for a specific functionality in a separate
directory. For this purpose, use INSTALL_MOD_DIR to specify an
alternative name to "extra."::
$ make INSTALL_MOD_DIR=gandalf -C $KDIR \
M=$PWD modules_install
=> Install dir: /lib/modules/$(KERNELRELEASE)/gandalf/
6. Module Versioning
====================
Module versioning is enabled by the CONFIG_MODVERSIONS tag, and is used
as a simple ABI consistency check. A CRC value of the full prototype
for an exported symbol is created. When a module is loaded/used, the
CRC values contained in the kernel are compared with similar values in
the module; if they are not equal, the kernel refuses to load the
module.
Module.symvers contains a list of all exported symbols from a kernel
build.
6.1 Symbols From the Kernel (vmlinux + modules)
-----------------------------------------------
During a kernel build, a file named Module.symvers will be
generated. Module.symvers contains all exported symbols from
the kernel and compiled modules. For each symbol, the
corresponding CRC value is also stored.
The syntax of the Module.symvers file is::
modpost: move the namespace field in Module.symvers last In order to preserve backwards compatability with kmod tools, we have to move the namespace field in Module.symvers last, as the depmod -e -E option looks at the first three fields in Module.symvers to check symbol versions (and it's expected they stay in the original order of crc, symbol, module). In addition, update an ancient comment above read_dump() in modpost that suggested that the export type field in Module.symvers was optional. I suspect that there were historical reasons behind that comment that are no longer accurate. We have been unconditionally printing the export type since 2.6.18 (commit bd5cbcedf44), which is over a decade ago now. Fix up read_dump() to treat each field as non-optional. I suspect the original read_dump() code treated the export field as optional in order to support pre <= 2.6.18 Module.symvers (which did not have the export type field). Note that although symbol namespaces are optional, the field will not be omitted from Module.symvers if a symbol does not have a namespace. In this case, the field will simply be empty and the next delimiter or end of line will follow. Cc: stable@vger.kernel.org Fixes: cb9b55d21fe0 ("modpost: add support for symbol namespaces") Tested-by: Matthias Maennich <maennich@google.com> Reviewed-by: Matthias Maennich <maennich@google.com> Reviewed-by: Lucas De Marchi <lucas.demarchi@intel.com> Signed-off-by: Jessica Yu <jeyu@kernel.org> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2020-03-12 01:01:20 +08:00
<CRC> <Symbol> <Module> <Export Type> <Namespace>
modpost: move the namespace field in Module.symvers last In order to preserve backwards compatability with kmod tools, we have to move the namespace field in Module.symvers last, as the depmod -e -E option looks at the first three fields in Module.symvers to check symbol versions (and it's expected they stay in the original order of crc, symbol, module). In addition, update an ancient comment above read_dump() in modpost that suggested that the export type field in Module.symvers was optional. I suspect that there were historical reasons behind that comment that are no longer accurate. We have been unconditionally printing the export type since 2.6.18 (commit bd5cbcedf44), which is over a decade ago now. Fix up read_dump() to treat each field as non-optional. I suspect the original read_dump() code treated the export field as optional in order to support pre <= 2.6.18 Module.symvers (which did not have the export type field). Note that although symbol namespaces are optional, the field will not be omitted from Module.symvers if a symbol does not have a namespace. In this case, the field will simply be empty and the next delimiter or end of line will follow. Cc: stable@vger.kernel.org Fixes: cb9b55d21fe0 ("modpost: add support for symbol namespaces") Tested-by: Matthias Maennich <maennich@google.com> Reviewed-by: Matthias Maennich <maennich@google.com> Reviewed-by: Lucas De Marchi <lucas.demarchi@intel.com> Signed-off-by: Jessica Yu <jeyu@kernel.org> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2020-03-12 01:01:20 +08:00
0xe1cc2a05 usb_stor_suspend drivers/usb/storage/usb-storage EXPORT_SYMBOL_GPL USB_STORAGE
The fields are separated by tabs and values may be empty (e.g.
if no namespace is defined for an exported symbol).
For a kernel build without CONFIG_MODVERSIONS enabled, the CRC
would read 0x00000000.
Module.symvers serves two purposes:
1) It lists all exported symbols from vmlinux and all modules.
2) It lists the CRC if CONFIG_MODVERSIONS is enabled.
6.2 Symbols and External Modules
--------------------------------
When building an external module, the build system needs access
to the symbols from the kernel to check if all external symbols
are defined. This is done in the MODPOST step. modpost obtains
the symbols by reading Module.symvers from the kernel source
tree. During the MODPOST step, a new Module.symvers file will be
written containing all exported symbols from that external module.
6.3 Symbols From Another External Module
----------------------------------------
Sometimes, an external module uses exported symbols from
another external module. Kbuild needs to have full knowledge of
all symbols to avoid spitting out warnings about undefined
symbols. Two solutions exist for this situation.
NOTE: The method with a top-level kbuild file is recommended
but may be impractical in certain situations.
Use a top-level kbuild file
If you have two modules, foo.ko and bar.ko, where
foo.ko needs symbols from bar.ko, you can use a
common top-level kbuild file so both modules are
compiled in the same build. Consider the following
directory layout::
./foo/ <= contains foo.ko
./bar/ <= contains bar.ko
The top-level kbuild file would then look like::
#./Kbuild (or ./Makefile):
obj-m := foo/ bar/
And executing::
$ make -C $KDIR M=$PWD
will then do the expected and compile both modules with
full knowledge of symbols from either module.
Use an extra Module.symvers file
When an external module is built, a Module.symvers file
is generated containing all exported symbols which are
not defined in the kernel. To get access to symbols
from bar.ko, copy the Module.symvers file from the
compilation of bar.ko to the directory where foo.ko is
built. During the module build, kbuild will read the
Module.symvers file in the directory of the external
module, and when the build is finished, a new
Module.symvers file is created containing the sum of
all symbols defined and not part of the kernel.
Use "make" variable KBUILD_EXTRA_SYMBOLS
If it is impractical to add a top-level kbuild file,
you can assign a space separated list
of files to KBUILD_EXTRA_SYMBOLS in your build file.
These files will be loaded by modpost during the
initialization of its symbol tables.
7. Tips & Tricks
================
7.1 Testing for CONFIG_FOO_BAR
------------------------------
Modules often need to check for certain `CONFIG_` options to
decide if a specific feature is included in the module. In
kbuild this is done by referencing the `CONFIG_` variable
directly::
#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o
ext2-y := balloc.o bitmap.o dir.o
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o
External modules have traditionally used "grep" to check for
specific `CONFIG_` settings directly in .config. This usage is
broken. As introduced before, external modules should use
kbuild for building and can therefore use the same methods as
in-tree modules when testing for `CONFIG_` definitions.