linux/net/sched/sch_red.c

456 lines
10 KiB
C
Raw Normal View History

/*
* net/sched/sch_red.c Random Early Detection queue.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* Changes:
* J Hadi Salim 980914: computation fixes
* Alexey Makarenko <makar@phoenix.kharkov.ua> 990814: qave on idle link was calculated incorrectly.
* J Hadi Salim 980816: ECN support
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/inet_ecn.h>
#include <net/red.h>
/* Parameters, settable by user:
-----------------------------
limit - bytes (must be > qth_max + burst)
Hard limit on queue length, should be chosen >qth_max
to allow packet bursts. This parameter does not
affect the algorithms behaviour and can be chosen
arbitrarily high (well, less than ram size)
Really, this limit will never be reached
if RED works correctly.
*/
struct red_sched_data {
u32 limit; /* HARD maximal queue length */
unsigned char flags;
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
struct timer_list adapt_timer;
struct Qdisc *sch;
struct red_parms parms;
struct red_vars vars;
struct red_stats stats;
struct Qdisc *qdisc;
};
static inline int red_use_ecn(struct red_sched_data *q)
{
return q->flags & TC_RED_ECN;
}
static inline int red_use_harddrop(struct red_sched_data *q)
{
return q->flags & TC_RED_HARDDROP;
}
static int red_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct red_sched_data *q = qdisc_priv(sch);
struct Qdisc *child = q->qdisc;
int ret;
q->vars.qavg = red_calc_qavg(&q->parms,
&q->vars,
child->qstats.backlog);
if (red_is_idling(&q->vars))
red_end_of_idle_period(&q->vars);
switch (red_action(&q->parms, &q->vars, q->vars.qavg)) {
case RED_DONT_MARK:
break;
case RED_PROB_MARK:
qdisc_qstats_overlimit(sch);
if (!red_use_ecn(q) || !INET_ECN_set_ce(skb)) {
q->stats.prob_drop++;
goto congestion_drop;
}
q->stats.prob_mark++;
break;
case RED_HARD_MARK:
qdisc_qstats_overlimit(sch);
if (red_use_harddrop(q) || !red_use_ecn(q) ||
!INET_ECN_set_ce(skb)) {
q->stats.forced_drop++;
goto congestion_drop;
}
q->stats.forced_mark++;
break;
}
ret = qdisc_enqueue(skb, child, to_free);
if (likely(ret == NET_XMIT_SUCCESS)) {
qdisc_qstats_backlog_inc(sch, skb);
sch->q.qlen++;
} else if (net_xmit_drop_count(ret)) {
q->stats.pdrop++;
qdisc_qstats_drop(sch);
}
return ret;
congestion_drop:
qdisc_drop(skb, sch, to_free);
return NET_XMIT_CN;
}
static struct sk_buff *red_dequeue(struct Qdisc *sch)
{
struct sk_buff *skb;
struct red_sched_data *q = qdisc_priv(sch);
struct Qdisc *child = q->qdisc;
skb = child->dequeue(child);
if (skb) {
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
} else {
if (!red_is_idling(&q->vars))
red_start_of_idle_period(&q->vars);
}
return skb;
}
static struct sk_buff *red_peek(struct Qdisc *sch)
{
struct red_sched_data *q = qdisc_priv(sch);
struct Qdisc *child = q->qdisc;
return child->ops->peek(child);
}
static void red_reset(struct Qdisc *sch)
{
struct red_sched_data *q = qdisc_priv(sch);
qdisc_reset(q->qdisc);
sch->qstats.backlog = 0;
sch->q.qlen = 0;
red_restart(&q->vars);
}
static int red_offload(struct Qdisc *sch, bool enable)
{
struct red_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct tc_red_qopt_offload opt = {
.handle = sch->handle,
.parent = sch->parent,
};
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return -EOPNOTSUPP;
if (enable) {
opt.command = TC_RED_REPLACE;
opt.set.min = q->parms.qth_min >> q->parms.Wlog;
opt.set.max = q->parms.qth_max >> q->parms.Wlog;
opt.set.probability = q->parms.max_P;
opt.set.is_ecn = red_use_ecn(q);
} else {
opt.command = TC_RED_DESTROY;
}
return dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_RED, &opt);
}
static void red_destroy(struct Qdisc *sch)
{
struct red_sched_data *q = qdisc_priv(sch);
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
del_timer_sync(&q->adapt_timer);
red_offload(sch, false);
qdisc_destroy(q->qdisc);
}
static const struct nla_policy red_policy[TCA_RED_MAX + 1] = {
[TCA_RED_PARMS] = { .len = sizeof(struct tc_red_qopt) },
[TCA_RED_STAB] = { .len = RED_STAB_SIZE },
[TCA_RED_MAX_P] = { .type = NLA_U32 },
};
static int red_change(struct Qdisc *sch, struct nlattr *opt)
{
struct red_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_RED_MAX + 1];
struct tc_red_qopt *ctl;
struct Qdisc *child = NULL;
int err;
u32 max_P;
if (opt == NULL)
return -EINVAL;
err = nla_parse_nested(tb, TCA_RED_MAX, opt, red_policy, NULL);
if (err < 0)
return err;
if (tb[TCA_RED_PARMS] == NULL ||
tb[TCA_RED_STAB] == NULL)
return -EINVAL;
max_P = tb[TCA_RED_MAX_P] ? nla_get_u32(tb[TCA_RED_MAX_P]) : 0;
ctl = nla_data(tb[TCA_RED_PARMS]);
if (!red_check_params(ctl->qth_min, ctl->qth_max, ctl->Wlog))
return -EINVAL;
if (ctl->limit > 0) {
child = fifo_create_dflt(sch, &bfifo_qdisc_ops, ctl->limit);
if (IS_ERR(child))
return PTR_ERR(child);
}
if (child != &noop_qdisc)
qdisc_hash_add(child, true);
sch_tree_lock(sch);
q->flags = ctl->flags;
q->limit = ctl->limit;
if (child) {
qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
q->qdisc->qstats.backlog);
qdisc_destroy(q->qdisc);
q->qdisc = child;
}
red_set_parms(&q->parms,
ctl->qth_min, ctl->qth_max, ctl->Wlog,
ctl->Plog, ctl->Scell_log,
nla_data(tb[TCA_RED_STAB]),
max_P);
red_set_vars(&q->vars);
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
del_timer(&q->adapt_timer);
if (ctl->flags & TC_RED_ADAPTATIVE)
mod_timer(&q->adapt_timer, jiffies + HZ/2);
if (!q->qdisc->q.qlen)
red_start_of_idle_period(&q->vars);
sch_tree_unlock(sch);
red_offload(sch, true);
return 0;
}
static inline void red_adaptative_timer(struct timer_list *t)
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
{
struct red_sched_data *q = from_timer(q, t, adapt_timer);
struct Qdisc *sch = q->sch;
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
spin_lock(root_lock);
red_adaptative_algo(&q->parms, &q->vars);
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
mod_timer(&q->adapt_timer, jiffies + HZ/2);
spin_unlock(root_lock);
}
static int red_init(struct Qdisc *sch, struct nlattr *opt)
{
struct red_sched_data *q = qdisc_priv(sch);
q->qdisc = &noop_qdisc;
q->sch = sch;
timer_setup(&q->adapt_timer, red_adaptative_timer, 0);
return red_change(sch, opt);
}
static int red_dump_offload(struct Qdisc *sch, struct tc_red_qopt *opt)
{
struct net_device *dev = qdisc_dev(sch);
struct tc_red_qopt_offload hw_stats = {
.command = TC_RED_STATS,
.handle = sch->handle,
.parent = sch->parent,
{
.stats.bstats = &sch->bstats,
.stats.qstats = &sch->qstats,
},
};
int err;
opt->flags &= ~TC_RED_OFFLOADED;
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return 0;
err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_RED,
&hw_stats);
if (err == -EOPNOTSUPP)
return 0;
if (!err)
opt->flags |= TC_RED_OFFLOADED;
return err;
}
static int red_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct red_sched_data *q = qdisc_priv(sch);
struct nlattr *opts = NULL;
struct tc_red_qopt opt = {
.limit = q->limit,
.flags = q->flags,
.qth_min = q->parms.qth_min >> q->parms.Wlog,
.qth_max = q->parms.qth_max >> q->parms.Wlog,
.Wlog = q->parms.Wlog,
.Plog = q->parms.Plog,
.Scell_log = q->parms.Scell_log,
};
int err;
sch->qstats.backlog = q->qdisc->qstats.backlog;
err = red_dump_offload(sch, &opt);
if (err)
goto nla_put_failure;
opts = nla_nest_start(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
if (nla_put(skb, TCA_RED_PARMS, sizeof(opt), &opt) ||
nla_put_u32(skb, TCA_RED_MAX_P, q->parms.max_P))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
nla_nest_cancel(skb, opts);
return -EMSGSIZE;
}
static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct red_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct tc_red_xstats st = {
.early = q->stats.prob_drop + q->stats.forced_drop,
.pdrop = q->stats.pdrop,
.other = q->stats.other,
.marked = q->stats.prob_mark + q->stats.forced_mark,
};
if (tc_can_offload(dev) && dev->netdev_ops->ndo_setup_tc) {
struct red_stats hw_stats = {0};
struct tc_red_qopt_offload hw_stats_request = {
.command = TC_RED_XSTATS,
.handle = sch->handle,
.parent = sch->parent,
{
.xstats = &hw_stats,
},
};
if (!dev->netdev_ops->ndo_setup_tc(dev,
TC_SETUP_QDISC_RED,
&hw_stats_request)) {
st.early += hw_stats.prob_drop + hw_stats.forced_drop;
st.pdrop += hw_stats.pdrop;
st.other += hw_stats.other;
st.marked += hw_stats.prob_mark + hw_stats.forced_mark;
}
}
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static int red_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct red_sched_data *q = qdisc_priv(sch);
tcm->tcm_handle |= TC_H_MIN(1);
tcm->tcm_info = q->qdisc->handle;
return 0;
}
static int red_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old)
{
struct red_sched_data *q = qdisc_priv(sch);
if (new == NULL)
new = &noop_qdisc;
*old = qdisc_replace(sch, new, &q->qdisc);
return 0;
}
static struct Qdisc *red_leaf(struct Qdisc *sch, unsigned long arg)
{
struct red_sched_data *q = qdisc_priv(sch);
return q->qdisc;
}
static unsigned long red_find(struct Qdisc *sch, u32 classid)
{
return 1;
}
static void red_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
if (!walker->stop) {
if (walker->count >= walker->skip)
if (walker->fn(sch, 1, walker) < 0) {
walker->stop = 1;
return;
}
walker->count++;
}
}
static const struct Qdisc_class_ops red_class_ops = {
.graft = red_graft,
.leaf = red_leaf,
.find = red_find,
.walk = red_walk,
.dump = red_dump_class,
};
static struct Qdisc_ops red_qdisc_ops __read_mostly = {
.id = "red",
.priv_size = sizeof(struct red_sched_data),
.cl_ops = &red_class_ops,
.enqueue = red_enqueue,
.dequeue = red_dequeue,
.peek = red_peek,
.init = red_init,
.reset = red_reset,
.destroy = red_destroy,
.change = red_change,
.dump = red_dump,
.dump_stats = red_dump_stats,
.owner = THIS_MODULE,
};
static int __init red_module_init(void)
{
return register_qdisc(&red_qdisc_ops);
}
static void __exit red_module_exit(void)
{
unregister_qdisc(&red_qdisc_ops);
}
module_init(red_module_init)
module_exit(red_module_exit)
MODULE_LICENSE("GPL");