2019-05-27 14:55:06 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
2016-06-30 03:05:23 +08:00
|
|
|
/*
|
|
|
|
* Copyright 2016 Maxime Ripard
|
|
|
|
*
|
|
|
|
* Maxime Ripard <maxime.ripard@free-electrons.com>
|
|
|
|
*/
|
|
|
|
|
clk: sunxi-ng: Add clk notifier to gate then ungate PLL clocks
In common PLL designs, changes to the dividers take effect almost
immediately, while changes to the multipliers (implemented as
dividers in the feedback loop) take a few cycles to work into
the feedback loop for the PLL to stablize.
Sometimes when the PLL clock rate is changed, the decrease in the
divider is too much for the decrease in the multiplier to catch up.
The PLL clock rate will spike, and in some cases, might lock up
completely. This is especially the case if the divider changed is
the pre-divider, which affects the reference frequency.
This patch introduces a clk notifier callback that will gate and
then ungate a clk after a rate change, effectively resetting it,
so it continues to work, despite any possible lockups. Care must
be taken to reparent any consumers to other temporary clocks during
the rate change, and that this notifier callback must be the first
to be registered.
This is intended to fix occasional lockups with cpufreq on newer
Allwinner SoCs, such as the A33 and the H3. Previously it was
thought that reparenting the cpu clock away from the PLL while
it stabilized was enough, as this worked quite well on the A31.
On the A33, hangs have been observed after cpufreq was recently
introduced. With the H3, a more thorough test [1] showed that
reparenting alone isn't enough. The system still locks up unless
the dividers are limited to 1.
A hunch was if the PLL was stuck in some unknown state, perhaps
gating then ungating it would bring it back to normal. Tests
done by Icenowy Zheng using Ondrej's test firmware shows this
to be a valid solution.
[1] http://www.spinics.net/lists/arm-kernel/msg552501.html
Reported-by: Ondrej Jirman <megous@megous.com>
Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Tested-by: Icenowy Zheng <icenowy@aosc.io>
Tested-by: Quentin Schulz <quentin.schulz@free-electrons.com>
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
2017-04-13 10:13:52 +08:00
|
|
|
#include <linux/clk.h>
|
2016-06-30 03:05:23 +08:00
|
|
|
#include <linux/clk-provider.h>
|
2021-09-01 13:05:19 +08:00
|
|
|
#include <linux/device.h>
|
2016-06-30 03:05:23 +08:00
|
|
|
#include <linux/iopoll.h>
|
2021-11-19 11:33:37 +08:00
|
|
|
#include <linux/module.h>
|
2016-06-30 03:05:23 +08:00
|
|
|
#include <linux/slab.h>
|
|
|
|
|
|
|
|
#include "ccu_common.h"
|
clk: sunxi-ng: Add clk notifier to gate then ungate PLL clocks
In common PLL designs, changes to the dividers take effect almost
immediately, while changes to the multipliers (implemented as
dividers in the feedback loop) take a few cycles to work into
the feedback loop for the PLL to stablize.
Sometimes when the PLL clock rate is changed, the decrease in the
divider is too much for the decrease in the multiplier to catch up.
The PLL clock rate will spike, and in some cases, might lock up
completely. This is especially the case if the divider changed is
the pre-divider, which affects the reference frequency.
This patch introduces a clk notifier callback that will gate and
then ungate a clk after a rate change, effectively resetting it,
so it continues to work, despite any possible lockups. Care must
be taken to reparent any consumers to other temporary clocks during
the rate change, and that this notifier callback must be the first
to be registered.
This is intended to fix occasional lockups with cpufreq on newer
Allwinner SoCs, such as the A33 and the H3. Previously it was
thought that reparenting the cpu clock away from the PLL while
it stabilized was enough, as this worked quite well on the A31.
On the A33, hangs have been observed after cpufreq was recently
introduced. With the H3, a more thorough test [1] showed that
reparenting alone isn't enough. The system still locks up unless
the dividers are limited to 1.
A hunch was if the PLL was stuck in some unknown state, perhaps
gating then ungating it would bring it back to normal. Tests
done by Icenowy Zheng using Ondrej's test firmware shows this
to be a valid solution.
[1] http://www.spinics.net/lists/arm-kernel/msg552501.html
Reported-by: Ondrej Jirman <megous@megous.com>
Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Tested-by: Icenowy Zheng <icenowy@aosc.io>
Tested-by: Quentin Schulz <quentin.schulz@free-electrons.com>
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
2017-04-13 10:13:52 +08:00
|
|
|
#include "ccu_gate.h"
|
2016-06-30 03:05:23 +08:00
|
|
|
#include "ccu_reset.h"
|
|
|
|
|
2021-09-01 13:05:19 +08:00
|
|
|
struct sunxi_ccu {
|
|
|
|
const struct sunxi_ccu_desc *desc;
|
2021-09-01 13:05:21 +08:00
|
|
|
spinlock_t lock;
|
2021-09-01 13:05:19 +08:00
|
|
|
struct ccu_reset reset;
|
|
|
|
};
|
|
|
|
|
2016-06-30 03:05:23 +08:00
|
|
|
void ccu_helper_wait_for_lock(struct ccu_common *common, u32 lock)
|
|
|
|
{
|
2017-01-28 20:22:33 +08:00
|
|
|
void __iomem *addr;
|
2016-06-30 03:05:23 +08:00
|
|
|
u32 reg;
|
|
|
|
|
|
|
|
if (!lock)
|
|
|
|
return;
|
|
|
|
|
2017-01-28 20:22:33 +08:00
|
|
|
if (common->features & CCU_FEATURE_LOCK_REG)
|
|
|
|
addr = common->base + common->lock_reg;
|
|
|
|
else
|
|
|
|
addr = common->base + common->reg;
|
|
|
|
|
|
|
|
WARN_ON(readl_relaxed_poll_timeout(addr, reg, reg & lock, 100, 70000));
|
2016-06-30 03:05:23 +08:00
|
|
|
}
|
2021-11-19 11:33:34 +08:00
|
|
|
EXPORT_SYMBOL_NS_GPL(ccu_helper_wait_for_lock, SUNXI_CCU);
|
2016-06-30 03:05:23 +08:00
|
|
|
|
clk: sunxi-ng: Add clk notifier to gate then ungate PLL clocks
In common PLL designs, changes to the dividers take effect almost
immediately, while changes to the multipliers (implemented as
dividers in the feedback loop) take a few cycles to work into
the feedback loop for the PLL to stablize.
Sometimes when the PLL clock rate is changed, the decrease in the
divider is too much for the decrease in the multiplier to catch up.
The PLL clock rate will spike, and in some cases, might lock up
completely. This is especially the case if the divider changed is
the pre-divider, which affects the reference frequency.
This patch introduces a clk notifier callback that will gate and
then ungate a clk after a rate change, effectively resetting it,
so it continues to work, despite any possible lockups. Care must
be taken to reparent any consumers to other temporary clocks during
the rate change, and that this notifier callback must be the first
to be registered.
This is intended to fix occasional lockups with cpufreq on newer
Allwinner SoCs, such as the A33 and the H3. Previously it was
thought that reparenting the cpu clock away from the PLL while
it stabilized was enough, as this worked quite well on the A31.
On the A33, hangs have been observed after cpufreq was recently
introduced. With the H3, a more thorough test [1] showed that
reparenting alone isn't enough. The system still locks up unless
the dividers are limited to 1.
A hunch was if the PLL was stuck in some unknown state, perhaps
gating then ungating it would bring it back to normal. Tests
done by Icenowy Zheng using Ondrej's test firmware shows this
to be a valid solution.
[1] http://www.spinics.net/lists/arm-kernel/msg552501.html
Reported-by: Ondrej Jirman <megous@megous.com>
Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Tested-by: Icenowy Zheng <icenowy@aosc.io>
Tested-by: Quentin Schulz <quentin.schulz@free-electrons.com>
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
2017-04-13 10:13:52 +08:00
|
|
|
/*
|
|
|
|
* This clock notifier is called when the frequency of a PLL clock is
|
|
|
|
* changed. In common PLL designs, changes to the dividers take effect
|
|
|
|
* almost immediately, while changes to the multipliers (implemented
|
|
|
|
* as dividers in the feedback loop) take a few cycles to work into
|
|
|
|
* the feedback loop for the PLL to stablize.
|
|
|
|
*
|
|
|
|
* Sometimes when the PLL clock rate is changed, the decrease in the
|
|
|
|
* divider is too much for the decrease in the multiplier to catch up.
|
|
|
|
* The PLL clock rate will spike, and in some cases, might lock up
|
|
|
|
* completely.
|
|
|
|
*
|
|
|
|
* This notifier callback will gate and then ungate the clock,
|
|
|
|
* effectively resetting it, so it proceeds to work. Care must be
|
|
|
|
* taken to reparent consumers to other temporary clocks during the
|
|
|
|
* rate change, and that this notifier callback must be the first
|
|
|
|
* to be registered.
|
|
|
|
*/
|
|
|
|
static int ccu_pll_notifier_cb(struct notifier_block *nb,
|
|
|
|
unsigned long event, void *data)
|
|
|
|
{
|
|
|
|
struct ccu_pll_nb *pll = to_ccu_pll_nb(nb);
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (event != POST_RATE_CHANGE)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ccu_gate_helper_disable(pll->common, pll->enable);
|
|
|
|
|
|
|
|
ret = ccu_gate_helper_enable(pll->common, pll->enable);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ccu_helper_wait_for_lock(pll->common, pll->lock);
|
|
|
|
|
|
|
|
out:
|
|
|
|
return notifier_from_errno(ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ccu_pll_notifier_register(struct ccu_pll_nb *pll_nb)
|
|
|
|
{
|
|
|
|
pll_nb->clk_nb.notifier_call = ccu_pll_notifier_cb;
|
|
|
|
|
|
|
|
return clk_notifier_register(pll_nb->common->hw.clk,
|
|
|
|
&pll_nb->clk_nb);
|
|
|
|
}
|
2021-11-19 11:33:34 +08:00
|
|
|
EXPORT_SYMBOL_NS_GPL(ccu_pll_notifier_register, SUNXI_CCU);
|
clk: sunxi-ng: Add clk notifier to gate then ungate PLL clocks
In common PLL designs, changes to the dividers take effect almost
immediately, while changes to the multipliers (implemented as
dividers in the feedback loop) take a few cycles to work into
the feedback loop for the PLL to stablize.
Sometimes when the PLL clock rate is changed, the decrease in the
divider is too much for the decrease in the multiplier to catch up.
The PLL clock rate will spike, and in some cases, might lock up
completely. This is especially the case if the divider changed is
the pre-divider, which affects the reference frequency.
This patch introduces a clk notifier callback that will gate and
then ungate a clk after a rate change, effectively resetting it,
so it continues to work, despite any possible lockups. Care must
be taken to reparent any consumers to other temporary clocks during
the rate change, and that this notifier callback must be the first
to be registered.
This is intended to fix occasional lockups with cpufreq on newer
Allwinner SoCs, such as the A33 and the H3. Previously it was
thought that reparenting the cpu clock away from the PLL while
it stabilized was enough, as this worked quite well on the A31.
On the A33, hangs have been observed after cpufreq was recently
introduced. With the H3, a more thorough test [1] showed that
reparenting alone isn't enough. The system still locks up unless
the dividers are limited to 1.
A hunch was if the PLL was stuck in some unknown state, perhaps
gating then ungating it would bring it back to normal. Tests
done by Icenowy Zheng using Ondrej's test firmware shows this
to be a valid solution.
[1] http://www.spinics.net/lists/arm-kernel/msg552501.html
Reported-by: Ondrej Jirman <megous@megous.com>
Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Tested-by: Icenowy Zheng <icenowy@aosc.io>
Tested-by: Quentin Schulz <quentin.schulz@free-electrons.com>
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
2017-04-13 10:13:52 +08:00
|
|
|
|
2021-09-01 13:05:19 +08:00
|
|
|
static int sunxi_ccu_probe(struct sunxi_ccu *ccu, struct device *dev,
|
|
|
|
struct device_node *node, void __iomem *reg,
|
|
|
|
const struct sunxi_ccu_desc *desc)
|
2016-06-30 03:05:23 +08:00
|
|
|
{
|
|
|
|
struct ccu_reset *reset;
|
|
|
|
int i, ret;
|
|
|
|
|
2021-09-01 13:05:19 +08:00
|
|
|
ccu->desc = desc;
|
|
|
|
|
2021-09-01 13:05:21 +08:00
|
|
|
spin_lock_init(&ccu->lock);
|
|
|
|
|
2016-06-30 03:05:23 +08:00
|
|
|
for (i = 0; i < desc->num_ccu_clks; i++) {
|
|
|
|
struct ccu_common *cclk = desc->ccu_clks[i];
|
|
|
|
|
|
|
|
if (!cclk)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
cclk->base = reg;
|
2021-09-01 13:05:21 +08:00
|
|
|
cclk->lock = &ccu->lock;
|
2016-06-30 03:05:23 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < desc->hw_clks->num ; i++) {
|
|
|
|
struct clk_hw *hw = desc->hw_clks->hws[i];
|
2019-08-15 12:10:37 +08:00
|
|
|
const char *name;
|
2016-06-30 03:05:23 +08:00
|
|
|
|
|
|
|
if (!hw)
|
|
|
|
continue;
|
|
|
|
|
2019-08-15 12:10:37 +08:00
|
|
|
name = hw->init->name;
|
2021-09-01 13:05:19 +08:00
|
|
|
if (dev)
|
|
|
|
ret = clk_hw_register(dev, hw);
|
|
|
|
else
|
|
|
|
ret = of_clk_hw_register(node, hw);
|
2016-06-30 03:05:23 +08:00
|
|
|
if (ret) {
|
2019-08-15 12:10:37 +08:00
|
|
|
pr_err("Couldn't register clock %d - %s\n", i, name);
|
2016-06-30 03:05:23 +08:00
|
|
|
goto err_clk_unreg;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = of_clk_add_hw_provider(node, of_clk_hw_onecell_get,
|
|
|
|
desc->hw_clks);
|
|
|
|
if (ret)
|
|
|
|
goto err_clk_unreg;
|
|
|
|
|
2021-09-01 13:05:19 +08:00
|
|
|
reset = &ccu->reset;
|
2016-06-30 03:05:23 +08:00
|
|
|
reset->rcdev.of_node = node;
|
|
|
|
reset->rcdev.ops = &ccu_reset_ops;
|
2021-09-01 13:05:19 +08:00
|
|
|
reset->rcdev.owner = dev ? dev->driver->owner : THIS_MODULE;
|
2016-06-30 03:05:23 +08:00
|
|
|
reset->rcdev.nr_resets = desc->num_resets;
|
|
|
|
reset->base = reg;
|
2021-09-01 13:05:21 +08:00
|
|
|
reset->lock = &ccu->lock;
|
2016-06-30 03:05:23 +08:00
|
|
|
reset->reset_map = desc->resets;
|
|
|
|
|
|
|
|
ret = reset_controller_register(&reset->rcdev);
|
|
|
|
if (ret)
|
2021-09-01 13:05:19 +08:00
|
|
|
goto err_del_provider;
|
2016-06-30 03:05:23 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
2021-09-01 13:05:19 +08:00
|
|
|
err_del_provider:
|
2017-02-04 04:43:11 +08:00
|
|
|
of_clk_del_provider(node);
|
2016-06-30 03:05:23 +08:00
|
|
|
err_clk_unreg:
|
2017-02-04 04:43:11 +08:00
|
|
|
while (--i >= 0) {
|
|
|
|
struct clk_hw *hw = desc->hw_clks->hws[i];
|
|
|
|
|
|
|
|
if (!hw)
|
|
|
|
continue;
|
|
|
|
clk_hw_unregister(hw);
|
|
|
|
}
|
2016-06-30 03:05:23 +08:00
|
|
|
return ret;
|
|
|
|
}
|
2021-09-01 13:05:19 +08:00
|
|
|
|
|
|
|
static void devm_sunxi_ccu_release(struct device *dev, void *res)
|
|
|
|
{
|
|
|
|
struct sunxi_ccu *ccu = res;
|
|
|
|
const struct sunxi_ccu_desc *desc = ccu->desc;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
reset_controller_unregister(&ccu->reset.rcdev);
|
|
|
|
of_clk_del_provider(dev->of_node);
|
|
|
|
|
|
|
|
for (i = 0; i < desc->hw_clks->num; i++) {
|
|
|
|
struct clk_hw *hw = desc->hw_clks->hws[i];
|
|
|
|
|
|
|
|
if (!hw)
|
|
|
|
continue;
|
|
|
|
clk_hw_unregister(hw);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int devm_sunxi_ccu_probe(struct device *dev, void __iomem *reg,
|
|
|
|
const struct sunxi_ccu_desc *desc)
|
|
|
|
{
|
|
|
|
struct sunxi_ccu *ccu;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ccu = devres_alloc(devm_sunxi_ccu_release, sizeof(*ccu), GFP_KERNEL);
|
|
|
|
if (!ccu)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ret = sunxi_ccu_probe(ccu, dev, dev->of_node, reg, desc);
|
|
|
|
if (ret) {
|
|
|
|
devres_free(ccu);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
devres_add(dev, ccu);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2021-11-19 11:33:34 +08:00
|
|
|
EXPORT_SYMBOL_NS_GPL(devm_sunxi_ccu_probe, SUNXI_CCU);
|
2021-09-01 13:05:19 +08:00
|
|
|
|
|
|
|
void of_sunxi_ccu_probe(struct device_node *node, void __iomem *reg,
|
|
|
|
const struct sunxi_ccu_desc *desc)
|
|
|
|
{
|
|
|
|
struct sunxi_ccu *ccu;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ccu = kzalloc(sizeof(*ccu), GFP_KERNEL);
|
|
|
|
if (!ccu)
|
|
|
|
return;
|
|
|
|
|
|
|
|
ret = sunxi_ccu_probe(ccu, NULL, node, reg, desc);
|
|
|
|
if (ret) {
|
|
|
|
pr_err("%pOF: probing clocks failed: %d\n", node, ret);
|
|
|
|
kfree(ccu);
|
|
|
|
}
|
|
|
|
}
|
2021-11-19 11:33:37 +08:00
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|