2018-04-04 01:16:55 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2007-06-12 21:07:21 +08:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
|
|
*/
|
|
|
|
|
2018-04-04 01:16:55 +08:00
|
|
|
#ifndef BTRFS_TRANSACTION_H
|
|
|
|
#define BTRFS_TRANSACTION_H
|
2017-03-03 16:55:11 +08:00
|
|
|
|
|
|
|
#include <linux/refcount.h>
|
2007-05-01 03:25:45 +08:00
|
|
|
#include "btrfs_inode.h"
|
2009-03-13 22:10:06 +08:00
|
|
|
#include "delayed-ref.h"
|
2012-06-29 00:03:02 +08:00
|
|
|
#include "ctree.h"
|
2022-09-09 23:43:06 +08:00
|
|
|
#include "misc.h"
|
2007-03-17 04:20:31 +08:00
|
|
|
|
2023-12-02 05:00:11 +08:00
|
|
|
/* Radix-tree tag for roots that are part of the trasaction. */
|
|
|
|
#define BTRFS_ROOT_TRANS_TAG 0
|
|
|
|
|
Btrfs: make the state of the transaction more readable
We used 3 variants to track the state of the transaction, it was complex
and wasted the memory space. Besides that, it was hard to understand that
which types of the transaction handles should be blocked in each transaction
state, so the developers often made mistakes.
This patch improved the above problem. In this patch, we define 6 states
for the transaction,
enum btrfs_trans_state {
TRANS_STATE_RUNNING = 0,
TRANS_STATE_BLOCKED = 1,
TRANS_STATE_COMMIT_START = 2,
TRANS_STATE_COMMIT_DOING = 3,
TRANS_STATE_UNBLOCKED = 4,
TRANS_STATE_COMPLETED = 5,
TRANS_STATE_MAX = 6,
}
and just use 1 variant to track those state.
In order to make the blocked handle types for each state more clear,
we introduce a array:
unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
[TRANS_STATE_RUNNING] = 0U,
[TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
__TRANS_START),
[TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH),
[TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN),
[TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
[TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
}
it is very intuitionistic.
Besides that, because we remove ->in_commit in transaction structure, so
the lock ->commit_lock which was used to protect it is unnecessary, remove
->commit_lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-17 11:53:43 +08:00
|
|
|
enum btrfs_trans_state {
|
2018-11-27 22:25:13 +08:00
|
|
|
TRANS_STATE_RUNNING,
|
2023-08-25 04:59:22 +08:00
|
|
|
TRANS_STATE_COMMIT_PREP,
|
2018-11-27 22:25:13 +08:00
|
|
|
TRANS_STATE_COMMIT_START,
|
|
|
|
TRANS_STATE_COMMIT_DOING,
|
|
|
|
TRANS_STATE_UNBLOCKED,
|
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Often an fsync needs to fallback to a transaction commit for several
reasons (to ensure consistency after a power failure, a new block group
was allocated or a temporary error such as ENOMEM or ENOSPC happened).
In that case the log is marked as needing a full commit and any concurrent
tasks attempting to log inodes or commit the log will also fallback to the
transaction commit. When this happens they all wait for the task that first
started the transaction commit to finish the transaction commit - however
they wait until the full transaction commit happens, which is not needed,
as they only need to wait for the superblocks to be persisted and not for
unpinning all the extents pinned during the transaction's lifetime, which
even for short lived transactions can be a few thousand and take some
significant amount of time to complete - for dbench workloads I have
observed up to 4~5 milliseconds of time spent unpinning extents in the
worst cases, and the number of pinned extents was between 2 to 3 thousand.
So allow fsync tasks to skip waiting for the unpinning of extents when
they call btrfs_commit_transaction() and they were not the task that
started the transaction commit (that one has to do it, the alternative
would be to offload the transaction commit to another task so that it
could avoid waiting for the extent unpinning or offload the extent
unpinning to another task).
This patch is part of a patchset comprised of the following patches:
btrfs: remove unnecessary directory inode item update when deleting dir entry
btrfs: stop setting nbytes when filling inode item for logging
btrfs: avoid logging new ancestor inodes when logging new inode
btrfs: skip logging directories already logged when logging all parents
btrfs: skip logging inodes already logged when logging new entries
btrfs: remove unnecessary check_parent_dirs_for_sync()
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
After applying the entire patchset, dbench shows improvements in respect
to throughput and latency. The script used to measure it is the following:
$ cat dbench-test.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -D $MNT -t 300 64
umount $MNT
The test was run on a physical machine with 12 cores (Intel corei7), 64G
of ram, using a NVMe device and a non-debug kernel configuration (Debian's
default configuration).
Before applying patchset, 32 clients:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9627107 0.153 61.938
Close 7072076 0.001 3.175
Rename 407633 1.222 44.439
Unlink 1943895 0.658 44.440
Deltree 256 17.339 110.891
Mkdir 128 0.003 0.009
Qpathinfo 8725406 0.064 17.850
Qfileinfo 1529516 0.001 2.188
Qfsinfo 1599884 0.002 1.457
Sfileinfo 784200 0.005 3.562
Find 3373513 0.411 30.312
WriteX 4802132 0.053 29.054
ReadX 15089959 0.002 5.801
LockX 31344 0.002 0.425
UnlockX 31344 0.001 0.173
Flush 674724 5.952 341.830
Throughput 1008.02 MB/sec 32 clients 32 procs max_latency=341.833 ms
After applying patchset, 32 clients:
After patchset, with 32 clients:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9931568 0.111 25.597
Close 7295730 0.001 2.171
Rename 420549 0.982 49.714
Unlink 2005366 0.497 39.015
Deltree 256 11.149 89.242
Mkdir 128 0.002 0.014
Qpathinfo 9001863 0.049 20.761
Qfileinfo 1577730 0.001 2.546
Qfsinfo 1650508 0.002 3.531
Sfileinfo 809031 0.005 5.846
Find 3480259 0.309 23.977
WriteX 4952505 0.043 41.283
ReadX 15568127 0.002 5.476
LockX 32338 0.002 0.978
UnlockX 32338 0.001 2.032
Flush 696017 7.485 228.835
Throughput 1049.91 MB/sec 32 clients 32 procs max_latency=228.847 ms
--> +4.1% throughput, -39.6% max latency
Before applying patchset, 64 clients:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 8956748 0.342 108.312
Close 6579660 0.001 3.823
Rename 379209 2.396 81.897
Unlink 1808625 1.108 131.148
Deltree 256 25.632 172.176
Mkdir 128 0.003 0.018
Qpathinfo 8117615 0.131 55.916
Qfileinfo 1423495 0.001 2.635
Qfsinfo 1488496 0.002 5.412
Sfileinfo 729472 0.007 8.643
Find 3138598 0.855 78.321
WriteX 4470783 0.102 79.442
ReadX 14038139 0.002 7.578
LockX 29158 0.002 0.844
UnlockX 29158 0.001 0.567
Flush 627746 14.168 506.151
Throughput 924.738 MB/sec 64 clients 64 procs max_latency=506.154 ms
After applying patchset, 64 clients:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9069003 0.303 43.193
Close 6662328 0.001 3.888
Rename 383976 2.194 46.418
Unlink 1831080 1.022 43.873
Deltree 256 24.037 155.763
Mkdir 128 0.002 0.005
Qpathinfo 8219173 0.137 30.233
Qfileinfo 1441203 0.001 3.204
Qfsinfo 1507092 0.002 4.055
Sfileinfo 738775 0.006 5.431
Find 3177874 0.936 38.170
WriteX 4526152 0.084 39.518
ReadX 14213562 0.002 24.760
LockX 29522 0.002 1.221
UnlockX 29522 0.001 0.694
Flush 635652 14.358 422.039
Throughput 990.13 MB/sec 64 clients 64 procs max_latency=422.043 ms
--> +6.8% throughput, -18.1% max latency
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-27 18:35:00 +08:00
|
|
|
TRANS_STATE_SUPER_COMMITTED,
|
2018-11-27 22:25:13 +08:00
|
|
|
TRANS_STATE_COMPLETED,
|
|
|
|
TRANS_STATE_MAX,
|
Btrfs: make the state of the transaction more readable
We used 3 variants to track the state of the transaction, it was complex
and wasted the memory space. Besides that, it was hard to understand that
which types of the transaction handles should be blocked in each transaction
state, so the developers often made mistakes.
This patch improved the above problem. In this patch, we define 6 states
for the transaction,
enum btrfs_trans_state {
TRANS_STATE_RUNNING = 0,
TRANS_STATE_BLOCKED = 1,
TRANS_STATE_COMMIT_START = 2,
TRANS_STATE_COMMIT_DOING = 3,
TRANS_STATE_UNBLOCKED = 4,
TRANS_STATE_COMPLETED = 5,
TRANS_STATE_MAX = 6,
}
and just use 1 variant to track those state.
In order to make the blocked handle types for each state more clear,
we introduce a array:
unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
[TRANS_STATE_RUNNING] = 0U,
[TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
__TRANS_START),
[TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH),
[TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN),
[TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
[TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
}
it is very intuitionistic.
Besides that, because we remove ->in_commit in transaction structure, so
the lock ->commit_lock which was used to protect it is unnecessary, remove
->commit_lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-17 11:53:43 +08:00
|
|
|
};
|
|
|
|
|
2015-09-24 22:46:10 +08:00
|
|
|
#define BTRFS_TRANS_HAVE_FREE_BGS 0
|
|
|
|
#define BTRFS_TRANS_DIRTY_BG_RUN 1
|
2015-10-02 00:55:18 +08:00
|
|
|
#define BTRFS_TRANS_CACHE_ENOSPC 2
|
2015-09-24 22:46:10 +08:00
|
|
|
|
2007-03-23 03:59:16 +08:00
|
|
|
struct btrfs_transaction {
|
|
|
|
u64 transid;
|
2013-05-15 15:48:27 +08:00
|
|
|
/*
|
|
|
|
* total external writers(USERSPACE/START/ATTACH) in this
|
|
|
|
* transaction, it must be zero before the transaction is
|
|
|
|
* being committed
|
|
|
|
*/
|
|
|
|
atomic_t num_extwriters;
|
2009-03-13 08:12:45 +08:00
|
|
|
/*
|
|
|
|
* total writers in this transaction, it must be zero before the
|
|
|
|
* transaction can end
|
|
|
|
*/
|
2011-04-12 03:45:29 +08:00
|
|
|
atomic_t num_writers;
|
2017-03-03 16:55:11 +08:00
|
|
|
refcount_t use_count;
|
2009-03-13 08:12:45 +08:00
|
|
|
|
2015-09-24 22:46:10 +08:00
|
|
|
unsigned long flags;
|
btrfs: Fix out-of-space bug
Btrfs will report NO_SPACE when we create and remove files for several times,
and we can't write to filesystem until mount it again.
Steps to reproduce:
1: Create a single-dev btrfs fs with default option
2: Write a file into it to take up most fs space
3: Delete above file
4: Wait about 100s to let chunk removed
5: goto 2
Script is like following:
#!/bin/bash
# Recommend 1.2G space, too large disk will make test slow
DEV="/dev/sda16"
MNT="/mnt/tmp"
dev_size="$(lsblk -bn -o SIZE "$DEV")" || exit 2
file_size_m=$((dev_size * 75 / 100 / 1024 / 1024))
echo "Loop write ${file_size_m}M file on $((dev_size / 1024 / 1024))M dev"
for ((i = 0; i < 10; i++)); do umount "$MNT" 2>/dev/null; done
echo "mkfs $DEV"
mkfs.btrfs -f "$DEV" >/dev/null || exit 2
echo "mount $DEV $MNT"
mount "$DEV" "$MNT" || exit 2
for ((loop_i = 0; loop_i < 20; loop_i++)); do
echo
echo "loop $loop_i"
echo "dd file..."
cmd=(dd if=/dev/zero of="$MNT"/file0 bs=1M count="$file_size_m")
"${cmd[@]}" 2>/dev/null || {
# NO_SPACE error triggered
echo "dd failed: ${cmd[*]}"
exit 1
}
echo "rm file..."
rm -f "$MNT"/file0 || exit 2
for ((i = 0; i < 10; i++)); do
df "$MNT" | tail -1
sleep 10
done
done
Reason:
It is triggered by commit: 47ab2a6c689913db23ccae38349714edf8365e0a
which is used to remove empty block groups automatically, but the
reason is not in that patch. Code before works well because btrfs
don't need to create and delete chunks so many times with high
complexity.
Above bug is caused by many reason, any of them can trigger it.
Reason1:
When we remove some continuous chunks but leave other chunks after,
these disk space should be used by chunk-recreating, but in current
code, only first create will successed.
Fixed by Forrest Liu <forrestl@synology.com> in:
Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
Reason2:
contains_pending_extent() return wrong value in calculation.
Fixed by Forrest Liu <forrestl@synology.com> in:
Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
Reason3:
btrfs_check_data_free_space() try to commit transaction and retry
allocating chunk when the first allocating failed, but space_info->full
is set in first allocating, and prevent second allocating in retry.
Fixed in this patch by clear space_info->full in commit transaction.
Tested for severial times by above script.
Changelog v3->v4:
use light weight int instead of atomic_t to record have_remove_bgs in
transaction, suggested by:
Josef Bacik <jbacik@fb.com>
Changelog v2->v3:
v2 fixed the bug by adding more commit-transaction, but we
only need to reclaim space when we are really have no space for
new chunk, noticed by:
Filipe David Manana <fdmanana@gmail.com>
Actually, our code already have this type of commit-and-retry,
we only need to make it working with removed-bgs.
v3 fixed the bug with above way.
Changelog v1->v2:
v1 will introduce a new bug when delete and create chunk in same disk
space in same transaction, noticed by:
Filipe David Manana <fdmanana@gmail.com>
V2 fix this bug by commit transaction after remove block grops.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Suggested-by: Filipe David Manana <fdmanana@gmail.com>
Suggested-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-12 14:18:17 +08:00
|
|
|
|
Btrfs: make the state of the transaction more readable
We used 3 variants to track the state of the transaction, it was complex
and wasted the memory space. Besides that, it was hard to understand that
which types of the transaction handles should be blocked in each transaction
state, so the developers often made mistakes.
This patch improved the above problem. In this patch, we define 6 states
for the transaction,
enum btrfs_trans_state {
TRANS_STATE_RUNNING = 0,
TRANS_STATE_BLOCKED = 1,
TRANS_STATE_COMMIT_START = 2,
TRANS_STATE_COMMIT_DOING = 3,
TRANS_STATE_UNBLOCKED = 4,
TRANS_STATE_COMPLETED = 5,
TRANS_STATE_MAX = 6,
}
and just use 1 variant to track those state.
In order to make the blocked handle types for each state more clear,
we introduce a array:
unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
[TRANS_STATE_RUNNING] = 0U,
[TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
__TRANS_START),
[TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH),
[TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN),
[TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
[TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
}
it is very intuitionistic.
Besides that, because we remove ->in_commit in transaction structure, so
the lock ->commit_lock which was used to protect it is unnecessary, remove
->commit_lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-17 11:53:43 +08:00
|
|
|
/* Be protected by fs_info->trans_lock when we want to change it. */
|
|
|
|
enum btrfs_trans_state state;
|
2017-11-08 08:54:33 +08:00
|
|
|
int aborted;
|
2007-04-20 09:01:03 +08:00
|
|
|
struct list_head list;
|
2008-01-25 05:13:08 +08:00
|
|
|
struct extent_io_tree dirty_pages;
|
2018-06-12 19:48:25 +08:00
|
|
|
time64_t start_time;
|
2007-03-23 03:59:16 +08:00
|
|
|
wait_queue_head_t writer_wait;
|
|
|
|
wait_queue_head_t commit_wait;
|
2008-01-09 04:46:30 +08:00
|
|
|
struct list_head pending_snapshots;
|
2019-03-25 20:31:22 +08:00
|
|
|
struct list_head dev_update_list;
|
2014-03-14 03:42:13 +08:00
|
|
|
struct list_head switch_commits;
|
2014-11-18 04:45:48 +08:00
|
|
|
struct list_head dirty_bgs;
|
2018-02-09 00:25:18 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* There is no explicit lock which protects io_bgs, rather its
|
|
|
|
* consistency is implied by the fact that all the sites which modify
|
|
|
|
* it do so under some form of transaction critical section, namely:
|
|
|
|
*
|
|
|
|
* - btrfs_start_dirty_block_groups - This function can only ever be
|
|
|
|
* run by one of the transaction committers. Refer to
|
|
|
|
* BTRFS_TRANS_DIRTY_BG_RUN usage in btrfs_commit_transaction
|
|
|
|
*
|
|
|
|
* - btrfs_write_dirty_blockgroups - this is called by
|
|
|
|
* commit_cowonly_roots from transaction critical section
|
|
|
|
* (TRANS_STATE_COMMIT_DOING)
|
|
|
|
*
|
|
|
|
* - btrfs_cleanup_dirty_bgs - called on transaction abort
|
|
|
|
*/
|
2015-04-07 03:46:08 +08:00
|
|
|
struct list_head io_bgs;
|
2015-09-15 22:07:04 +08:00
|
|
|
struct list_head dropped_roots;
|
2020-01-20 22:09:18 +08:00
|
|
|
struct extent_io_tree pinned_extents;
|
2015-04-07 03:46:08 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* we need to make sure block group deletion doesn't race with
|
|
|
|
* free space cache writeout. This mutex keeps them from stomping
|
|
|
|
* on each other
|
|
|
|
*/
|
|
|
|
struct mutex cache_write_mutex;
|
2014-11-18 04:45:48 +08:00
|
|
|
spinlock_t dirty_bgs_lock;
|
2015-11-27 20:16:16 +08:00
|
|
|
/* Protected by spin lock fs_info->unused_bgs_lock. */
|
2015-06-15 21:41:19 +08:00
|
|
|
struct list_head deleted_bgs;
|
2015-09-15 22:07:04 +08:00
|
|
|
spinlock_t dropped_roots_lock;
|
2009-03-13 22:10:06 +08:00
|
|
|
struct btrfs_delayed_ref_root delayed_refs;
|
2016-09-20 22:05:02 +08:00
|
|
|
struct btrfs_fs_info *fs_info;
|
btrfs: make fast fsyncs wait only for writeback
Currently regardless of a full or a fast fsync we always wait for ordered
extents to complete, and then start logging the inode after that. However
for fast fsyncs we can just wait for the writeback to complete, we don't
need to wait for the ordered extents to complete since we use the list of
modified extents maps to figure out which extents we must log and we can
get their checksums directly from the ordered extents that are still in
flight, otherwise look them up from the checksums tree.
Until commit b5e6c3e170b770 ("btrfs: always wait on ordered extents at
fsync time"), for fast fsyncs, we used to start logging without even
waiting for the writeback to complete first, we would wait for it to
complete after logging, while holding a transaction open, which lead to
performance issues when using cgroups and probably for other cases too,
as wait for IO while holding a transaction handle should be avoided as
much as possible. After that, for fast fsyncs, we started to wait for
ordered extents to complete before starting to log, which adds some
latency to fsyncs and we even got at least one report about a performance
drop which bisected to that particular change:
https://lore.kernel.org/linux-btrfs/20181109215148.GF23260@techsingularity.net/
This change makes fast fsyncs only wait for writeback to finish before
starting to log the inode, instead of waiting for both the writeback to
finish and for the ordered extents to complete. This brings back part of
the logic we had that extracts checksums from in flight ordered extents,
which are not yet in the checksums tree, and making sure transaction
commits wait for the completion of ordered extents previously logged
(by far most of the time they have already completed by the time a
transaction commit starts, resulting in no wait at all), to avoid any
data loss if an ordered extent completes after the transaction used to
log an inode is committed, followed by a power failure.
When there are no other tasks accessing the checksums and the subvolume
btrees, the ordered extent completion is pretty fast, typically taking
100 to 200 microseconds only in my observations. However when there are
other tasks accessing these btrees, ordered extent completion can take a
lot more time due to lock contention on nodes and leaves of these btrees.
I've seen cases over 2 milliseconds, which starts to be significant. In
particular when we do have concurrent fsyncs against different files there
is a lot of contention on the checksums btree, since we have many tasks
writing the checksums into the btree and other tasks that already started
the logging phase are doing lookups for checksums in the btree.
This change also turns all ranged fsyncs into full ranged fsyncs, which
is something we already did when not using the NO_HOLES features or when
doing a full fsync. This is to guarantee we never miss checksums due to
writeback having been triggered only for a part of an extent, and we end
up logging the full extent but only checksums for the written range, which
results in missing checksums after log replay. Allowing ranged fsyncs to
operate again only in the original range, when using the NO_HOLES feature
and doing a fast fsync is doable but requires some non trivial changes to
the writeback path, which can always be worked on later if needed, but I
don't think they are a very common use case.
Several tests were performed using fio for different numbers of concurrent
jobs, each writing and fsyncing its own file, for both sequential and
random file writes. The tests were run on bare metal, no virtualization,
on a box with 12 cores (Intel i7-8700), 64Gb of RAM and a NVMe device,
with a kernel configuration that is the default of typical distributions
(debian in this case), without debug options enabled (kasan, kmemleak,
slub debug, debug of page allocations, lock debugging, etc).
The following script that calls fio was used:
$ cat test-fsync.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/btrfs
MOUNT_OPTIONS="-o ssd -o space_cache=v2"
MKFS_OPTIONS="-d single -m single"
if [ $# -ne 5 ]; then
echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ BLOCK_SIZE [write|randwrite]"
exit 1
fi
NUM_JOBS=$1
FILE_SIZE=$2
FSYNC_FREQ=$3
BLOCK_SIZE=$4
WRITE_MODE=$5
if [ "$WRITE_MODE" != "write" ] && [ "$WRITE_MODE" != "randwrite" ]; then
echo "Invalid WRITE_MODE, must be 'write' or 'randwrite'"
exit 1
fi
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=$WRITE_MODE
fsync=$FSYNC_FREQ
fallocate=none
group_reporting=1
direct=0
bs=$BLOCK_SIZE
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
echo
echo "Using config:"
echo
cat /tmp/fio-job.ini
echo
umount $MNT &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The results were the following:
*************************
*** sequential writes ***
*************************
==== 1 job, 8GiB file, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=36.6MiB/s (38.4MB/s), 36.6MiB/s-36.6MiB/s (38.4MB/s-38.4MB/s), io=8192MiB (8590MB), run=223689-223689msec
After patch:
WRITE: bw=40.2MiB/s (42.1MB/s), 40.2MiB/s-40.2MiB/s (42.1MB/s-42.1MB/s), io=8192MiB (8590MB), run=203980-203980msec
(+9.8%, -8.8% runtime)
==== 2 jobs, 4GiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=35.8MiB/s (37.5MB/s), 35.8MiB/s-35.8MiB/s (37.5MB/s-37.5MB/s), io=8192MiB (8590MB), run=228950-228950msec
After patch:
WRITE: bw=43.5MiB/s (45.6MB/s), 43.5MiB/s-43.5MiB/s (45.6MB/s-45.6MB/s), io=8192MiB (8590MB), run=188272-188272msec
(+21.5% throughput, -17.8% runtime)
==== 4 jobs, 2GiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=50.1MiB/s (52.6MB/s), 50.1MiB/s-50.1MiB/s (52.6MB/s-52.6MB/s), io=8192MiB (8590MB), run=163446-163446msec
After patch:
WRITE: bw=64.5MiB/s (67.6MB/s), 64.5MiB/s-64.5MiB/s (67.6MB/s-67.6MB/s), io=8192MiB (8590MB), run=126987-126987msec
(+28.7% throughput, -22.3% runtime)
==== 8 jobs, 1GiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=64.0MiB/s (68.1MB/s), 64.0MiB/s-64.0MiB/s (68.1MB/s-68.1MB/s), io=8192MiB (8590MB), run=126075-126075msec
After patch:
WRITE: bw=86.8MiB/s (91.0MB/s), 86.8MiB/s-86.8MiB/s (91.0MB/s-91.0MB/s), io=8192MiB (8590MB), run=94358-94358msec
(+35.6% throughput, -25.2% runtime)
==== 16 jobs, 512MiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=79.8MiB/s (83.6MB/s), 79.8MiB/s-79.8MiB/s (83.6MB/s-83.6MB/s), io=8192MiB (8590MB), run=102694-102694msec
After patch:
WRITE: bw=107MiB/s (112MB/s), 107MiB/s-107MiB/s (112MB/s-112MB/s), io=8192MiB (8590MB), run=76446-76446msec
(+34.1% throughput, -25.6% runtime)
==== 32 jobs, 512MiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=93.2MiB/s (97.7MB/s), 93.2MiB/s-93.2MiB/s (97.7MB/s-97.7MB/s), io=16.0GiB (17.2GB), run=175836-175836msec
After patch:
WRITE: bw=111MiB/s (117MB/s), 111MiB/s-111MiB/s (117MB/s-117MB/s), io=16.0GiB (17.2GB), run=147001-147001msec
(+19.1% throughput, -16.4% runtime)
==== 64 jobs, 512MiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=108MiB/s (114MB/s), 108MiB/s-108MiB/s (114MB/s-114MB/s), io=32.0GiB (34.4GB), run=302656-302656msec
After patch:
WRITE: bw=133MiB/s (140MB/s), 133MiB/s-133MiB/s (140MB/s-140MB/s), io=32.0GiB (34.4GB), run=246003-246003msec
(+23.1% throughput, -18.7% runtime)
************************
*** random writes ***
************************
==== 1 job, 8GiB file, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=11.5MiB/s (12.0MB/s), 11.5MiB/s-11.5MiB/s (12.0MB/s-12.0MB/s), io=8192MiB (8590MB), run=714281-714281msec
After patch:
WRITE: bw=11.6MiB/s (12.2MB/s), 11.6MiB/s-11.6MiB/s (12.2MB/s-12.2MB/s), io=8192MiB (8590MB), run=705959-705959msec
(+0.9% throughput, -1.7% runtime)
==== 2 jobs, 4GiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=12.8MiB/s (13.5MB/s), 12.8MiB/s-12.8MiB/s (13.5MB/s-13.5MB/s), io=8192MiB (8590MB), run=638101-638101msec
After patch:
WRITE: bw=13.1MiB/s (13.7MB/s), 13.1MiB/s-13.1MiB/s (13.7MB/s-13.7MB/s), io=8192MiB (8590MB), run=625374-625374msec
(+2.3% throughput, -2.0% runtime)
==== 4 jobs, 2GiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=15.4MiB/s (16.2MB/s), 15.4MiB/s-15.4MiB/s (16.2MB/s-16.2MB/s), io=8192MiB (8590MB), run=531146-531146msec
After patch:
WRITE: bw=17.8MiB/s (18.7MB/s), 17.8MiB/s-17.8MiB/s (18.7MB/s-18.7MB/s), io=8192MiB (8590MB), run=460431-460431msec
(+15.6% throughput, -13.3% runtime)
==== 8 jobs, 1GiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=19.9MiB/s (20.8MB/s), 19.9MiB/s-19.9MiB/s (20.8MB/s-20.8MB/s), io=8192MiB (8590MB), run=412664-412664msec
After patch:
WRITE: bw=22.2MiB/s (23.3MB/s), 22.2MiB/s-22.2MiB/s (23.3MB/s-23.3MB/s), io=8192MiB (8590MB), run=368589-368589msec
(+11.6% throughput, -10.7% runtime)
==== 16 jobs, 512MiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=29.3MiB/s (30.7MB/s), 29.3MiB/s-29.3MiB/s (30.7MB/s-30.7MB/s), io=8192MiB (8590MB), run=279924-279924msec
After patch:
WRITE: bw=30.4MiB/s (31.9MB/s), 30.4MiB/s-30.4MiB/s (31.9MB/s-31.9MB/s), io=8192MiB (8590MB), run=269258-269258msec
(+3.8% throughput, -3.8% runtime)
==== 32 jobs, 512MiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=36.9MiB/s (38.7MB/s), 36.9MiB/s-36.9MiB/s (38.7MB/s-38.7MB/s), io=16.0GiB (17.2GB), run=443581-443581msec
After patch:
WRITE: bw=41.6MiB/s (43.6MB/s), 41.6MiB/s-41.6MiB/s (43.6MB/s-43.6MB/s), io=16.0GiB (17.2GB), run=394114-394114msec
(+12.7% throughput, -11.2% runtime)
==== 64 jobs, 512MiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=45.9MiB/s (48.1MB/s), 45.9MiB/s-45.9MiB/s (48.1MB/s-48.1MB/s), io=32.0GiB (34.4GB), run=714614-714614msec
After patch:
WRITE: bw=48.8MiB/s (51.1MB/s), 48.8MiB/s-48.8MiB/s (51.1MB/s-51.1MB/s), io=32.0GiB (34.4GB), run=672087-672087msec
(+6.3% throughput, -6.0% runtime)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-11 19:43:58 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Number of ordered extents the transaction must wait for before
|
|
|
|
* committing. These are ordered extents started by a fast fsync.
|
|
|
|
*/
|
|
|
|
atomic_t pending_ordered;
|
|
|
|
wait_queue_head_t pending_wait;
|
2007-03-23 03:59:16 +08:00
|
|
|
};
|
|
|
|
|
2022-09-09 23:43:06 +08:00
|
|
|
enum {
|
|
|
|
ENUM_BIT(__TRANS_FREEZABLE),
|
|
|
|
ENUM_BIT(__TRANS_START),
|
|
|
|
ENUM_BIT(__TRANS_ATTACH),
|
|
|
|
ENUM_BIT(__TRANS_JOIN),
|
|
|
|
ENUM_BIT(__TRANS_JOIN_NOLOCK),
|
|
|
|
ENUM_BIT(__TRANS_DUMMY),
|
|
|
|
ENUM_BIT(__TRANS_JOIN_NOSTART),
|
|
|
|
};
|
2013-05-15 15:48:27 +08:00
|
|
|
|
|
|
|
#define TRANS_START (__TRANS_START | __TRANS_FREEZABLE)
|
|
|
|
#define TRANS_ATTACH (__TRANS_ATTACH)
|
|
|
|
#define TRANS_JOIN (__TRANS_JOIN | __TRANS_FREEZABLE)
|
|
|
|
#define TRANS_JOIN_NOLOCK (__TRANS_JOIN_NOLOCK)
|
Btrfs: fix deadlock between fiemap and transaction commits
The fiemap handler locks a file range that can have unflushed delalloc,
and after locking the range, it tries to attach to a running transaction.
If the running transaction started its commit, that is, it is in state
TRANS_STATE_COMMIT_START, and either the filesystem was mounted with the
flushoncommit option or the transaction is creating a snapshot for the
subvolume that contains the file that fiemap is operating on, we end up
deadlocking. This happens because fiemap is blocked on the transaction,
waiting for it to complete, and the transaction is waiting for the flushed
dealloc to complete, which requires locking the file range that the fiemap
task already locked. The following stack traces serve as an example of
when this deadlock happens:
(...)
[404571.515510] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
[404571.515956] Call Trace:
[404571.516360] ? __schedule+0x3ae/0x7b0
[404571.516730] schedule+0x3a/0xb0
[404571.517104] lock_extent_bits+0x1ec/0x2a0 [btrfs]
[404571.517465] ? remove_wait_queue+0x60/0x60
[404571.517832] btrfs_finish_ordered_io+0x292/0x800 [btrfs]
[404571.518202] normal_work_helper+0xea/0x530 [btrfs]
[404571.518566] process_one_work+0x21e/0x5c0
[404571.518990] worker_thread+0x4f/0x3b0
[404571.519413] ? process_one_work+0x5c0/0x5c0
[404571.519829] kthread+0x103/0x140
[404571.520191] ? kthread_create_worker_on_cpu+0x70/0x70
[404571.520565] ret_from_fork+0x3a/0x50
[404571.520915] kworker/u8:6 D 0 31651 2 0x80004000
[404571.521290] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs]
(...)
[404571.537000] fsstress D 0 13117 13115 0x00004000
[404571.537263] Call Trace:
[404571.537524] ? __schedule+0x3ae/0x7b0
[404571.537788] schedule+0x3a/0xb0
[404571.538066] wait_current_trans+0xc8/0x100 [btrfs]
[404571.538349] ? remove_wait_queue+0x60/0x60
[404571.538680] start_transaction+0x33c/0x500 [btrfs]
[404571.539076] btrfs_check_shared+0xa3/0x1f0 [btrfs]
[404571.539513] ? extent_fiemap+0x2ce/0x650 [btrfs]
[404571.539866] extent_fiemap+0x2ce/0x650 [btrfs]
[404571.540170] do_vfs_ioctl+0x526/0x6f0
[404571.540436] ksys_ioctl+0x70/0x80
[404571.540734] __x64_sys_ioctl+0x16/0x20
[404571.540997] do_syscall_64+0x60/0x1d0
[404571.541279] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
[404571.543729] btrfs D 0 14210 14208 0x00004000
[404571.544023] Call Trace:
[404571.544275] ? __schedule+0x3ae/0x7b0
[404571.544526] ? wait_for_completion+0x112/0x1a0
[404571.544795] schedule+0x3a/0xb0
[404571.545064] schedule_timeout+0x1ff/0x390
[404571.545351] ? lock_acquire+0xa6/0x190
[404571.545638] ? wait_for_completion+0x49/0x1a0
[404571.545890] ? wait_for_completion+0x112/0x1a0
[404571.546228] wait_for_completion+0x131/0x1a0
[404571.546503] ? wake_up_q+0x70/0x70
[404571.546775] btrfs_wait_ordered_extents+0x27c/0x400 [btrfs]
[404571.547159] btrfs_commit_transaction+0x3b0/0xae0 [btrfs]
[404571.547449] ? btrfs_mksubvol+0x4a4/0x640 [btrfs]
[404571.547703] ? remove_wait_queue+0x60/0x60
[404571.547969] btrfs_mksubvol+0x605/0x640 [btrfs]
[404571.548226] ? __sb_start_write+0xd4/0x1c0
[404571.548512] ? mnt_want_write_file+0x24/0x50
[404571.548789] btrfs_ioctl_snap_create_transid+0x169/0x1a0 [btrfs]
[404571.549048] btrfs_ioctl_snap_create_v2+0x11d/0x170 [btrfs]
[404571.549307] btrfs_ioctl+0x133f/0x3150 [btrfs]
[404571.549549] ? mem_cgroup_charge_statistics+0x4c/0xd0
[404571.549792] ? mem_cgroup_commit_charge+0x84/0x4b0
[404571.550064] ? __handle_mm_fault+0xe3e/0x11f0
[404571.550306] ? do_raw_spin_unlock+0x49/0xc0
[404571.550608] ? _raw_spin_unlock+0x24/0x30
[404571.550976] ? __handle_mm_fault+0xedf/0x11f0
[404571.551319] ? do_vfs_ioctl+0xa2/0x6f0
[404571.551659] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[404571.552087] do_vfs_ioctl+0xa2/0x6f0
[404571.552355] ksys_ioctl+0x70/0x80
[404571.552621] __x64_sys_ioctl+0x16/0x20
[404571.552864] do_syscall_64+0x60/0x1d0
[404571.553104] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
If we were joining the transaction instead of attaching to it, we would
not risk a deadlock because a join only blocks if the transaction is in a
state greater then or equals to TRANS_STATE_COMMIT_DOING, and the delalloc
flush performed by a transaction is done before it reaches that state,
when it is in the state TRANS_STATE_COMMIT_START. However a transaction
join is intended for use cases where we do modify the filesystem, and
fiemap only needs to peek at delayed references from the current
transaction in order to determine if extents are shared, and, besides
that, when there is no current transaction or when it blocks to wait for
a current committing transaction to complete, it creates a new transaction
without reserving any space. Such unnecessary transactions, besides doing
unnecessary IO, can cause transaction aborts (-ENOSPC) and unnecessary
rotation of the precious backup roots.
So fix this by adding a new transaction join variant, named join_nostart,
which behaves like the regular join, but it does not create a transaction
when none currently exists or after waiting for a committing transaction
to complete.
Fixes: 03628cdbc64db6 ("Btrfs: do not start a transaction during fiemap")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-29 16:37:10 +08:00
|
|
|
#define TRANS_JOIN_NOSTART (__TRANS_JOIN_NOSTART)
|
2013-05-15 15:48:27 +08:00
|
|
|
|
2018-02-05 16:41:15 +08:00
|
|
|
#define TRANS_EXTWRITERS (__TRANS_START | __TRANS_ATTACH)
|
2012-09-20 15:51:59 +08:00
|
|
|
|
2007-03-17 04:20:31 +08:00
|
|
|
struct btrfs_trans_handle {
|
|
|
|
u64 transid;
|
2010-05-16 22:46:25 +08:00
|
|
|
u64 bytes_reserved;
|
btrfs: always reserve space for delayed refs when starting transaction
When starting a transaction (or joining an existing one with
btrfs_start_transaction()), we reserve space for the number of items we
want to insert in a btree, but we don't do it for the delayed refs we
will generate while using the transaction to modify (COW) extent buffers
in a btree or allocate new extent buffers. Basically how it works:
1) When we start a transaction we reserve space for the number of items
the caller wants to be inserted/modified/deleted in a btree. This space
goes to the transaction block reserve;
2) If the delayed refs block reserve is not full, its size is greater
than the amount of its reserved space, and the flush method is
BTRFS_RESERVE_FLUSH_ALL, then we attempt to reserve more space for
it corresponding to the number of items the caller wants to
insert/modify/delete in a btree;
3) The size of the delayed refs block reserve is increased when a task
creates delayed refs after COWing an extent buffer, allocating a new
one or deleting (freeing) an extent buffer. This happens after the
the task started or joined a transaction, whenever it calls
btrfs_update_delayed_refs_rsv();
4) The delayed refs block reserve is then refilled by anyone calling
btrfs_delayed_refs_rsv_refill(), either during unlink/truncate
operations or when someone else calls btrfs_start_transaction() with
a 0 number of items and flush method BTRFS_RESERVE_FLUSH_ALL;
5) As a task COWs or allocates extent buffers, it consumes space from the
transaction block reserve. When the task releases its transaction
handle (btrfs_end_transaction()) or it attempts to commit the
transaction, it releases any remaining space in the transaction block
reserve that it did not use, as not all space may have been used (due
to pessimistic space calculation) by calling btrfs_block_rsv_release()
which will try to add that unused space to the delayed refs block
reserve (if its current size is greater than its reserved space).
That transferred space may not be enough to completely fulfill the
delayed refs block reserve.
Plus we have some tasks that will attempt do modify as many leaves
as they can before getting -ENOSPC (and then reserving more space and
retrying), such as hole punching and extent cloning which call
btrfs_replace_file_extents(). Such tasks can generate therefore a
high number of delayed refs, for both metadata and data (we can't
know in advance how many file extent items we will find in a range
and therefore how many delayed refs for dropping references on data
extents we will generate);
6) If a transaction starts its commit before the delayed refs block
reserve is refilled, for example by the transaction kthread or by
someone who called btrfs_join_transaction() before starting the
commit, then when running delayed references if we don't have enough
reserved space in the delayed refs block reserve, we will consume
space from the global block reserve.
Now this doesn't make a lot of sense because:
1) We should reserve space for delayed references when starting the
transaction, since we have no guarantees the delayed refs block
reserve will be refilled;
2) If no refill happens then we will consume from the global block reserve
when running delayed refs during the transaction commit;
3) If we have a bunch of tasks calling btrfs_start_transaction() with a
number of items greater than zero and at the time the delayed refs
reserve is full, then we don't reserve any space at
btrfs_start_transaction() for the delayed refs that will be generated
by a task, and we can therefore end up using a lot of space from the
global reserve when running the delayed refs during a transaction
commit;
4) There are also other operations that result in bumping the size of the
delayed refs reserve, such as creating and deleting block groups, as
well as the need to update a block group item because we allocated or
freed an extent from the respective block group;
5) If we have a significant gap between the delayed refs reserve's size
and its reserved space, two very bad things may happen:
1) The reserved space of the global reserve may not be enough and we
fail the transaction commit with -ENOSPC when running delayed refs;
2) If the available space in the global reserve is enough it may result
in nearly exhausting it. If the fs has no more unallocated device
space for allocating a new block group and all the available space
in existing metadata block groups is not far from the global
reserve's size before we started the transaction commit, we may end
up in a situation where after the transaction commit we have too
little available metadata space, and any future transaction commit
will fail with -ENOSPC, because although we were able to reserve
space to start the transaction, we were not able to commit it, as
running delayed refs generates some more delayed refs (to update the
extent tree for example) - this includes not even being able to
commit a transaction that was started with the goal of unlinking a
file, removing an empty data block group or doing reclaim/balance,
so there's no way to release metadata space.
In the worst case the next time we mount the filesystem we may
also fail with -ENOSPC due to failure to commit a transaction to
cleanup orphan inodes. This later case was reported and hit by
someone running a SLE (SUSE Linux Enterprise) distribution for
example - where the fs had no more unallocated space that could be
used to allocate a new metadata block group, and the available
metadata space was about 1.5M, not enough to commit a transaction
to cleanup an orphan inode (or do relocation of data block groups
that were far from being full).
So improve on this situation by always reserving space for delayed refs
when calling start_transaction(), and if the flush method is
BTRFS_RESERVE_FLUSH_ALL, also try to refill the delayed refs block
reserve if it's not full. The space reserved for the delayed refs is added
to a local block reserve that is part of the transaction handle, and when
a task updates the delayed refs block reserve size, after creating a
delayed ref, the space is transferred from that local reserve to the
global delayed refs reserve (fs_info->delayed_refs_rsv). In case the
local reserve does not have enough space, which may happen for tasks
that generate a variable and potentially large number of delayed refs
(such as the hole punching and extent cloning cases mentioned before),
we transfer any available space and then rely on the current behaviour
of hoping some other task refills the delayed refs reserve or fallback
to the global block reserve.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-09-09 01:20:38 +08:00
|
|
|
u64 delayed_refs_bytes_reserved;
|
Btrfs: fix -ENOSPC when finishing block group creation
While creating a block group, we often end up getting ENOSPC while updating
the chunk tree, which leads to a transaction abortion that produces a trace
like the following:
[30670.116368] WARNING: CPU: 4 PID: 20735 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x106 [btrfs]()
[30670.117777] BTRFS: Transaction aborted (error -28)
(...)
[30670.163567] Call Trace:
[30670.163906] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b
[30670.164522] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad
[30670.165171] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb
[30670.166323] [<ffffffffa035daa7>] ? __btrfs_abort_transaction+0x52/0x106 [btrfs]
[30670.167213] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48
[30670.167862] [<ffffffffa035daa7>] __btrfs_abort_transaction+0x52/0x106 [btrfs]
[30670.169116] [<ffffffffa03743d7>] btrfs_create_pending_block_groups+0x101/0x130 [btrfs]
[30670.170593] [<ffffffffa038426a>] __btrfs_end_transaction+0x84/0x366 [btrfs]
[30670.171960] [<ffffffffa038455c>] btrfs_end_transaction+0x10/0x12 [btrfs]
[30670.174649] [<ffffffffa036eb6b>] btrfs_check_data_free_space+0x11f/0x27c [btrfs]
[30670.176092] [<ffffffffa039450d>] btrfs_fallocate+0x7c8/0xb96 [btrfs]
[30670.177218] [<ffffffff812459f2>] ? __this_cpu_preempt_check+0x13/0x15
[30670.178622] [<ffffffff81152447>] vfs_fallocate+0x14c/0x1de
[30670.179642] [<ffffffff8116b915>] ? __fget_light+0x2d/0x4f
[30670.180692] [<ffffffff81152863>] SyS_fallocate+0x47/0x62
[30670.186737] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17
[30670.187792] ---[ end trace 0373e6b491c4a8cc ]---
This is because we don't do proper space reservation for the chunk block
reserve when we have multiple tasks allocating chunks in parallel.
So block group creation has 2 phases, and the first phase essentially
checks if there is enough space in the system space_info, allocating a
new system chunk if there isn't, while the second phase updates the
device, extent and chunk trees. However, because the updates to the
chunk tree happen in the second phase, if we have N tasks, each with
its own transaction handle, allocating new chunks in parallel and if
there is only enough space in the system space_info to allocate M chunks,
where M < N, none of the tasks ends up allocating a new system chunk in
the first phase and N - M tasks will get -ENOSPC when attempting to
update the chunk tree in phase 2 if they need to COW any nodes/leafs
from the chunk tree.
Fix this by doing proper reservation in the chunk block reserve.
The issue could be reproduced by running fstests generic/038 in a loop,
which eventually triggered the problem.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-05-20 21:01:54 +08:00
|
|
|
u64 chunk_bytes_reserved;
|
2009-03-13 22:10:06 +08:00
|
|
|
unsigned long delayed_ref_updates;
|
btrfs: stop doing excessive space reservation for csum deletion
Currently when reserving space for deleting the csum items for a data
extent, when adding or updating a delayed ref head, we determine how
many leaves of csum items we can have and then pass that number to the
helper btrfs_calc_delayed_ref_bytes(). This helper is used for calculating
space for all tree modifications we need when running delayed references,
however the amount of space it computes is excessive for deleting csum
items because:
1) It uses btrfs_calc_insert_metadata_size() which is excessive because
we only need to delete csum items from the csum tree, we don't need
to insert any items, so btrfs_calc_metadata_size() is all we need (as
it computes space needed to delete an item);
2) If the free space tree is enabled, it doubles the amount of space,
which is pointless for csum deletion since we don't need to touch the
free space tree or any other tree other than the csum tree.
So improve on this by tracking how many csum deletions we have and using
a new helper to calculate space for csum deletions (just a wrapper around
btrfs_calc_metadata_size() with a comment). This reduces the amount of
space we need to reserve for csum deletions by a factor of 4, and it helps
reduce the number of times we have to block space reservations and have
the reclaim task enter the space flushing algorithm (flush delayed items,
flush delayed refs, etc) in order to satisfy tickets.
For example this results in a total time decrease when unlinking (or
truncating) files with many extents, as we end up having to block on space
metadata reservations less often. Example test:
$ cat test.sh
#!/bin/bash
DEV=/dev/nullb0
MNT=/mnt/test
umount $DEV &> /dev/null
mkfs.btrfs -f $DEV
# Use compression to quickly create files with a lot of extents
# (each with a size of 128K).
mount -o compress=lzo $DEV $MNT
# 100G gives at least 983040 extents with a size of 128K.
xfs_io -f -c "pwrite -S 0xab -b 1M 0 120G" $MNT/foobar
# Flush all delalloc and clear all metadata from memory.
umount $MNT
mount -o compress=lzo $DEV $MNT
start=$(date +%s%N)
rm -f $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "rm took $dur milliseconds"
umount $MNT
Before this change rm took: 7504 milliseconds
After this change rm took: 6574 milliseconds (-12.4%)
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-09-09 01:20:37 +08:00
|
|
|
unsigned long delayed_ref_csum_deletions;
|
2010-05-16 22:46:25 +08:00
|
|
|
struct btrfs_transaction *transaction;
|
|
|
|
struct btrfs_block_rsv *block_rsv;
|
2011-04-14 03:15:59 +08:00
|
|
|
struct btrfs_block_rsv *orig_rsv;
|
btrfs: fix use-after-free after failure to create a snapshot
At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and
then attach it to the transaction's list of pending snapshots. After that
we call btrfs_commit_transaction(), and if that returns an error we jump
to 'fail' label, where we kfree() the pending snapshot structure. This can
result in a later use-after-free of the pending snapshot:
1) We allocated the pending snapshot and added it to the transaction's
list of pending snapshots;
2) We call btrfs_commit_transaction(), and it fails either at the first
call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups().
In both cases, we don't abort the transaction and we release our
transaction handle. We jump to the 'fail' label and free the pending
snapshot structure. We return with the pending snapshot still in the
transaction's list;
3) Another task commits the transaction. This time there's no error at
all, and then during the transaction commit it accesses a pointer
to the pending snapshot structure that the snapshot creation task
has already freed, resulting in a user-after-free.
This issue could actually be detected by smatch, which produced the
following warning:
fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list
So fix this by not having the snapshot creation ioctl directly add the
pending snapshot to the transaction's list. Instead add the pending
snapshot to the transaction handle, and then at btrfs_commit_transaction()
we add the snapshot to the list only when we can guarantee that any error
returned after that point will result in a transaction abort, in which
case the ioctl code can safely free the pending snapshot and no one can
access it anymore.
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-21 23:44:39 +08:00
|
|
|
/* Set by a task that wants to create a snapshot. */
|
|
|
|
struct btrfs_pending_snapshot *pending_snapshot;
|
2017-11-08 08:54:33 +08:00
|
|
|
refcount_t use_count;
|
|
|
|
unsigned int type;
|
2020-02-06 00:34:34 +08:00
|
|
|
/*
|
|
|
|
* Error code of transaction abort, set outside of locks and must use
|
|
|
|
* the READ_ONCE/WRITE_ONCE access
|
|
|
|
*/
|
2012-09-20 15:51:59 +08:00
|
|
|
short aborted;
|
2017-11-08 08:07:43 +08:00
|
|
|
bool adding_csums;
|
2012-12-18 22:16:16 +08:00
|
|
|
bool allocating_chunk;
|
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array
Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array
due to concurrent allocations") fixed a problem that resulted in
exhausting the system chunk array in the superblock when there are many
tasks allocating chunks in parallel. Basically too many tasks enter the
first phase of chunk allocation without previous tasks having finished
their second phase of allocation, resulting in too many system chunks
being allocated. That was originally observed when running the fallocate
tests of stress-ng on a PowerPC machine, using a node size of 64K.
However that commit also introduced a deadlock where a task in phase 1 of
the chunk allocation waited for another task that had allocated a system
chunk to finish its phase 2, but that other task was waiting on an extent
buffer lock held by the first task, therefore resulting in both tasks not
making any progress. That change was later reverted by a patch with the
subject "btrfs: fix deadlock with concurrent chunk allocations involving
system chunks", since there is no simple and short solution to address it
and the deadlock is relatively easy to trigger on zoned filesystems, while
the system chunk array exhaustion is not so common.
This change reworks the chunk allocation to avoid the system chunk array
exhaustion. It accomplishes that by making the first phase of chunk
allocation do the updates of the device items in the chunk btree and the
insertion of the new chunk item in the chunk btree. This is done while
under the protection of the chunk mutex (fs_info->chunk_mutex), in the
same critical section that checks for available system space, allocates
a new system chunk if needed and reserves system chunk space. This way
we do not have chunk space reserved until the second phase completes.
The same logic is applied to chunk removal as well, since it keeps
reserved system space long after it is done updating the chunk btree.
For direct allocation of system chunks, the previous behaviour remains,
because otherwise we would deadlock on extent buffers of the chunk btree.
Changes to the chunk btree are by large done by chunk allocation and chunk
removal, which first reserve chunk system space and then later do changes
to the chunk btree. The other remaining cases are uncommon and correspond
to adding a device, removing a device and resizing a device. All these
other cases do not pre-reserve system space, they modify the chunk btree
right away, so they don't hold reserved space for a long period like chunk
allocation and chunk removal do.
The diff of this change is huge, but more than half of it is just addition
of comments describing both how things work regarding chunk allocation and
removal, including both the new behavior and the parts of the old behavior
that did not change.
CC: stable@vger.kernel.org # 5.12+
Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Tested-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Tested-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 21:43:06 +08:00
|
|
|
bool removing_chunk;
|
2013-09-25 21:47:45 +08:00
|
|
|
bool reloc_reserved;
|
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Often an fsync needs to fallback to a transaction commit for several
reasons (to ensure consistency after a power failure, a new block group
was allocated or a temporary error such as ENOMEM or ENOSPC happened).
In that case the log is marked as needing a full commit and any concurrent
tasks attempting to log inodes or commit the log will also fallback to the
transaction commit. When this happens they all wait for the task that first
started the transaction commit to finish the transaction commit - however
they wait until the full transaction commit happens, which is not needed,
as they only need to wait for the superblocks to be persisted and not for
unpinning all the extents pinned during the transaction's lifetime, which
even for short lived transactions can be a few thousand and take some
significant amount of time to complete - for dbench workloads I have
observed up to 4~5 milliseconds of time spent unpinning extents in the
worst cases, and the number of pinned extents was between 2 to 3 thousand.
So allow fsync tasks to skip waiting for the unpinning of extents when
they call btrfs_commit_transaction() and they were not the task that
started the transaction commit (that one has to do it, the alternative
would be to offload the transaction commit to another task so that it
could avoid waiting for the extent unpinning or offload the extent
unpinning to another task).
This patch is part of a patchset comprised of the following patches:
btrfs: remove unnecessary directory inode item update when deleting dir entry
btrfs: stop setting nbytes when filling inode item for logging
btrfs: avoid logging new ancestor inodes when logging new inode
btrfs: skip logging directories already logged when logging all parents
btrfs: skip logging inodes already logged when logging new entries
btrfs: remove unnecessary check_parent_dirs_for_sync()
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
After applying the entire patchset, dbench shows improvements in respect
to throughput and latency. The script used to measure it is the following:
$ cat dbench-test.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -D $MNT -t 300 64
umount $MNT
The test was run on a physical machine with 12 cores (Intel corei7), 64G
of ram, using a NVMe device and a non-debug kernel configuration (Debian's
default configuration).
Before applying patchset, 32 clients:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9627107 0.153 61.938
Close 7072076 0.001 3.175
Rename 407633 1.222 44.439
Unlink 1943895 0.658 44.440
Deltree 256 17.339 110.891
Mkdir 128 0.003 0.009
Qpathinfo 8725406 0.064 17.850
Qfileinfo 1529516 0.001 2.188
Qfsinfo 1599884 0.002 1.457
Sfileinfo 784200 0.005 3.562
Find 3373513 0.411 30.312
WriteX 4802132 0.053 29.054
ReadX 15089959 0.002 5.801
LockX 31344 0.002 0.425
UnlockX 31344 0.001 0.173
Flush 674724 5.952 341.830
Throughput 1008.02 MB/sec 32 clients 32 procs max_latency=341.833 ms
After applying patchset, 32 clients:
After patchset, with 32 clients:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9931568 0.111 25.597
Close 7295730 0.001 2.171
Rename 420549 0.982 49.714
Unlink 2005366 0.497 39.015
Deltree 256 11.149 89.242
Mkdir 128 0.002 0.014
Qpathinfo 9001863 0.049 20.761
Qfileinfo 1577730 0.001 2.546
Qfsinfo 1650508 0.002 3.531
Sfileinfo 809031 0.005 5.846
Find 3480259 0.309 23.977
WriteX 4952505 0.043 41.283
ReadX 15568127 0.002 5.476
LockX 32338 0.002 0.978
UnlockX 32338 0.001 2.032
Flush 696017 7.485 228.835
Throughput 1049.91 MB/sec 32 clients 32 procs max_latency=228.847 ms
--> +4.1% throughput, -39.6% max latency
Before applying patchset, 64 clients:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 8956748 0.342 108.312
Close 6579660 0.001 3.823
Rename 379209 2.396 81.897
Unlink 1808625 1.108 131.148
Deltree 256 25.632 172.176
Mkdir 128 0.003 0.018
Qpathinfo 8117615 0.131 55.916
Qfileinfo 1423495 0.001 2.635
Qfsinfo 1488496 0.002 5.412
Sfileinfo 729472 0.007 8.643
Find 3138598 0.855 78.321
WriteX 4470783 0.102 79.442
ReadX 14038139 0.002 7.578
LockX 29158 0.002 0.844
UnlockX 29158 0.001 0.567
Flush 627746 14.168 506.151
Throughput 924.738 MB/sec 64 clients 64 procs max_latency=506.154 ms
After applying patchset, 64 clients:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9069003 0.303 43.193
Close 6662328 0.001 3.888
Rename 383976 2.194 46.418
Unlink 1831080 1.022 43.873
Deltree 256 24.037 155.763
Mkdir 128 0.002 0.005
Qpathinfo 8219173 0.137 30.233
Qfileinfo 1441203 0.001 3.204
Qfsinfo 1507092 0.002 4.055
Sfileinfo 738775 0.006 5.431
Find 3177874 0.936 38.170
WriteX 4526152 0.084 39.518
ReadX 14213562 0.002 24.760
LockX 29522 0.002 1.221
UnlockX 29522 0.001 0.694
Flush 635652 14.358 422.039
Throughput 990.13 MB/sec 64 clients 64 procs max_latency=422.043 ms
--> +6.8% throughput, -18.1% max latency
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-27 18:35:00 +08:00
|
|
|
bool in_fsync;
|
2016-06-21 05:23:41 +08:00
|
|
|
struct btrfs_fs_info *fs_info;
|
2012-09-12 04:57:25 +08:00
|
|
|
struct list_head new_bgs;
|
btrfs: always reserve space for delayed refs when starting transaction
When starting a transaction (or joining an existing one with
btrfs_start_transaction()), we reserve space for the number of items we
want to insert in a btree, but we don't do it for the delayed refs we
will generate while using the transaction to modify (COW) extent buffers
in a btree or allocate new extent buffers. Basically how it works:
1) When we start a transaction we reserve space for the number of items
the caller wants to be inserted/modified/deleted in a btree. This space
goes to the transaction block reserve;
2) If the delayed refs block reserve is not full, its size is greater
than the amount of its reserved space, and the flush method is
BTRFS_RESERVE_FLUSH_ALL, then we attempt to reserve more space for
it corresponding to the number of items the caller wants to
insert/modify/delete in a btree;
3) The size of the delayed refs block reserve is increased when a task
creates delayed refs after COWing an extent buffer, allocating a new
one or deleting (freeing) an extent buffer. This happens after the
the task started or joined a transaction, whenever it calls
btrfs_update_delayed_refs_rsv();
4) The delayed refs block reserve is then refilled by anyone calling
btrfs_delayed_refs_rsv_refill(), either during unlink/truncate
operations or when someone else calls btrfs_start_transaction() with
a 0 number of items and flush method BTRFS_RESERVE_FLUSH_ALL;
5) As a task COWs or allocates extent buffers, it consumes space from the
transaction block reserve. When the task releases its transaction
handle (btrfs_end_transaction()) or it attempts to commit the
transaction, it releases any remaining space in the transaction block
reserve that it did not use, as not all space may have been used (due
to pessimistic space calculation) by calling btrfs_block_rsv_release()
which will try to add that unused space to the delayed refs block
reserve (if its current size is greater than its reserved space).
That transferred space may not be enough to completely fulfill the
delayed refs block reserve.
Plus we have some tasks that will attempt do modify as many leaves
as they can before getting -ENOSPC (and then reserving more space and
retrying), such as hole punching and extent cloning which call
btrfs_replace_file_extents(). Such tasks can generate therefore a
high number of delayed refs, for both metadata and data (we can't
know in advance how many file extent items we will find in a range
and therefore how many delayed refs for dropping references on data
extents we will generate);
6) If a transaction starts its commit before the delayed refs block
reserve is refilled, for example by the transaction kthread or by
someone who called btrfs_join_transaction() before starting the
commit, then when running delayed references if we don't have enough
reserved space in the delayed refs block reserve, we will consume
space from the global block reserve.
Now this doesn't make a lot of sense because:
1) We should reserve space for delayed references when starting the
transaction, since we have no guarantees the delayed refs block
reserve will be refilled;
2) If no refill happens then we will consume from the global block reserve
when running delayed refs during the transaction commit;
3) If we have a bunch of tasks calling btrfs_start_transaction() with a
number of items greater than zero and at the time the delayed refs
reserve is full, then we don't reserve any space at
btrfs_start_transaction() for the delayed refs that will be generated
by a task, and we can therefore end up using a lot of space from the
global reserve when running the delayed refs during a transaction
commit;
4) There are also other operations that result in bumping the size of the
delayed refs reserve, such as creating and deleting block groups, as
well as the need to update a block group item because we allocated or
freed an extent from the respective block group;
5) If we have a significant gap between the delayed refs reserve's size
and its reserved space, two very bad things may happen:
1) The reserved space of the global reserve may not be enough and we
fail the transaction commit with -ENOSPC when running delayed refs;
2) If the available space in the global reserve is enough it may result
in nearly exhausting it. If the fs has no more unallocated device
space for allocating a new block group and all the available space
in existing metadata block groups is not far from the global
reserve's size before we started the transaction commit, we may end
up in a situation where after the transaction commit we have too
little available metadata space, and any future transaction commit
will fail with -ENOSPC, because although we were able to reserve
space to start the transaction, we were not able to commit it, as
running delayed refs generates some more delayed refs (to update the
extent tree for example) - this includes not even being able to
commit a transaction that was started with the goal of unlinking a
file, removing an empty data block group or doing reclaim/balance,
so there's no way to release metadata space.
In the worst case the next time we mount the filesystem we may
also fail with -ENOSPC due to failure to commit a transaction to
cleanup orphan inodes. This later case was reported and hit by
someone running a SLE (SUSE Linux Enterprise) distribution for
example - where the fs had no more unallocated space that could be
used to allocate a new metadata block group, and the available
metadata space was about 1.5M, not enough to commit a transaction
to cleanup an orphan inode (or do relocation of data block groups
that were far from being full).
So improve on this situation by always reserving space for delayed refs
when calling start_transaction(), and if the flush method is
BTRFS_RESERVE_FLUSH_ALL, also try to refill the delayed refs block
reserve if it's not full. The space reserved for the delayed refs is added
to a local block reserve that is part of the transaction handle, and when
a task updates the delayed refs block reserve size, after creating a
delayed ref, the space is transferred from that local reserve to the
global delayed refs reserve (fs_info->delayed_refs_rsv). In case the
local reserve does not have enough space, which may happen for tasks
that generate a variable and potentially large number of delayed refs
(such as the hole punching and extent cloning cases mentioned before),
we transfer any available space and then rely on the current behaviour
of hoping some other task refills the delayed refs reserve or fallback
to the global block reserve.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-09-09 01:20:38 +08:00
|
|
|
struct btrfs_block_rsv delayed_rsv;
|
2007-03-17 04:20:31 +08:00
|
|
|
};
|
|
|
|
|
2020-02-06 00:34:34 +08:00
|
|
|
/*
|
|
|
|
* The abort status can be changed between calls and is not protected by locks.
|
|
|
|
* This accepts btrfs_transaction and btrfs_trans_handle as types. Once it's
|
|
|
|
* set to a non-zero value it does not change, so the macro should be in checks
|
|
|
|
* but is not necessary for further reads of the value.
|
|
|
|
*/
|
|
|
|
#define TRANS_ABORTED(trans) (unlikely(READ_ONCE((trans)->aborted)))
|
|
|
|
|
2008-01-09 04:46:30 +08:00
|
|
|
struct btrfs_pending_snapshot {
|
2008-11-18 10:02:50 +08:00
|
|
|
struct dentry *dentry;
|
2013-02-28 18:01:15 +08:00
|
|
|
struct inode *dir;
|
2008-01-09 04:46:30 +08:00
|
|
|
struct btrfs_root *root;
|
2015-11-11 01:54:00 +08:00
|
|
|
struct btrfs_root_item *root_item;
|
2010-05-16 22:48:46 +08:00
|
|
|
struct btrfs_root *snap;
|
2011-09-14 21:58:21 +08:00
|
|
|
struct btrfs_qgroup_inherit *inherit;
|
2015-11-11 01:54:03 +08:00
|
|
|
struct btrfs_path *path;
|
2010-05-16 22:48:46 +08:00
|
|
|
/* block reservation for the operation */
|
|
|
|
struct btrfs_block_rsv block_rsv;
|
2016-05-20 09:18:45 +08:00
|
|
|
/* extra metadata reservation for relocation */
|
2010-05-16 22:48:46 +08:00
|
|
|
int error;
|
2020-06-16 10:17:36 +08:00
|
|
|
/* Preallocated anonymous block device number */
|
|
|
|
dev_t anon_dev;
|
2010-12-20 16:04:08 +08:00
|
|
|
bool readonly;
|
2008-01-09 04:46:30 +08:00
|
|
|
struct list_head list;
|
|
|
|
};
|
|
|
|
|
2007-08-11 04:22:09 +08:00
|
|
|
static inline void btrfs_set_inode_last_trans(struct btrfs_trans_handle *trans,
|
2020-06-05 15:41:13 +08:00
|
|
|
struct btrfs_inode *inode)
|
2007-08-11 04:22:09 +08:00
|
|
|
{
|
2020-06-05 15:41:13 +08:00
|
|
|
spin_lock(&inode->lock);
|
|
|
|
inode->last_trans = trans->transaction->transid;
|
2023-10-04 18:38:49 +08:00
|
|
|
inode->last_sub_trans = btrfs_get_root_log_transid(inode->root);
|
btrfs: fix race between marking inode needs to be logged and log syncing
We have a race between marking that an inode needs to be logged, either
at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between
btrfs_sync_log(). The following steps describe how the race happens.
1) We are at transaction N;
2) Inode I was previously fsynced in the current transaction so it has:
inode->logged_trans set to N;
3) The inode's root currently has:
root->log_transid set to 1
root->last_log_commit set to 0
Which means only one log transaction was committed to far, log
transaction 0. When a log tree is created we set ->log_transid and
->last_log_commit of its parent root to 0 (at btrfs_add_log_tree());
4) One more range of pages is dirtied in inode I;
5) Some task A starts an fsync against some other inode J (same root), and
so it joins log transaction 1.
Before task A calls btrfs_sync_log()...
6) Task B starts an fsync against inode I, which currently has the full
sync flag set, so it starts delalloc and waits for the ordered extent
to complete before calling btrfs_inode_in_log() at btrfs_sync_file();
7) During ordered extent completion we have btrfs_update_inode() called
against inode I, which in turn calls btrfs_set_inode_last_trans(),
which does the following:
spin_lock(&inode->lock);
inode->last_trans = trans->transaction->transid;
inode->last_sub_trans = inode->root->log_transid;
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
So ->last_trans is set to N and ->last_sub_trans set to 1.
But before setting ->last_log_commit...
8) Task A is at btrfs_sync_log():
- it increments root->log_transid to 2
- starts writeback for all log tree extent buffers
- waits for the writeback to complete
- writes the super blocks
- updates root->last_log_commit to 1
It's a lot of slow steps between updating root->log_transid and
root->last_log_commit;
9) The task doing the ordered extent completion, currently at
btrfs_set_inode_last_trans(), then finally runs:
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
Which results in inode->last_log_commit being set to 1.
The ordered extent completes;
10) Task B is resumed, and it calls btrfs_inode_in_log() which returns
true because we have all the following conditions met:
inode->logged_trans == N which matches fs_info->generation &&
inode->last_subtrans (1) <= inode->last_log_commit (1) &&
inode->last_subtrans (1) <= root->last_log_commit (1) &&
list inode->extent_tree.modified_extents is empty
And as a consequence we return without logging the inode, so the
existing logged version of the inode does not point to the extent
that was written after the previous fsync.
It should be impossible in practice for one task be able to do so much
progress in btrfs_sync_log() while another task is at
btrfs_set_inode_last_trans() right after it reads root->log_transid and
before it reads root->last_log_commit. Even if kernel preemption is enabled
we know the task at btrfs_set_inode_last_trans() can not be preempted
because it is holding the inode's spinlock.
However there is another place where we do the same without holding the
spinlock, which is in the memory mapped write path at:
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
{
(...)
BTRFS_I(inode)->last_trans = fs_info->generation;
BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
(...)
So with preemption happening after setting ->last_sub_trans and before
setting ->last_log_commit, it is less of a stretch to have another task
do enough progress at btrfs_sync_log() such that the task doing the memory
mapped write ends up with ->last_sub_trans and ->last_log_commit set to
the same value. It is still a big stretch to get there, as the task doing
btrfs_sync_log() has to start writeback, wait for its completion and write
the super blocks.
So fix this in two different ways:
1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the
value of ->last_sub_trans minus 1;
2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just
like we do for buffered and direct writes at btrfs_file_write_iter(),
which is all we need to make sure multiple writes and fsyncs to an
inode in the same transaction never result in an fsync missing that
the inode changed and needs to be logged. Turn this into a helper
function and use it both at btrfs_page_mkwrite() and at
btrfs_file_write_iter() - this also fixes the problem that at
btrfs_page_mkwrite() we were setting those fields without the
protection of the inode's spinlock.
This is an extremely unlikely race to happen in practice.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-23 20:08:48 +08:00
|
|
|
inode->last_log_commit = inode->last_sub_trans - 1;
|
2020-06-05 15:41:13 +08:00
|
|
|
spin_unlock(&inode->lock);
|
2007-08-11 04:22:09 +08:00
|
|
|
}
|
|
|
|
|
2015-04-20 09:53:50 +08:00
|
|
|
/*
|
|
|
|
* Make qgroup codes to skip given qgroupid, means the old/new_roots for
|
|
|
|
* qgroup won't contain the qgroupid in it.
|
|
|
|
*/
|
|
|
|
static inline void btrfs_set_skip_qgroup(struct btrfs_trans_handle *trans,
|
|
|
|
u64 qgroupid)
|
|
|
|
{
|
|
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
|
|
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
|
|
WARN_ON(delayed_refs->qgroup_to_skip);
|
|
|
|
delayed_refs->qgroup_to_skip = qgroupid;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void btrfs_clear_skip_qgroup(struct btrfs_trans_handle *trans)
|
|
|
|
{
|
|
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
|
|
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
|
|
WARN_ON(!delayed_refs->qgroup_to_skip);
|
|
|
|
delayed_refs->qgroup_to_skip = 0;
|
|
|
|
}
|
|
|
|
|
2023-09-09 03:05:47 +08:00
|
|
|
bool __cold abort_should_print_stack(int error);
|
2022-12-07 23:18:04 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Call btrfs_abort_transaction as early as possible when an error condition is
|
|
|
|
* detected, that way the exact stack trace is reported for some errors.
|
|
|
|
*/
|
2023-09-09 03:05:47 +08:00
|
|
|
#define btrfs_abort_transaction(trans, error) \
|
2022-12-07 23:18:04 +08:00
|
|
|
do { \
|
|
|
|
bool first = false; \
|
|
|
|
/* Report first abort since mount */ \
|
|
|
|
if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
|
|
|
|
&((trans)->fs_info->fs_state))) { \
|
|
|
|
first = true; \
|
2023-09-09 03:05:47 +08:00
|
|
|
if (WARN(abort_should_print_stack(error), \
|
2022-12-07 23:18:04 +08:00
|
|
|
KERN_ERR \
|
|
|
|
"BTRFS: Transaction aborted (error %d)\n", \
|
2023-09-09 03:05:47 +08:00
|
|
|
(error))) { \
|
2022-12-07 23:18:04 +08:00
|
|
|
/* Stack trace printed. */ \
|
|
|
|
} else { \
|
2023-09-27 02:31:19 +08:00
|
|
|
btrfs_err((trans)->fs_info, \
|
|
|
|
"Transaction aborted (error %d)", \
|
2023-09-09 03:05:47 +08:00
|
|
|
(error)); \
|
2022-12-07 23:18:04 +08:00
|
|
|
} \
|
|
|
|
} \
|
|
|
|
__btrfs_abort_transaction((trans), __func__, \
|
2023-09-09 03:05:47 +08:00
|
|
|
__LINE__, (error), first); \
|
2022-12-07 23:18:04 +08:00
|
|
|
} while (0)
|
|
|
|
|
2016-09-10 09:39:03 +08:00
|
|
|
int btrfs_end_transaction(struct btrfs_trans_handle *trans);
|
2007-03-23 03:59:16 +08:00
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
|
2015-09-23 04:59:15 +08:00
|
|
|
unsigned int num_items);
|
2015-11-14 07:57:16 +08:00
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
|
|
|
|
struct btrfs_root *root,
|
2020-03-14 03:58:05 +08:00
|
|
|
unsigned int num_items);
|
2011-04-14 00:54:33 +08:00
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root);
|
2019-10-09 01:43:06 +08:00
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root);
|
Btrfs: fix deadlock between fiemap and transaction commits
The fiemap handler locks a file range that can have unflushed delalloc,
and after locking the range, it tries to attach to a running transaction.
If the running transaction started its commit, that is, it is in state
TRANS_STATE_COMMIT_START, and either the filesystem was mounted with the
flushoncommit option or the transaction is creating a snapshot for the
subvolume that contains the file that fiemap is operating on, we end up
deadlocking. This happens because fiemap is blocked on the transaction,
waiting for it to complete, and the transaction is waiting for the flushed
dealloc to complete, which requires locking the file range that the fiemap
task already locked. The following stack traces serve as an example of
when this deadlock happens:
(...)
[404571.515510] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
[404571.515956] Call Trace:
[404571.516360] ? __schedule+0x3ae/0x7b0
[404571.516730] schedule+0x3a/0xb0
[404571.517104] lock_extent_bits+0x1ec/0x2a0 [btrfs]
[404571.517465] ? remove_wait_queue+0x60/0x60
[404571.517832] btrfs_finish_ordered_io+0x292/0x800 [btrfs]
[404571.518202] normal_work_helper+0xea/0x530 [btrfs]
[404571.518566] process_one_work+0x21e/0x5c0
[404571.518990] worker_thread+0x4f/0x3b0
[404571.519413] ? process_one_work+0x5c0/0x5c0
[404571.519829] kthread+0x103/0x140
[404571.520191] ? kthread_create_worker_on_cpu+0x70/0x70
[404571.520565] ret_from_fork+0x3a/0x50
[404571.520915] kworker/u8:6 D 0 31651 2 0x80004000
[404571.521290] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs]
(...)
[404571.537000] fsstress D 0 13117 13115 0x00004000
[404571.537263] Call Trace:
[404571.537524] ? __schedule+0x3ae/0x7b0
[404571.537788] schedule+0x3a/0xb0
[404571.538066] wait_current_trans+0xc8/0x100 [btrfs]
[404571.538349] ? remove_wait_queue+0x60/0x60
[404571.538680] start_transaction+0x33c/0x500 [btrfs]
[404571.539076] btrfs_check_shared+0xa3/0x1f0 [btrfs]
[404571.539513] ? extent_fiemap+0x2ce/0x650 [btrfs]
[404571.539866] extent_fiemap+0x2ce/0x650 [btrfs]
[404571.540170] do_vfs_ioctl+0x526/0x6f0
[404571.540436] ksys_ioctl+0x70/0x80
[404571.540734] __x64_sys_ioctl+0x16/0x20
[404571.540997] do_syscall_64+0x60/0x1d0
[404571.541279] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
[404571.543729] btrfs D 0 14210 14208 0x00004000
[404571.544023] Call Trace:
[404571.544275] ? __schedule+0x3ae/0x7b0
[404571.544526] ? wait_for_completion+0x112/0x1a0
[404571.544795] schedule+0x3a/0xb0
[404571.545064] schedule_timeout+0x1ff/0x390
[404571.545351] ? lock_acquire+0xa6/0x190
[404571.545638] ? wait_for_completion+0x49/0x1a0
[404571.545890] ? wait_for_completion+0x112/0x1a0
[404571.546228] wait_for_completion+0x131/0x1a0
[404571.546503] ? wake_up_q+0x70/0x70
[404571.546775] btrfs_wait_ordered_extents+0x27c/0x400 [btrfs]
[404571.547159] btrfs_commit_transaction+0x3b0/0xae0 [btrfs]
[404571.547449] ? btrfs_mksubvol+0x4a4/0x640 [btrfs]
[404571.547703] ? remove_wait_queue+0x60/0x60
[404571.547969] btrfs_mksubvol+0x605/0x640 [btrfs]
[404571.548226] ? __sb_start_write+0xd4/0x1c0
[404571.548512] ? mnt_want_write_file+0x24/0x50
[404571.548789] btrfs_ioctl_snap_create_transid+0x169/0x1a0 [btrfs]
[404571.549048] btrfs_ioctl_snap_create_v2+0x11d/0x170 [btrfs]
[404571.549307] btrfs_ioctl+0x133f/0x3150 [btrfs]
[404571.549549] ? mem_cgroup_charge_statistics+0x4c/0xd0
[404571.549792] ? mem_cgroup_commit_charge+0x84/0x4b0
[404571.550064] ? __handle_mm_fault+0xe3e/0x11f0
[404571.550306] ? do_raw_spin_unlock+0x49/0xc0
[404571.550608] ? _raw_spin_unlock+0x24/0x30
[404571.550976] ? __handle_mm_fault+0xedf/0x11f0
[404571.551319] ? do_vfs_ioctl+0xa2/0x6f0
[404571.551659] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[404571.552087] do_vfs_ioctl+0xa2/0x6f0
[404571.552355] ksys_ioctl+0x70/0x80
[404571.552621] __x64_sys_ioctl+0x16/0x20
[404571.552864] do_syscall_64+0x60/0x1d0
[404571.553104] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
If we were joining the transaction instead of attaching to it, we would
not risk a deadlock because a join only blocks if the transaction is in a
state greater then or equals to TRANS_STATE_COMMIT_DOING, and the delalloc
flush performed by a transaction is done before it reaches that state,
when it is in the state TRANS_STATE_COMMIT_START. However a transaction
join is intended for use cases where we do modify the filesystem, and
fiemap only needs to peek at delayed references from the current
transaction in order to determine if extents are shared, and, besides
that, when there is no current transaction or when it blocks to wait for
a current committing transaction to complete, it creates a new transaction
without reserving any space. Such unnecessary transactions, besides doing
unnecessary IO, can cause transaction aborts (-ENOSPC) and unnecessary
rotation of the precious backup roots.
So fix this by adding a new transaction join variant, named join_nostart,
which behaves like the regular join, but it does not create a transaction
when none currently exists or after waiting for a committing transaction
to complete.
Fixes: 03628cdbc64db6 ("Btrfs: do not start a transaction during fiemap")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-29 16:37:10 +08:00
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root);
|
Btrfs: fix orphan transaction on the freezed filesystem
With the following debug patch:
static int btrfs_freeze(struct super_block *sb)
{
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ struct btrfs_transaction *trans;
+
+ spin_lock(&fs_info->trans_lock);
+ trans = fs_info->running_transaction;
+ if (trans) {
+ printk("Transid %llu, use_count %d, num_writer %d\n",
+ trans->transid, atomic_read(&trans->use_count),
+ atomic_read(&trans->num_writers));
+ }
+ spin_unlock(&fs_info->trans_lock);
return 0;
}
I found there was a orphan transaction after the freeze operation was done.
It is because the transaction may not be committed when the transaction handle
end even though it is the last handle of the current transaction. This design
avoid committing the transaction frequently, but also introduce the above
problem.
So I add btrfs_attach_transaction() which can catch the current transaction
and commit it. If there is no transaction, it will return ENOENT, and do not
anything.
This function also can be used to instead of btrfs_join_transaction_freeze()
because it don't increase the writer counter and don't start a new transaction,
so it also can fix the deadlock between sync and freeze.
Besides that, it is used to instead of btrfs_join_transaction() in
transaction_kthread(), because if there is no transaction, the transaction
kthread needn't anything.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2012-09-20 15:54:00 +08:00
|
|
|
struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root);
|
Btrfs: fix uncompleted transaction
In some cases, we need commit the current transaction, but don't want
to start a new one if there is no running transaction, so we introduce
the function - btrfs_attach_transaction(), which can catch the current
transaction, and return -ENOENT if there is no running transaction.
But no running transaction doesn't mean the current transction completely,
because we removed the running transaction before it completes. In some
cases, it doesn't matter. But in some special cases, such as freeze fs, we
hope the transaction is fully on disk, it will introduce some bugs, for
example, we may feeze the fs and dump the data in the disk, if the transction
doesn't complete, we would dump inconsistent data. So we need fix the above
problem for those cases.
We fixes this problem by introducing a function:
btrfs_attach_transaction_barrier()
if we hope all the transaction is fully on the disk, even they are not
running, we can use this function.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-02-20 17:17:06 +08:00
|
|
|
struct btrfs_trans_handle *btrfs_attach_transaction_barrier(
|
|
|
|
struct btrfs_root *root);
|
2016-06-23 06:54:24 +08:00
|
|
|
int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid);
|
2007-06-09 03:33:54 +08:00
|
|
|
|
2013-07-26 03:11:47 +08:00
|
|
|
void btrfs_add_dead_root(struct btrfs_root *root);
|
2022-02-19 03:56:10 +08:00
|
|
|
void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info);
|
2022-02-19 03:56:11 +08:00
|
|
|
int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info);
|
2016-09-10 09:39:03 +08:00
|
|
|
int btrfs_commit_transaction(struct btrfs_trans_handle *trans);
|
2021-11-06 04:45:28 +08:00
|
|
|
void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans);
|
2016-09-10 09:39:03 +08:00
|
|
|
int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans);
|
2020-11-24 22:49:25 +08:00
|
|
|
bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans);
|
2016-06-23 06:54:24 +08:00
|
|
|
void btrfs_throttle(struct btrfs_fs_info *fs_info);
|
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE)
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.
When a tree block in subvolume tree is cow'd, the reference counts of all
extents it points to are increased by one. At transaction commit time,
the old root of the subvolume is recorded in a "dead root" data structure,
and the btree it points to is later walked, dropping reference counts
and freeing any blocks where the reference count goes to 0.
The increments done during cow and decrements done after commit cancel out,
and the walk is a very expensive way to go about freeing the blocks that
are no longer referenced by the new btree root. This commit reduces the
transaction overhead by avoiding the need for dead root records.
When a non-shared tree block is cow'd, we free the old block at once, and the
new block inherits old block's references. When a tree block with reference
count > 1 is cow'd, we increase the reference counts of all extents
the new block points to by one, and decrease the old block's reference count by
one.
This dead tree avoidance code removes the need to modify the reference
counts of lower level extents when a non-shared tree block is cow'd.
But we still need to update back ref for all pointers in the block.
This is because the location of the block is recorded in the back ref
item.
We can solve this by introducing a new type of back ref. The new
back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer
by searching the tree. The shortcoming of the new back ref is that it
only works for pointers in tree blocks referenced by their owner trees.
This is mostly a problem for snapshots, where resolving one of these
fuzzy back references would be O(number_of_snapshots) and quite slow.
The solution used here is to use the fuzzy back references in the common
case where a given tree block is only referenced by one root,
and use the full back references when multiple roots have a reference
on a given block.
This commit adds per subvolume red-black tree to keep trace of cached
inodes. The red-black tree helps the balancing code to find cached
inodes whose inode numbers within a given range.
This commit improves the balancing code by introducing several data
structures to keep the state of balancing. The most important one
is the back ref cache. It caches how the upper level tree blocks are
referenced. This greatly reduce the overhead of checking back ref.
The improved balancing code scales significantly better with a large
number of snapshots.
This is a very large commit and was written in a number of
pieces. But, they depend heavily on the disk format change and were
squashed together to make sure git bisect didn't end up in a
bad state wrt space balancing or the format change.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 22:45:14 +08:00
|
|
|
int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
|
|
|
|
struct btrfs_root *root);
|
2016-06-23 06:54:24 +08:00
|
|
|
int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
|
2009-11-12 17:33:26 +08:00
|
|
|
struct extent_io_tree *dirty_pages, int mark);
|
2016-09-10 08:42:44 +08:00
|
|
|
int btrfs_wait_tree_log_extents(struct btrfs_root *root, int mark);
|
2010-05-16 22:49:58 +08:00
|
|
|
int btrfs_transaction_blocked(struct btrfs_fs_info *info);
|
2009-07-30 22:04:48 +08:00
|
|
|
int btrfs_transaction_in_commit(struct btrfs_fs_info *info);
|
2013-09-30 23:36:38 +08:00
|
|
|
void btrfs_put_transaction(struct btrfs_transaction *transaction);
|
2015-09-15 22:07:04 +08:00
|
|
|
void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
|
|
|
|
struct btrfs_root *root);
|
2019-06-20 03:11:59 +08:00
|
|
|
void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans);
|
2022-12-07 23:18:04 +08:00
|
|
|
void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
|
|
|
|
const char *function,
|
2023-09-09 03:05:47 +08:00
|
|
|
unsigned int line, int error, bool first_hit);
|
2018-04-04 01:16:55 +08:00
|
|
|
|
2022-09-14 23:06:37 +08:00
|
|
|
int __init btrfs_transaction_init(void);
|
|
|
|
void __cold btrfs_transaction_exit(void);
|
|
|
|
|
2007-03-17 04:20:31 +08:00
|
|
|
#endif
|