linux/drivers/xen/xen-pciback/pciback.h

192 lines
6.1 KiB
C
Raw Normal View History

xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/*
* PCI Backend Common Data Structures & Function Declarations
*
* Author: Ryan Wilson <hap9@epoch.ncsc.mil>
*/
#ifndef __XEN_PCIBACK_H__
#define __XEN_PCIBACK_H__
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <xen/xenbus.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/atomic.h>
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
#include <xen/interface/io/pciif.h>
#define DRV_NAME "xen-pciback"
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
struct pci_dev_entry {
struct list_head list;
struct pci_dev *dev;
};
#define _PDEVF_op_active (0)
#define PDEVF_op_active (1<<(_PDEVF_op_active))
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
#define _PCIB_op_pending (1)
#define PCIB_op_pending (1<<(_PCIB_op_pending))
struct xen_pcibk_device {
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
void *pci_dev_data;
struct mutex dev_lock;
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
struct xenbus_device *xdev;
struct xenbus_watch be_watch;
u8 be_watching;
int evtchn_irq;
struct xen_pci_sharedinfo *sh_info;
unsigned long flags;
struct work_struct op_work;
};
struct xen_pcibk_dev_data {
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
struct list_head config_fields;
unsigned int permissive:1;
unsigned int warned_on_write:1;
unsigned int enable_intx:1;
unsigned int isr_on:1; /* Whether the IRQ handler is installed. */
unsigned int ack_intr:1; /* .. and ACK-ing */
unsigned long handled;
unsigned int irq; /* Saved in case device transitions to MSI/MSI-X */
char irq_name[0]; /* xen-pcibk[000:04:00.0] */
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
};
/* Used by XenBus and xen_pcibk_ops.c */
extern wait_queue_head_t xen_pcibk_aer_wait_queue;
extern struct workqueue_struct *xen_pcibk_wq;
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/* Used by pcistub.c and conf_space_quirks.c */
extern struct list_head xen_pcibk_quirks;
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/* Get/Put PCI Devices that are hidden from the PCI Backend Domain */
struct pci_dev *pcistub_get_pci_dev_by_slot(struct xen_pcibk_device *pdev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
int domain, int bus,
int slot, int func);
struct pci_dev *pcistub_get_pci_dev(struct xen_pcibk_device *pdev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
struct pci_dev *dev);
void pcistub_put_pci_dev(struct pci_dev *dev);
/* Ensure a device is turned off or reset */
void xen_pcibk_reset_device(struct pci_dev *pdev);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/* Access a virtual configuration space for a PCI device */
int xen_pcibk_config_init(void);
int xen_pcibk_config_init_dev(struct pci_dev *dev);
void xen_pcibk_config_free_dyn_fields(struct pci_dev *dev);
void xen_pcibk_config_reset_dev(struct pci_dev *dev);
void xen_pcibk_config_free_dev(struct pci_dev *dev);
int xen_pcibk_config_read(struct pci_dev *dev, int offset, int size,
u32 *ret_val);
int xen_pcibk_config_write(struct pci_dev *dev, int offset, int size,
u32 value);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/* Handle requests for specific devices from the frontend */
typedef int (*publish_pci_dev_cb) (struct xen_pcibk_device *pdev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
unsigned int domain, unsigned int bus,
unsigned int devfn, unsigned int devid);
typedef int (*publish_pci_root_cb) (struct xen_pcibk_device *pdev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
unsigned int domain, unsigned int bus);
/* Backend registration for the two types of BDF representation:
* vpci - BDFs start at 00
* passthrough - BDFs are exactly like in the host.
*/
struct xen_pcibk_backend {
const char *name;
int (*init)(struct xen_pcibk_device *pdev);
void (*free)(struct xen_pcibk_device *pdev);
int (*find)(struct pci_dev *pcidev, struct xen_pcibk_device *pdev,
unsigned int *domain, unsigned int *bus,
unsigned int *devfn);
int (*publish)(struct xen_pcibk_device *pdev, publish_pci_root_cb cb);
void (*release)(struct xen_pcibk_device *pdev, struct pci_dev *dev);
int (*add)(struct xen_pcibk_device *pdev, struct pci_dev *dev,
int devid, publish_pci_dev_cb publish_cb);
struct pci_dev *(*get)(struct xen_pcibk_device *pdev,
unsigned int domain, unsigned int bus,
unsigned int devfn);
};
extern const struct xen_pcibk_backend xen_pcibk_vpci_backend;
extern const struct xen_pcibk_backend xen_pcibk_passthrough_backend;
extern const struct xen_pcibk_backend *xen_pcibk_backend;
static inline int xen_pcibk_add_pci_dev(struct xen_pcibk_device *pdev,
struct pci_dev *dev,
int devid,
publish_pci_dev_cb publish_cb)
{
if (xen_pcibk_backend && xen_pcibk_backend->add)
return xen_pcibk_backend->add(pdev, dev, devid, publish_cb);
return -1;
}
static inline void xen_pcibk_release_pci_dev(struct xen_pcibk_device *pdev,
struct pci_dev *dev)
{
if (xen_pcibk_backend && xen_pcibk_backend->free)
return xen_pcibk_backend->release(pdev, dev);
}
static inline struct pci_dev *
xen_pcibk_get_pci_dev(struct xen_pcibk_device *pdev, unsigned int domain,
unsigned int bus, unsigned int devfn)
{
if (xen_pcibk_backend && xen_pcibk_backend->get)
return xen_pcibk_backend->get(pdev, domain, bus, devfn);
return NULL;
}
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/**
* Add for domain0 PCIE-AER handling. Get guest domain/bus/devfn in xen_pcibk
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
* before sending aer request to pcifront, so that guest could identify
* device, coopearte with xen_pcibk to finish aer recovery job if device driver
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
* has the capability
*/
static inline int xen_pcibk_get_pcifront_dev(struct pci_dev *pcidev,
struct xen_pcibk_device *pdev,
unsigned int *domain,
unsigned int *bus,
unsigned int *devfn)
{
if (xen_pcibk_backend && xen_pcibk_backend->find)
return xen_pcibk_backend->find(pcidev, pdev, domain, bus,
devfn);
return -1;
}
static inline int xen_pcibk_init_devices(struct xen_pcibk_device *pdev)
{
if (xen_pcibk_backend && xen_pcibk_backend->init)
return xen_pcibk_backend->init(pdev);
return -1;
}
static inline int xen_pcibk_publish_pci_roots(struct xen_pcibk_device *pdev,
publish_pci_root_cb cb)
{
if (xen_pcibk_backend && xen_pcibk_backend->publish)
return xen_pcibk_backend->publish(pdev, cb);
return -1;
}
static inline void xen_pcibk_release_devices(struct xen_pcibk_device *pdev)
{
if (xen_pcibk_backend && xen_pcibk_backend->free)
return xen_pcibk_backend->free(pdev);
}
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/* Handles events from front-end */
irqreturn_t xen_pcibk_handle_event(int irq, void *dev_id);
void xen_pcibk_do_op(struct work_struct *data);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
int xen_pcibk_xenbus_register(void);
void xen_pcibk_xenbus_unregister(void);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
extern int verbose_request;
void xen_pcibk_test_and_schedule_op(struct xen_pcibk_device *pdev);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
#endif
/* Handles shared IRQs that can to device domain and control domain. */
void xen_pcibk_irq_handler(struct pci_dev *dev, int reset);