linux/drivers/crypto/n2_core.c

2250 lines
52 KiB
C
Raw Normal View History

/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
*
* Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/cpumask.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/crypto.h>
#include <crypto/md5.h>
#include <crypto/sha.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <asm/hypervisor.h>
#include <asm/mdesc.h>
#include "n2_core.h"
#define DRV_MODULE_NAME "n2_crypto"
#define DRV_MODULE_VERSION "0.2"
#define DRV_MODULE_RELDATE "July 28, 2011"
static const char version[] =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_DESCRIPTION("Niagara2 Crypto driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
#define N2_CRA_PRIORITY 200
static DEFINE_MUTEX(spu_lock);
struct spu_queue {
cpumask_t sharing;
unsigned long qhandle;
spinlock_t lock;
u8 q_type;
void *q;
unsigned long head;
unsigned long tail;
struct list_head jobs;
unsigned long devino;
char irq_name[32];
unsigned int irq;
struct list_head list;
};
struct spu_qreg {
struct spu_queue *queue;
unsigned long type;
};
static struct spu_queue **cpu_to_cwq;
static struct spu_queue **cpu_to_mau;
static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
{
if (q->q_type == HV_NCS_QTYPE_MAU) {
off += MAU_ENTRY_SIZE;
if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
off = 0;
} else {
off += CWQ_ENTRY_SIZE;
if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
off = 0;
}
return off;
}
struct n2_request_common {
struct list_head entry;
unsigned int offset;
};
#define OFFSET_NOT_RUNNING (~(unsigned int)0)
/* An async job request records the final tail value it used in
* n2_request_common->offset, test to see if that offset is in
* the range old_head, new_head, inclusive.
*/
static inline bool job_finished(struct spu_queue *q, unsigned int offset,
unsigned long old_head, unsigned long new_head)
{
if (old_head <= new_head) {
if (offset > old_head && offset <= new_head)
return true;
} else {
if (offset > old_head || offset <= new_head)
return true;
}
return false;
}
/* When the HEAD marker is unequal to the actual HEAD, we get
* a virtual device INO interrupt. We should process the
* completed CWQ entries and adjust the HEAD marker to clear
* the IRQ.
*/
static irqreturn_t cwq_intr(int irq, void *dev_id)
{
unsigned long off, new_head, hv_ret;
struct spu_queue *q = dev_id;
pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
smp_processor_id(), q->qhandle);
spin_lock(&q->lock);
hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
smp_processor_id(), new_head, hv_ret);
for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
/* XXX ... XXX */
}
hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
if (hv_ret == HV_EOK)
q->head = new_head;
spin_unlock(&q->lock);
return IRQ_HANDLED;
}
static irqreturn_t mau_intr(int irq, void *dev_id)
{
struct spu_queue *q = dev_id;
unsigned long head, hv_ret;
spin_lock(&q->lock);
pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
smp_processor_id(), q->qhandle);
hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
smp_processor_id(), head, hv_ret);
sun4v_ncs_sethead_marker(q->qhandle, head);
spin_unlock(&q->lock);
return IRQ_HANDLED;
}
static void *spu_queue_next(struct spu_queue *q, void *cur)
{
return q->q + spu_next_offset(q, cur - q->q);
}
static int spu_queue_num_free(struct spu_queue *q)
{
unsigned long head = q->head;
unsigned long tail = q->tail;
unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
unsigned long diff;
if (head > tail)
diff = head - tail;
else
diff = (end - tail) + head;
return (diff / CWQ_ENTRY_SIZE) - 1;
}
static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
{
int avail = spu_queue_num_free(q);
if (avail >= num_entries)
return q->q + q->tail;
return NULL;
}
static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
{
unsigned long hv_ret, new_tail;
new_tail = spu_next_offset(q, last - q->q);
hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
if (hv_ret == HV_EOK)
q->tail = new_tail;
return hv_ret;
}
static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
int enc_type, int auth_type,
unsigned int hash_len,
bool sfas, bool sob, bool eob, bool encrypt,
int opcode)
{
u64 word = (len - 1) & CONTROL_LEN;
word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
if (sfas)
word |= CONTROL_STORE_FINAL_AUTH_STATE;
if (sob)
word |= CONTROL_START_OF_BLOCK;
if (eob)
word |= CONTROL_END_OF_BLOCK;
if (encrypt)
word |= CONTROL_ENCRYPT;
if (hmac_key_len)
word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
if (hash_len)
word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
return word;
}
#if 0
static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
{
if (this_len >= 64 ||
qp->head != qp->tail)
return true;
return false;
}
#endif
struct n2_ahash_alg {
struct list_head entry;
const u8 *hash_zero;
const u32 *hash_init;
u8 hw_op_hashsz;
u8 digest_size;
u8 auth_type;
u8 hmac_type;
struct ahash_alg alg;
};
static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct ahash_alg *ahash_alg;
ahash_alg = container_of(alg, struct ahash_alg, halg.base);
return container_of(ahash_alg, struct n2_ahash_alg, alg);
}
struct n2_hmac_alg {
const char *child_alg;
struct n2_ahash_alg derived;
};
static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct ahash_alg *ahash_alg;
ahash_alg = container_of(alg, struct ahash_alg, halg.base);
return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
}
struct n2_hash_ctx {
struct crypto_ahash *fallback_tfm;
};
#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
struct n2_hmac_ctx {
struct n2_hash_ctx base;
struct crypto_shash *child_shash;
int hash_key_len;
unsigned char hash_key[N2_HASH_KEY_MAX];
};
struct n2_hash_req_ctx {
union {
struct md5_state md5;
struct sha1_state sha1;
struct sha256_state sha256;
} u;
struct ahash_request fallback_req;
};
static int n2_hash_async_init(struct ahash_request *req)
{
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_init(&rctx->fallback_req);
}
static int n2_hash_async_update(struct ahash_request *req)
{
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
return crypto_ahash_update(&rctx->fallback_req);
}
static int n2_hash_async_final(struct ahash_request *req)
{
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.result = req->result;
return crypto_ahash_final(&rctx->fallback_req);
}
static int n2_hash_async_finup(struct ahash_request *req)
{
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_finup(&rctx->fallback_req);
}
static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
{
return -ENOSYS;
}
static int n2_hash_async_noexport(struct ahash_request *req, void *out)
{
return -ENOSYS;
}
static int n2_hash_cra_init(struct crypto_tfm *tfm)
{
const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct crypto_ahash *fallback_tfm;
int err;
fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback_tfm)) {
pr_warning("Fallback driver '%s' could not be loaded!\n",
fallback_driver_name);
err = PTR_ERR(fallback_tfm);
goto out;
}
crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
crypto_ahash_reqsize(fallback_tfm)));
ctx->fallback_tfm = fallback_tfm;
return 0;
out:
return err;
}
static void n2_hash_cra_exit(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
crypto_free_ahash(ctx->fallback_tfm);
}
static int n2_hmac_cra_init(struct crypto_tfm *tfm)
{
const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
struct crypto_ahash *fallback_tfm;
struct crypto_shash *child_shash;
int err;
fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback_tfm)) {
pr_warning("Fallback driver '%s' could not be loaded!\n",
fallback_driver_name);
err = PTR_ERR(fallback_tfm);
goto out;
}
child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
if (IS_ERR(child_shash)) {
pr_warning("Child shash '%s' could not be loaded!\n",
n2alg->child_alg);
err = PTR_ERR(child_shash);
goto out_free_fallback;
}
crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
crypto_ahash_reqsize(fallback_tfm)));
ctx->child_shash = child_shash;
ctx->base.fallback_tfm = fallback_tfm;
return 0;
out_free_fallback:
crypto_free_ahash(fallback_tfm);
out:
return err;
}
static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
crypto_free_ahash(ctx->base.fallback_tfm);
crypto_free_shash(ctx->child_shash);
}
static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct crypto_shash *child_shash = ctx->child_shash;
struct crypto_ahash *fallback_tfm;
SHASH_DESC_ON_STACK(shash, child_shash);
int err, bs, ds;
fallback_tfm = ctx->base.fallback_tfm;
err = crypto_ahash_setkey(fallback_tfm, key, keylen);
if (err)
return err;
shash->tfm = child_shash;
shash->flags = crypto_ahash_get_flags(tfm) &
CRYPTO_TFM_REQ_MAY_SLEEP;
bs = crypto_shash_blocksize(child_shash);
ds = crypto_shash_digestsize(child_shash);
BUG_ON(ds > N2_HASH_KEY_MAX);
if (keylen > bs) {
err = crypto_shash_digest(shash, key, keylen,
ctx->hash_key);
if (err)
return err;
keylen = ds;
} else if (keylen <= N2_HASH_KEY_MAX)
memcpy(ctx->hash_key, key, keylen);
ctx->hash_key_len = keylen;
return err;
}
static unsigned long wait_for_tail(struct spu_queue *qp)
{
unsigned long head, hv_ret;
do {
hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
if (hv_ret != HV_EOK) {
pr_err("Hypervisor error on gethead\n");
break;
}
if (head == qp->tail) {
qp->head = head;
break;
}
} while (1);
return hv_ret;
}
static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
struct cwq_initial_entry *ent)
{
unsigned long hv_ret = spu_queue_submit(qp, ent);
if (hv_ret == HV_EOK)
hv_ret = wait_for_tail(qp);
return hv_ret;
}
static int n2_do_async_digest(struct ahash_request *req,
unsigned int auth_type, unsigned int digest_size,
unsigned int result_size, void *hash_loc,
unsigned long auth_key, unsigned int auth_key_len)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cwq_initial_entry *ent;
struct crypto_hash_walk walk;
struct spu_queue *qp;
unsigned long flags;
int err = -ENODEV;
int nbytes, cpu;
/* The total effective length of the operation may not
* exceed 2^16.
*/
if (unlikely(req->nbytes > (1 << 16))) {
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_digest(&rctx->fallback_req);
}
nbytes = crypto_hash_walk_first(req, &walk);
cpu = get_cpu();
qp = cpu_to_cwq[cpu];
if (!qp)
goto out;
spin_lock_irqsave(&qp->lock, flags);
/* XXX can do better, improve this later by doing a by-hand scatterlist
* XXX walk, etc.
*/
ent = qp->q + qp->tail;
ent->control = control_word_base(nbytes, auth_key_len, 0,
auth_type, digest_size,
false, true, false, false,
OPCODE_INPLACE_BIT |
OPCODE_AUTH_MAC);
ent->src_addr = __pa(walk.data);
ent->auth_key_addr = auth_key;
ent->auth_iv_addr = __pa(hash_loc);
ent->final_auth_state_addr = 0UL;
ent->enc_key_addr = 0UL;
ent->enc_iv_addr = 0UL;
ent->dest_addr = __pa(hash_loc);
nbytes = crypto_hash_walk_done(&walk, 0);
while (nbytes > 0) {
ent = spu_queue_next(qp, ent);
ent->control = (nbytes - 1);
ent->src_addr = __pa(walk.data);
ent->auth_key_addr = 0UL;
ent->auth_iv_addr = 0UL;
ent->final_auth_state_addr = 0UL;
ent->enc_key_addr = 0UL;
ent->enc_iv_addr = 0UL;
ent->dest_addr = 0UL;
nbytes = crypto_hash_walk_done(&walk, 0);
}
ent->control |= CONTROL_END_OF_BLOCK;
if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
err = -EINVAL;
else
err = 0;
spin_unlock_irqrestore(&qp->lock, flags);
if (!err)
memcpy(req->result, hash_loc, result_size);
out:
put_cpu();
return err;
}
static int n2_hash_async_digest(struct ahash_request *req)
{
struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
int ds;
ds = n2alg->digest_size;
if (unlikely(req->nbytes == 0)) {
memcpy(req->result, n2alg->hash_zero, ds);
return 0;
}
memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
return n2_do_async_digest(req, n2alg->auth_type,
n2alg->hw_op_hashsz, ds,
&rctx->u, 0UL, 0);
}
static int n2_hmac_async_digest(struct ahash_request *req)
{
struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
int ds;
ds = n2alg->derived.digest_size;
if (unlikely(req->nbytes == 0) ||
unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_digest(&rctx->fallback_req);
}
memcpy(&rctx->u, n2alg->derived.hash_init,
n2alg->derived.hw_op_hashsz);
return n2_do_async_digest(req, n2alg->derived.hmac_type,
n2alg->derived.hw_op_hashsz, ds,
&rctx->u,
__pa(&ctx->hash_key),
ctx->hash_key_len);
}
struct n2_cipher_context {
int key_len;
int enc_type;
union {
u8 aes[AES_MAX_KEY_SIZE];
u8 des[DES_KEY_SIZE];
u8 des3[3 * DES_KEY_SIZE];
u8 arc4[258]; /* S-box, X, Y */
} key;
};
#define N2_CHUNK_ARR_LEN 16
struct n2_crypto_chunk {
struct list_head entry;
unsigned long iv_paddr : 44;
unsigned long arr_len : 20;
unsigned long dest_paddr;
unsigned long dest_final;
struct {
unsigned long src_paddr : 44;
unsigned long src_len : 20;
} arr[N2_CHUNK_ARR_LEN];
};
struct n2_request_context {
struct ablkcipher_walk walk;
struct list_head chunk_list;
struct n2_crypto_chunk chunk;
u8 temp_iv[16];
};
/* The SPU allows some level of flexibility for partial cipher blocks
* being specified in a descriptor.
*
* It merely requires that every descriptor's length field is at least
* as large as the cipher block size. This means that a cipher block
* can span at most 2 descriptors. However, this does not allow a
* partial block to span into the final descriptor as that would
* violate the rule (since every descriptor's length must be at lest
* the block size). So, for example, assuming an 8 byte block size:
*
* 0xe --> 0xa --> 0x8
*
* is a valid length sequence, whereas:
*
* 0xe --> 0xb --> 0x7
*
* is not a valid sequence.
*/
struct n2_cipher_alg {
struct list_head entry;
u8 enc_type;
struct crypto_alg alg;
};
static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
return container_of(alg, struct n2_cipher_alg, alg);
}
struct n2_cipher_request_context {
struct ablkcipher_walk walk;
};
static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
switch (keylen) {
case AES_KEYSIZE_128:
ctx->enc_type |= ENC_TYPE_ALG_AES128;
break;
case AES_KEYSIZE_192:
ctx->enc_type |= ENC_TYPE_ALG_AES192;
break;
case AES_KEYSIZE_256:
ctx->enc_type |= ENC_TYPE_ALG_AES256;
break;
default:
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
ctx->key_len = keylen;
memcpy(ctx->key.aes, key, keylen);
return 0;
}
static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
u32 tmp[DES_EXPKEY_WORDS];
int err;
ctx->enc_type = n2alg->enc_type;
if (keylen != DES_KEY_SIZE) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
err = des_ekey(tmp, key);
if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
ctx->key_len = keylen;
memcpy(ctx->key.des, key, keylen);
return 0;
}
static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
ctx->enc_type = n2alg->enc_type;
if (keylen != (3 * DES_KEY_SIZE)) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
ctx->key_len = keylen;
memcpy(ctx->key.des3, key, keylen);
return 0;
}
static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
u8 *s = ctx->key.arc4;
u8 *x = s + 256;
u8 *y = x + 1;
int i, j, k;
ctx->enc_type = n2alg->enc_type;
j = k = 0;
*x = 0;
*y = 0;
for (i = 0; i < 256; i++)
s[i] = i;
for (i = 0; i < 256; i++) {
u8 a = s[i];
j = (j + key[k] + a) & 0xff;
s[i] = s[j];
s[j] = a;
if (++k >= keylen)
k = 0;
}
return 0;
}
static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
{
int this_len = nbytes;
this_len -= (nbytes & (block_size - 1));
return this_len > (1 << 16) ? (1 << 16) : this_len;
}
static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
struct spu_queue *qp, bool encrypt)
{
struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
struct cwq_initial_entry *ent;
bool in_place;
int i;
ent = spu_queue_alloc(qp, cp->arr_len);
if (!ent) {
pr_info("queue_alloc() of %d fails\n",
cp->arr_len);
return -EBUSY;
}
in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
ent->control = control_word_base(cp->arr[0].src_len,
0, ctx->enc_type, 0, 0,
false, true, false, encrypt,
OPCODE_ENCRYPT |
(in_place ? OPCODE_INPLACE_BIT : 0));
ent->src_addr = cp->arr[0].src_paddr;
ent->auth_key_addr = 0UL;
ent->auth_iv_addr = 0UL;
ent->final_auth_state_addr = 0UL;
ent->enc_key_addr = __pa(&ctx->key);
ent->enc_iv_addr = cp->iv_paddr;
ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
for (i = 1; i < cp->arr_len; i++) {
ent = spu_queue_next(qp, ent);
ent->control = cp->arr[i].src_len - 1;
ent->src_addr = cp->arr[i].src_paddr;
ent->auth_key_addr = 0UL;
ent->auth_iv_addr = 0UL;
ent->final_auth_state_addr = 0UL;
ent->enc_key_addr = 0UL;
ent->enc_iv_addr = 0UL;
ent->dest_addr = 0UL;
}
ent->control |= CONTROL_END_OF_BLOCK;
return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
}
static int n2_compute_chunks(struct ablkcipher_request *req)
{
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
struct ablkcipher_walk *walk = &rctx->walk;
struct n2_crypto_chunk *chunk;
unsigned long dest_prev;
unsigned int tot_len;
bool prev_in_place;
int err, nbytes;
ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
err = ablkcipher_walk_phys(req, walk);
if (err)
return err;
INIT_LIST_HEAD(&rctx->chunk_list);
chunk = &rctx->chunk;
INIT_LIST_HEAD(&chunk->entry);
chunk->iv_paddr = 0UL;
chunk->arr_len = 0;
chunk->dest_paddr = 0UL;
prev_in_place = false;
dest_prev = ~0UL;
tot_len = 0;
while ((nbytes = walk->nbytes) != 0) {
unsigned long dest_paddr, src_paddr;
bool in_place;
int this_len;
src_paddr = (page_to_phys(walk->src.page) +
walk->src.offset);
dest_paddr = (page_to_phys(walk->dst.page) +
walk->dst.offset);
in_place = (src_paddr == dest_paddr);
this_len = cipher_descriptor_len(nbytes, walk->blocksize);
if (chunk->arr_len != 0) {
if (in_place != prev_in_place ||
(!prev_in_place &&
dest_paddr != dest_prev) ||
chunk->arr_len == N2_CHUNK_ARR_LEN ||
tot_len + this_len > (1 << 16)) {
chunk->dest_final = dest_prev;
list_add_tail(&chunk->entry,
&rctx->chunk_list);
chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
if (!chunk) {
err = -ENOMEM;
break;
}
INIT_LIST_HEAD(&chunk->entry);
}
}
if (chunk->arr_len == 0) {
chunk->dest_paddr = dest_paddr;
tot_len = 0;
}
chunk->arr[chunk->arr_len].src_paddr = src_paddr;
chunk->arr[chunk->arr_len].src_len = this_len;
chunk->arr_len++;
dest_prev = dest_paddr + this_len;
prev_in_place = in_place;
tot_len += this_len;
err = ablkcipher_walk_done(req, walk, nbytes - this_len);
if (err)
break;
}
if (!err && chunk->arr_len != 0) {
chunk->dest_final = dest_prev;
list_add_tail(&chunk->entry, &rctx->chunk_list);
}
return err;
}
static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
{
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
struct n2_crypto_chunk *c, *tmp;
if (final_iv)
memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
ablkcipher_walk_complete(&rctx->walk);
list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
list_del(&c->entry);
if (unlikely(c != &rctx->chunk))
kfree(c);
}
}
static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
{
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
struct crypto_tfm *tfm = req->base.tfm;
int err = n2_compute_chunks(req);
struct n2_crypto_chunk *c, *tmp;
unsigned long flags, hv_ret;
struct spu_queue *qp;
if (err)
return err;
qp = cpu_to_cwq[get_cpu()];
err = -ENODEV;
if (!qp)
goto out;
spin_lock_irqsave(&qp->lock, flags);
list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
err = __n2_crypt_chunk(tfm, c, qp, encrypt);
if (err)
break;
list_del(&c->entry);
if (unlikely(c != &rctx->chunk))
kfree(c);
}
if (!err) {
hv_ret = wait_for_tail(qp);
if (hv_ret != HV_EOK)
err = -EINVAL;
}
spin_unlock_irqrestore(&qp->lock, flags);
out:
put_cpu();
n2_chunk_complete(req, NULL);
return err;
}
static int n2_encrypt_ecb(struct ablkcipher_request *req)
{
return n2_do_ecb(req, true);
}
static int n2_decrypt_ecb(struct ablkcipher_request *req)
{
return n2_do_ecb(req, false);
}
static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
{
struct n2_request_context *rctx = ablkcipher_request_ctx(req);
struct crypto_tfm *tfm = req->base.tfm;
unsigned long flags, hv_ret, iv_paddr;
int err = n2_compute_chunks(req);
struct n2_crypto_chunk *c, *tmp;
struct spu_queue *qp;
void *final_iv_addr;
final_iv_addr = NULL;
if (err)
return err;
qp = cpu_to_cwq[get_cpu()];
err = -ENODEV;
if (!qp)
goto out;
spin_lock_irqsave(&qp->lock, flags);
if (encrypt) {
iv_paddr = __pa(rctx->walk.iv);
list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
entry) {
c->iv_paddr = iv_paddr;
err = __n2_crypt_chunk(tfm, c, qp, true);
if (err)
break;
iv_paddr = c->dest_final - rctx->walk.blocksize;
list_del(&c->entry);
if (unlikely(c != &rctx->chunk))
kfree(c);
}
final_iv_addr = __va(iv_paddr);
} else {
list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
entry) {
if (c == &rctx->chunk) {
iv_paddr = __pa(rctx->walk.iv);
} else {
iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
tmp->arr[tmp->arr_len-1].src_len -
rctx->walk.blocksize);
}
if (!final_iv_addr) {
unsigned long pa;
pa = (c->arr[c->arr_len-1].src_paddr +
c->arr[c->arr_len-1].src_len -
rctx->walk.blocksize);
final_iv_addr = rctx->temp_iv;
memcpy(rctx->temp_iv, __va(pa),
rctx->walk.blocksize);
}
c->iv_paddr = iv_paddr;
err = __n2_crypt_chunk(tfm, c, qp, false);
if (err)
break;
list_del(&c->entry);
if (unlikely(c != &rctx->chunk))
kfree(c);
}
}
if (!err) {
hv_ret = wait_for_tail(qp);
if (hv_ret != HV_EOK)
err = -EINVAL;
}
spin_unlock_irqrestore(&qp->lock, flags);
out:
put_cpu();
n2_chunk_complete(req, err ? NULL : final_iv_addr);
return err;
}
static int n2_encrypt_chaining(struct ablkcipher_request *req)
{
return n2_do_chaining(req, true);
}
static int n2_decrypt_chaining(struct ablkcipher_request *req)
{
return n2_do_chaining(req, false);
}
struct n2_cipher_tmpl {
const char *name;
const char *drv_name;
u8 block_size;
u8 enc_type;
struct ablkcipher_alg ablkcipher;
};
static const struct n2_cipher_tmpl cipher_tmpls[] = {
/* ARC4: only ECB is supported (chaining bits ignored) */
{ .name = "ecb(arc4)",
.drv_name = "ecb-arc4",
.block_size = 1,
.enc_type = (ENC_TYPE_ALG_RC4_STREAM |
ENC_TYPE_CHAINING_ECB),
.ablkcipher = {
.min_keysize = 1,
.max_keysize = 256,
.setkey = n2_arc4_setkey,
.encrypt = n2_encrypt_ecb,
.decrypt = n2_decrypt_ecb,
},
},
/* DES: ECB CBC and CFB are supported */
{ .name = "ecb(des)",
.drv_name = "ecb-des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_DES |
ENC_TYPE_CHAINING_ECB),
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = n2_des_setkey,
.encrypt = n2_encrypt_ecb,
.decrypt = n2_decrypt_ecb,
},
},
{ .name = "cbc(des)",
.drv_name = "cbc-des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_DES |
ENC_TYPE_CHAINING_CBC),
.ablkcipher = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = n2_des_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
{ .name = "cfb(des)",
.drv_name = "cfb-des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_DES |
ENC_TYPE_CHAINING_CFB),
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = n2_des_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
/* 3DES: ECB CBC and CFB are supported */
{ .name = "ecb(des3_ede)",
.drv_name = "ecb-3des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_3DES |
ENC_TYPE_CHAINING_ECB),
.ablkcipher = {
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.setkey = n2_3des_setkey,
.encrypt = n2_encrypt_ecb,
.decrypt = n2_decrypt_ecb,
},
},
{ .name = "cbc(des3_ede)",
.drv_name = "cbc-3des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_3DES |
ENC_TYPE_CHAINING_CBC),
.ablkcipher = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.setkey = n2_3des_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
{ .name = "cfb(des3_ede)",
.drv_name = "cfb-3des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_3DES |
ENC_TYPE_CHAINING_CFB),
.ablkcipher = {
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.setkey = n2_3des_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
/* AES: ECB CBC and CTR are supported */
{ .name = "ecb(aes)",
.drv_name = "ecb-aes",
.block_size = AES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_AES128 |
ENC_TYPE_CHAINING_ECB),
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = n2_aes_setkey,
.encrypt = n2_encrypt_ecb,
.decrypt = n2_decrypt_ecb,
},
},
{ .name = "cbc(aes)",
.drv_name = "cbc-aes",
.block_size = AES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_AES128 |
ENC_TYPE_CHAINING_CBC),
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = n2_aes_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
{ .name = "ctr(aes)",
.drv_name = "ctr-aes",
.block_size = AES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_AES128 |
ENC_TYPE_CHAINING_COUNTER),
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = n2_aes_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_encrypt_chaining,
},
},
};
#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
static LIST_HEAD(cipher_algs);
struct n2_hash_tmpl {
const char *name;
const u8 *hash_zero;
const u32 *hash_init;
u8 hw_op_hashsz;
u8 digest_size;
u8 block_size;
u8 auth_type;
u8 hmac_type;
};
static const u32 md5_init[MD5_HASH_WORDS] = {
cpu_to_le32(MD5_H0),
cpu_to_le32(MD5_H1),
cpu_to_le32(MD5_H2),
cpu_to_le32(MD5_H3),
};
static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
};
static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
};
static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
};
static const struct n2_hash_tmpl hash_tmpls[] = {
{ .name = "md5",
.hash_zero = md5_zero_message_hash,
.hash_init = md5_init,
.auth_type = AUTH_TYPE_MD5,
.hmac_type = AUTH_TYPE_HMAC_MD5,
.hw_op_hashsz = MD5_DIGEST_SIZE,
.digest_size = MD5_DIGEST_SIZE,
.block_size = MD5_HMAC_BLOCK_SIZE },
{ .name = "sha1",
.hash_zero = sha1_zero_message_hash,
.hash_init = sha1_init,
.auth_type = AUTH_TYPE_SHA1,
.hmac_type = AUTH_TYPE_HMAC_SHA1,
.hw_op_hashsz = SHA1_DIGEST_SIZE,
.digest_size = SHA1_DIGEST_SIZE,
.block_size = SHA1_BLOCK_SIZE },
{ .name = "sha256",
.hash_zero = sha256_zero_message_hash,
.hash_init = sha256_init,
.auth_type = AUTH_TYPE_SHA256,
.hmac_type = AUTH_TYPE_HMAC_SHA256,
.hw_op_hashsz = SHA256_DIGEST_SIZE,
.digest_size = SHA256_DIGEST_SIZE,
.block_size = SHA256_BLOCK_SIZE },
{ .name = "sha224",
.hash_zero = sha224_zero_message_hash,
.hash_init = sha224_init,
.auth_type = AUTH_TYPE_SHA256,
.hmac_type = AUTH_TYPE_RESERVED,
.hw_op_hashsz = SHA256_DIGEST_SIZE,
.digest_size = SHA224_DIGEST_SIZE,
.block_size = SHA224_BLOCK_SIZE },
};
#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
static LIST_HEAD(ahash_algs);
static LIST_HEAD(hmac_algs);
static int algs_registered;
static void __n2_unregister_algs(void)
{
struct n2_cipher_alg *cipher, *cipher_tmp;
struct n2_ahash_alg *alg, *alg_tmp;
struct n2_hmac_alg *hmac, *hmac_tmp;
list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
crypto_unregister_alg(&cipher->alg);
list_del(&cipher->entry);
kfree(cipher);
}
list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
crypto_unregister_ahash(&hmac->derived.alg);
list_del(&hmac->derived.entry);
kfree(hmac);
}
list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
crypto_unregister_ahash(&alg->alg);
list_del(&alg->entry);
kfree(alg);
}
}
static int n2_cipher_cra_init(struct crypto_tfm *tfm)
{
tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
return 0;
}
static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
{
struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
struct crypto_alg *alg;
int err;
if (!p)
return -ENOMEM;
alg = &p->alg;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
alg->cra_priority = N2_CRA_PRIORITY;
alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
alg->cra_blocksize = tmpl->block_size;
p->enc_type = tmpl->enc_type;
alg->cra_ctxsize = sizeof(struct n2_cipher_context);
alg->cra_type = &crypto_ablkcipher_type;
alg->cra_u.ablkcipher = tmpl->ablkcipher;
alg->cra_init = n2_cipher_cra_init;
alg->cra_module = THIS_MODULE;
list_add(&p->entry, &cipher_algs);
err = crypto_register_alg(alg);
if (err) {
pr_err("%s alg registration failed\n", alg->cra_name);
list_del(&p->entry);
kfree(p);
} else {
pr_info("%s alg registered\n", alg->cra_name);
}
return err;
}
static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
{
struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
struct ahash_alg *ahash;
struct crypto_alg *base;
int err;
if (!p)
return -ENOMEM;
p->child_alg = n2ahash->alg.halg.base.cra_name;
memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
INIT_LIST_HEAD(&p->derived.entry);
ahash = &p->derived.alg;
ahash->digest = n2_hmac_async_digest;
ahash->setkey = n2_hmac_async_setkey;
base = &ahash->halg.base;
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
base->cra_init = n2_hmac_cra_init;
base->cra_exit = n2_hmac_cra_exit;
list_add(&p->derived.entry, &hmac_algs);
err = crypto_register_ahash(ahash);
if (err) {
pr_err("%s alg registration failed\n", base->cra_name);
list_del(&p->derived.entry);
kfree(p);
} else {
pr_info("%s alg registered\n", base->cra_name);
}
return err;
}
static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
{
struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
struct hash_alg_common *halg;
struct crypto_alg *base;
struct ahash_alg *ahash;
int err;
if (!p)
return -ENOMEM;
p->hash_zero = tmpl->hash_zero;
p->hash_init = tmpl->hash_init;
p->auth_type = tmpl->auth_type;
p->hmac_type = tmpl->hmac_type;
p->hw_op_hashsz = tmpl->hw_op_hashsz;
p->digest_size = tmpl->digest_size;
ahash = &p->alg;
ahash->init = n2_hash_async_init;
ahash->update = n2_hash_async_update;
ahash->final = n2_hash_async_final;
ahash->finup = n2_hash_async_finup;
ahash->digest = n2_hash_async_digest;
ahash->export = n2_hash_async_noexport;
ahash->import = n2_hash_async_noimport;
halg = &ahash->halg;
halg->digestsize = tmpl->digest_size;
base = &halg->base;
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
base->cra_priority = N2_CRA_PRIORITY;
base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK;
base->cra_blocksize = tmpl->block_size;
base->cra_ctxsize = sizeof(struct n2_hash_ctx);
base->cra_module = THIS_MODULE;
base->cra_init = n2_hash_cra_init;
base->cra_exit = n2_hash_cra_exit;
list_add(&p->entry, &ahash_algs);
err = crypto_register_ahash(ahash);
if (err) {
pr_err("%s alg registration failed\n", base->cra_name);
list_del(&p->entry);
kfree(p);
} else {
pr_info("%s alg registered\n", base->cra_name);
}
if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
err = __n2_register_one_hmac(p);
return err;
}
static int n2_register_algs(void)
{
int i, err = 0;
mutex_lock(&spu_lock);
if (algs_registered++)
goto out;
for (i = 0; i < NUM_HASH_TMPLS; i++) {
err = __n2_register_one_ahash(&hash_tmpls[i]);
if (err) {
__n2_unregister_algs();
goto out;
}
}
for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
err = __n2_register_one_cipher(&cipher_tmpls[i]);
if (err) {
__n2_unregister_algs();
goto out;
}
}
out:
mutex_unlock(&spu_lock);
return err;
}
static void n2_unregister_algs(void)
{
mutex_lock(&spu_lock);
if (!--algs_registered)
__n2_unregister_algs();
mutex_unlock(&spu_lock);
}
/* To map CWQ queues to interrupt sources, the hypervisor API provides
* a devino. This isn't very useful to us because all of the
* interrupts listed in the device_node have been translated to
* Linux virtual IRQ cookie numbers.
*
* So we have to back-translate, going through the 'intr' and 'ino'
* property tables of the n2cp MDESC node, matching it with the OF
* 'interrupts' property entries, in order to to figure out which
* devino goes to which already-translated IRQ.
*/
static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
unsigned long dev_ino)
{
const unsigned int *dev_intrs;
unsigned int intr;
int i;
for (i = 0; i < ip->num_intrs; i++) {
if (ip->ino_table[i].ino == dev_ino)
break;
}
if (i == ip->num_intrs)
return -ENODEV;
intr = ip->ino_table[i].intr;
dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
if (!dev_intrs)
return -ENODEV;
for (i = 0; i < dev->archdata.num_irqs; i++) {
if (dev_intrs[i] == intr)
return i;
}
return -ENODEV;
}
static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
const char *irq_name, struct spu_queue *p,
irq_handler_t handler)
{
unsigned long herr;
int index;
herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
if (herr)
return -EINVAL;
index = find_devino_index(dev, ip, p->devino);
if (index < 0)
return index;
p->irq = dev->archdata.irqs[index];
sprintf(p->irq_name, "%s-%d", irq_name, index);
return request_irq(p->irq, handler, 0, p->irq_name, p);
}
static struct kmem_cache *queue_cache[2];
static void *new_queue(unsigned long q_type)
{
return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
}
static void free_queue(void *p, unsigned long q_type)
{
kmem_cache_free(queue_cache[q_type - 1], p);
}
static int queue_cache_init(void)
{
if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
queue_cache[HV_NCS_QTYPE_MAU - 1] =
kmem_cache_create("mau_queue",
(MAU_NUM_ENTRIES *
MAU_ENTRY_SIZE),
MAU_ENTRY_SIZE, 0, NULL);
if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
return -ENOMEM;
if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
queue_cache[HV_NCS_QTYPE_CWQ - 1] =
kmem_cache_create("cwq_queue",
(CWQ_NUM_ENTRIES *
CWQ_ENTRY_SIZE),
CWQ_ENTRY_SIZE, 0, NULL);
if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
crypto: n2 - cure use after free queue_cache_init is first called for the Control Word Queue (n2_crypto_probe). At that time, queue_cache[0] is NULL and a new kmem_cache will be allocated. If the subsequent n2_register_algs call fails, the kmem_cache will be released in queue_cache_destroy, but queue_cache_init[0] is not set back to NULL. So when the Module Arithmetic Unit gets probed next (n2_mau_probe), queue_cache_init will not allocate a kmem_cache again, but leave it as its bogus value, causing a BUG() to trigger when queue_cache[0] is eventually passed to kmem_cache_zalloc: n2_crypto: Found N2CP at /virtual-devices@100/n2cp@7 n2_crypto: Registered NCS HVAPI version 2.0 called queue_cache_init n2_crypto: md5 alg registration failed n2cp f028687c: /virtual-devices@100/n2cp@7: Unable to register algorithms. called queue_cache_destroy n2cp: probe of f028687c failed with error -22 n2_crypto: Found NCP at /virtual-devices@100/ncp@6 n2_crypto: Registered NCS HVAPI version 2.0 called queue_cache_init kernel BUG at mm/slab.c:2993! Call Trace: [0000000000604488] kmem_cache_alloc+0x1a8/0x1e0 (inlined) kmem_cache_zalloc (inlined) new_queue (inlined) spu_queue_setup (inlined) handle_exec_unit [0000000010c61eb4] spu_mdesc_scan+0x1f4/0x460 [n2_crypto] [0000000010c62b80] n2_mau_probe+0x100/0x220 [n2_crypto] [000000000084b174] platform_drv_probe+0x34/0xc0 Cc: <stable@vger.kernel.org> Signed-off-by: Jan Engelhardt <jengelh@inai.de> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-12-20 02:09:07 +08:00
queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
return -ENOMEM;
}
return 0;
}
static void queue_cache_destroy(void)
{
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
crypto: n2 - cure use after free queue_cache_init is first called for the Control Word Queue (n2_crypto_probe). At that time, queue_cache[0] is NULL and a new kmem_cache will be allocated. If the subsequent n2_register_algs call fails, the kmem_cache will be released in queue_cache_destroy, but queue_cache_init[0] is not set back to NULL. So when the Module Arithmetic Unit gets probed next (n2_mau_probe), queue_cache_init will not allocate a kmem_cache again, but leave it as its bogus value, causing a BUG() to trigger when queue_cache[0] is eventually passed to kmem_cache_zalloc: n2_crypto: Found N2CP at /virtual-devices@100/n2cp@7 n2_crypto: Registered NCS HVAPI version 2.0 called queue_cache_init n2_crypto: md5 alg registration failed n2cp f028687c: /virtual-devices@100/n2cp@7: Unable to register algorithms. called queue_cache_destroy n2cp: probe of f028687c failed with error -22 n2_crypto: Found NCP at /virtual-devices@100/ncp@6 n2_crypto: Registered NCS HVAPI version 2.0 called queue_cache_init kernel BUG at mm/slab.c:2993! Call Trace: [0000000000604488] kmem_cache_alloc+0x1a8/0x1e0 (inlined) kmem_cache_zalloc (inlined) new_queue (inlined) spu_queue_setup (inlined) handle_exec_unit [0000000010c61eb4] spu_mdesc_scan+0x1f4/0x460 [n2_crypto] [0000000010c62b80] n2_mau_probe+0x100/0x220 [n2_crypto] [000000000084b174] platform_drv_probe+0x34/0xc0 Cc: <stable@vger.kernel.org> Signed-off-by: Jan Engelhardt <jengelh@inai.de> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-12-20 02:09:07 +08:00
queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
}
static long spu_queue_register_workfn(void *arg)
{
struct spu_qreg *qr = arg;
struct spu_queue *p = qr->queue;
unsigned long q_type = qr->type;
unsigned long hv_ret;
hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
CWQ_NUM_ENTRIES, &p->qhandle);
if (!hv_ret)
sun4v_ncs_sethead_marker(p->qhandle, 0);
return hv_ret ? -EINVAL : 0;
}
static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
{
int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
struct spu_qreg qr = { .queue = p, .type = q_type };
return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
}
static int spu_queue_setup(struct spu_queue *p)
{
int err;
p->q = new_queue(p->q_type);
if (!p->q)
return -ENOMEM;
err = spu_queue_register(p, p->q_type);
if (err) {
free_queue(p->q, p->q_type);
p->q = NULL;
}
return err;
}
static void spu_queue_destroy(struct spu_queue *p)
{
unsigned long hv_ret;
if (!p->q)
return;
hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
if (!hv_ret)
free_queue(p->q, p->q_type);
}
static void spu_list_destroy(struct list_head *list)
{
struct spu_queue *p, *n;
list_for_each_entry_safe(p, n, list, list) {
int i;
for (i = 0; i < NR_CPUS; i++) {
if (cpu_to_cwq[i] == p)
cpu_to_cwq[i] = NULL;
}
if (p->irq) {
free_irq(p->irq, p);
p->irq = 0;
}
spu_queue_destroy(p);
list_del(&p->list);
kfree(p);
}
}
/* Walk the backward arcs of a CWQ 'exec-unit' node,
* gathering cpu membership information.
*/
static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
struct platform_device *dev,
u64 node, struct spu_queue *p,
struct spu_queue **table)
{
u64 arc;
mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
u64 tgt = mdesc_arc_target(mdesc, arc);
const char *name = mdesc_node_name(mdesc, tgt);
const u64 *id;
if (strcmp(name, "cpu"))
continue;
id = mdesc_get_property(mdesc, tgt, "id", NULL);
if (table[*id] != NULL) {
dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
dev->dev.of_node);
return -EINVAL;
}
cpumask_set_cpu(*id, &p->sharing);
table[*id] = p;
}
return 0;
}
/* Process an 'exec-unit' MDESC node of type 'cwq'. */
static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
struct platform_device *dev, struct mdesc_handle *mdesc,
u64 node, const char *iname, unsigned long q_type,
irq_handler_t handler, struct spu_queue **table)
{
struct spu_queue *p;
int err;
p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
if (!p) {
dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
dev->dev.of_node);
return -ENOMEM;
}
cpumask_clear(&p->sharing);
spin_lock_init(&p->lock);
p->q_type = q_type;
INIT_LIST_HEAD(&p->jobs);
list_add(&p->list, list);
err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
if (err)
return err;
err = spu_queue_setup(p);
if (err)
return err;
return spu_map_ino(dev, ip, iname, p, handler);
}
static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
struct spu_mdesc_info *ip, struct list_head *list,
const char *exec_name, unsigned long q_type,
irq_handler_t handler, struct spu_queue **table)
{
int err = 0;
u64 node;
mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
const char *type;
type = mdesc_get_property(mdesc, node, "type", NULL);
if (!type || strcmp(type, exec_name))
continue;
err = handle_exec_unit(ip, list, dev, mdesc, node,
exec_name, q_type, handler, table);
if (err) {
spu_list_destroy(list);
break;
}
}
return err;
}
static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
struct spu_mdesc_info *ip)
{
const u64 *ino;
int ino_len;
int i;
ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
if (!ino) {
printk("NO 'ino'\n");
return -ENODEV;
}
ip->num_intrs = ino_len / sizeof(u64);
ip->ino_table = kzalloc((sizeof(struct ino_blob) *
ip->num_intrs),
GFP_KERNEL);
if (!ip->ino_table)
return -ENOMEM;
for (i = 0; i < ip->num_intrs; i++) {
struct ino_blob *b = &ip->ino_table[i];
b->intr = i + 1;
b->ino = ino[i];
}
return 0;
}
static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
struct platform_device *dev,
struct spu_mdesc_info *ip,
const char *node_name)
{
const unsigned int *reg;
u64 node;
reg = of_get_property(dev->dev.of_node, "reg", NULL);
if (!reg)
return -ENODEV;
mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
const char *name;
const u64 *chdl;
name = mdesc_get_property(mdesc, node, "name", NULL);
if (!name || strcmp(name, node_name))
continue;
chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
if (!chdl || (*chdl != *reg))
continue;
ip->cfg_handle = *chdl;
return get_irq_props(mdesc, node, ip);
}
return -ENODEV;
}
static unsigned long n2_spu_hvapi_major;
static unsigned long n2_spu_hvapi_minor;
static int n2_spu_hvapi_register(void)
{
int err;
n2_spu_hvapi_major = 2;
n2_spu_hvapi_minor = 0;
err = sun4v_hvapi_register(HV_GRP_NCS,
n2_spu_hvapi_major,
&n2_spu_hvapi_minor);
if (!err)
pr_info("Registered NCS HVAPI version %lu.%lu\n",
n2_spu_hvapi_major,
n2_spu_hvapi_minor);
return err;
}
static void n2_spu_hvapi_unregister(void)
{
sun4v_hvapi_unregister(HV_GRP_NCS);
}
static int global_ref;
static int grab_global_resources(void)
{
int err = 0;
mutex_lock(&spu_lock);
if (global_ref++)
goto out;
err = n2_spu_hvapi_register();
if (err)
goto out;
err = queue_cache_init();
if (err)
goto out_hvapi_release;
err = -ENOMEM;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
GFP_KERNEL);
if (!cpu_to_cwq)
goto out_queue_cache_destroy;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
GFP_KERNEL);
if (!cpu_to_mau)
goto out_free_cwq_table;
err = 0;
out:
if (err)
global_ref--;
mutex_unlock(&spu_lock);
return err;
out_free_cwq_table:
kfree(cpu_to_cwq);
cpu_to_cwq = NULL;
out_queue_cache_destroy:
queue_cache_destroy();
out_hvapi_release:
n2_spu_hvapi_unregister();
goto out;
}
static void release_global_resources(void)
{
mutex_lock(&spu_lock);
if (!--global_ref) {
kfree(cpu_to_cwq);
cpu_to_cwq = NULL;
kfree(cpu_to_mau);
cpu_to_mau = NULL;
queue_cache_destroy();
n2_spu_hvapi_unregister();
}
mutex_unlock(&spu_lock);
}
static struct n2_crypto *alloc_n2cp(void)
{
struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
if (np)
INIT_LIST_HEAD(&np->cwq_list);
return np;
}
static void free_n2cp(struct n2_crypto *np)
{
kfree(np->cwq_info.ino_table);
np->cwq_info.ino_table = NULL;
kfree(np);
}
static void n2_spu_driver_version(void)
{
static int n2_spu_version_printed;
if (n2_spu_version_printed++ == 0)
pr_info("%s", version);
}
static int n2_crypto_probe(struct platform_device *dev)
{
struct mdesc_handle *mdesc;
struct n2_crypto *np;
int err;
n2_spu_driver_version();
pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
np = alloc_n2cp();
if (!np) {
dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
dev->dev.of_node);
return -ENOMEM;
}
err = grab_global_resources();
if (err) {
dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
dev->dev.of_node);
goto out_free_n2cp;
}
mdesc = mdesc_grab();
if (!mdesc) {
dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
dev->dev.of_node);
err = -ENODEV;
goto out_free_global;
}
err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
if (err) {
dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
dev->dev.of_node);
mdesc_release(mdesc);
goto out_free_global;
}
err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
"cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
cpu_to_cwq);
mdesc_release(mdesc);
if (err) {
dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
dev->dev.of_node);
goto out_free_global;
}
err = n2_register_algs();
if (err) {
dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
dev->dev.of_node);
goto out_free_spu_list;
}
dev_set_drvdata(&dev->dev, np);
return 0;
out_free_spu_list:
spu_list_destroy(&np->cwq_list);
out_free_global:
release_global_resources();
out_free_n2cp:
free_n2cp(np);
return err;
}
static int n2_crypto_remove(struct platform_device *dev)
{
struct n2_crypto *np = dev_get_drvdata(&dev->dev);
n2_unregister_algs();
spu_list_destroy(&np->cwq_list);
release_global_resources();
free_n2cp(np);
return 0;
}
static struct n2_mau *alloc_ncp(void)
{
struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
if (mp)
INIT_LIST_HEAD(&mp->mau_list);
return mp;
}
static void free_ncp(struct n2_mau *mp)
{
kfree(mp->mau_info.ino_table);
mp->mau_info.ino_table = NULL;
kfree(mp);
}
static int n2_mau_probe(struct platform_device *dev)
{
struct mdesc_handle *mdesc;
struct n2_mau *mp;
int err;
n2_spu_driver_version();
pr_info("Found NCP at %pOF\n", dev->dev.of_node);
mp = alloc_ncp();
if (!mp) {
dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
dev->dev.of_node);
return -ENOMEM;
}
err = grab_global_resources();
if (err) {
dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
dev->dev.of_node);
goto out_free_ncp;
}
mdesc = mdesc_grab();
if (!mdesc) {
dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
dev->dev.of_node);
err = -ENODEV;
goto out_free_global;
}
err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
if (err) {
dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
dev->dev.of_node);
mdesc_release(mdesc);
goto out_free_global;
}
err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
"mau", HV_NCS_QTYPE_MAU, mau_intr,
cpu_to_mau);
mdesc_release(mdesc);
if (err) {
dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
dev->dev.of_node);
goto out_free_global;
}
dev_set_drvdata(&dev->dev, mp);
return 0;
out_free_global:
release_global_resources();
out_free_ncp:
free_ncp(mp);
return err;
}
static int n2_mau_remove(struct platform_device *dev)
{
struct n2_mau *mp = dev_get_drvdata(&dev->dev);
spu_list_destroy(&mp->mau_list);
release_global_resources();
free_ncp(mp);
return 0;
}
static const struct of_device_id n2_crypto_match[] = {
{
.name = "n2cp",
.compatible = "SUNW,n2-cwq",
},
{
.name = "n2cp",
.compatible = "SUNW,vf-cwq",
},
{
.name = "n2cp",
.compatible = "SUNW,kt-cwq",
},
{},
};
MODULE_DEVICE_TABLE(of, n2_crypto_match);
static struct platform_driver n2_crypto_driver = {
.driver = {
.name = "n2cp",
.of_match_table = n2_crypto_match,
},
.probe = n2_crypto_probe,
.remove = n2_crypto_remove,
};
static const struct of_device_id n2_mau_match[] = {
{
.name = "ncp",
.compatible = "SUNW,n2-mau",
},
{
.name = "ncp",
.compatible = "SUNW,vf-mau",
},
{
.name = "ncp",
.compatible = "SUNW,kt-mau",
},
{},
};
MODULE_DEVICE_TABLE(of, n2_mau_match);
static struct platform_driver n2_mau_driver = {
.driver = {
.name = "ncp",
.of_match_table = n2_mau_match,
},
.probe = n2_mau_probe,
.remove = n2_mau_remove,
};
static struct platform_driver * const drivers[] = {
&n2_crypto_driver,
&n2_mau_driver,
};
static int __init n2_init(void)
{
return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
}
static void __exit n2_exit(void)
{
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
}
module_init(n2_init);
module_exit(n2_exit);