linux/drivers/net/wireless/realtek/rtw88/fw.h

845 lines
35 KiB
C
Raw Normal View History

rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
/* Copyright(c) 2018-2019 Realtek Corporation
*/
#ifndef __RTW_FW_H_
#define __RTW_FW_H_
#define H2C_PKT_SIZE 32
#define H2C_PKT_HDR_SIZE 8
/* FW bin information */
#define FW_HDR_SIZE 64
#define FW_HDR_CHKSUM_SIZE 8
#define FW_NLO_INFO_CHECK_SIZE 4
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
#define FIFO_PAGE_SIZE_SHIFT 12
#define FIFO_PAGE_SIZE 4096
#define FIFO_DUMP_ADDR 0x8000
#define DLFW_PAGE_SIZE_SHIFT_LEGACY 12
#define DLFW_PAGE_SIZE_LEGACY 0x1000
#define DLFW_BLK_SIZE_SHIFT_LEGACY 2
#define DLFW_BLK_SIZE_LEGACY 4
#define FW_START_ADDR_LEGACY 0x1000
#define BCN_LOSS_CNT 10
#define BCN_FILTER_NOTIFY_SIGNAL_CHANGE 0
#define BCN_FILTER_CONNECTION_LOSS 1
#define BCN_FILTER_CONNECTED 2
#define BCN_FILTER_NOTIFY_BEACON_LOSS 3
#define SCAN_NOTIFY_TIMEOUT msecs_to_jiffies(10)
#define RTW_CHANNEL_TIME 45
#define RTW_OFF_CHAN_TIME 100
#define RTW_PASS_CHAN_TIME 105
#define RTW_DFS_CHAN_TIME 20
#define RTW_CH_INFO_SIZE 4
#define RTW_EX_CH_INFO_SIZE 3
#define RTW_EX_CH_INFO_HDR_SIZE 2
#define RTW_SCAN_WIDTH 0
#define RTW_PRI_CH_IDX 1
#define RTW_PROBE_PG_CNT 2
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
enum rtw_c2h_cmd_id {
C2H_CCX_TX_RPT = 0x03,
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
C2H_BT_INFO = 0x09,
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
C2H_BT_MP_INFO = 0x0b,
C2H_BT_HID_INFO = 0x45,
C2H_RA_RPT = 0x0c,
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
C2H_HW_FEATURE_REPORT = 0x19,
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
C2H_WLAN_INFO = 0x27,
C2H_WLAN_RFON = 0x32,
C2H_BCN_FILTER_NOTIFY = 0x36,
C2H_ADAPTIVITY = 0x37,
C2H_SCAN_RESULT = 0x38,
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
C2H_HW_FEATURE_DUMP = 0xfd,
C2H_HALMAC = 0xff,
};
enum rtw_c2h_cmd_id_ext {
C2H_SCAN_STATUS_RPT = 0x3,
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
C2H_CCX_RPT = 0x0f,
C2H_CHAN_SWITCH = 0x22,
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
};
struct rtw_c2h_cmd {
u8 id;
u8 seq;
u8 payload[];
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
} __packed;
struct rtw_c2h_adaptivity {
u8 density;
u8 igi;
u8 l2h_th_init;
u8 l2h;
u8 h2l;
u8 option;
} __packed;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
enum rtw_rsvd_packet_type {
RSVD_BEACON,
rtw88: associate reserved pages with each vif Each device has only one reserved page shared with all of the vifs, so it seems not reasonable to pass vif as one of the arguments to rtw_fw_download_rsvd_page(). If driver is going to run more than one vif, the content of reserved page could not be built for all of the vifs. To fix it, let each vif maintain its own reserved page list, and build the final reserved page to download to the firmware from all of the vifs. Hence driver should add reserved pages to each vif according to the vif->type when adding the vif. For station mode, add reserved page with rtw_add_rsvd_page_sta(). If the station mode is going to suspend in PNO (net-detect) mode, remove the reserved pages used for normal mode, and add new one for wowlan mode with rtw_add_rsvd_page_pno(). For beacon mode, only beacon is required to be added using rtw_add_rsvd_page_bcn(). This would make the code flow simpler as we don't need to add reserved pages when vif is running, just add/remove them when ieee80211_ops::[add|remove]_interface. When driver is going to download the reserved page, it will collect pages from all of the vifs, this list is maintained by rtwdev, with build_list as the pages' member. That way, we can still build a list of reserved pages to be downloaded. Also we can get the location of the pages from the list that is maintained by rtwdev. The biggest problem is that the first page should always be beacon, if other type of reserved page is put in the first page, the tx descriptor and offset could be wrong. But station mode vif does not add beacon into its list, so we need to add a dummy page in front of the list, to make sure other pages will not be put in the first page. As the dummy page is allocated when building the list, we must free it before building a new list of reserved pages to firmware. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Link: https://lore.kernel.org/r/20200312080852.16684-4-yhchuang@realtek.com
2020-03-12 16:08:50 +08:00
RSVD_DUMMY,
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
RSVD_PS_POLL,
RSVD_PROBE_RESP,
RSVD_NULL,
RSVD_QOS_NULL,
RSVD_LPS_PG_DPK,
RSVD_LPS_PG_INFO,
RSVD_PROBE_REQ,
RSVD_NLO_INFO,
RSVD_CH_INFO,
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
};
enum rtw_fw_rf_type {
FW_RF_1T2R = 0,
FW_RF_2T4R = 1,
FW_RF_2T2R = 2,
FW_RF_2T3R = 3,
FW_RF_1T1R = 4,
FW_RF_2T2R_GREEN = 5,
FW_RF_3T3R = 6,
FW_RF_3T4R = 7,
FW_RF_4T4R = 8,
FW_RF_MAX_TYPE = 0xF,
};
enum rtw_fw_feature {
FW_FEATURE_SIG = BIT(0),
FW_FEATURE_LPS_C2H = BIT(1),
FW_FEATURE_LCLK = BIT(2),
FW_FEATURE_PG = BIT(3),
FW_FEATURE_TX_WAKE = BIT(4),
FW_FEATURE_BCN_FILTER = BIT(5),
FW_FEATURE_NOTIFY_SCAN = BIT(6),
FW_FEATURE_ADAPTIVITY = BIT(7),
FW_FEATURE_SCAN_OFFLOAD = BIT(8),
FW_FEATURE_MAX = BIT(31),
};
enum rtw_beacon_filter_offload_mode {
BCN_FILTER_OFFLOAD_MODE_0 = 0,
BCN_FILTER_OFFLOAD_MODE_1,
BCN_FILTER_OFFLOAD_MODE_2,
BCN_FILTER_OFFLOAD_MODE_3,
BCN_FILTER_OFFLOAD_MODE_DEFAULT = BCN_FILTER_OFFLOAD_MODE_0,
};
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
struct rtw_coex_info_req {
u8 seq;
u8 op_code;
u8 para1;
u8 para2;
u8 para3;
};
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
struct rtw_iqk_para {
u8 clear;
u8 segment_iqk;
};
struct rtw_lps_pg_dpk_hdr {
u16 dpk_path_ok;
u8 dpk_txagc[2];
u16 dpk_gs[2];
u32 coef[2][20];
u8 dpk_ch;
} __packed;
struct rtw_lps_pg_info_hdr {
u8 macid;
u8 mbssid;
u8 pattern_count;
u8 mu_tab_group_id;
u8 sec_cam_count;
u8 tx_bu_page_count;
u16 rsvd;
u8 sec_cam[MAX_PG_CAM_BACKUP_NUM];
} __packed;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
struct rtw_rsvd_page {
rtw88: associate reserved pages with each vif Each device has only one reserved page shared with all of the vifs, so it seems not reasonable to pass vif as one of the arguments to rtw_fw_download_rsvd_page(). If driver is going to run more than one vif, the content of reserved page could not be built for all of the vifs. To fix it, let each vif maintain its own reserved page list, and build the final reserved page to download to the firmware from all of the vifs. Hence driver should add reserved pages to each vif according to the vif->type when adding the vif. For station mode, add reserved page with rtw_add_rsvd_page_sta(). If the station mode is going to suspend in PNO (net-detect) mode, remove the reserved pages used for normal mode, and add new one for wowlan mode with rtw_add_rsvd_page_pno(). For beacon mode, only beacon is required to be added using rtw_add_rsvd_page_bcn(). This would make the code flow simpler as we don't need to add reserved pages when vif is running, just add/remove them when ieee80211_ops::[add|remove]_interface. When driver is going to download the reserved page, it will collect pages from all of the vifs, this list is maintained by rtwdev, with build_list as the pages' member. That way, we can still build a list of reserved pages to be downloaded. Also we can get the location of the pages from the list that is maintained by rtwdev. The biggest problem is that the first page should always be beacon, if other type of reserved page is put in the first page, the tx descriptor and offset could be wrong. But station mode vif does not add beacon into its list, so we need to add a dummy page in front of the list, to make sure other pages will not be put in the first page. As the dummy page is allocated when building the list, we must free it before building a new list of reserved pages to firmware. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Link: https://lore.kernel.org/r/20200312080852.16684-4-yhchuang@realtek.com
2020-03-12 16:08:50 +08:00
/* associated with each vif */
struct list_head vif_list;
struct rtw_vif *rtwvif;
/* associated when build rsvd page */
struct list_head build_list;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
struct sk_buff *skb;
enum rtw_rsvd_packet_type type;
u8 page;
u16 tim_offset;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
bool add_txdesc;
struct cfg80211_ssid *ssid;
u16 probe_req_size;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
};
enum rtw_keep_alive_pkt_type {
KEEP_ALIVE_NULL_PKT = 0,
KEEP_ALIVE_ARP_RSP = 1,
};
struct rtw_nlo_info_hdr {
u8 nlo_count;
u8 hidden_ap_count;
u8 rsvd1[2];
u8 pattern_check[FW_NLO_INFO_CHECK_SIZE];
u8 rsvd2[8];
u8 ssid_len[16];
u8 chiper[16];
u8 rsvd3[16];
u8 location[8];
} __packed;
enum rtw_packet_type {
RTW_PACKET_PROBE_REQ = 0x00,
RTW_PACKET_UNDEFINE = 0x7FFFFFFF,
};
struct rtw_fw_wow_keep_alive_para {
bool adopt;
u8 pkt_type;
u8 period; /* unit: sec */
};
struct rtw_fw_wow_disconnect_para {
bool adopt;
u8 period; /* unit: sec */
u8 retry_count;
};
enum rtw_channel_type {
RTW_CHANNEL_PASSIVE,
RTW_CHANNEL_ACTIVE,
RTW_CHANNEL_RADAR,
};
enum rtw_scan_extra_id {
RTW_SCAN_EXTRA_ID_DFS,
};
enum rtw_scan_extra_info {
RTW_SCAN_EXTRA_ACTION_SCAN,
};
enum rtw_scan_report_code {
RTW_SCAN_REPORT_SUCCESS = 0x00,
RTW_SCAN_REPORT_ERR_PHYDM = 0x01,
RTW_SCAN_REPORT_ERR_ID = 0x02,
RTW_SCAN_REPORT_ERR_TX = 0x03,
RTW_SCAN_REPORT_CANCELED = 0x10,
RTW_SCAN_REPORT_CANCELED_EXT = 0x11,
RTW_SCAN_REPORT_FW_DISABLED = 0xF0,
};
enum rtw_scan_notify_id {
RTW_SCAN_NOTIFY_ID_PRESWITCH = 0x00,
RTW_SCAN_NOTIFY_ID_POSTSWITCH = 0x01,
RTW_SCAN_NOTIFY_ID_PROBE_PRETX = 0x02,
RTW_SCAN_NOTIFY_ID_PROBE_ISSUETX = 0x03,
RTW_SCAN_NOTIFY_ID_NULL0_PRETX = 0x04,
RTW_SCAN_NOTIFY_ID_NULL0_ISSUETX = 0x05,
RTW_SCAN_NOTIFY_ID_NULL0_POSTTX = 0x06,
RTW_SCAN_NOTIFY_ID_NULL1_PRETX = 0x07,
RTW_SCAN_NOTIFY_ID_NULL1_ISSUETX = 0x08,
RTW_SCAN_NOTIFY_ID_NULL1_POSTTX = 0x09,
RTW_SCAN_NOTIFY_ID_DWELLEXT = 0x0A,
};
enum rtw_scan_notify_status {
RTW_SCAN_NOTIFY_STATUS_SUCCESS = 0x00,
RTW_SCAN_NOTIFY_STATUS_FAILURE = 0x01,
RTW_SCAN_NOTIFY_STATUS_RESOURCE = 0x02,
RTW_SCAN_NOTIFY_STATUS_TIMEOUT = 0x03,
};
struct rtw_ch_switch_option {
u8 periodic_option;
u32 tsf_high;
u32 tsf_low;
u8 dest_ch_en;
u8 absolute_time_en;
u8 dest_ch;
u8 normal_period;
u8 normal_period_sel;
u8 normal_cycle;
u8 slow_period;
u8 slow_period_sel;
u8 nlo_en;
bool switch_en;
bool back_op_en;
};
struct rtw_fw_hdr {
__le16 signature;
u8 category;
u8 function;
__le16 version; /* 0x04 */
u8 subversion;
u8 subindex;
__le32 rsvd; /* 0x08 */
__le32 feature; /* 0x0C */
u8 month; /* 0x10 */
u8 day;
u8 hour;
u8 min;
__le16 year; /* 0x14 */
__le16 rsvd3;
u8 mem_usage; /* 0x18 */
u8 rsvd4[3];
__le16 h2c_fmt_ver; /* 0x1C */
__le16 rsvd5;
__le32 dmem_addr; /* 0x20 */
__le32 dmem_size;
__le32 rsvd6;
__le32 rsvd7;
__le32 imem_size; /* 0x30 */
__le32 emem_size;
__le32 emem_addr;
__le32 imem_addr;
} __packed;
struct rtw_fw_hdr_legacy {
__le16 signature;
u8 category;
u8 function;
__le16 version; /* 0x04 */
u8 subversion1;
u8 subversion2;
u8 month; /* 0x08 */
u8 day;
u8 hour;
u8 minute;
__le16 size;
__le16 rsvd2;
__le32 idx; /* 0x10 */
__le32 rsvd3;
__le32 rsvd4; /* 0x18 */
__le32 rsvd5;
} __packed;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
/* C2H */
#define GET_CCX_REPORT_SEQNUM_V0(c2h_payload) (c2h_payload[6] & 0xfc)
#define GET_CCX_REPORT_STATUS_V0(c2h_payload) (c2h_payload[0] & 0xc0)
#define GET_CCX_REPORT_SEQNUM_V1(c2h_payload) (c2h_payload[8] & 0xfc)
#define GET_CCX_REPORT_STATUS_V1(c2h_payload) (c2h_payload[9] & 0xc0)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
#define GET_SCAN_REPORT_RETURN_CODE(c2h_payload) (c2h_payload[2] & 0xff)
#define GET_CHAN_SWITCH_CENTRAL_CH(c2h_payload) (c2h_payload[2])
#define GET_CHAN_SWITCH_ID(c2h_payload) (c2h_payload[3])
#define GET_CHAN_SWITCH_STATUS(c2h_payload) (c2h_payload[4])
#define GET_RA_REPORT_RATE(c2h_payload) (c2h_payload[0] & 0x7f)
#define GET_RA_REPORT_SGI(c2h_payload) ((c2h_payload[0] & 0x80) >> 7)
#define GET_RA_REPORT_BW(c2h_payload) (c2h_payload[6])
#define GET_RA_REPORT_MACID(c2h_payload) (c2h_payload[1])
#define GET_BCN_FILTER_NOTIFY_TYPE(c2h_payload) (c2h_payload[1] & 0xf)
#define GET_BCN_FILTER_NOTIFY_EVENT(c2h_payload) (c2h_payload[1] & 0x10)
#define GET_BCN_FILTER_NOTIFY_RSSI(c2h_payload) (c2h_payload[2] - 100)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
/* PKT H2C */
#define H2C_PKT_CMD_ID 0xFF
#define H2C_PKT_CATEGORY 0x01
#define H2C_PKT_GENERAL_INFO 0x0D
#define H2C_PKT_PHYDM_INFO 0x11
#define H2C_PKT_IQK 0x0E
#define H2C_PKT_CH_SWITCH 0x02
#define H2C_PKT_UPDATE_PKT 0x0C
#define H2C_PKT_SCAN_OFFLOAD 0x19
#define H2C_PKT_CH_SWITCH_LEN 0x20
#define H2C_PKT_UPDATE_PKT_LEN 0x4
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
#define SET_PKT_H2C_CATEGORY(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(6, 0))
#define SET_PKT_H2C_CMD_ID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_PKT_H2C_SUB_CMD_ID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 16))
#define SET_PKT_H2C_TOTAL_LEN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(15, 0))
static inline void rtw_h2c_pkt_set_header(u8 *h2c_pkt, u8 sub_id)
{
SET_PKT_H2C_CATEGORY(h2c_pkt, H2C_PKT_CATEGORY);
SET_PKT_H2C_CMD_ID(h2c_pkt, H2C_PKT_CMD_ID);
SET_PKT_H2C_SUB_CMD_ID(h2c_pkt, sub_id);
}
#define FW_OFFLOAD_H2C_SET_SEQ_NUM(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(31, 16))
#define GENERAL_INFO_SET_FW_TX_BOUNDARY(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(23, 16))
#define PHYDM_INFO_SET_REF_TYPE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(7, 0))
#define PHYDM_INFO_SET_RF_TYPE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(15, 8))
#define PHYDM_INFO_SET_CUT_VER(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(23, 16))
#define PHYDM_INFO_SET_RX_ANT_STATUS(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(27, 24))
#define PHYDM_INFO_SET_TX_ANT_STATUS(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(31, 28))
#define IQK_SET_CLEAR(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(0))
#define IQK_SET_SEGMENT_IQK(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(1))
#define CHSW_INFO_SET_CH(pkt, value) \
le32p_replace_bits((__le32 *)(pkt) + 0x00, value, GENMASK(7, 0))
#define CHSW_INFO_SET_PRI_CH_IDX(pkt, value) \
le32p_replace_bits((__le32 *)(pkt) + 0x00, value, GENMASK(11, 8))
#define CHSW_INFO_SET_BW(pkt, value) \
le32p_replace_bits((__le32 *)(pkt) + 0x00, value, GENMASK(15, 12))
#define CHSW_INFO_SET_TIMEOUT(pkt, value) \
le32p_replace_bits((__le32 *)(pkt) + 0x00, value, GENMASK(23, 16))
#define CHSW_INFO_SET_ACTION_ID(pkt, value) \
le32p_replace_bits((__le32 *)(pkt) + 0x00, value, GENMASK(30, 24))
#define CHSW_INFO_SET_EXTRA_INFO(pkt, value) \
le32p_replace_bits((__le32 *)(pkt) + 0x00, value, BIT(31))
#define CH_INFO_SET_CH(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x00, value, GENMASK(7, 0))
#define CH_INFO_SET_PRI_CH_IDX(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x01, value, GENMASK(3, 0))
#define CH_INFO_SET_BW(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x01, value, GENMASK(7, 4))
#define CH_INFO_SET_TIMEOUT(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x02, value, GENMASK(7, 0))
#define CH_INFO_SET_ACTION_ID(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x03, value, GENMASK(6, 0))
#define CH_INFO_SET_EXTRA_INFO(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x03, value, BIT(7))
#define EXTRA_CH_INFO_SET_ID(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x04, value, GENMASK(6, 0))
#define EXTRA_CH_INFO_SET_INFO(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x04, value, BIT(7))
#define EXTRA_CH_INFO_SET_SIZE(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x05, value, GENMASK(7, 0))
#define EXTRA_CH_INFO_SET_DFS_EXT_TIME(pkt, value) \
u8p_replace_bits((u8 *)(pkt) + 0x06, value, GENMASK(7, 0))
#define UPDATE_PKT_SET_SIZE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(15, 0))
#define UPDATE_PKT_SET_PKT_ID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(23, 16))
#define UPDATE_PKT_SET_LOCATION(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(31, 24))
#define CH_SWITCH_SET_START(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(0))
#define CH_SWITCH_SET_DEST_CH_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(1))
#define CH_SWITCH_SET_ABSOLUTE_TIME(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(2))
#define CH_SWITCH_SET_PERIODIC_OPT(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(4, 3))
#define CH_SWITCH_SET_SCAN_MODE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(5))
#define CH_SWITCH_SET_BACK_OP_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(6))
#define CH_SWITCH_SET_INFO_LOC(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(15, 8))
#define CH_SWITCH_SET_CH_NUM(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(23, 16))
#define CH_SWITCH_SET_PRI_CH_IDX(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(27, 24))
#define CH_SWITCH_SET_DEST_BW(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(31, 28))
#define CH_SWITCH_SET_DEST_CH(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(7, 0))
#define CH_SWITCH_SET_NORMAL_PERIOD(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(13, 8))
#define CH_SWITCH_SET_NORMAL_PERIOD_SEL(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(15, 14))
#define CH_SWITCH_SET_SLOW_PERIOD(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(21, 16))
#define CH_SWITCH_SET_SLOW_PERIOD_SEL(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(23, 22))
#define CH_SWITCH_SET_NORMAL_CYCLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(31, 24))
#define CH_SWITCH_SET_TSF_HIGH(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x04, value, GENMASK(31, 0))
#define CH_SWITCH_SET_TSF_LOW(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x05, value, GENMASK(31, 0))
#define CH_SWITCH_SET_INFO_SIZE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x06, value, GENMASK(15, 0))
#define SCAN_OFFLOAD_SET_START(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(0))
#define SCAN_OFFLOAD_SET_BACK_OP_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(1))
#define SCAN_OFFLOAD_SET_RANDOM_SEQ_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(2))
#define SCAN_OFFLOAD_SET_NO_CCK_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(3))
#define SCAN_OFFLOAD_SET_VERBOSE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, BIT(4))
#define SCAN_OFFLOAD_SET_CH_NUM(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(15, 8))
#define SCAN_OFFLOAD_SET_CH_INFO_SIZE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x02, value, GENMASK(31, 16))
#define SCAN_OFFLOAD_SET_CH_INFO_LOC(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(7, 0))
#define SCAN_OFFLOAD_SET_OP_CH(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(15, 8))
#define SCAN_OFFLOAD_SET_OP_PRI_CH_IDX(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(19, 16))
#define SCAN_OFFLOAD_SET_OP_BW(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(23, 20))
#define SCAN_OFFLOAD_SET_OP_PORT_ID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x03, value, GENMASK(26, 24))
#define SCAN_OFFLOAD_SET_OP_DWELL_TIME(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x04, value, GENMASK(15, 0))
#define SCAN_OFFLOAD_SET_OP_GAP_TIME(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x04, value, GENMASK(31, 16))
#define SCAN_OFFLOAD_SET_MODE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x05, value, GENMASK(3, 0))
#define SCAN_OFFLOAD_SET_SSID_NUM(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x05, value, GENMASK(7, 4))
#define SCAN_OFFLOAD_SET_PKT_LOC(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x05, value, GENMASK(15, 8))
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
/* Command H2C */
#define H2C_CMD_RSVD_PAGE 0x0
#define H2C_CMD_MEDIA_STATUS_RPT 0x01
#define H2C_CMD_SET_PWR_MODE 0x20
#define H2C_CMD_LPS_PG_INFO 0x2b
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
#define H2C_CMD_RA_INFO 0x40
#define H2C_CMD_RSSI_MONITOR 0x42
#define H2C_CMD_BCN_FILTER_OFFLOAD_P0 0x56
#define H2C_CMD_BCN_FILTER_OFFLOAD_P1 0x57
#define H2C_CMD_WL_PHY_INFO 0x58
#define H2C_CMD_SCAN 0x59
#define H2C_CMD_ADAPTIVITY 0x5A
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
#define H2C_CMD_COEX_TDMA_TYPE 0x60
#define H2C_CMD_QUERY_BT_INFO 0x61
#define H2C_CMD_FORCE_BT_TX_POWER 0x62
#define H2C_CMD_IGNORE_WLAN_ACTION 0x63
#define H2C_CMD_WL_CH_INFO 0x66
#define H2C_CMD_QUERY_BT_MP_INFO 0x67
#define H2C_CMD_BT_WIFI_CONTROL 0x69
#define H2C_CMD_WIFI_CALIBRATION 0x6d
#define H2C_CMD_QUERY_BT_HID_INFO 0x73
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
#define H2C_CMD_KEEP_ALIVE 0x03
#define H2C_CMD_DISCONNECT_DECISION 0x04
#define H2C_CMD_WOWLAN 0x80
#define H2C_CMD_REMOTE_WAKE_CTRL 0x81
#define H2C_CMD_AOAC_GLOBAL_INFO 0x82
#define H2C_CMD_NLO_INFO 0x8C
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
#define SET_H2C_CMD_ID_CLASS(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(7, 0))
#define MEDIA_STATUS_RPT_SET_OP_MODE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define MEDIA_STATUS_RPT_SET_MACID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_WL_PHY_INFO_TX_TP(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(17, 8))
#define SET_WL_PHY_INFO_RX_TP(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(27, 18))
#define SET_WL_PHY_INFO_TX_RATE_DESC(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(7, 0))
#define SET_WL_PHY_INFO_RX_RATE_DESC(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(15, 8))
#define SET_WL_PHY_INFO_RX_EVM(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(23, 16))
#define SET_BCN_FILTER_OFFLOAD_P1_MACID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_BCN_FILTER_OFFLOAD_P1_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(16))
#define SET_BCN_FILTER_OFFLOAD_P1_HYST(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(20, 17))
#define SET_BCN_FILTER_OFFLOAD_P1_OFFLOAD_MODE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 21))
#define SET_BCN_FILTER_OFFLOAD_P1_THRESHOLD(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define SET_BCN_FILTER_OFFLOAD_P1_BCN_LOSS_CNT(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(3, 0))
#define SET_BCN_FILTER_OFFLOAD_P1_BCN_INTERVAL(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(13, 4))
#define SET_SCAN_START(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define SET_ADAPTIVITY_MODE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(11, 8))
#define SET_ADAPTIVITY_OPTION(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 12))
#define SET_ADAPTIVITY_IGI(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_ADAPTIVITY_L2H(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define SET_ADAPTIVITY_DENSITY(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(7, 0))
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
#define SET_PWR_MODE_SET_MODE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(14, 8))
#define SET_PWR_MODE_SET_RLBM(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(19, 16))
#define SET_PWR_MODE_SET_SMART_PS(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 20))
#define SET_PWR_MODE_SET_AWAKE_INTERVAL(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define SET_PWR_MODE_SET_PORT_ID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(7, 5))
#define SET_PWR_MODE_SET_PWR_STATE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(15, 8))
#define LPS_PG_INFO_LOC(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define LPS_PG_DPK_LOC(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define LPS_PG_SEC_CAM_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define LPS_PG_PATTERN_CAM_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(10))
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
#define SET_RSSI_INFO_MACID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_RSSI_INFO_RSSI(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define SET_RSSI_INFO_STBC(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, BIT(1))
#define SET_RA_INFO_MACID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_RA_INFO_RATE_ID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(20, 16))
#define SET_RA_INFO_INIT_RA_LVL(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(22, 21))
#define SET_RA_INFO_SGI_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(23))
#define SET_RA_INFO_BW_MODE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(25, 24))
#define SET_RA_INFO_LDPC(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(26))
#define SET_RA_INFO_NO_UPDATE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(27))
#define SET_RA_INFO_VHT_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(29, 28))
#define SET_RA_INFO_DIS_PT(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(30))
#define SET_RA_INFO_RA_MASK0(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(7, 0))
#define SET_RA_INFO_RA_MASK1(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(15, 8))
#define SET_RA_INFO_RA_MASK2(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(23, 16))
#define SET_RA_INFO_RA_MASK3(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(31, 24))
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
#define SET_QUERY_BT_INFO(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define SET_WL_CH_INFO_LINK(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_WL_CH_INFO_CHNL(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_WL_CH_INFO_BW(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define SET_BT_MP_INFO_SEQ(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 12))
#define SET_BT_MP_INFO_OP_CODE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_BT_MP_INFO_PARA1(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define SET_BT_MP_INFO_PARA2(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(7, 0))
#define SET_BT_MP_INFO_PARA3(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(15, 8))
#define SET_BT_TX_POWER_INDEX(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_IGNORE_WLAN_ACTION_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define SET_COEX_TDMA_TYPE_PARA1(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_COEX_TDMA_TYPE_PARA2(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_COEX_TDMA_TYPE_PARA3(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define SET_COEX_TDMA_TYPE_PARA4(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(7, 0))
#define SET_COEX_TDMA_TYPE_PARA5(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(15, 8))
#define SET_BT_WIFI_CONTROL_OP_CODE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_BT_WIFI_CONTROL_DATA1(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_BT_WIFI_CONTROL_DATA2(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define SET_BT_WIFI_CONTROL_DATA3(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(7, 0))
#define SET_BT_WIFI_CONTROL_DATA4(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(15, 8))
#define SET_BT_WIFI_CONTROL_DATA5(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x01, value, GENMASK(23, 16))
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
#define SET_COEX_QUERY_HID_INFO_SUBID(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_COEX_QUERY_HID_INFO_DATA1(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_KEEP_ALIVE_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define SET_KEEP_ALIVE_ADOPT(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(9))
#define SET_KEEP_ALIVE_PKT_TYPE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(10))
#define SET_KEEP_ALIVE_CHECK_PERIOD(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_DISCONNECT_DECISION_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define SET_DISCONNECT_DECISION_ADOPT(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(9))
#define SET_DISCONNECT_DECISION_CHECK_PERIOD(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_DISCONNECT_DECISION_TRY_PKT_NUM(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(31, 24))
#define SET_WOWLAN_FUNC_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define SET_WOWLAN_PATTERN_MATCH_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(9))
#define SET_WOWLAN_MAGIC_PKT_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(10))
#define SET_WOWLAN_UNICAST_PKT_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(11))
#define SET_WOWLAN_REKEY_WAKEUP_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(14))
#define SET_WOWLAN_DEAUTH_WAKEUP_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(15))
#define SET_REMOTE_WAKECTRL_ENABLE(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define SET_REMOTE_WAKE_CTRL_NLO_OFFLOAD_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(12))
#define SET_AOAC_GLOBAL_INFO_PAIRWISE_ENC_ALG(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(15, 8))
#define SET_AOAC_GLOBAL_INFO_GROUP_ENC_ALG(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define SET_NLO_FUN_EN(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
#define SET_NLO_PS_32K(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(9))
#define SET_NLO_IGNORE_SECURITY(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(10))
#define SET_NLO_LOC_NLO_INFO(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, GENMASK(23, 16))
#define GET_FW_DUMP_LEN(_header) \
le32_get_bits(*((__le32 *)(_header) + 0x00), GENMASK(15, 0))
#define GET_FW_DUMP_SEQ(_header) \
le32_get_bits(*((__le32 *)(_header) + 0x00), GENMASK(22, 16))
#define GET_FW_DUMP_MORE(_header) \
le32_get_bits(*((__le32 *)(_header) + 0x00), BIT(23))
#define GET_FW_DUMP_VERSION(_header) \
le32_get_bits(*((__le32 *)(_header) + 0x00), GENMASK(31, 24))
#define GET_FW_DUMP_TLV_TYPE(_header) \
le32_get_bits(*((__le32 *)(_header) + 0x01), GENMASK(15, 0))
#define GET_FW_DUMP_TLV_LEN(_header) \
le32_get_bits(*((__le32 *)(_header) + 0x01), GENMASK(31, 16))
#define GET_FW_DUMP_TLV_VAL(_header) \
le32_get_bits(*((__le32 *)(_header) + 0x02), GENMASK(31, 0))
#define RFK_SET_INFORM_START(h2c_pkt, value) \
le32p_replace_bits((__le32 *)(h2c_pkt) + 0x00, value, BIT(8))
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
static inline struct rtw_c2h_cmd *get_c2h_from_skb(struct sk_buff *skb)
{
u32 pkt_offset;
pkt_offset = *((u32 *)skb->cb);
return (struct rtw_c2h_cmd *)(skb->data + pkt_offset);
}
static inline bool rtw_fw_feature_check(struct rtw_fw_state *fw,
enum rtw_fw_feature feature)
{
return !!(fw->feature & feature);
}
void rtw_fw_c2h_cmd_rx_irqsafe(struct rtw_dev *rtwdev, u32 pkt_offset,
struct sk_buff *skb);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
void rtw_fw_c2h_cmd_handle(struct rtw_dev *rtwdev, struct sk_buff *skb);
void rtw_fw_send_general_info(struct rtw_dev *rtwdev);
void rtw_fw_send_phydm_info(struct rtw_dev *rtwdev);
void rtw_fw_do_iqk(struct rtw_dev *rtwdev, struct rtw_iqk_para *para);
void rtw_fw_inform_rfk_status(struct rtw_dev *rtwdev, bool start);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
void rtw_fw_set_pwr_mode(struct rtw_dev *rtwdev);
void rtw_fw_set_pg_info(struct rtw_dev *rtwdev);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
void rtw_fw_query_bt_info(struct rtw_dev *rtwdev);
void rtw_fw_wl_ch_info(struct rtw_dev *rtwdev, u8 link, u8 ch, u8 bw);
void rtw_fw_query_bt_mp_info(struct rtw_dev *rtwdev,
struct rtw_coex_info_req *req);
void rtw_fw_force_bt_tx_power(struct rtw_dev *rtwdev, u8 bt_pwr_dec_lvl);
void rtw_fw_bt_ignore_wlan_action(struct rtw_dev *rtwdev, bool enable);
void rtw_fw_coex_tdma_type(struct rtw_dev *rtwdev,
u8 para1, u8 para2, u8 para3, u8 para4, u8 para5);
void rtw_fw_coex_query_hid_info(struct rtw_dev *rtwdev, u8 sub_id, u8 data);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
void rtw_fw_bt_wifi_control(struct rtw_dev *rtwdev, u8 op_code, u8 *data);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
void rtw_fw_send_rssi_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si);
void rtw_fw_send_ra_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
bool reset_ra_mask);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
void rtw_fw_media_status_report(struct rtw_dev *rtwdev, u8 mac_id, bool conn);
void rtw_fw_update_wl_phy_info(struct rtw_dev *rtwdev);
void rtw_fw_beacon_filter_config(struct rtw_dev *rtwdev, bool connect,
struct ieee80211_vif *vif);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
int rtw_fw_write_data_rsvd_page(struct rtw_dev *rtwdev, u16 pg_addr,
u8 *buf, u32 size);
rtw88: associate reserved pages with each vif Each device has only one reserved page shared with all of the vifs, so it seems not reasonable to pass vif as one of the arguments to rtw_fw_download_rsvd_page(). If driver is going to run more than one vif, the content of reserved page could not be built for all of the vifs. To fix it, let each vif maintain its own reserved page list, and build the final reserved page to download to the firmware from all of the vifs. Hence driver should add reserved pages to each vif according to the vif->type when adding the vif. For station mode, add reserved page with rtw_add_rsvd_page_sta(). If the station mode is going to suspend in PNO (net-detect) mode, remove the reserved pages used for normal mode, and add new one for wowlan mode with rtw_add_rsvd_page_pno(). For beacon mode, only beacon is required to be added using rtw_add_rsvd_page_bcn(). This would make the code flow simpler as we don't need to add reserved pages when vif is running, just add/remove them when ieee80211_ops::[add|remove]_interface. When driver is going to download the reserved page, it will collect pages from all of the vifs, this list is maintained by rtwdev, with build_list as the pages' member. That way, we can still build a list of reserved pages to be downloaded. Also we can get the location of the pages from the list that is maintained by rtwdev. The biggest problem is that the first page should always be beacon, if other type of reserved page is put in the first page, the tx descriptor and offset could be wrong. But station mode vif does not add beacon into its list, so we need to add a dummy page in front of the list, to make sure other pages will not be put in the first page. As the dummy page is allocated when building the list, we must free it before building a new list of reserved pages to firmware. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Link: https://lore.kernel.org/r/20200312080852.16684-4-yhchuang@realtek.com
2020-03-12 16:08:50 +08:00
void rtw_remove_rsvd_page(struct rtw_dev *rtwdev,
struct rtw_vif *rtwvif);
void rtw_add_rsvd_page_bcn(struct rtw_dev *rtwdev,
struct rtw_vif *rtwvif);
void rtw_add_rsvd_page_pno(struct rtw_dev *rtwdev,
struct rtw_vif *rtwvif);
void rtw_add_rsvd_page_sta(struct rtw_dev *rtwdev,
struct rtw_vif *rtwvif);
int rtw_fw_download_rsvd_page(struct rtw_dev *rtwdev);
wifi: rtw88: add a work to correct atomic scheduling warning of ::set_tim The set_tim is supposed to be atomic, but we should download beacon context to firmware with a mutex lock. To avoid warning, do the thing in another work. BUG: scheduling while atomic: swapper/1/0/0x00000700 Modules linked in: CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 5.18.0-rc7-00703-g33b5ee09a0c1 #4 Hardware name: Pine64 RK3566 Quartz64-A Board (DT) Call trace: dump_backtrace.part.0+0xc4/0xd0 show_stack+0x14/0x60 dump_stack_lvl+0x60/0x78 dump_stack+0x14/0x2c __schedule_bug+0x5c/0x70 __schedule+0x5c4/0x630 schedule+0x44/0xb0 schedule_preempt_disabled+0xc/0x14 __mutex_lock.constprop.0+0x538/0x56c __mutex_lock_slowpath+0x10/0x20 mutex_lock+0x54/0x60 rtw_ops_set_tim+0x20/0x40 __sta_info_recalc_tim+0x150/0x250 sta_info_recalc_tim+0x10/0x20 invoke_tx_handlers_early+0x4e4/0x5c0 ieee80211_tx+0x78/0x110 ieee80211_xmit+0x94/0xc0 __ieee80211_subif_start_xmit+0x818/0xd20 ieee80211_subif_start_xmit+0x44/0x2d0 dev_hard_start_xmit+0xd0/0x150 __dev_queue_xmit+0x250/0xb30 dev_queue_xmit+0x10/0x20 br_dev_queue_push_xmit+0x94/0x174 br_forward_finish+0x90/0xa0 __br_forward+0xc0/0x13c br_forward+0x108/0x134 br_dev_xmit+0x1cc/0x3a4 dev_hard_start_xmit+0xd0/0x150 __dev_queue_xmit+0x250/0xb30 dev_queue_xmit+0x10/0x20 arp_xmit+0x6c/0x7c arp_send_dst+0x8c/0xc0 arp_solicit+0xd4/0x1e0 neigh_probe+0x58/0xa0 neigh_timer_handler+0x27c/0x380 call_timer_fn.constprop.0+0x20/0x80 __run_timers.part.0+0x230/0x280 run_timer_softirq+0x38/0x70 _stext+0x104/0x278 __irq_exit_rcu+0xa4/0xdc irq_exit_rcu+0xc/0x14 el1_interrupt+0x34/0x50 el1h_64_irq_handler+0x14/0x20 el1h_64_irq+0x64/0x68 arch_cpu_idle+0x14/0x20 do_idle+0x208/0x290 cpu_startup_entry+0x20/0x30 secondary_start_kernel+0x130/0x144 __secondary_switched+0x54/0x58 Fixes: f2217968ffda ("rtw88: Add update beacon flow for AP mode") Reported-by: Ondřej Jirman <megi@xff.cz> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Tested-by: Ondřej Jirman <megi@xff.cz> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20220526051251.281905-1-pkshih@realtek.com
2022-05-26 13:12:51 +08:00
void rtw_fw_update_beacon_work(struct work_struct *work);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
void rtw_send_rsvd_page_h2c(struct rtw_dev *rtwdev);
int rtw_dump_drv_rsvd_page(struct rtw_dev *rtwdev,
u32 offset, u32 size, u32 *buf);
void rtw_fw_set_remote_wake_ctrl_cmd(struct rtw_dev *rtwdev, bool enable);
void rtw_fw_set_wowlan_ctrl_cmd(struct rtw_dev *rtwdev, bool enable);
void rtw_fw_set_keep_alive_cmd(struct rtw_dev *rtwdev, bool enable);
void rtw_fw_set_disconnect_decision_cmd(struct rtw_dev *rtwdev, bool enable);
void rtw_fw_set_aoac_global_info_cmd(struct rtw_dev *rtwdev,
u8 pairwise_key_enc,
u8 group_key_enc);
void rtw_fw_set_nlo_info(struct rtw_dev *rtwdev, bool enable);
void rtw_fw_update_pkt_probe_req(struct rtw_dev *rtwdev,
struct cfg80211_ssid *ssid);
void rtw_fw_channel_switch(struct rtw_dev *rtwdev, bool enable);
void rtw_fw_h2c_cmd_dbg(struct rtw_dev *rtwdev, u8 *h2c);
void rtw_fw_c2h_cmd_isr(struct rtw_dev *rtwdev);
int rtw_fw_dump_fifo(struct rtw_dev *rtwdev, u8 fifo_sel, u32 addr, u32 size,
u32 *buffer);
void rtw_fw_scan_notify(struct rtw_dev *rtwdev, bool start);
void rtw_fw_adaptivity(struct rtw_dev *rtwdev);
void rtw_store_op_chan(struct rtw_dev *rtwdev);
void rtw_hw_scan_start(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
struct ieee80211_scan_request *req);
void rtw_hw_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
bool aborted);
int rtw_hw_scan_offload(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
bool enable);
void rtw_hw_scan_status_report(struct rtw_dev *rtwdev, struct sk_buff *skb);
void rtw_hw_scan_chan_switch(struct rtw_dev *rtwdev, struct sk_buff *skb);
void rtw_hw_scan_abort(struct rtw_dev *rtwdev, struct ieee80211_vif *vif);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 20:17:37 +08:00
#endif