linux/fs/xfs/xfs_itable.c

398 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_iwalk.h"
#include "xfs_itable.h"
#include "xfs_error.h"
#include "xfs_icache.h"
#include "xfs_health.h"
/*
* Bulk Stat
* =========
*
* Use the inode walking functions to fill out struct xfs_bulkstat for every
* allocated inode, then pass the stat information to some externally provided
* iteration function.
*/
struct xfs_bstat_chunk {
bulkstat_one_fmt_pf formatter;
struct xfs_ibulk *breq;
struct xfs_bulkstat *buf;
};
/*
* Fill out the bulkstat info for a single inode and report it somewhere.
*
* bc->breq->lastino is effectively the inode cursor as we walk through the
* filesystem. Therefore, we update it any time we need to move the cursor
* forward, regardless of whether or not we're sending any bstat information
* back to userspace. If the inode is internal metadata or, has been freed
* out from under us, we just simply keep going.
*
* However, if any other type of error happens we want to stop right where we
* are so that userspace will call back with exact number of the bad inode and
* we can send back an error code.
*
* Note that if the formatter tells us there's no space left in the buffer we
* move the cursor forward and abort the walk.
*/
STATIC int
xfs_bulkstat_one_int(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_ino_t ino,
struct xfs_bstat_chunk *bc)
{
struct xfs_icdinode *dic; /* dinode core info pointer */
struct xfs_inode *ip; /* incore inode pointer */
struct inode *inode;
struct xfs_bulkstat *buf = bc->buf;
int error = -EINVAL;
if (xfs_internal_inum(mp, ino))
goto out_advance;
error = xfs_iget(mp, tp, ino,
(XFS_IGET_DONTCACHE | XFS_IGET_UNTRUSTED),
XFS_ILOCK_SHARED, &ip);
if (error == -ENOENT || error == -EINVAL)
goto out_advance;
if (error)
goto out;
ASSERT(ip != NULL);
ASSERT(ip->i_imap.im_blkno != 0);
inode = VFS_I(ip);
dic = &ip->i_d;
/* xfs_iget returns the following without needing
* further change.
*/
buf->bs_projectid = xfs_get_projid(ip);
buf->bs_ino = ino;
buf->bs_uid = dic->di_uid;
buf->bs_gid = dic->di_gid;
buf->bs_size = dic->di_size;
buf->bs_nlink = inode->i_nlink;
buf->bs_atime = inode->i_atime.tv_sec;
buf->bs_atime_nsec = inode->i_atime.tv_nsec;
buf->bs_mtime = inode->i_mtime.tv_sec;
buf->bs_mtime_nsec = inode->i_mtime.tv_nsec;
buf->bs_ctime = inode->i_ctime.tv_sec;
buf->bs_ctime_nsec = inode->i_ctime.tv_nsec;
buf->bs_btime = dic->di_crtime.t_sec;
buf->bs_btime_nsec = dic->di_crtime.t_nsec;
buf->bs_gen = inode->i_generation;
buf->bs_mode = inode->i_mode;
buf->bs_xflags = xfs_ip2xflags(ip);
buf->bs_extsize_blks = dic->di_extsize;
buf->bs_extents = dic->di_nextents;
xfs_bulkstat_health(ip, buf);
buf->bs_aextents = dic->di_anextents;
buf->bs_forkoff = XFS_IFORK_BOFF(ip);
buf->bs_version = XFS_BULKSTAT_VERSION_V5;
if (dic->di_version == 3) {
if (dic->di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
buf->bs_cowextsize_blks = dic->di_cowextsize;
}
switch (dic->di_format) {
case XFS_DINODE_FMT_DEV:
buf->bs_rdev = sysv_encode_dev(inode->i_rdev);
buf->bs_blksize = BLKDEV_IOSIZE;
buf->bs_blocks = 0;
break;
case XFS_DINODE_FMT_LOCAL:
buf->bs_rdev = 0;
buf->bs_blksize = mp->m_sb.sb_blocksize;
buf->bs_blocks = 0;
break;
case XFS_DINODE_FMT_EXTENTS:
case XFS_DINODE_FMT_BTREE:
buf->bs_rdev = 0;
buf->bs_blksize = mp->m_sb.sb_blocksize;
buf->bs_blocks = dic->di_nblocks + ip->i_delayed_blks;
break;
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
xfs_irele(ip);
error = bc->formatter(bc->breq, buf);
if (error == XFS_IBULK_ABORT)
goto out_advance;
if (error)
goto out;
out_advance:
/*
* Advance the cursor to the inode that comes after the one we just
* looked at. We want the caller to move along if the bulkstat
* information was copied successfully; if we tried to grab the inode
* but it's no longer allocated; or if it's internal metadata.
*/
bc->breq->startino = ino + 1;
out:
return error;
}
/* Bulkstat a single inode. */
int
xfs_bulkstat_one(
struct xfs_ibulk *breq,
bulkstat_one_fmt_pf formatter)
{
struct xfs_bstat_chunk bc = {
.formatter = formatter,
.breq = breq,
};
int error;
ASSERT(breq->icount == 1);
bc.buf = kmem_zalloc(sizeof(struct xfs_bulkstat),
KM_MAYFAIL);
if (!bc.buf)
return -ENOMEM;
error = xfs_bulkstat_one_int(breq->mp, NULL, breq->startino, &bc);
kmem_free(bc.buf);
/*
* If we reported one inode to userspace then we abort because we hit
* the end of the buffer. Don't leak that back to userspace.
*/
if (error == XFS_IWALK_ABORT)
error = 0;
return error;
}
static int
xfs_bulkstat_iwalk(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_ino_t ino,
void *data)
{
int error;
error = xfs_bulkstat_one_int(mp, tp, ino, data);
/* bulkstat just skips over missing inodes */
if (error == -ENOENT || error == -EINVAL)
return 0;
return error;
}
/*
* Check the incoming lastino parameter.
*
* We allow any inode value that could map to physical space inside the
* filesystem because if there are no inodes there, bulkstat moves on to the
* next chunk. In other words, the magic agino value of zero takes us to the
* first chunk in the AG, and an agino value past the end of the AG takes us to
* the first chunk in the next AG.
*
* Therefore we can end early if the requested inode is beyond the end of the
* filesystem or doesn't map properly.
*/
static inline bool
xfs_bulkstat_already_done(
struct xfs_mount *mp,
xfs_ino_t startino)
{
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, startino);
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, startino);
return agno >= mp->m_sb.sb_agcount ||
startino != XFS_AGINO_TO_INO(mp, agno, agino);
}
/* Return stat information in bulk (by-inode) for the filesystem. */
int
xfs_bulkstat(
struct xfs_ibulk *breq,
bulkstat_one_fmt_pf formatter)
{
struct xfs_bstat_chunk bc = {
.formatter = formatter,
.breq = breq,
};
int error;
if (xfs_bulkstat_already_done(breq->mp, breq->startino))
return 0;
bc.buf = kmem_zalloc(sizeof(struct xfs_bulkstat),
KM_MAYFAIL);
if (!bc.buf)
return -ENOMEM;
error = xfs_iwalk(breq->mp, NULL, breq->startino, breq->flags,
xfs_bulkstat_iwalk, breq->icount, &bc);
kmem_free(bc.buf);
[XFS] 971064 Various fixups for xfs_bulkstat(). - sanity check for NULL user buffer in xfs_ioc_bulkstat[_compat]() - remove the special case for XFS_IOC_FSBULKSTAT with count == 1. This special case causes bulkstat to fail because the special case uses xfs_bulkstat_single() instead of xfs_bulkstat() and the two functions have different semantics. xfs_bulkstat() will return the next inode after the one supplied while skipping internal inodes (ie quota inodes). xfs_bulkstate_single() will only lookup the inode supplied and return an error if it is an internal inode. - in xfs_bulkstat(), need to initialise 'lastino' to the inode supplied so in cases were we return without examining any inodes the scan wont restart back at zero. - sanity check for valid *ubcountp values. Cannot sanity check for valid ubuffer here because some users of xfs_bulkstat() don't supply a buffer. - checks against 'ubleft' (the space left in the user's buffer) should be against 'statstruct_size' which is the supplied minimum object size. The mixture of checks against statstruct_size and 0 was one of the reasons we were skipping inodes. - if the formatter function returns BULKSTAT_RV_NOTHING and an error and the error is not ENOENT or EINVAL then we need to abort the scan. ENOENT is for inodes that are no longer valid and we just skip them. EINVAL is returned if we try to lookup an internal inode so we skip them too. For a DMF scan if the inode and DMF attribute cannot fit into the space left in the user's buffer it would return ERANGE. We didn't handle this error and skipped the inode. We would continue to skip inodes until one fitted into the user's buffer or we completed the scan. - put back the recalculation of agino (that got removed with the last fix) at the end of the while loop. This is because the code at the start of the loop expects agino to be the last inode examined if it is non-zero. - if we found some inodes but then encountered an error, return success this time and the error next time. If the formatter aborted with ENOMEM we will now return this error but only if we couldn't read any inodes. Previously if we encountered ENOMEM without reading any inodes we returned a zero count and no error which falsely indicated the scan was complete. SGI-PV: 973431 SGI-Modid: xfs-linux-melb:xfs-kern:30089a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com>
2007-11-23 13:30:32 +08:00
/*
* We found some inodes, so clear the error status and return them.
* The lastino pointer will point directly at the inode that triggered
* any error that occurred, so on the next call the error will be
* triggered again and propagated to userspace as there will be no
* formatted inodes in the buffer.
[XFS] 971064 Various fixups for xfs_bulkstat(). - sanity check for NULL user buffer in xfs_ioc_bulkstat[_compat]() - remove the special case for XFS_IOC_FSBULKSTAT with count == 1. This special case causes bulkstat to fail because the special case uses xfs_bulkstat_single() instead of xfs_bulkstat() and the two functions have different semantics. xfs_bulkstat() will return the next inode after the one supplied while skipping internal inodes (ie quota inodes). xfs_bulkstate_single() will only lookup the inode supplied and return an error if it is an internal inode. - in xfs_bulkstat(), need to initialise 'lastino' to the inode supplied so in cases were we return without examining any inodes the scan wont restart back at zero. - sanity check for valid *ubcountp values. Cannot sanity check for valid ubuffer here because some users of xfs_bulkstat() don't supply a buffer. - checks against 'ubleft' (the space left in the user's buffer) should be against 'statstruct_size' which is the supplied minimum object size. The mixture of checks against statstruct_size and 0 was one of the reasons we were skipping inodes. - if the formatter function returns BULKSTAT_RV_NOTHING and an error and the error is not ENOENT or EINVAL then we need to abort the scan. ENOENT is for inodes that are no longer valid and we just skip them. EINVAL is returned if we try to lookup an internal inode so we skip them too. For a DMF scan if the inode and DMF attribute cannot fit into the space left in the user's buffer it would return ERANGE. We didn't handle this error and skipped the inode. We would continue to skip inodes until one fitted into the user's buffer or we completed the scan. - put back the recalculation of agino (that got removed with the last fix) at the end of the while loop. This is because the code at the start of the loop expects agino to be the last inode examined if it is non-zero. - if we found some inodes but then encountered an error, return success this time and the error next time. If the formatter aborted with ENOMEM we will now return this error but only if we couldn't read any inodes. Previously if we encountered ENOMEM without reading any inodes we returned a zero count and no error which falsely indicated the scan was complete. SGI-PV: 973431 SGI-Modid: xfs-linux-melb:xfs-kern:30089a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com>
2007-11-23 13:30:32 +08:00
*/
if (breq->ocount > 0)
error = 0;
return error;
}
/* Convert bulkstat (v5) to bstat (v1). */
void
xfs_bulkstat_to_bstat(
struct xfs_mount *mp,
struct xfs_bstat *bs1,
const struct xfs_bulkstat *bstat)
{
/* memset is needed here because of padding holes in the structure. */
memset(bs1, 0, sizeof(struct xfs_bstat));
bs1->bs_ino = bstat->bs_ino;
bs1->bs_mode = bstat->bs_mode;
bs1->bs_nlink = bstat->bs_nlink;
bs1->bs_uid = bstat->bs_uid;
bs1->bs_gid = bstat->bs_gid;
bs1->bs_rdev = bstat->bs_rdev;
bs1->bs_blksize = bstat->bs_blksize;
bs1->bs_size = bstat->bs_size;
bs1->bs_atime.tv_sec = bstat->bs_atime;
bs1->bs_mtime.tv_sec = bstat->bs_mtime;
bs1->bs_ctime.tv_sec = bstat->bs_ctime;
bs1->bs_atime.tv_nsec = bstat->bs_atime_nsec;
bs1->bs_mtime.tv_nsec = bstat->bs_mtime_nsec;
bs1->bs_ctime.tv_nsec = bstat->bs_ctime_nsec;
bs1->bs_blocks = bstat->bs_blocks;
bs1->bs_xflags = bstat->bs_xflags;
bs1->bs_extsize = XFS_FSB_TO_B(mp, bstat->bs_extsize_blks);
bs1->bs_extents = bstat->bs_extents;
bs1->bs_gen = bstat->bs_gen;
bs1->bs_projid_lo = bstat->bs_projectid & 0xFFFF;
bs1->bs_forkoff = bstat->bs_forkoff;
bs1->bs_projid_hi = bstat->bs_projectid >> 16;
bs1->bs_sick = bstat->bs_sick;
bs1->bs_checked = bstat->bs_checked;
bs1->bs_cowextsize = XFS_FSB_TO_B(mp, bstat->bs_cowextsize_blks);
bs1->bs_dmevmask = 0;
bs1->bs_dmstate = 0;
bs1->bs_aextents = bstat->bs_aextents;
}
struct xfs_inumbers_chunk {
inumbers_fmt_pf formatter;
struct xfs_ibulk *breq;
};
/*
* INUMBERS
* ========
* This is how we export inode btree records to userspace, so that XFS tools
* can figure out where inodes are allocated.
*/
/*
* Format the inode group structure and report it somewhere.
*
* Similar to xfs_bulkstat_one_int, lastino is the inode cursor as we walk
* through the filesystem so we move it forward unless there was a runtime
* error. If the formatter tells us the buffer is now full we also move the
* cursor forward and abort the walk.
*/
STATIC int
xfs_inumbers_walk(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
const struct xfs_inobt_rec_incore *irec,
void *data)
{
struct xfs_inumbers inogrp = {
.xi_startino = XFS_AGINO_TO_INO(mp, agno, irec->ir_startino),
.xi_alloccount = irec->ir_count - irec->ir_freecount,
.xi_allocmask = ~irec->ir_free,
.xi_version = XFS_INUMBERS_VERSION_V5,
};
struct xfs_inumbers_chunk *ic = data;
int error;
error = ic->formatter(ic->breq, &inogrp);
if (error && error != XFS_IBULK_ABORT)
return error;
ic->breq->startino = XFS_AGINO_TO_INO(mp, agno, irec->ir_startino) +
XFS_INODES_PER_CHUNK;
return error;
}
/*
* Return inode number table for the filesystem.
*/
int
xfs_inumbers(
struct xfs_ibulk *breq,
inumbers_fmt_pf formatter)
{
struct xfs_inumbers_chunk ic = {
.formatter = formatter,
.breq = breq,
};
int error = 0;
if (xfs_bulkstat_already_done(breq->mp, breq->startino))
return 0;
error = xfs_inobt_walk(breq->mp, NULL, breq->startino, breq->flags,
xfs_inumbers_walk, breq->icount, &ic);
/*
* We found some inode groups, so clear the error status and return
* them. The lastino pointer will point directly at the inode that
* triggered any error that occurred, so on the next call the error
* will be triggered again and propagated to userspace as there will be
* no formatted inode groups in the buffer.
*/
if (breq->ocount > 0)
error = 0;
return error;
}
/* Convert an inumbers (v5) struct to a inogrp (v1) struct. */
void
xfs_inumbers_to_inogrp(
struct xfs_inogrp *ig1,
const struct xfs_inumbers *ig)
{
/* memset is needed here because of padding holes in the structure. */
memset(ig1, 0, sizeof(struct xfs_inogrp));
ig1->xi_startino = ig->xi_startino;
ig1->xi_alloccount = ig->xi_alloccount;
ig1->xi_allocmask = ig->xi_allocmask;
}