linux/arch/arm/mach-orion5x/addr-map.c

207 lines
5.6 KiB
C
Raw Normal View History

/*
* arch/arm/mach-orion5x/addr-map.c
*
* Address map functions for Marvell Orion 5x SoCs
*
* Maintainer: Tzachi Perelstein <tzachi@marvell.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mbus.h>
#include <linux/io.h>
#include <linux/errno.h>
#include <mach/hardware.h>
#include "common.h"
/*
* The Orion has fully programmable address map. There's a separate address
* map for each of the device _master_ interfaces, e.g. CPU, PCI, PCIe, USB,
* Gigabit Ethernet, DMA/XOR engines, etc. Each interface has its own
* address decode windows that allow it to access any of the Orion resources.
*
* CPU address decoding --
* Linux assumes that it is the boot loader that already setup the access to
* DDR and internal registers.
* Setup access to PCI and PCIe IO/MEM space is issued by this file.
* Setup access to various devices located on the device bus interface (e.g.
* flashes, RTC, etc) should be issued by machine-setup.c according to
* specific board population (by using orion5x_setup_*_win()).
*
* Non-CPU Masters address decoding --
* Unlike the CPU, we setup the access from Orion's master interfaces to DDR
* banks only (the typical use case).
* Setup access for each master to DDR is issued by platform device setup.
*/
/*
* Generic Address Decode Windows bit settings
*/
#define TARGET_DDR 0
#define TARGET_DEV_BUS 1
#define TARGET_PCI 3
#define TARGET_PCIE 4
#define TARGET_SRAM 9
#define ATTR_PCIE_MEM 0x59
#define ATTR_PCIE_IO 0x51
#define ATTR_PCIE_WA 0x79
#define ATTR_PCI_MEM 0x59
#define ATTR_PCI_IO 0x51
#define ATTR_DEV_CS0 0x1e
#define ATTR_DEV_CS1 0x1d
#define ATTR_DEV_CS2 0x1b
#define ATTR_DEV_BOOT 0xf
#define ATTR_SRAM 0x0
/*
* Helpers to get DDR bank info
*/
#define ORION5X_DDR_REG(x) (ORION5X_DDR_VIRT_BASE | (x))
#define DDR_BASE_CS(n) ORION5X_DDR_REG(0x1500 + ((n) << 3))
#define DDR_SIZE_CS(n) ORION5X_DDR_REG(0x1504 + ((n) << 3))
/*
* CPU Address Decode Windows registers
*/
#define ORION5X_BRIDGE_REG(x) (ORION5X_BRIDGE_VIRT_BASE | (x))
#define CPU_WIN_CTRL(n) ORION5X_BRIDGE_REG(0x000 | ((n) << 4))
#define CPU_WIN_BASE(n) ORION5X_BRIDGE_REG(0x004 | ((n) << 4))
#define CPU_WIN_REMAP_LO(n) ORION5X_BRIDGE_REG(0x008 | ((n) << 4))
#define CPU_WIN_REMAP_HI(n) ORION5X_BRIDGE_REG(0x00c | ((n) << 4))
struct mbus_dram_target_info orion5x_mbus_dram_info;
static int __initdata win_alloc_count;
static int __init orion5x_cpu_win_can_remap(int win)
{
u32 dev, rev;
orion5x_pcie_id(&dev, &rev);
if ((dev == MV88F5281_DEV_ID && win < 4)
|| (dev == MV88F5182_DEV_ID && win < 2)
|| (dev == MV88F5181_DEV_ID && win < 2)
|| (dev == MV88F6183_DEV_ID && win < 4))
return 1;
return 0;
}
static int __init setup_cpu_win(int win, u32 base, u32 size,
u8 target, u8 attr, int remap)
{
if (win >= 8) {
printk(KERN_ERR "setup_cpu_win: trying to allocate "
"window %d\n", win);
return -ENOSPC;
}
writel(base & 0xffff0000, CPU_WIN_BASE(win));
writel(((size - 1) & 0xffff0000) | (attr << 8) | (target << 4) | 1,
CPU_WIN_CTRL(win));
if (orion5x_cpu_win_can_remap(win)) {
if (remap < 0)
remap = base;
writel(remap & 0xffff0000, CPU_WIN_REMAP_LO(win));
writel(0, CPU_WIN_REMAP_HI(win));
}
return 0;
}
void __init orion5x_setup_cpu_mbus_bridge(void)
{
int i;
int cs;
/*
* First, disable and clear windows.
*/
for (i = 0; i < 8; i++) {
writel(0, CPU_WIN_BASE(i));
writel(0, CPU_WIN_CTRL(i));
if (orion5x_cpu_win_can_remap(i)) {
writel(0, CPU_WIN_REMAP_LO(i));
writel(0, CPU_WIN_REMAP_HI(i));
}
}
/*
* Setup windows for PCI+PCIe IO+MEM space.
*/
setup_cpu_win(0, ORION5X_PCIE_IO_PHYS_BASE, ORION5X_PCIE_IO_SIZE,
TARGET_PCIE, ATTR_PCIE_IO, ORION5X_PCIE_IO_BUS_BASE);
setup_cpu_win(1, ORION5X_PCI_IO_PHYS_BASE, ORION5X_PCI_IO_SIZE,
TARGET_PCI, ATTR_PCI_IO, ORION5X_PCI_IO_BUS_BASE);
setup_cpu_win(2, ORION5X_PCIE_MEM_PHYS_BASE, ORION5X_PCIE_MEM_SIZE,
TARGET_PCIE, ATTR_PCIE_MEM, -1);
setup_cpu_win(3, ORION5X_PCI_MEM_PHYS_BASE, ORION5X_PCI_MEM_SIZE,
TARGET_PCI, ATTR_PCI_MEM, -1);
win_alloc_count = 4;
/*
* Setup MBUS dram target info.
*/
orion5x_mbus_dram_info.mbus_dram_target_id = TARGET_DDR;
for (i = 0, cs = 0; i < 4; i++) {
u32 base = readl(DDR_BASE_CS(i));
u32 size = readl(DDR_SIZE_CS(i));
/*
* Chip select enabled?
*/
if (size & 1) {
struct mbus_dram_window *w;
w = &orion5x_mbus_dram_info.cs[cs++];
w->cs_index = i;
w->mbus_attr = 0xf & ~(1 << i);
w->base = base & 0xffff0000;
w->size = (size | 0x0000ffff) + 1;
}
}
orion5x_mbus_dram_info.num_cs = cs;
}
void __init orion5x_setup_dev_boot_win(u32 base, u32 size)
{
setup_cpu_win(win_alloc_count++, base, size,
TARGET_DEV_BUS, ATTR_DEV_BOOT, -1);
}
void __init orion5x_setup_dev0_win(u32 base, u32 size)
{
setup_cpu_win(win_alloc_count++, base, size,
TARGET_DEV_BUS, ATTR_DEV_CS0, -1);
}
void __init orion5x_setup_dev1_win(u32 base, u32 size)
{
setup_cpu_win(win_alloc_count++, base, size,
TARGET_DEV_BUS, ATTR_DEV_CS1, -1);
}
void __init orion5x_setup_dev2_win(u32 base, u32 size)
{
setup_cpu_win(win_alloc_count++, base, size,
TARGET_DEV_BUS, ATTR_DEV_CS2, -1);
}
void __init orion5x_setup_pcie_wa_win(u32 base, u32 size)
{
setup_cpu_win(win_alloc_count++, base, size,
TARGET_PCIE, ATTR_PCIE_WA, -1);
}
int __init orion5x_setup_sram_win(void)
{
return setup_cpu_win(win_alloc_count++, ORION5X_SRAM_PHYS_BASE,
ORION5X_SRAM_SIZE, TARGET_SRAM, ATTR_SRAM, -1);
}