linux/drivers/net/wireless/iwlwifi/iwl-fw.h

330 lines
12 KiB
C
Raw Normal View History

/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#ifndef __iwl_fw_h__
#define __iwl_fw_h__
#include <linux/types.h>
#include <net/mac80211.h>
#include "iwl-fw-file.h"
/**
* enum iwl_ucode_tlv_flag - ucode API flags
* @IWL_UCODE_TLV_FLAGS_PAN: This is PAN capable microcode; this previously
* was a separate TLV but moved here to save space.
* @IWL_UCODE_TLV_FLAGS_NEWSCAN: new uCode scan behaviour on hidden SSID,
* treats good CRC threshold as a boolean
* @IWL_UCODE_TLV_FLAGS_MFP: This uCode image supports MFP (802.11w).
* @IWL_UCODE_TLV_FLAGS_P2P: This uCode image supports P2P.
* @IWL_UCODE_TLV_FLAGS_DW_BC_TABLE: The SCD byte count table is in DWORDS
* @IWL_UCODE_TLV_FLAGS_UAPSD_SUPPORT: This uCode image supports uAPSD
* @IWL_UCODE_TLV_FLAGS_SHORT_BL: 16 entries of black list instead of 64 in scan
* offload profile config command.
* @IWL_UCODE_TLV_FLAGS_D3_6_IPV6_ADDRS: D3 image supports up to six
* (rather than two) IPv6 addresses
* @IWL_UCODE_TLV_FLAGS_NO_BASIC_SSID: not sending a probe with the SSID element
* from the probe request template.
* @IWL_UCODE_TLV_FLAGS_NEW_NSOFFL_SMALL: new NS offload (small version)
* @IWL_UCODE_TLV_FLAGS_NEW_NSOFFL_LARGE: new NS offload (large version)
iwlwifi: mvm: Handle power management constraints for additional use-cases Today, the driver logic looks for the conditions to disable power management albeit power management should be enabled in a very few distinct cases. This patch changes the driver logic to enable power management once the required conditions met. While at it, make some housekeeping and support a few additional use cases: a) Add support for a standalone p2p client: Power management should be enabled for a P2P client MAC only if the firmware supports it (TLV flag is set). Instead we used the DCM flag, therefore we didn't cover use cases that did not include the DCM flag. b) Add support to Same-Channel-Mode (SCM): If both clients share the same channel (SCM), and there are no other active vifs in the system, power management should be enabled only if the firmware supports this (TLV flag is set). c) Fix power management logic for GO/AP: Today, when we detect an active GO / AP MAC - we disable power management for all the vifs altogether. Actually, the correct behavior is to enable power management on a client if on a different channel (based on the firmware capabilities). d) Housekeeping - Along with that, this patch includes some code-reorganizing: Today the logic of disabling power is scattered across several functions, specifically in the iterator. For the sake of both readability and scalability, we moved this logic to its applicable function, leaving the iterator gather information only. Furthermore, as power management is a MAC-related attribute, we moved the power management member to the iwl_mvm_vif structure. Signed-off-by: Avri Altman <avri.altman@intel.com> Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
2014-03-19 13:25:06 +08:00
* @IWL_UCODE_TLV_FLAGS_P2P_PM: P2P client supports PM as a stand alone MAC
* @IWL_UCODE_TLV_FLAGS_P2P_BSS_PS_DCM: support power save on BSS station and
* P2P client interfaces simultaneously if they are in different bindings.
iwlwifi: mvm: Handle power management constraints for additional use-cases Today, the driver logic looks for the conditions to disable power management albeit power management should be enabled in a very few distinct cases. This patch changes the driver logic to enable power management once the required conditions met. While at it, make some housekeeping and support a few additional use cases: a) Add support for a standalone p2p client: Power management should be enabled for a P2P client MAC only if the firmware supports it (TLV flag is set). Instead we used the DCM flag, therefore we didn't cover use cases that did not include the DCM flag. b) Add support to Same-Channel-Mode (SCM): If both clients share the same channel (SCM), and there are no other active vifs in the system, power management should be enabled only if the firmware supports this (TLV flag is set). c) Fix power management logic for GO/AP: Today, when we detect an active GO / AP MAC - we disable power management for all the vifs altogether. Actually, the correct behavior is to enable power management on a client if on a different channel (based on the firmware capabilities). d) Housekeeping - Along with that, this patch includes some code-reorganizing: Today the logic of disabling power is scattered across several functions, specifically in the iterator. For the sake of both readability and scalability, we moved this logic to its applicable function, leaving the iterator gather information only. Furthermore, as power management is a MAC-related attribute, we moved the power management member to the iwl_mvm_vif structure. Signed-off-by: Avri Altman <avri.altman@intel.com> Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
2014-03-19 13:25:06 +08:00
* @IWL_UCODE_TLV_FLAGS_P2P_BSS_PS_SCM: support power save on BSS station and
* P2P client interfaces simultaneously if they are in same bindings.
* @IWL_UCODE_TLV_FLAGS_UAPSD_SUPPORT: General support for uAPSD
* @IWL_UCODE_TLV_FLAGS_P2P_PS_UAPSD: P2P client supports uAPSD power save
* @IWL_UCODE_TLV_FLAGS_BCAST_FILTERING: uCode supports broadcast filtering.
* @IWL_UCODE_TLV_FLAGS_GO_UAPSD: AP/GO interfaces support uAPSD clients
* @IWL_UCODE_TLV_FLAGS_EBS_SUPPORT: this uCode image supports EBS.
*/
enum iwl_ucode_tlv_flag {
IWL_UCODE_TLV_FLAGS_PAN = BIT(0),
IWL_UCODE_TLV_FLAGS_NEWSCAN = BIT(1),
IWL_UCODE_TLV_FLAGS_MFP = BIT(2),
IWL_UCODE_TLV_FLAGS_P2P = BIT(3),
IWL_UCODE_TLV_FLAGS_DW_BC_TABLE = BIT(4),
IWL_UCODE_TLV_FLAGS_SHORT_BL = BIT(7),
IWL_UCODE_TLV_FLAGS_D3_6_IPV6_ADDRS = BIT(10),
IWL_UCODE_TLV_FLAGS_NO_BASIC_SSID = BIT(12),
IWL_UCODE_TLV_FLAGS_NEW_NSOFFL_SMALL = BIT(15),
IWL_UCODE_TLV_FLAGS_NEW_NSOFFL_LARGE = BIT(16),
iwlwifi: mvm: Handle power management constraints for additional use-cases Today, the driver logic looks for the conditions to disable power management albeit power management should be enabled in a very few distinct cases. This patch changes the driver logic to enable power management once the required conditions met. While at it, make some housekeeping and support a few additional use cases: a) Add support for a standalone p2p client: Power management should be enabled for a P2P client MAC only if the firmware supports it (TLV flag is set). Instead we used the DCM flag, therefore we didn't cover use cases that did not include the DCM flag. b) Add support to Same-Channel-Mode (SCM): If both clients share the same channel (SCM), and there are no other active vifs in the system, power management should be enabled only if the firmware supports this (TLV flag is set). c) Fix power management logic for GO/AP: Today, when we detect an active GO / AP MAC - we disable power management for all the vifs altogether. Actually, the correct behavior is to enable power management on a client if on a different channel (based on the firmware capabilities). d) Housekeeping - Along with that, this patch includes some code-reorganizing: Today the logic of disabling power is scattered across several functions, specifically in the iterator. For the sake of both readability and scalability, we moved this logic to its applicable function, leaving the iterator gather information only. Furthermore, as power management is a MAC-related attribute, we moved the power management member to the iwl_mvm_vif structure. Signed-off-by: Avri Altman <avri.altman@intel.com> Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
2014-03-19 13:25:06 +08:00
IWL_UCODE_TLV_FLAGS_P2P_PM = BIT(21),
IWL_UCODE_TLV_FLAGS_BSS_P2P_PS_DCM = BIT(22),
iwlwifi: mvm: Handle power management constraints for additional use-cases Today, the driver logic looks for the conditions to disable power management albeit power management should be enabled in a very few distinct cases. This patch changes the driver logic to enable power management once the required conditions met. While at it, make some housekeeping and support a few additional use cases: a) Add support for a standalone p2p client: Power management should be enabled for a P2P client MAC only if the firmware supports it (TLV flag is set). Instead we used the DCM flag, therefore we didn't cover use cases that did not include the DCM flag. b) Add support to Same-Channel-Mode (SCM): If both clients share the same channel (SCM), and there are no other active vifs in the system, power management should be enabled only if the firmware supports this (TLV flag is set). c) Fix power management logic for GO/AP: Today, when we detect an active GO / AP MAC - we disable power management for all the vifs altogether. Actually, the correct behavior is to enable power management on a client if on a different channel (based on the firmware capabilities). d) Housekeeping - Along with that, this patch includes some code-reorganizing: Today the logic of disabling power is scattered across several functions, specifically in the iterator. For the sake of both readability and scalability, we moved this logic to its applicable function, leaving the iterator gather information only. Furthermore, as power management is a MAC-related attribute, we moved the power management member to the iwl_mvm_vif structure. Signed-off-by: Avri Altman <avri.altman@intel.com> Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
2014-03-19 13:25:06 +08:00
IWL_UCODE_TLV_FLAGS_BSS_P2P_PS_SCM = BIT(23),
IWL_UCODE_TLV_FLAGS_UAPSD_SUPPORT = BIT(24),
IWL_UCODE_TLV_FLAGS_EBS_SUPPORT = BIT(25),
IWL_UCODE_TLV_FLAGS_P2P_PS_UAPSD = BIT(26),
IWL_UCODE_TLV_FLAGS_BCAST_FILTERING = BIT(29),
IWL_UCODE_TLV_FLAGS_GO_UAPSD = BIT(30),
};
/**
* enum iwl_ucode_tlv_api - ucode api
* @IWL_UCODE_TLV_API_WOWLAN_CONFIG_TID: wowlan config includes tid field.
* @IWL_UCODE_TLV_CAPA_EXTENDED_BEACON: Support Extended beacon notification
* @IWL_UCODE_TLV_API_BT_COEX_SPLIT: new API for BT Coex
* @IWL_UCODE_TLV_API_CSA_FLOW: ucode can do unbind-bind flow for CSA.
* @IWL_UCODE_TLV_API_DISABLE_STA_TX: ucode supports tx_disable bit.
* @IWL_UCODE_TLV_API_LMAC_SCAN: This ucode uses LMAC unified scan API.
*/
enum iwl_ucode_tlv_api {
IWL_UCODE_TLV_API_WOWLAN_CONFIG_TID = BIT(0),
IWL_UCODE_TLV_CAPA_EXTENDED_BEACON = BIT(1),
IWL_UCODE_TLV_API_BT_COEX_SPLIT = BIT(3),
IWL_UCODE_TLV_API_CSA_FLOW = BIT(4),
IWL_UCODE_TLV_API_DISABLE_STA_TX = BIT(5),
IWL_UCODE_TLV_API_LMAC_SCAN = BIT(6),
};
/**
* enum iwl_ucode_tlv_capa - ucode capabilities
* @IWL_UCODE_TLV_CAPA_D0I3_SUPPORT: supports D0i3
*/
enum iwl_ucode_tlv_capa {
IWL_UCODE_TLV_CAPA_D0I3_SUPPORT = BIT(0),
};
/* The default calibrate table size if not specified by firmware file */
#define IWL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE 18
#define IWL_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE 19
#define IWL_MAX_PHY_CALIBRATE_TBL_SIZE 253
/* The default max probe length if not specified by the firmware file */
#define IWL_DEFAULT_MAX_PROBE_LENGTH 200
/**
* enum iwl_ucode_type
*
* The type of ucode.
*
* @IWL_UCODE_REGULAR: Normal runtime ucode
* @IWL_UCODE_INIT: Initial ucode
* @IWL_UCODE_WOWLAN: Wake on Wireless enabled ucode
*/
enum iwl_ucode_type {
IWL_UCODE_REGULAR,
IWL_UCODE_INIT,
IWL_UCODE_WOWLAN,
IWL_UCODE_TYPE_MAX,
};
/*
* enumeration of ucode section.
* This enumeration is used directly for older firmware (before 16.0).
* For new firmware, there can be up to 4 sections (see below) but the
* first one packaged into the firmware file is the DATA section and
* some debugging code accesses that.
*/
enum iwl_ucode_sec {
IWL_UCODE_SECTION_DATA,
IWL_UCODE_SECTION_INST,
};
/*
* For 16.0 uCode and above, there is no differentiation between sections,
* just an offset to the HW address.
*/
#define IWL_UCODE_SECTION_MAX 12
#define IWL_API_ARRAY_SIZE 1
#define IWL_CAPABILITIES_ARRAY_SIZE 1
#define CPU1_CPU2_SEPARATOR_SECTION 0xFFFFCCCC
struct iwl_ucode_capabilities {
u32 max_probe_length;
u32 n_scan_channels;
u32 standard_phy_calibration_size;
u32 flags;
u32 api[IWL_API_ARRAY_SIZE];
u32 capa[IWL_CAPABILITIES_ARRAY_SIZE];
};
/* one for each uCode image (inst/data, init/runtime/wowlan) */
struct fw_desc {
const void *data; /* vmalloc'ed data */
u32 len; /* size in bytes */
u32 offset; /* offset in the device */
};
struct fw_img {
struct fw_desc sec[IWL_UCODE_SECTION_MAX];
bool is_secure;
bool is_dual_cpus;
};
struct iwl_sf_region {
u32 addr;
u32 size;
};
/* uCode version contains 4 values: Major/Minor/API/Serial */
#define IWL_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24)
#define IWL_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16)
#define IWL_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8)
#define IWL_UCODE_SERIAL(ver) ((ver) & 0x000000FF)
/*
* Calibration control struct.
* Sent as part of the phy configuration command.
* @flow_trigger: bitmap for which calibrations to perform according to
* flow triggers.
* @event_trigger: bitmap for which calibrations to perform according to
* event triggers.
*/
struct iwl_tlv_calib_ctrl {
__le32 flow_trigger;
__le32 event_trigger;
} __packed;
enum iwl_fw_phy_cfg {
FW_PHY_CFG_RADIO_TYPE_POS = 0,
FW_PHY_CFG_RADIO_TYPE = 0x3 << FW_PHY_CFG_RADIO_TYPE_POS,
FW_PHY_CFG_RADIO_STEP_POS = 2,
FW_PHY_CFG_RADIO_STEP = 0x3 << FW_PHY_CFG_RADIO_STEP_POS,
FW_PHY_CFG_RADIO_DASH_POS = 4,
FW_PHY_CFG_RADIO_DASH = 0x3 << FW_PHY_CFG_RADIO_DASH_POS,
FW_PHY_CFG_TX_CHAIN_POS = 16,
FW_PHY_CFG_TX_CHAIN = 0xf << FW_PHY_CFG_TX_CHAIN_POS,
FW_PHY_CFG_RX_CHAIN_POS = 20,
FW_PHY_CFG_RX_CHAIN = 0xf << FW_PHY_CFG_RX_CHAIN_POS,
};
#define IWL_UCODE_MAX_CS 1
/**
* struct iwl_fw_cipher_scheme - a cipher scheme supported by FW.
* @cipher: a cipher suite selector
* @flags: cipher scheme flags (currently reserved for a future use)
* @hdr_len: a size of MPDU security header
* @pn_len: a size of PN
* @pn_off: an offset of pn from the beginning of the security header
* @key_idx_off: an offset of key index byte in the security header
* @key_idx_mask: a bit mask of key_idx bits
* @key_idx_shift: bit shift needed to get key_idx
* @mic_len: mic length in bytes
* @hw_cipher: a HW cipher index used in host commands
*/
struct iwl_fw_cipher_scheme {
__le32 cipher;
u8 flags;
u8 hdr_len;
u8 pn_len;
u8 pn_off;
u8 key_idx_off;
u8 key_idx_mask;
u8 key_idx_shift;
u8 mic_len;
u8 hw_cipher;
} __packed;
/**
* struct iwl_fw_cscheme_list - a cipher scheme list
* @size: a number of entries
* @cs: cipher scheme entries
*/
struct iwl_fw_cscheme_list {
u8 size;
struct iwl_fw_cipher_scheme cs[];
} __packed;
/**
* struct iwl_fw - variables associated with the firmware
*
* @ucode_ver: ucode version from the ucode file
* @fw_version: firmware version string
* @img: ucode image like ucode_rt, ucode_init, ucode_wowlan.
* @ucode_capa: capabilities parsed from the ucode file.
* @enhance_sensitivity_table: device can do enhanced sensitivity.
* @init_evtlog_ptr: event log offset for init ucode.
* @init_evtlog_size: event log size for init ucode.
* @init_errlog_ptr: error log offfset for init ucode.
* @inst_evtlog_ptr: event log offset for runtime ucode.
* @inst_evtlog_size: event log size for runtime ucode.
* @inst_errlog_ptr: error log offfset for runtime ucode.
* @mvm_fw: indicates this is MVM firmware
* @cipher_scheme: optional external cipher scheme.
*/
struct iwl_fw {
u32 ucode_ver;
char fw_version[ETHTOOL_FWVERS_LEN];
/* ucode images */
struct fw_img img[IWL_UCODE_TYPE_MAX];
struct iwl_ucode_capabilities ucode_capa;
bool enhance_sensitivity_table;
u32 init_evtlog_ptr, init_evtlog_size, init_errlog_ptr;
u32 inst_evtlog_ptr, inst_evtlog_size, inst_errlog_ptr;
struct iwl_tlv_calib_ctrl default_calib[IWL_UCODE_TYPE_MAX];
u32 phy_config;
u8 valid_tx_ant;
u8 valid_rx_ant;
bool mvm_fw;
struct ieee80211_cipher_scheme cs[IWL_UCODE_MAX_CS];
u8 human_readable[FW_VER_HUMAN_READABLE_SZ];
};
#endif /* __iwl_fw_h__ */