linux/drivers/vfio/vfio_main.c

1445 lines
38 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* VFIO core
*
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
* Author: Alex Williamson <alex.williamson@redhat.com>
*
* Derived from original vfio:
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
* Author: Tom Lyon, pugs@cisco.com
*/
#include <linux/cdev.h>
#include <linux/compat.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/idr.h>
#include <linux/iommu.h>
#ifdef CONFIG_HAVE_KVM
#include <linux/kvm_host.h>
#endif
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/vfio.h>
#include <linux/wait.h>
vfio: Fix WARNING "do not call blocking ops when !TASK_RUNNING" vfio_dev_present() which is the condition to wait_event_interruptible_timeout(), will call vfio_group_get_device and try to acquire the mutex group->device_lock. wait_event_interruptible_timeout() will set the state of the current task to TASK_INTERRUPTIBLE, before doing the condition check. This means that we will try to acquire the mutex while already in a sleeping state. The scheduler warns us by giving the following warning: [ 4050.264464] ------------[ cut here ]------------ [ 4050.264508] do not call blocking ops when !TASK_RUNNING; state=1 set at [<00000000b33c00e2>] prepare_to_wait_event+0x14a/0x188 [ 4050.264529] WARNING: CPU: 12 PID: 35924 at kernel/sched/core.c:6112 __might_sleep+0x76/0x90 .... 4050.264756] Call Trace: [ 4050.264765] ([<000000000017bbaa>] __might_sleep+0x72/0x90) [ 4050.264774] [<0000000000b97edc>] __mutex_lock+0x44/0x8c0 [ 4050.264782] [<0000000000b9878a>] mutex_lock_nested+0x32/0x40 [ 4050.264793] [<000003ff800d7abe>] vfio_group_get_device+0x36/0xa8 [vfio] [ 4050.264803] [<000003ff800d87c0>] vfio_del_group_dev+0x238/0x378 [vfio] [ 4050.264813] [<000003ff8015f67c>] mdev_remove+0x3c/0x68 [mdev] [ 4050.264825] [<00000000008e01b0>] device_release_driver_internal+0x168/0x268 [ 4050.264834] [<00000000008de692>] bus_remove_device+0x162/0x190 [ 4050.264843] [<00000000008daf42>] device_del+0x1e2/0x368 [ 4050.264851] [<00000000008db12c>] device_unregister+0x64/0x88 [ 4050.264862] [<000003ff8015ed84>] mdev_device_remove+0xec/0x130 [mdev] [ 4050.264872] [<000003ff8015f074>] remove_store+0x6c/0xa8 [mdev] [ 4050.264881] [<000000000046f494>] kernfs_fop_write+0x14c/0x1f8 [ 4050.264890] [<00000000003c1530>] __vfs_write+0x38/0x1a8 [ 4050.264899] [<00000000003c187c>] vfs_write+0xb4/0x198 [ 4050.264908] [<00000000003c1af2>] ksys_write+0x5a/0xb0 [ 4050.264916] [<0000000000b9e270>] system_call+0xdc/0x2d8 [ 4050.264925] 4 locks held by sh/35924: [ 4050.264933] #0: 000000001ef90325 (sb_writers#4){.+.+}, at: vfs_write+0x9e/0x198 [ 4050.264948] #1: 000000005c1ab0b3 (&of->mutex){+.+.}, at: kernfs_fop_write+0x1cc/0x1f8 [ 4050.264963] #2: 0000000034831ab8 (kn->count#297){++++}, at: kernfs_remove_self+0x12e/0x150 [ 4050.264979] #3: 00000000e152484f (&dev->mutex){....}, at: device_release_driver_internal+0x5c/0x268 [ 4050.264993] Last Breaking-Event-Address: [ 4050.265002] [<000000000017bbaa>] __might_sleep+0x72/0x90 [ 4050.265010] irq event stamp: 7039 [ 4050.265020] hardirqs last enabled at (7047): [<00000000001cee7a>] console_unlock+0x6d2/0x740 [ 4050.265029] hardirqs last disabled at (7054): [<00000000001ce87e>] console_unlock+0xd6/0x740 [ 4050.265040] softirqs last enabled at (6416): [<0000000000b8fe26>] __udelay+0xb6/0x100 [ 4050.265049] softirqs last disabled at (6415): [<0000000000b8fe06>] __udelay+0x96/0x100 [ 4050.265057] ---[ end trace d04a07d39d99a9f9 ]--- Let's fix this as described in the article https://lwn.net/Articles/628628/. Signed-off-by: Farhan Ali <alifm@linux.ibm.com> [remove now redundant vfio_dev_present()] Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2019-04-04 02:22:27 +08:00
#include <linux/sched/signal.h>
vfio: Increment the runtime PM usage count during IOCTL call The vfio-pci based drivers will have runtime power management support where the user can put the device into the low power state and then PCI devices can go into the D3cold state. If the device is in the low power state and the user issues any IOCTL, then the device should be moved out of the low power state first. Once the IOCTL is serviced, then it can go into the low power state again. The runtime PM framework manages this with help of usage count. One option was to add the runtime PM related API's inside vfio-pci driver but some IOCTL (like VFIO_DEVICE_FEATURE) can follow a different path and more IOCTL can be added in the future. Also, the runtime PM will be added for vfio-pci based drivers variant currently, but the other VFIO based drivers can use the same in the future. So, this patch adds the runtime calls runtime-related API in the top-level IOCTL function itself. For the VFIO drivers which do not have runtime power management support currently, the runtime PM API's won't be invoked. Only for vfio-pci based drivers currently, the runtime PM API's will be invoked to increment and decrement the usage count. In the vfio-pci drivers also, the variant drivers can opt-out by incrementing the usage count during device-open. The pm_runtime_resume_and_get() checks the device current status and will return early if the device is already in the ACTIVE state. Taking this usage count incremented while servicing IOCTL will make sure that the user won't put the device into the low power state when any other IOCTL is being serviced in parallel. Let's consider the following scenario: 1. Some other IOCTL is called. 2. The user has opened another device instance and called the IOCTL for low power entry. 3. The low power entry IOCTL moves the device into the low power state. 4. The other IOCTL finishes. If we don't keep the usage count incremented then the device access will happen between step 3 and 4 while the device has already gone into the low power state. The pm_runtime_resume_and_get() will be the first call so its error should not be propagated to user space directly. For example, if pm_runtime_resume_and_get() can return -EINVAL for the cases where the user has passed the correct argument. So the pm_runtime_resume_and_get() errors have been masked behind -EIO. Signed-off-by: Abhishek Sahu <abhsahu@nvidia.com> Link: https://lore.kernel.org/r/20220829114850.4341-3-abhsahu@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-08-29 19:48:47 +08:00
#include <linux/pm_runtime.h>
#include <linux/interval_tree.h>
#include <linux/iova_bitmap.h>
#include <linux/iommufd.h>
#include "vfio.h"
#define DRIVER_VERSION "0.3"
#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
#define DRIVER_DESC "VFIO - User Level meta-driver"
static struct vfio {
struct class *device_class;
struct ida device_ida;
} vfio;
#ifdef CONFIG_VFIO_NOIOMMU
bool vfio_noiommu __read_mostly;
module_param_named(enable_unsafe_noiommu_mode,
vfio_noiommu, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(enable_unsafe_noiommu_mode, "Enable UNSAFE, no-IOMMU mode. This mode provides no device isolation, no DMA translation, no host kernel protection, cannot be used for device assignment to virtual machines, requires RAWIO permissions, and will taint the kernel. If you do not know what this is for, step away. (default: false)");
#endif
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
static DEFINE_XARRAY(vfio_device_set_xa);
int vfio_assign_device_set(struct vfio_device *device, void *set_id)
{
unsigned long idx = (unsigned long)set_id;
struct vfio_device_set *new_dev_set;
struct vfio_device_set *dev_set;
if (WARN_ON(!set_id))
return -EINVAL;
/*
* Atomically acquire a singleton object in the xarray for this set_id
*/
xa_lock(&vfio_device_set_xa);
dev_set = xa_load(&vfio_device_set_xa, idx);
if (dev_set)
goto found_get_ref;
xa_unlock(&vfio_device_set_xa);
new_dev_set = kzalloc(sizeof(*new_dev_set), GFP_KERNEL);
if (!new_dev_set)
return -ENOMEM;
mutex_init(&new_dev_set->lock);
INIT_LIST_HEAD(&new_dev_set->device_list);
new_dev_set->set_id = set_id;
xa_lock(&vfio_device_set_xa);
dev_set = __xa_cmpxchg(&vfio_device_set_xa, idx, NULL, new_dev_set,
GFP_KERNEL);
if (!dev_set) {
dev_set = new_dev_set;
goto found_get_ref;
}
kfree(new_dev_set);
if (xa_is_err(dev_set)) {
xa_unlock(&vfio_device_set_xa);
return xa_err(dev_set);
}
found_get_ref:
dev_set->device_count++;
xa_unlock(&vfio_device_set_xa);
mutex_lock(&dev_set->lock);
device->dev_set = dev_set;
list_add_tail(&device->dev_set_list, &dev_set->device_list);
mutex_unlock(&dev_set->lock);
return 0;
}
EXPORT_SYMBOL_GPL(vfio_assign_device_set);
static void vfio_release_device_set(struct vfio_device *device)
{
struct vfio_device_set *dev_set = device->dev_set;
if (!dev_set)
return;
mutex_lock(&dev_set->lock);
list_del(&device->dev_set_list);
mutex_unlock(&dev_set->lock);
xa_lock(&vfio_device_set_xa);
if (!--dev_set->device_count) {
__xa_erase(&vfio_device_set_xa,
(unsigned long)dev_set->set_id);
mutex_destroy(&dev_set->lock);
kfree(dev_set);
}
xa_unlock(&vfio_device_set_xa);
}
unsigned int vfio_device_set_open_count(struct vfio_device_set *dev_set)
{
struct vfio_device *cur;
unsigned int open_count = 0;
lockdep_assert_held(&dev_set->lock);
list_for_each_entry(cur, &dev_set->device_list, dev_set_list)
open_count += cur->open_count;
return open_count;
}
EXPORT_SYMBOL_GPL(vfio_device_set_open_count);
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* Device objects - create, release, get, put, search
*/
/* Device reference always implies a group reference */
void vfio_device_put_registration(struct vfio_device *device)
{
if (refcount_dec_and_test(&device->refcount))
complete(&device->comp);
}
bool vfio_device_try_get_registration(struct vfio_device *device)
{
return refcount_inc_not_zero(&device->refcount);
}
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* VFIO driver API
*/
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
/* Release helper called by vfio_put_device() */
static void vfio_device_release(struct device *dev)
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
{
struct vfio_device *device =
container_of(dev, struct vfio_device, device);
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
vfio_release_device_set(device);
ida_free(&vfio.device_ida, device->index);
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
if (device->ops->release)
device->ops->release(device);
kvfree(device);
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
}
static int vfio_init_device(struct vfio_device *device, struct device *dev,
const struct vfio_device_ops *ops);
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
/*
* Allocate and initialize vfio_device so it can be registered to vfio
* core.
*
* Drivers should use the wrapper vfio_alloc_device() for allocation.
* @size is the size of the structure to be allocated, including any
* private data used by the driver.
*
* Driver may provide an @init callback to cover device private data.
*
* Use vfio_put_device() to release the structure after success return.
*/
struct vfio_device *_vfio_alloc_device(size_t size, struct device *dev,
const struct vfio_device_ops *ops)
{
struct vfio_device *device;
int ret;
if (WARN_ON(size < sizeof(struct vfio_device)))
return ERR_PTR(-EINVAL);
device = kvzalloc(size, GFP_KERNEL);
if (!device)
return ERR_PTR(-ENOMEM);
ret = vfio_init_device(device, dev, ops);
if (ret)
goto out_free;
return device;
out_free:
kvfree(device);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(_vfio_alloc_device);
/*
* Initialize a vfio_device so it can be registered to vfio core.
*/
static int vfio_init_device(struct vfio_device *device, struct device *dev,
const struct vfio_device_ops *ops)
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
{
int ret;
ret = ida_alloc_max(&vfio.device_ida, MINORMASK, GFP_KERNEL);
if (ret < 0) {
dev_dbg(dev, "Error to alloc index\n");
return ret;
}
device->index = ret;
init_completion(&device->comp);
device->dev = dev;
device->ops = ops;
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
if (ops->init) {
ret = ops->init(device);
if (ret)
goto out_uninit;
}
device_initialize(&device->device);
device->device.release = vfio_device_release;
device->device.class = vfio.device_class;
device->device.parent = device->dev;
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
return 0;
out_uninit:
vfio_release_device_set(device);
ida_free(&vfio.device_ida, device->index);
vfio: Add helpers for unifying vfio_device life cycle The idea is to let vfio core manage the vfio_device life cycle instead of duplicating the logic cross drivers. This is also a preparatory step for adding struct device into vfio_device. New pair of helpers together with a kref in vfio_device: - vfio_alloc_device() - vfio_put_device() Drivers can register @init/@release callbacks to manage any private state wrapping the vfio_device. However vfio-ccw doesn't fit this model due to a life cycle mess that its private structure mixes both parent and mdev info hence must be allocated/freed outside of the life cycle of vfio device. Per prior discussions this won't be fixed in short term by IBM folks. Instead of waiting for those modifications introduce another helper vfio_init_device() so ccw can call it to initialize a pre-allocated vfio_device. Further implication of the ccw trick is that vfio_device cannot be freed uniformly in vfio core. Instead, require *EVERY* driver to implement @release and free vfio_device inside. Then ccw can choose to delay the free at its own discretion. Another trick down the road is that kvzalloc() is used to accommodate the need of gvt which uses vzalloc() while all others use kzalloc(). So drivers should call a helper vfio_free_device() to free the vfio_device instead of assuming that kfree() or vfree() is appliable. Later once the ccw mess is fixed we can remove those tricks and fully handle structure alloc/free in vfio core. Existing vfio_{un}init_group_dev() will be deprecated after all existing usages are converted to the new model. Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Co-developed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Tony Krowiak <akrowiak@linux.ibm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20220921104401.38898-2-kevin.tian@intel.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-21 18:43:47 +08:00
return ret;
}
static int __vfio_register_dev(struct vfio_device *device,
enum vfio_group_type type)
{
int ret;
if (WARN_ON(device->ops->bind_iommufd &&
(!device->ops->unbind_iommufd ||
!device->ops->attach_ioas)))
return -EINVAL;
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
/*
* If the driver doesn't specify a set then the device is added to a
* singleton set just for itself.
*/
if (!device->dev_set)
vfio_assign_device_set(device, device);
ret = dev_set_name(&device->device, "vfio%d", device->index);
if (ret)
return ret;
ret = vfio_device_set_group(device, type);
if (ret)
return ret;
ret = device_add(&device->device);
if (ret)
goto err_out;
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
/* Refcounting can't start until the driver calls register */
refcount_set(&device->refcount, 1);
vfio_device_group_register(device);
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
return 0;
err_out:
vfio: Follow a strict lifetime for struct iommu_group The iommu_group comes from the struct device that a driver has been bound to and then created a struct vfio_device against. To keep the iommu layer sane we want to have a simple rule that only an attached driver should be using the iommu API. Particularly only an attached driver should hold ownership. In VFIO's case since it uses the group APIs and it shares between different drivers it is a bit more complicated, but the principle still holds. Solve this by waiting for all users of the vfio_group to stop before allowing vfio_unregister_group_dev() to complete. This is done with a new completion to know when the users go away and an additional refcount to keep track of how many device drivers are sharing the vfio group. The last driver to be unregistered will clean up the group. This solves crashes in the S390 iommu driver that come because VFIO ends up racing releasing ownership (which attaches the default iommu_domain to the device) with the removal of that same device from the iommu driver. This is a side case that iommu drivers should not have to cope with. iommu driver failed to attach the default/blocking domain WARNING: CPU: 0 PID: 5082 at drivers/iommu/iommu.c:1961 iommu_detach_group+0x6c/0x80 Modules linked in: macvtap macvlan tap vfio_pci vfio_pci_core irqbypass vfio_virqfd kvm nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables nfnetlink mlx5_ib sunrpc ib_uverbs ism smc uvdevice ib_core s390_trng eadm_sch tape_3590 tape tape_class vfio_ccw mdev vfio_iommu_type1 vfio zcrypt_cex4 sch_fq_codel configfs ghash_s390 prng chacha_s390 libchacha aes_s390 mlx5_core des_s390 libdes sha3_512_s390 nvme sha3_256_s390 sha512_s390 sha256_s390 sha1_s390 sha_common nvme_core zfcp scsi_transport_fc pkey zcrypt rng_core autofs4 CPU: 0 PID: 5082 Comm: qemu-system-s39 Tainted: G W 6.0.0-rc3 #5 Hardware name: IBM 3931 A01 782 (LPAR) Krnl PSW : 0704c00180000000 000000095bb10d28 (iommu_detach_group+0x70/0x80) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 RI:0 EA:3 Krnl GPRS: 0000000000000001 0000000900000027 0000000000000039 000000095c97ffe0 00000000fffeffff 00000009fc290000 00000000af1fda50 00000000af590b58 00000000af1fdaf0 0000000135c7a320 0000000135e52258 0000000135e52200 00000000a29e8000 00000000af590b40 000000095bb10d24 0000038004b13c98 Krnl Code: 000000095bb10d18: c020003d56fc larl %r2,000000095c2bbb10 000000095bb10d1e: c0e50019d901 brasl %r14,000000095be4bf20 #000000095bb10d24: af000000 mc 0,0 >000000095bb10d28: b904002a lgr %r2,%r10 000000095bb10d2c: ebaff0a00004 lmg %r10,%r15,160(%r15) 000000095bb10d32: c0f4001aa867 brcl 15,000000095be65e00 000000095bb10d38: c004002168e0 brcl 0,000000095bf3def8 000000095bb10d3e: eb6ff0480024 stmg %r6,%r15,72(%r15) Call Trace: [<000000095bb10d28>] iommu_detach_group+0x70/0x80 ([<000000095bb10d24>] iommu_detach_group+0x6c/0x80) [<000003ff80243b0e>] vfio_iommu_type1_detach_group+0x136/0x6c8 [vfio_iommu_type1] [<000003ff80137780>] __vfio_group_unset_container+0x58/0x158 [vfio] [<000003ff80138a16>] vfio_group_fops_unl_ioctl+0x1b6/0x210 [vfio] pci 0004:00:00.0: Removing from iommu group 4 [<000000095b5b62e8>] __s390x_sys_ioctl+0xc0/0x100 [<000000095be5d3b4>] __do_syscall+0x1d4/0x200 [<000000095be6c072>] system_call+0x82/0xb0 Last Breaking-Event-Address: [<000000095be4bf80>] __warn_printk+0x60/0x68 It indicates that domain->ops->attach_dev() failed because the driver has already passed the point of destructing the device. Fixes: 9ac8545199a1 ("iommu: Fix use-after-free in iommu_release_device") Reported-by: Matthew Rosato <mjrosato@linux.ibm.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Reviewed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/0-v2-a3c5f4429e2a+55-iommu_group_lifetime_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-23 08:06:10 +08:00
vfio_device_remove_group(device);
return ret;
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
}
int vfio_register_group_dev(struct vfio_device *device)
{
return __vfio_register_dev(device, VFIO_IOMMU);
}
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
EXPORT_SYMBOL_GPL(vfio_register_group_dev);
/*
* Register a virtual device without IOMMU backing. The user of this
* device must not be able to directly trigger unmediated DMA.
*/
int vfio_register_emulated_iommu_dev(struct vfio_device *device)
{
return __vfio_register_dev(device, VFIO_EMULATED_IOMMU);
}
EXPORT_SYMBOL_GPL(vfio_register_emulated_iommu_dev);
/*
* Decrement the device reference count and wait for the device to be
* removed. Open file descriptors for the device... */
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
void vfio_unregister_group_dev(struct vfio_device *device)
{
unsigned int i = 0;
bool interrupted = false;
long rc;
vfio_device_put_registration(device);
rc = try_wait_for_completion(&device->comp);
while (rc <= 0) {
if (device->ops->request)
device->ops->request(device, i++);
if (interrupted) {
rc = wait_for_completion_timeout(&device->comp,
HZ * 10);
} else {
rc = wait_for_completion_interruptible_timeout(
&device->comp, HZ * 10);
if (rc < 0) {
interrupted = true;
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
dev_warn(device->dev,
"Device is currently in use, task"
" \"%s\" (%d) "
"blocked until device is released",
current->comm, task_pid_nr(current));
}
}
}
vfio_device_group_unregister(device);
vfio: Fix WARNING "do not call blocking ops when !TASK_RUNNING" vfio_dev_present() which is the condition to wait_event_interruptible_timeout(), will call vfio_group_get_device and try to acquire the mutex group->device_lock. wait_event_interruptible_timeout() will set the state of the current task to TASK_INTERRUPTIBLE, before doing the condition check. This means that we will try to acquire the mutex while already in a sleeping state. The scheduler warns us by giving the following warning: [ 4050.264464] ------------[ cut here ]------------ [ 4050.264508] do not call blocking ops when !TASK_RUNNING; state=1 set at [<00000000b33c00e2>] prepare_to_wait_event+0x14a/0x188 [ 4050.264529] WARNING: CPU: 12 PID: 35924 at kernel/sched/core.c:6112 __might_sleep+0x76/0x90 .... 4050.264756] Call Trace: [ 4050.264765] ([<000000000017bbaa>] __might_sleep+0x72/0x90) [ 4050.264774] [<0000000000b97edc>] __mutex_lock+0x44/0x8c0 [ 4050.264782] [<0000000000b9878a>] mutex_lock_nested+0x32/0x40 [ 4050.264793] [<000003ff800d7abe>] vfio_group_get_device+0x36/0xa8 [vfio] [ 4050.264803] [<000003ff800d87c0>] vfio_del_group_dev+0x238/0x378 [vfio] [ 4050.264813] [<000003ff8015f67c>] mdev_remove+0x3c/0x68 [mdev] [ 4050.264825] [<00000000008e01b0>] device_release_driver_internal+0x168/0x268 [ 4050.264834] [<00000000008de692>] bus_remove_device+0x162/0x190 [ 4050.264843] [<00000000008daf42>] device_del+0x1e2/0x368 [ 4050.264851] [<00000000008db12c>] device_unregister+0x64/0x88 [ 4050.264862] [<000003ff8015ed84>] mdev_device_remove+0xec/0x130 [mdev] [ 4050.264872] [<000003ff8015f074>] remove_store+0x6c/0xa8 [mdev] [ 4050.264881] [<000000000046f494>] kernfs_fop_write+0x14c/0x1f8 [ 4050.264890] [<00000000003c1530>] __vfs_write+0x38/0x1a8 [ 4050.264899] [<00000000003c187c>] vfs_write+0xb4/0x198 [ 4050.264908] [<00000000003c1af2>] ksys_write+0x5a/0xb0 [ 4050.264916] [<0000000000b9e270>] system_call+0xdc/0x2d8 [ 4050.264925] 4 locks held by sh/35924: [ 4050.264933] #0: 000000001ef90325 (sb_writers#4){.+.+}, at: vfs_write+0x9e/0x198 [ 4050.264948] #1: 000000005c1ab0b3 (&of->mutex){+.+.}, at: kernfs_fop_write+0x1cc/0x1f8 [ 4050.264963] #2: 0000000034831ab8 (kn->count#297){++++}, at: kernfs_remove_self+0x12e/0x150 [ 4050.264979] #3: 00000000e152484f (&dev->mutex){....}, at: device_release_driver_internal+0x5c/0x268 [ 4050.264993] Last Breaking-Event-Address: [ 4050.265002] [<000000000017bbaa>] __might_sleep+0x72/0x90 [ 4050.265010] irq event stamp: 7039 [ 4050.265020] hardirqs last enabled at (7047): [<00000000001cee7a>] console_unlock+0x6d2/0x740 [ 4050.265029] hardirqs last disabled at (7054): [<00000000001ce87e>] console_unlock+0xd6/0x740 [ 4050.265040] softirqs last enabled at (6416): [<0000000000b8fe26>] __udelay+0xb6/0x100 [ 4050.265049] softirqs last disabled at (6415): [<0000000000b8fe06>] __udelay+0x96/0x100 [ 4050.265057] ---[ end trace d04a07d39d99a9f9 ]--- Let's fix this as described in the article https://lwn.net/Articles/628628/. Signed-off-by: Farhan Ali <alifm@linux.ibm.com> [remove now redundant vfio_dev_present()] Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2019-04-04 02:22:27 +08:00
/* Balances device_add in register path */
device_del(&device->device);
/* Balances vfio_device_set_group in register path */
vfio: Follow a strict lifetime for struct iommu_group The iommu_group comes from the struct device that a driver has been bound to and then created a struct vfio_device against. To keep the iommu layer sane we want to have a simple rule that only an attached driver should be using the iommu API. Particularly only an attached driver should hold ownership. In VFIO's case since it uses the group APIs and it shares between different drivers it is a bit more complicated, but the principle still holds. Solve this by waiting for all users of the vfio_group to stop before allowing vfio_unregister_group_dev() to complete. This is done with a new completion to know when the users go away and an additional refcount to keep track of how many device drivers are sharing the vfio group. The last driver to be unregistered will clean up the group. This solves crashes in the S390 iommu driver that come because VFIO ends up racing releasing ownership (which attaches the default iommu_domain to the device) with the removal of that same device from the iommu driver. This is a side case that iommu drivers should not have to cope with. iommu driver failed to attach the default/blocking domain WARNING: CPU: 0 PID: 5082 at drivers/iommu/iommu.c:1961 iommu_detach_group+0x6c/0x80 Modules linked in: macvtap macvlan tap vfio_pci vfio_pci_core irqbypass vfio_virqfd kvm nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables nfnetlink mlx5_ib sunrpc ib_uverbs ism smc uvdevice ib_core s390_trng eadm_sch tape_3590 tape tape_class vfio_ccw mdev vfio_iommu_type1 vfio zcrypt_cex4 sch_fq_codel configfs ghash_s390 prng chacha_s390 libchacha aes_s390 mlx5_core des_s390 libdes sha3_512_s390 nvme sha3_256_s390 sha512_s390 sha256_s390 sha1_s390 sha_common nvme_core zfcp scsi_transport_fc pkey zcrypt rng_core autofs4 CPU: 0 PID: 5082 Comm: qemu-system-s39 Tainted: G W 6.0.0-rc3 #5 Hardware name: IBM 3931 A01 782 (LPAR) Krnl PSW : 0704c00180000000 000000095bb10d28 (iommu_detach_group+0x70/0x80) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 RI:0 EA:3 Krnl GPRS: 0000000000000001 0000000900000027 0000000000000039 000000095c97ffe0 00000000fffeffff 00000009fc290000 00000000af1fda50 00000000af590b58 00000000af1fdaf0 0000000135c7a320 0000000135e52258 0000000135e52200 00000000a29e8000 00000000af590b40 000000095bb10d24 0000038004b13c98 Krnl Code: 000000095bb10d18: c020003d56fc larl %r2,000000095c2bbb10 000000095bb10d1e: c0e50019d901 brasl %r14,000000095be4bf20 #000000095bb10d24: af000000 mc 0,0 >000000095bb10d28: b904002a lgr %r2,%r10 000000095bb10d2c: ebaff0a00004 lmg %r10,%r15,160(%r15) 000000095bb10d32: c0f4001aa867 brcl 15,000000095be65e00 000000095bb10d38: c004002168e0 brcl 0,000000095bf3def8 000000095bb10d3e: eb6ff0480024 stmg %r6,%r15,72(%r15) Call Trace: [<000000095bb10d28>] iommu_detach_group+0x70/0x80 ([<000000095bb10d24>] iommu_detach_group+0x6c/0x80) [<000003ff80243b0e>] vfio_iommu_type1_detach_group+0x136/0x6c8 [vfio_iommu_type1] [<000003ff80137780>] __vfio_group_unset_container+0x58/0x158 [vfio] [<000003ff80138a16>] vfio_group_fops_unl_ioctl+0x1b6/0x210 [vfio] pci 0004:00:00.0: Removing from iommu group 4 [<000000095b5b62e8>] __s390x_sys_ioctl+0xc0/0x100 [<000000095be5d3b4>] __do_syscall+0x1d4/0x200 [<000000095be6c072>] system_call+0x82/0xb0 Last Breaking-Event-Address: [<000000095be4bf80>] __warn_printk+0x60/0x68 It indicates that domain->ops->attach_dev() failed because the driver has already passed the point of destructing the device. Fixes: 9ac8545199a1 ("iommu: Fix use-after-free in iommu_release_device") Reported-by: Matthew Rosato <mjrosato@linux.ibm.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Reviewed-by: Yi Liu <yi.l.liu@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/0-v2-a3c5f4429e2a+55-iommu_group_lifetime_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-09-23 08:06:10 +08:00
vfio_device_remove_group(device);
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
}
EXPORT_SYMBOL_GPL(vfio_unregister_group_dev);
#ifdef CONFIG_HAVE_KVM
void _vfio_device_get_kvm_safe(struct vfio_device *device, struct kvm *kvm)
{
void (*pfn)(struct kvm *kvm);
bool (*fn)(struct kvm *kvm);
bool ret;
lockdep_assert_held(&device->dev_set->lock);
pfn = symbol_get(kvm_put_kvm);
if (WARN_ON(!pfn))
return;
fn = symbol_get(kvm_get_kvm_safe);
if (WARN_ON(!fn)) {
symbol_put(kvm_put_kvm);
return;
}
ret = fn(kvm);
symbol_put(kvm_get_kvm_safe);
if (!ret) {
symbol_put(kvm_put_kvm);
return;
}
device->put_kvm = pfn;
device->kvm = kvm;
}
void vfio_device_put_kvm(struct vfio_device *device)
{
lockdep_assert_held(&device->dev_set->lock);
if (!device->kvm)
return;
if (WARN_ON(!device->put_kvm))
goto clear;
device->put_kvm(device->kvm);
device->put_kvm = NULL;
symbol_put(kvm_put_kvm);
clear:
device->kvm = NULL;
}
#endif
/* true if the vfio_device has open_device() called but not close_device() */
static bool vfio_assert_device_open(struct vfio_device *device)
{
return !WARN_ON_ONCE(!READ_ONCE(device->open_count));
}
static int vfio_device_first_open(struct vfio_device *device,
struct iommufd_ctx *iommufd)
{
int ret;
lockdep_assert_held(&device->dev_set->lock);
if (!try_module_get(device->dev->driver->owner))
return -ENODEV;
if (iommufd)
ret = vfio_iommufd_bind(device, iommufd);
else
ret = vfio_device_group_use_iommu(device);
if (ret)
goto err_module_put;
if (device->ops->open_device) {
ret = device->ops->open_device(device);
if (ret)
goto err_unuse_iommu;
}
return 0;
err_unuse_iommu:
if (iommufd)
vfio_iommufd_unbind(device);
else
vfio_device_group_unuse_iommu(device);
err_module_put:
module_put(device->dev->driver->owner);
return ret;
}
static void vfio_device_last_close(struct vfio_device *device,
struct iommufd_ctx *iommufd)
{
lockdep_assert_held(&device->dev_set->lock);
if (device->ops->close_device)
device->ops->close_device(device);
if (iommufd)
vfio_iommufd_unbind(device);
else
vfio_device_group_unuse_iommu(device);
module_put(device->dev->driver->owner);
}
int vfio_device_open(struct vfio_device *device, struct iommufd_ctx *iommufd)
{
int ret = 0;
lockdep_assert_held(&device->dev_set->lock);
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
device->open_count++;
if (device->open_count == 1) {
ret = vfio_device_first_open(device, iommufd);
if (ret)
device->open_count--;
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
}
return ret;
}
void vfio_device_close(struct vfio_device *device,
struct iommufd_ctx *iommufd)
{
lockdep_assert_held(&device->dev_set->lock);
vfio_assert_device_open(device);
if (device->open_count == 1)
vfio_device_last_close(device, iommufd);
device->open_count--;
}
vfio: Increment the runtime PM usage count during IOCTL call The vfio-pci based drivers will have runtime power management support where the user can put the device into the low power state and then PCI devices can go into the D3cold state. If the device is in the low power state and the user issues any IOCTL, then the device should be moved out of the low power state first. Once the IOCTL is serviced, then it can go into the low power state again. The runtime PM framework manages this with help of usage count. One option was to add the runtime PM related API's inside vfio-pci driver but some IOCTL (like VFIO_DEVICE_FEATURE) can follow a different path and more IOCTL can be added in the future. Also, the runtime PM will be added for vfio-pci based drivers variant currently, but the other VFIO based drivers can use the same in the future. So, this patch adds the runtime calls runtime-related API in the top-level IOCTL function itself. For the VFIO drivers which do not have runtime power management support currently, the runtime PM API's won't be invoked. Only for vfio-pci based drivers currently, the runtime PM API's will be invoked to increment and decrement the usage count. In the vfio-pci drivers also, the variant drivers can opt-out by incrementing the usage count during device-open. The pm_runtime_resume_and_get() checks the device current status and will return early if the device is already in the ACTIVE state. Taking this usage count incremented while servicing IOCTL will make sure that the user won't put the device into the low power state when any other IOCTL is being serviced in parallel. Let's consider the following scenario: 1. Some other IOCTL is called. 2. The user has opened another device instance and called the IOCTL for low power entry. 3. The low power entry IOCTL moves the device into the low power state. 4. The other IOCTL finishes. If we don't keep the usage count incremented then the device access will happen between step 3 and 4 while the device has already gone into the low power state. The pm_runtime_resume_and_get() will be the first call so its error should not be propagated to user space directly. For example, if pm_runtime_resume_and_get() can return -EINVAL for the cases where the user has passed the correct argument. So the pm_runtime_resume_and_get() errors have been masked behind -EIO. Signed-off-by: Abhishek Sahu <abhsahu@nvidia.com> Link: https://lore.kernel.org/r/20220829114850.4341-3-abhsahu@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-08-29 19:48:47 +08:00
/*
* Wrapper around pm_runtime_resume_and_get().
* Return error code on failure or 0 on success.
*/
static inline int vfio_device_pm_runtime_get(struct vfio_device *device)
{
struct device *dev = device->dev;
if (dev->driver && dev->driver->pm) {
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret) {
dev_info_ratelimited(dev,
"vfio: runtime resume failed %d\n", ret);
return -EIO;
}
}
return 0;
}
/*
* Wrapper around pm_runtime_put().
*/
static inline void vfio_device_pm_runtime_put(struct vfio_device *device)
{
struct device *dev = device->dev;
if (dev->driver && dev->driver->pm)
pm_runtime_put(dev);
}
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* VFIO Device fd
*/
static int vfio_device_fops_release(struct inode *inode, struct file *filep)
{
struct vfio_device *device = filep->private_data;
vfio_device_group_close(device);
vfio_device_put_registration(device);
return 0;
}
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
/*
* vfio_mig_get_next_state - Compute the next step in the FSM
* @cur_fsm - The current state the device is in
* @new_fsm - The target state to reach
* @next_fsm - Pointer to the next step to get to new_fsm
*
* Return 0 upon success, otherwise -errno
* Upon success the next step in the state progression between cur_fsm and
* new_fsm will be set in next_fsm.
*
* This breaks down requests for combination transitions into smaller steps and
* returns the next step to get to new_fsm. The function may need to be called
* multiple times before reaching new_fsm.
*
*/
int vfio_mig_get_next_state(struct vfio_device *device,
enum vfio_device_mig_state cur_fsm,
enum vfio_device_mig_state new_fsm,
enum vfio_device_mig_state *next_fsm)
{
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
enum { VFIO_DEVICE_NUM_STATES = VFIO_DEVICE_STATE_PRE_COPY_P2P + 1 };
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
/*
* The coding in this table requires the driver to implement the
* following FSM arcs:
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
* RESUMING -> STOP
* STOP -> RESUMING
* STOP -> STOP_COPY
* STOP_COPY -> STOP
*
* If P2P is supported then the driver must also implement these FSM
* arcs:
* RUNNING -> RUNNING_P2P
* RUNNING_P2P -> RUNNING
* RUNNING_P2P -> STOP
* STOP -> RUNNING_P2P
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
*
* If precopy is supported then the driver must support these additional
* FSM arcs:
* RUNNING -> PRE_COPY
* PRE_COPY -> RUNNING
* PRE_COPY -> STOP_COPY
* However, if precopy and P2P are supported together then the driver
* must support these additional arcs beyond the P2P arcs above:
* PRE_COPY -> RUNNING
* PRE_COPY -> PRE_COPY_P2P
* PRE_COPY_P2P -> PRE_COPY
* PRE_COPY_P2P -> RUNNING_P2P
* PRE_COPY_P2P -> STOP_COPY
* RUNNING -> PRE_COPY
* RUNNING_P2P -> PRE_COPY_P2P
*
* Without P2P and precopy the driver must implement:
* RUNNING -> STOP
* STOP -> RUNNING
*
* The coding will step through multiple states for some combination
* transitions; if all optional features are supported, this means the
* following ones:
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
* PRE_COPY -> PRE_COPY_P2P -> STOP_COPY
* PRE_COPY -> RUNNING -> RUNNING_P2P
* PRE_COPY -> RUNNING -> RUNNING_P2P -> STOP
* PRE_COPY -> RUNNING -> RUNNING_P2P -> STOP -> RESUMING
* PRE_COPY_P2P -> RUNNING_P2P -> RUNNING
* PRE_COPY_P2P -> RUNNING_P2P -> STOP
* PRE_COPY_P2P -> RUNNING_P2P -> STOP -> RESUMING
* RESUMING -> STOP -> RUNNING_P2P
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
* RESUMING -> STOP -> RUNNING_P2P -> PRE_COPY_P2P
* RESUMING -> STOP -> RUNNING_P2P -> RUNNING
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
* RESUMING -> STOP -> RUNNING_P2P -> RUNNING -> PRE_COPY
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
* RESUMING -> STOP -> STOP_COPY
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
* RUNNING -> RUNNING_P2P -> PRE_COPY_P2P
* RUNNING -> RUNNING_P2P -> STOP
* RUNNING -> RUNNING_P2P -> STOP -> RESUMING
* RUNNING -> RUNNING_P2P -> STOP -> STOP_COPY
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
* RUNNING_P2P -> RUNNING -> PRE_COPY
* RUNNING_P2P -> STOP -> RESUMING
* RUNNING_P2P -> STOP -> STOP_COPY
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
* STOP -> RUNNING_P2P -> PRE_COPY_P2P
* STOP -> RUNNING_P2P -> RUNNING
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
* STOP -> RUNNING_P2P -> RUNNING -> PRE_COPY
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
* STOP_COPY -> STOP -> RESUMING
* STOP_COPY -> STOP -> RUNNING_P2P
* STOP_COPY -> STOP -> RUNNING_P2P -> RUNNING
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
*
* The following transitions are blocked:
* STOP_COPY -> PRE_COPY
* STOP_COPY -> PRE_COPY_P2P
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
*/
static const u8 vfio_from_fsm_table[VFIO_DEVICE_NUM_STATES][VFIO_DEVICE_NUM_STATES] = {
[VFIO_DEVICE_STATE_STOP] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_RUNNING] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_PRE_COPY,
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
[VFIO_DEVICE_STATE_PRE_COPY] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_PRE_COPY,
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_PRE_COPY_P2P,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_PRE_COPY_P2P,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_PRE_COPY,
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_PRE_COPY_P2P,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_STOP_COPY] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP,
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_ERROR,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_RESUMING] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP,
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_STOP,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_RUNNING_P2P] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_RUNNING,
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_PRE_COPY_P2P,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_ERROR] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_ERROR,
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_ERROR,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_ERROR,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
};
static const unsigned int state_flags_table[VFIO_DEVICE_NUM_STATES] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_MIGRATION_STOP_COPY,
vfio: Extend the device migration protocol with PRE_COPY The optional PRE_COPY states open the saving data transfer FD before reaching STOP_COPY and allows the device to dirty track internal state changes with the general idea to reduce the volume of data transferred in the STOP_COPY stage. While in PRE_COPY the device remains RUNNING, but the saving FD is open. Only if the device also supports RUNNING_P2P can it support PRE_COPY_P2P, which halts P2P transfers while continuing the saving FD. PRE_COPY, with P2P support, requires the driver to implement 7 new arcs and exists as an optional FSM branch between RUNNING and STOP_COPY: RUNNING -> PRE_COPY -> PRE_COPY_P2P -> STOP_COPY A new ioctl VFIO_MIG_GET_PRECOPY_INFO is provided to allow userspace to query the progress of the precopy operation in the driver with the idea it will judge to move to STOP_COPY at least once the initial data set is transferred, and possibly after the dirty size has shrunk appropriately. This ioctl is valid only in PRE_COPY states and kernel driver should return -EINVAL from any other migration state. Compared to the v1 clarification, STOP_COPY -> PRE_COPY is blocked and to be defined in future. We also split the pending_bytes report into the initial and sustaining values, e.g.: initial_bytes and dirty_bytes. initial_bytes: Amount of initial precopy data. dirty_bytes: Device state changes relative to data previously retrieved. These fields are not required to have any bearing to STOP_COPY phase. It is recommended to leave PRE_COPY for STOP_COPY only after the initial_bytes field reaches zero. Leaving PRE_COPY earlier might make things slower. Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Link: https://lore.kernel.org/r/20221206083438.37807-3-yishaih@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-12-06 16:34:26 +08:00
[VFIO_DEVICE_STATE_PRE_COPY] =
VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY,
[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_MIGRATION_STOP_COPY |
VFIO_MIGRATION_P2P |
VFIO_MIGRATION_PRE_COPY,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_RUNNING_P2P] =
VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P,
[VFIO_DEVICE_STATE_ERROR] = ~0U,
};
if (WARN_ON(cur_fsm >= ARRAY_SIZE(vfio_from_fsm_table) ||
(state_flags_table[cur_fsm] & device->migration_flags) !=
state_flags_table[cur_fsm]))
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
return -EINVAL;
if (new_fsm >= ARRAY_SIZE(vfio_from_fsm_table) ||
(state_flags_table[new_fsm] & device->migration_flags) !=
state_flags_table[new_fsm])
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
return -EINVAL;
/*
* Arcs touching optional and unsupported states are skipped over. The
* driver will instead see an arc from the original state to the next
* logical state, as per the above comment.
*/
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
*next_fsm = vfio_from_fsm_table[cur_fsm][new_fsm];
while ((state_flags_table[*next_fsm] & device->migration_flags) !=
state_flags_table[*next_fsm])
*next_fsm = vfio_from_fsm_table[*next_fsm][new_fsm];
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
return (*next_fsm != VFIO_DEVICE_STATE_ERROR) ? 0 : -EINVAL;
}
EXPORT_SYMBOL_GPL(vfio_mig_get_next_state);
/*
* Convert the drivers's struct file into a FD number and return it to userspace
*/
static int vfio_ioct_mig_return_fd(struct file *filp, void __user *arg,
struct vfio_device_feature_mig_state *mig)
{
int ret;
int fd;
fd = get_unused_fd_flags(O_CLOEXEC);
if (fd < 0) {
ret = fd;
goto out_fput;
}
mig->data_fd = fd;
if (copy_to_user(arg, mig, sizeof(*mig))) {
ret = -EFAULT;
goto out_put_unused;
}
fd_install(fd, filp);
return 0;
out_put_unused:
put_unused_fd(fd);
out_fput:
fput(filp);
return ret;
}
static int
vfio_ioctl_device_feature_mig_device_state(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
size_t minsz =
offsetofend(struct vfio_device_feature_mig_state, data_fd);
struct vfio_device_feature_mig_state mig;
struct file *filp = NULL;
int ret;
if (!device->mig_ops)
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
return -ENOTTY;
ret = vfio_check_feature(flags, argsz,
VFIO_DEVICE_FEATURE_SET |
VFIO_DEVICE_FEATURE_GET,
sizeof(mig));
if (ret != 1)
return ret;
if (copy_from_user(&mig, arg, minsz))
return -EFAULT;
if (flags & VFIO_DEVICE_FEATURE_GET) {
enum vfio_device_mig_state curr_state;
ret = device->mig_ops->migration_get_state(device,
&curr_state);
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
if (ret)
return ret;
mig.device_state = curr_state;
goto out_copy;
}
/* Handle the VFIO_DEVICE_FEATURE_SET */
filp = device->mig_ops->migration_set_state(device, mig.device_state);
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
if (IS_ERR(filp) || !filp)
goto out_copy;
return vfio_ioct_mig_return_fd(filp, arg, &mig);
out_copy:
mig.data_fd = -1;
if (copy_to_user(arg, &mig, sizeof(mig)))
return -EFAULT;
if (IS_ERR(filp))
return PTR_ERR(filp);
return 0;
}
static int
vfio_ioctl_device_feature_migration_data_size(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
struct vfio_device_feature_mig_data_size data_size = {};
unsigned long stop_copy_length;
int ret;
if (!device->mig_ops)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_GET,
sizeof(data_size));
if (ret != 1)
return ret;
ret = device->mig_ops->migration_get_data_size(device, &stop_copy_length);
if (ret)
return ret;
data_size.stop_copy_length = stop_copy_length;
if (copy_to_user(arg, &data_size, sizeof(data_size)))
return -EFAULT;
return 0;
}
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
static int vfio_ioctl_device_feature_migration(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
struct vfio_device_feature_migration mig = {
.flags = device->migration_flags,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
};
int ret;
if (!device->mig_ops)
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
return -ENOTTY;
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_GET,
sizeof(mig));
if (ret != 1)
return ret;
if (copy_to_user(arg, &mig, sizeof(mig)))
return -EFAULT;
return 0;
}
/* Ranges should fit into a single kernel page */
#define LOG_MAX_RANGES \
(PAGE_SIZE / sizeof(struct vfio_device_feature_dma_logging_range))
static int
vfio_ioctl_device_feature_logging_start(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
size_t minsz =
offsetofend(struct vfio_device_feature_dma_logging_control,
ranges);
struct vfio_device_feature_dma_logging_range __user *ranges;
struct vfio_device_feature_dma_logging_control control;
struct vfio_device_feature_dma_logging_range range;
struct rb_root_cached root = RB_ROOT_CACHED;
struct interval_tree_node *nodes;
u64 iova_end;
u32 nnodes;
int i, ret;
if (!device->log_ops)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz,
VFIO_DEVICE_FEATURE_SET,
sizeof(control));
if (ret != 1)
return ret;
if (copy_from_user(&control, arg, minsz))
return -EFAULT;
nnodes = control.num_ranges;
if (!nnodes)
return -EINVAL;
if (nnodes > LOG_MAX_RANGES)
return -E2BIG;
ranges = u64_to_user_ptr(control.ranges);
nodes = kmalloc_array(nnodes, sizeof(struct interval_tree_node),
GFP_KERNEL);
if (!nodes)
return -ENOMEM;
for (i = 0; i < nnodes; i++) {
if (copy_from_user(&range, &ranges[i], sizeof(range))) {
ret = -EFAULT;
goto end;
}
if (!IS_ALIGNED(range.iova, control.page_size) ||
!IS_ALIGNED(range.length, control.page_size)) {
ret = -EINVAL;
goto end;
}
if (check_add_overflow(range.iova, range.length, &iova_end) ||
iova_end > ULONG_MAX) {
ret = -EOVERFLOW;
goto end;
}
nodes[i].start = range.iova;
nodes[i].last = range.iova + range.length - 1;
if (interval_tree_iter_first(&root, nodes[i].start,
nodes[i].last)) {
/* Range overlapping */
ret = -EINVAL;
goto end;
}
interval_tree_insert(nodes + i, &root);
}
ret = device->log_ops->log_start(device, &root, nnodes,
&control.page_size);
if (ret)
goto end;
if (copy_to_user(arg, &control, sizeof(control))) {
ret = -EFAULT;
device->log_ops->log_stop(device);
}
end:
kfree(nodes);
return ret;
}
static int
vfio_ioctl_device_feature_logging_stop(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
int ret;
if (!device->log_ops)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz,
VFIO_DEVICE_FEATURE_SET, 0);
if (ret != 1)
return ret;
return device->log_ops->log_stop(device);
}
static int vfio_device_log_read_and_clear(struct iova_bitmap *iter,
unsigned long iova, size_t length,
void *opaque)
{
struct vfio_device *device = opaque;
return device->log_ops->log_read_and_clear(device, iova, length, iter);
}
static int
vfio_ioctl_device_feature_logging_report(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
size_t minsz =
offsetofend(struct vfio_device_feature_dma_logging_report,
bitmap);
struct vfio_device_feature_dma_logging_report report;
struct iova_bitmap *iter;
u64 iova_end;
int ret;
if (!device->log_ops)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz,
VFIO_DEVICE_FEATURE_GET,
sizeof(report));
if (ret != 1)
return ret;
if (copy_from_user(&report, arg, minsz))
return -EFAULT;
if (report.page_size < SZ_4K || !is_power_of_2(report.page_size))
return -EINVAL;
if (check_add_overflow(report.iova, report.length, &iova_end) ||
iova_end > ULONG_MAX)
return -EOVERFLOW;
iter = iova_bitmap_alloc(report.iova, report.length,
report.page_size,
u64_to_user_ptr(report.bitmap));
if (IS_ERR(iter))
return PTR_ERR(iter);
ret = iova_bitmap_for_each(iter, device,
vfio_device_log_read_and_clear);
iova_bitmap_free(iter);
return ret;
}
static int vfio_ioctl_device_feature(struct vfio_device *device,
struct vfio_device_feature __user *arg)
{
size_t minsz = offsetofend(struct vfio_device_feature, flags);
struct vfio_device_feature feature;
if (copy_from_user(&feature, arg, minsz))
return -EFAULT;
if (feature.argsz < minsz)
return -EINVAL;
/* Check unknown flags */
if (feature.flags &
~(VFIO_DEVICE_FEATURE_MASK | VFIO_DEVICE_FEATURE_SET |
VFIO_DEVICE_FEATURE_GET | VFIO_DEVICE_FEATURE_PROBE))
return -EINVAL;
/* GET & SET are mutually exclusive except with PROBE */
if (!(feature.flags & VFIO_DEVICE_FEATURE_PROBE) &&
(feature.flags & VFIO_DEVICE_FEATURE_SET) &&
(feature.flags & VFIO_DEVICE_FEATURE_GET))
return -EINVAL;
switch (feature.flags & VFIO_DEVICE_FEATURE_MASK) {
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
case VFIO_DEVICE_FEATURE_MIGRATION:
return vfio_ioctl_device_feature_migration(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE:
return vfio_ioctl_device_feature_mig_device_state(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_DMA_LOGGING_START:
return vfio_ioctl_device_feature_logging_start(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP:
return vfio_ioctl_device_feature_logging_stop(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT:
return vfio_ioctl_device_feature_logging_report(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_MIG_DATA_SIZE:
return vfio_ioctl_device_feature_migration_data_size(
device, feature.flags, arg->data,
feature.argsz - minsz);
default:
if (unlikely(!device->ops->device_feature))
return -EINVAL;
return device->ops->device_feature(device, feature.flags,
arg->data,
feature.argsz - minsz);
}
}
static long vfio_device_fops_unl_ioctl(struct file *filep,
unsigned int cmd, unsigned long arg)
{
struct vfio_device *device = filep->private_data;
vfio: Increment the runtime PM usage count during IOCTL call The vfio-pci based drivers will have runtime power management support where the user can put the device into the low power state and then PCI devices can go into the D3cold state. If the device is in the low power state and the user issues any IOCTL, then the device should be moved out of the low power state first. Once the IOCTL is serviced, then it can go into the low power state again. The runtime PM framework manages this with help of usage count. One option was to add the runtime PM related API's inside vfio-pci driver but some IOCTL (like VFIO_DEVICE_FEATURE) can follow a different path and more IOCTL can be added in the future. Also, the runtime PM will be added for vfio-pci based drivers variant currently, but the other VFIO based drivers can use the same in the future. So, this patch adds the runtime calls runtime-related API in the top-level IOCTL function itself. For the VFIO drivers which do not have runtime power management support currently, the runtime PM API's won't be invoked. Only for vfio-pci based drivers currently, the runtime PM API's will be invoked to increment and decrement the usage count. In the vfio-pci drivers also, the variant drivers can opt-out by incrementing the usage count during device-open. The pm_runtime_resume_and_get() checks the device current status and will return early if the device is already in the ACTIVE state. Taking this usage count incremented while servicing IOCTL will make sure that the user won't put the device into the low power state when any other IOCTL is being serviced in parallel. Let's consider the following scenario: 1. Some other IOCTL is called. 2. The user has opened another device instance and called the IOCTL for low power entry. 3. The low power entry IOCTL moves the device into the low power state. 4. The other IOCTL finishes. If we don't keep the usage count incremented then the device access will happen between step 3 and 4 while the device has already gone into the low power state. The pm_runtime_resume_and_get() will be the first call so its error should not be propagated to user space directly. For example, if pm_runtime_resume_and_get() can return -EINVAL for the cases where the user has passed the correct argument. So the pm_runtime_resume_and_get() errors have been masked behind -EIO. Signed-off-by: Abhishek Sahu <abhsahu@nvidia.com> Link: https://lore.kernel.org/r/20220829114850.4341-3-abhsahu@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-08-29 19:48:47 +08:00
int ret;
ret = vfio_device_pm_runtime_get(device);
if (ret)
return ret;
switch (cmd) {
case VFIO_DEVICE_FEATURE:
vfio: Increment the runtime PM usage count during IOCTL call The vfio-pci based drivers will have runtime power management support where the user can put the device into the low power state and then PCI devices can go into the D3cold state. If the device is in the low power state and the user issues any IOCTL, then the device should be moved out of the low power state first. Once the IOCTL is serviced, then it can go into the low power state again. The runtime PM framework manages this with help of usage count. One option was to add the runtime PM related API's inside vfio-pci driver but some IOCTL (like VFIO_DEVICE_FEATURE) can follow a different path and more IOCTL can be added in the future. Also, the runtime PM will be added for vfio-pci based drivers variant currently, but the other VFIO based drivers can use the same in the future. So, this patch adds the runtime calls runtime-related API in the top-level IOCTL function itself. For the VFIO drivers which do not have runtime power management support currently, the runtime PM API's won't be invoked. Only for vfio-pci based drivers currently, the runtime PM API's will be invoked to increment and decrement the usage count. In the vfio-pci drivers also, the variant drivers can opt-out by incrementing the usage count during device-open. The pm_runtime_resume_and_get() checks the device current status and will return early if the device is already in the ACTIVE state. Taking this usage count incremented while servicing IOCTL will make sure that the user won't put the device into the low power state when any other IOCTL is being serviced in parallel. Let's consider the following scenario: 1. Some other IOCTL is called. 2. The user has opened another device instance and called the IOCTL for low power entry. 3. The low power entry IOCTL moves the device into the low power state. 4. The other IOCTL finishes. If we don't keep the usage count incremented then the device access will happen between step 3 and 4 while the device has already gone into the low power state. The pm_runtime_resume_and_get() will be the first call so its error should not be propagated to user space directly. For example, if pm_runtime_resume_and_get() can return -EINVAL for the cases where the user has passed the correct argument. So the pm_runtime_resume_and_get() errors have been masked behind -EIO. Signed-off-by: Abhishek Sahu <abhsahu@nvidia.com> Link: https://lore.kernel.org/r/20220829114850.4341-3-abhsahu@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-08-29 19:48:47 +08:00
ret = vfio_ioctl_device_feature(device, (void __user *)arg);
break;
default:
if (unlikely(!device->ops->ioctl))
vfio: Increment the runtime PM usage count during IOCTL call The vfio-pci based drivers will have runtime power management support where the user can put the device into the low power state and then PCI devices can go into the D3cold state. If the device is in the low power state and the user issues any IOCTL, then the device should be moved out of the low power state first. Once the IOCTL is serviced, then it can go into the low power state again. The runtime PM framework manages this with help of usage count. One option was to add the runtime PM related API's inside vfio-pci driver but some IOCTL (like VFIO_DEVICE_FEATURE) can follow a different path and more IOCTL can be added in the future. Also, the runtime PM will be added for vfio-pci based drivers variant currently, but the other VFIO based drivers can use the same in the future. So, this patch adds the runtime calls runtime-related API in the top-level IOCTL function itself. For the VFIO drivers which do not have runtime power management support currently, the runtime PM API's won't be invoked. Only for vfio-pci based drivers currently, the runtime PM API's will be invoked to increment and decrement the usage count. In the vfio-pci drivers also, the variant drivers can opt-out by incrementing the usage count during device-open. The pm_runtime_resume_and_get() checks the device current status and will return early if the device is already in the ACTIVE state. Taking this usage count incremented while servicing IOCTL will make sure that the user won't put the device into the low power state when any other IOCTL is being serviced in parallel. Let's consider the following scenario: 1. Some other IOCTL is called. 2. The user has opened another device instance and called the IOCTL for low power entry. 3. The low power entry IOCTL moves the device into the low power state. 4. The other IOCTL finishes. If we don't keep the usage count incremented then the device access will happen between step 3 and 4 while the device has already gone into the low power state. The pm_runtime_resume_and_get() will be the first call so its error should not be propagated to user space directly. For example, if pm_runtime_resume_and_get() can return -EINVAL for the cases where the user has passed the correct argument. So the pm_runtime_resume_and_get() errors have been masked behind -EIO. Signed-off-by: Abhishek Sahu <abhsahu@nvidia.com> Link: https://lore.kernel.org/r/20220829114850.4341-3-abhsahu@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-08-29 19:48:47 +08:00
ret = -EINVAL;
else
ret = device->ops->ioctl(device, cmd, arg);
break;
}
vfio: Increment the runtime PM usage count during IOCTL call The vfio-pci based drivers will have runtime power management support where the user can put the device into the low power state and then PCI devices can go into the D3cold state. If the device is in the low power state and the user issues any IOCTL, then the device should be moved out of the low power state first. Once the IOCTL is serviced, then it can go into the low power state again. The runtime PM framework manages this with help of usage count. One option was to add the runtime PM related API's inside vfio-pci driver but some IOCTL (like VFIO_DEVICE_FEATURE) can follow a different path and more IOCTL can be added in the future. Also, the runtime PM will be added for vfio-pci based drivers variant currently, but the other VFIO based drivers can use the same in the future. So, this patch adds the runtime calls runtime-related API in the top-level IOCTL function itself. For the VFIO drivers which do not have runtime power management support currently, the runtime PM API's won't be invoked. Only for vfio-pci based drivers currently, the runtime PM API's will be invoked to increment and decrement the usage count. In the vfio-pci drivers also, the variant drivers can opt-out by incrementing the usage count during device-open. The pm_runtime_resume_and_get() checks the device current status and will return early if the device is already in the ACTIVE state. Taking this usage count incremented while servicing IOCTL will make sure that the user won't put the device into the low power state when any other IOCTL is being serviced in parallel. Let's consider the following scenario: 1. Some other IOCTL is called. 2. The user has opened another device instance and called the IOCTL for low power entry. 3. The low power entry IOCTL moves the device into the low power state. 4. The other IOCTL finishes. If we don't keep the usage count incremented then the device access will happen between step 3 and 4 while the device has already gone into the low power state. The pm_runtime_resume_and_get() will be the first call so its error should not be propagated to user space directly. For example, if pm_runtime_resume_and_get() can return -EINVAL for the cases where the user has passed the correct argument. So the pm_runtime_resume_and_get() errors have been masked behind -EIO. Signed-off-by: Abhishek Sahu <abhsahu@nvidia.com> Link: https://lore.kernel.org/r/20220829114850.4341-3-abhsahu@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-08-29 19:48:47 +08:00
vfio_device_pm_runtime_put(device);
return ret;
}
static ssize_t vfio_device_fops_read(struct file *filep, char __user *buf,
size_t count, loff_t *ppos)
{
struct vfio_device *device = filep->private_data;
if (unlikely(!device->ops->read))
return -EINVAL;
return device->ops->read(device, buf, count, ppos);
}
static ssize_t vfio_device_fops_write(struct file *filep,
const char __user *buf,
size_t count, loff_t *ppos)
{
struct vfio_device *device = filep->private_data;
if (unlikely(!device->ops->write))
return -EINVAL;
return device->ops->write(device, buf, count, ppos);
}
static int vfio_device_fops_mmap(struct file *filep, struct vm_area_struct *vma)
{
struct vfio_device *device = filep->private_data;
if (unlikely(!device->ops->mmap))
return -EINVAL;
return device->ops->mmap(device, vma);
}
const struct file_operations vfio_device_fops = {
.owner = THIS_MODULE,
.release = vfio_device_fops_release,
.read = vfio_device_fops_read,
.write = vfio_device_fops_write,
.unlocked_ioctl = vfio_device_fops_unl_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.mmap = vfio_device_fops_mmap,
};
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* Sub-module support
*/
/*
* Helper for managing a buffer of info chain capabilities, allocate or
* reallocate a buffer with additional @size, filling in @id and @version
* of the capability. A pointer to the new capability is returned.
*
* NB. The chain is based at the head of the buffer, so new entries are
* added to the tail, vfio_info_cap_shift() should be called to fixup the
* next offsets prior to copying to the user buffer.
*/
struct vfio_info_cap_header *vfio_info_cap_add(struct vfio_info_cap *caps,
size_t size, u16 id, u16 version)
{
void *buf;
struct vfio_info_cap_header *header, *tmp;
buf = krealloc(caps->buf, caps->size + size, GFP_KERNEL);
if (!buf) {
kfree(caps->buf);
caps->buf = NULL;
caps->size = 0;
return ERR_PTR(-ENOMEM);
}
caps->buf = buf;
header = buf + caps->size;
/* Eventually copied to user buffer, zero */
memset(header, 0, size);
header->id = id;
header->version = version;
/* Add to the end of the capability chain */
for (tmp = buf; tmp->next; tmp = buf + tmp->next)
; /* nothing */
tmp->next = caps->size;
caps->size += size;
return header;
}
EXPORT_SYMBOL_GPL(vfio_info_cap_add);
void vfio_info_cap_shift(struct vfio_info_cap *caps, size_t offset)
{
struct vfio_info_cap_header *tmp;
void *buf = (void *)caps->buf;
for (tmp = buf; tmp->next; tmp = buf + tmp->next - offset)
tmp->next += offset;
}
EXPORT_SYMBOL(vfio_info_cap_shift);
int vfio_info_add_capability(struct vfio_info_cap *caps,
struct vfio_info_cap_header *cap, size_t size)
{
struct vfio_info_cap_header *header;
header = vfio_info_cap_add(caps, size, cap->id, cap->version);
if (IS_ERR(header))
return PTR_ERR(header);
memcpy(header + 1, cap + 1, size - sizeof(*header));
return 0;
}
EXPORT_SYMBOL(vfio_info_add_capability);
int vfio_set_irqs_validate_and_prepare(struct vfio_irq_set *hdr, int num_irqs,
int max_irq_type, size_t *data_size)
{
unsigned long minsz;
size_t size;
minsz = offsetofend(struct vfio_irq_set, count);
if ((hdr->argsz < minsz) || (hdr->index >= max_irq_type) ||
(hdr->count >= (U32_MAX - hdr->start)) ||
(hdr->flags & ~(VFIO_IRQ_SET_DATA_TYPE_MASK |
VFIO_IRQ_SET_ACTION_TYPE_MASK)))
return -EINVAL;
if (data_size)
*data_size = 0;
if (hdr->start >= num_irqs || hdr->start + hdr->count > num_irqs)
return -EINVAL;
switch (hdr->flags & VFIO_IRQ_SET_DATA_TYPE_MASK) {
case VFIO_IRQ_SET_DATA_NONE:
size = 0;
break;
case VFIO_IRQ_SET_DATA_BOOL:
size = sizeof(uint8_t);
break;
case VFIO_IRQ_SET_DATA_EVENTFD:
size = sizeof(int32_t);
break;
default:
return -EINVAL;
}
if (size) {
if (hdr->argsz - minsz < hdr->count * size)
return -EINVAL;
if (!data_size)
return -EINVAL;
*data_size = hdr->count * size;
}
return 0;
}
EXPORT_SYMBOL(vfio_set_irqs_validate_and_prepare);
/*
* Pin contiguous user pages and return their associated host pages for local
* domain only.
* @device [in] : device
* @iova [in] : starting IOVA of user pages to be pinned.
* @npage [in] : count of pages to be pinned. This count should not
* be greater than VFIO_PIN_PAGES_MAX_ENTRIES.
* @prot [in] : protection flags
* @pages[out] : array of host pages
* Return error or number of pages pinned.
*
* A driver may only call this function if the vfio_device was created
* by vfio_register_emulated_iommu_dev() due to vfio_device_container_pin_pages().
*/
int vfio_pin_pages(struct vfio_device *device, dma_addr_t iova,
int npage, int prot, struct page **pages)
{
/* group->container cannot change while a vfio device is open */
if (!pages || !npage || WARN_ON(!vfio_assert_device_open(device)))
return -EINVAL;
if (vfio_device_has_container(device))
return vfio_device_container_pin_pages(device, iova,
npage, prot, pages);
if (device->iommufd_access) {
int ret;
if (iova > ULONG_MAX)
return -EINVAL;
/*
* VFIO ignores the sub page offset, npages is from the start of
* a PAGE_SIZE chunk of IOVA. The caller is expected to recover
* the sub page offset by doing:
* pages[0] + (iova % PAGE_SIZE)
*/
ret = iommufd_access_pin_pages(
device->iommufd_access, ALIGN_DOWN(iova, PAGE_SIZE),
npage * PAGE_SIZE, pages,
(prot & IOMMU_WRITE) ? IOMMUFD_ACCESS_RW_WRITE : 0);
if (ret)
return ret;
return npage;
}
return -EINVAL;
}
EXPORT_SYMBOL(vfio_pin_pages);
/*
* Unpin contiguous host pages for local domain only.
* @device [in] : device
* @iova [in] : starting address of user pages to be unpinned.
* @npage [in] : count of pages to be unpinned. This count should not
* be greater than VFIO_PIN_PAGES_MAX_ENTRIES.
*/
void vfio_unpin_pages(struct vfio_device *device, dma_addr_t iova, int npage)
{
if (WARN_ON(!vfio_assert_device_open(device)))
return;
if (vfio_device_has_container(device)) {
vfio_device_container_unpin_pages(device, iova, npage);
return;
}
if (device->iommufd_access) {
if (WARN_ON(iova > ULONG_MAX))
return;
iommufd_access_unpin_pages(device->iommufd_access,
ALIGN_DOWN(iova, PAGE_SIZE),
npage * PAGE_SIZE);
return;
}
}
EXPORT_SYMBOL(vfio_unpin_pages);
/*
* This interface allows the CPUs to perform some sort of virtual DMA on
* behalf of the device.
*
* CPUs read/write from/into a range of IOVAs pointing to user space memory
* into/from a kernel buffer.
*
* As the read/write of user space memory is conducted via the CPUs and is
* not a real device DMA, it is not necessary to pin the user space memory.
*
* @device [in] : VFIO device
* @iova [in] : base IOVA of a user space buffer
* @data [in] : pointer to kernel buffer
* @len [in] : kernel buffer length
* @write : indicate read or write
* Return error code on failure or 0 on success.
*/
int vfio_dma_rw(struct vfio_device *device, dma_addr_t iova, void *data,
size_t len, bool write)
{
if (!data || len <= 0 || !vfio_assert_device_open(device))
return -EINVAL;
if (vfio_device_has_container(device))
return vfio_device_container_dma_rw(device, iova,
data, len, write);
if (device->iommufd_access) {
unsigned int flags = 0;
if (iova > ULONG_MAX)
return -EINVAL;
/* VFIO historically tries to auto-detect a kthread */
if (!current->mm)
flags |= IOMMUFD_ACCESS_RW_KTHREAD;
if (write)
flags |= IOMMUFD_ACCESS_RW_WRITE;
return iommufd_access_rw(device->iommufd_access, iova, data,
len, flags);
}
return -EINVAL;
}
EXPORT_SYMBOL(vfio_dma_rw);
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* Module/class support
*/
static int __init vfio_init(void)
{
int ret;
ida_init(&vfio.device_ida);
ret = vfio_group_init();
if (ret)
return ret;
ret = vfio_virqfd_init();
if (ret)
goto err_virqfd;
/* /sys/class/vfio-dev/vfioX */
vfio.device_class = class_create(THIS_MODULE, "vfio-dev");
if (IS_ERR(vfio.device_class)) {
ret = PTR_ERR(vfio.device_class);
goto err_dev_class;
}
pr_info(DRIVER_DESC " version: " DRIVER_VERSION "\n");
return 0;
err_dev_class:
vfio_virqfd_exit();
err_virqfd:
vfio_group_cleanup();
return ret;
}
static void __exit vfio_cleanup(void)
{
ida_destroy(&vfio.device_ida);
class_destroy(vfio.device_class);
vfio.device_class = NULL;
vfio_virqfd_exit();
vfio_group_cleanup();
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
xa_destroy(&vfio_device_set_xa);
}
module_init(vfio_init);
module_exit(vfio_cleanup);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_SOFTDEP("post: vfio_iommu_type1 vfio_iommu_spapr_tce");