linux/drivers/gpio/gpio-zynq.c

1043 lines
31 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Xilinx Zynq GPIO device driver
*
* Copyright (C) 2009 - 2014 Xilinx, Inc.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/gpio/driver.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#define DRIVER_NAME "zynq-gpio"
/* Maximum banks */
#define ZYNQ_GPIO_MAX_BANK 4
#define ZYNQMP_GPIO_MAX_BANK 6
#define VERSAL_GPIO_MAX_BANK 4
#define PMC_GPIO_MAX_BANK 5
#define VERSAL_UNUSED_BANKS 2
#define ZYNQ_GPIO_BANK0_NGPIO 32
#define ZYNQ_GPIO_BANK1_NGPIO 22
#define ZYNQ_GPIO_BANK2_NGPIO 32
#define ZYNQ_GPIO_BANK3_NGPIO 32
#define ZYNQMP_GPIO_BANK0_NGPIO 26
#define ZYNQMP_GPIO_BANK1_NGPIO 26
#define ZYNQMP_GPIO_BANK2_NGPIO 26
#define ZYNQMP_GPIO_BANK3_NGPIO 32
#define ZYNQMP_GPIO_BANK4_NGPIO 32
#define ZYNQMP_GPIO_BANK5_NGPIO 32
#define ZYNQ_GPIO_NR_GPIOS 118
#define ZYNQMP_GPIO_NR_GPIOS 174
#define ZYNQ_GPIO_BANK0_PIN_MIN(str) 0
#define ZYNQ_GPIO_BANK0_PIN_MAX(str) (ZYNQ_GPIO_BANK0_PIN_MIN(str) + \
ZYNQ##str##_GPIO_BANK0_NGPIO - 1)
#define ZYNQ_GPIO_BANK1_PIN_MIN(str) (ZYNQ_GPIO_BANK0_PIN_MAX(str) + 1)
#define ZYNQ_GPIO_BANK1_PIN_MAX(str) (ZYNQ_GPIO_BANK1_PIN_MIN(str) + \
ZYNQ##str##_GPIO_BANK1_NGPIO - 1)
#define ZYNQ_GPIO_BANK2_PIN_MIN(str) (ZYNQ_GPIO_BANK1_PIN_MAX(str) + 1)
#define ZYNQ_GPIO_BANK2_PIN_MAX(str) (ZYNQ_GPIO_BANK2_PIN_MIN(str) + \
ZYNQ##str##_GPIO_BANK2_NGPIO - 1)
#define ZYNQ_GPIO_BANK3_PIN_MIN(str) (ZYNQ_GPIO_BANK2_PIN_MAX(str) + 1)
#define ZYNQ_GPIO_BANK3_PIN_MAX(str) (ZYNQ_GPIO_BANK3_PIN_MIN(str) + \
ZYNQ##str##_GPIO_BANK3_NGPIO - 1)
#define ZYNQ_GPIO_BANK4_PIN_MIN(str) (ZYNQ_GPIO_BANK3_PIN_MAX(str) + 1)
#define ZYNQ_GPIO_BANK4_PIN_MAX(str) (ZYNQ_GPIO_BANK4_PIN_MIN(str) + \
ZYNQ##str##_GPIO_BANK4_NGPIO - 1)
#define ZYNQ_GPIO_BANK5_PIN_MIN(str) (ZYNQ_GPIO_BANK4_PIN_MAX(str) + 1)
#define ZYNQ_GPIO_BANK5_PIN_MAX(str) (ZYNQ_GPIO_BANK5_PIN_MIN(str) + \
ZYNQ##str##_GPIO_BANK5_NGPIO - 1)
/* Register offsets for the GPIO device */
/* LSW Mask & Data -WO */
#define ZYNQ_GPIO_DATA_LSW_OFFSET(BANK) (0x000 + (8 * BANK))
/* MSW Mask & Data -WO */
#define ZYNQ_GPIO_DATA_MSW_OFFSET(BANK) (0x004 + (8 * BANK))
/* Data Register-RW */
#define ZYNQ_GPIO_DATA_OFFSET(BANK) (0x040 + (4 * BANK))
#define ZYNQ_GPIO_DATA_RO_OFFSET(BANK) (0x060 + (4 * BANK))
/* Direction mode reg-RW */
#define ZYNQ_GPIO_DIRM_OFFSET(BANK) (0x204 + (0x40 * BANK))
/* Output enable reg-RW */
#define ZYNQ_GPIO_OUTEN_OFFSET(BANK) (0x208 + (0x40 * BANK))
/* Interrupt mask reg-RO */
#define ZYNQ_GPIO_INTMASK_OFFSET(BANK) (0x20C + (0x40 * BANK))
/* Interrupt enable reg-WO */
#define ZYNQ_GPIO_INTEN_OFFSET(BANK) (0x210 + (0x40 * BANK))
/* Interrupt disable reg-WO */
#define ZYNQ_GPIO_INTDIS_OFFSET(BANK) (0x214 + (0x40 * BANK))
/* Interrupt status reg-RO */
#define ZYNQ_GPIO_INTSTS_OFFSET(BANK) (0x218 + (0x40 * BANK))
/* Interrupt type reg-RW */
#define ZYNQ_GPIO_INTTYPE_OFFSET(BANK) (0x21C + (0x40 * BANK))
/* Interrupt polarity reg-RW */
#define ZYNQ_GPIO_INTPOL_OFFSET(BANK) (0x220 + (0x40 * BANK))
/* Interrupt on any, reg-RW */
#define ZYNQ_GPIO_INTANY_OFFSET(BANK) (0x224 + (0x40 * BANK))
/* Disable all interrupts mask */
#define ZYNQ_GPIO_IXR_DISABLE_ALL 0xFFFFFFFF
/* Mid pin number of a bank */
#define ZYNQ_GPIO_MID_PIN_NUM 16
/* GPIO upper 16 bit mask */
#define ZYNQ_GPIO_UPPER_MASK 0xFFFF0000
/* set to differentiate zynq from zynqmp, 0=zynqmp, 1=zynq */
#define ZYNQ_GPIO_QUIRK_IS_ZYNQ BIT(0)
#define GPIO_QUIRK_DATA_RO_BUG BIT(1)
#define GPIO_QUIRK_VERSAL BIT(2)
struct gpio_regs {
u32 datamsw[ZYNQMP_GPIO_MAX_BANK];
u32 datalsw[ZYNQMP_GPIO_MAX_BANK];
u32 dirm[ZYNQMP_GPIO_MAX_BANK];
u32 outen[ZYNQMP_GPIO_MAX_BANK];
u32 int_en[ZYNQMP_GPIO_MAX_BANK];
u32 int_dis[ZYNQMP_GPIO_MAX_BANK];
u32 int_type[ZYNQMP_GPIO_MAX_BANK];
u32 int_polarity[ZYNQMP_GPIO_MAX_BANK];
u32 int_any[ZYNQMP_GPIO_MAX_BANK];
};
/**
* struct zynq_gpio - gpio device private data structure
* @chip: instance of the gpio_chip
* @base_addr: base address of the GPIO device
* @clk: clock resource for this controller
* @irq: interrupt for the GPIO device
* @p_data: pointer to platform data
* @context: context registers
* @dirlock: lock used for direction in/out synchronization
*/
struct zynq_gpio {
struct gpio_chip chip;
void __iomem *base_addr;
struct clk *clk;
int irq;
const struct zynq_platform_data *p_data;
struct gpio_regs context;
spinlock_t dirlock; /* lock */
};
/**
* struct zynq_platform_data - zynq gpio platform data structure
* @label: string to store in gpio->label
* @quirks: Flags is used to identify the platform
* @ngpio: max number of gpio pins
* @max_bank: maximum number of gpio banks
* @bank_min: this array represents bank's min pin
* @bank_max: this array represents bank's max pin
*/
struct zynq_platform_data {
const char *label;
u32 quirks;
u16 ngpio;
int max_bank;
int bank_min[ZYNQMP_GPIO_MAX_BANK];
int bank_max[ZYNQMP_GPIO_MAX_BANK];
};
gpio: zynq: Fix IRQ handlers The Zynq GPIO interrupt handling code as two main issues: 1) It does not support IRQF_ONESHOT interrupt since it uses handle_simple_irq() for the interrupt handler. handle_simple_irq() does not do masking and unmasking of the IRQ that is required for this chip to be able to support IRQF_ONESHOT IRQs, causing the CPU to lock up in a interrupt storm if such a interrupt is requested. 2) Interrupts are acked after the primary interrupt handlers for all asserted interrupts in a bank have been called. For edge triggered interrupt this is to late and may cause a interrupt to be missed. For level triggered oneshot interrupts this is to early and causes the interrupt handler to run twice per interrupt. This patch addresses the issue by updating the driver to use the correct IRQ chip handler functions that are appropriate for this kind of IRQ controller. The following diagram gives an overview of how the interrupt detection circuit works, it is not necessarily a accurate depiction of the real hardware though. INT_POL/INT_ON_ANY | | +---+ INT_STATUS `-| | | | E |-. | ,---| | \ |\ +----+ | +---+ | +---+ `----| | ,-------|S | ,*--| | GPIO_IN -* | |- | Q|- | & |-- IRQ_OUT | +---+ ,-----| | ,-|R | ,o| | `---| | / |/ | +----+ | +---+ | = |- | | | ,-| | INT_TYPE ACK INT_MASK | +---+ | INT_POL GPIO_IN is the raw signal level connected to the hardware pin. This signal is routed to a edge detector and to a level detector. The edge detector can be configured to either detect a rising or falling edge or both edges. The level detector can detect either a level high or level low event. Depending on the setting of the INT_TYPE register either the edge or level event will be propagated to the INT_STATUS register. As long as a interrupt condition is detected the INT_STATUS register will be set to 1. It can be cleared to 0 if (and only if) the interrupt condition is no longer detected and software acknowledges the interrupt by writing a 1 to the address of the INT_STATUS register. There is also the INT_MASK register which can be used to disable the propagation of the INT_STATUS signal to the upstream IRQ controller. What is important to note is that the interrupt detection logic itself can not be disabled, only the propagation of the INT_STATUS register can be delayed. This means that for level type interrupts the interrupt must only be acknowledged after the interrupt source has been cleared otherwise it will stay asserted and the interrupt handler will be run a second time. For IRQF_ONESHOT interrupts this means that the IRQ must only be acknowledged after the threaded interrupt has finished running. If a second interrupt comes in between handling the first interrupt and acknowledging it the external interrupt will be asserted, which means trying to acknowledge the first interrupt will not clear the INT_STATUS register and the interrupt handler will be run a second time when the IRQ is unmasked, so no interrupts will be lost. The handle_fasteoi_irq() handler in combination with the IRQCHIP_EOI_THREADED | IRQCHIP_EOI_IF_HANDLED flags will have the desired behavior. For edge triggered interrupts a slightly different strategy is necessary. For edge triggered interrupts the interrupt condition is only true when the edge itself is detected, this means this is the only time the INT_STATUS register is set, acknowledging the interrupt any time after that will clear the INT_STATUS register until the next interrupt happens. This means in order to not loose any interrupts the interrupt needs to be acknowledged before running the interrupt handler. If a second interrupt occurs after the first interrupt handler has finished but before the interrupt is unmasked the INT_STATUS register will be re-asserted and the interrupt handler runs a second time once the interrupt is unmasked. This means with this flow handling strategy no interrupts are lost for edge triggered interrupts. The handle_level_irq() handler will have the desired behavior. (Note: The handle_edge_irq() only needs to be used for edge triggered interrupts where the controller stops detecting the interrupt event when the interrupt is masked, for this controller the detection logic still works, while only the propagation is delayed when the interrupt is masked.) Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Soren Brinkmann <soren.brinkmann@xilinx.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-07-18 17:52:13 +08:00
static struct irq_chip zynq_gpio_level_irqchip;
static struct irq_chip zynq_gpio_edge_irqchip;
/**
* zynq_gpio_is_zynq - test if HW is zynq or zynqmp
* @gpio: Pointer to driver data struct
*
* Return: 0 if zynqmp, 1 if zynq.
*/
static int zynq_gpio_is_zynq(struct zynq_gpio *gpio)
{
return !!(gpio->p_data->quirks & ZYNQ_GPIO_QUIRK_IS_ZYNQ);
}
/**
* gpio_data_ro_bug - test if HW bug exists or not
* @gpio: Pointer to driver data struct
*
* Return: 0 if bug doesnot exist, 1 if bug exists.
*/
static int gpio_data_ro_bug(struct zynq_gpio *gpio)
{
return !!(gpio->p_data->quirks & GPIO_QUIRK_DATA_RO_BUG);
}
/**
* zynq_gpio_get_bank_pin - Get the bank number and pin number within that bank
* for a given pin in the GPIO device
* @pin_num: gpio pin number within the device
* @bank_num: an output parameter used to return the bank number of the gpio
* pin
* @bank_pin_num: an output parameter used to return pin number within a bank
* for the given gpio pin
* @gpio: gpio device data structure
*
* Returns the bank number and pin offset within the bank.
*/
static inline void zynq_gpio_get_bank_pin(unsigned int pin_num,
unsigned int *bank_num,
unsigned int *bank_pin_num,
struct zynq_gpio *gpio)
{
int bank;
for (bank = 0; bank < gpio->p_data->max_bank; bank++) {
if ((pin_num >= gpio->p_data->bank_min[bank]) &&
(pin_num <= gpio->p_data->bank_max[bank])) {
*bank_num = bank;
*bank_pin_num = pin_num -
gpio->p_data->bank_min[bank];
return;
}
if (gpio->p_data->quirks & GPIO_QUIRK_VERSAL)
bank = bank + VERSAL_UNUSED_BANKS;
}
/* default */
WARN(true, "invalid GPIO pin number: %u", pin_num);
*bank_num = 0;
*bank_pin_num = 0;
}
/**
* zynq_gpio_get_value - Get the state of the specified pin of GPIO device
* @chip: gpio_chip instance to be worked on
* @pin: gpio pin number within the device
*
* This function reads the state of the specified pin of the GPIO device.
*
* Return: 0 if the pin is low, 1 if pin is high.
*/
static int zynq_gpio_get_value(struct gpio_chip *chip, unsigned int pin)
{
u32 data;
unsigned int bank_num, bank_pin_num;
struct zynq_gpio *gpio = gpiochip_get_data(chip);
zynq_gpio_get_bank_pin(pin, &bank_num, &bank_pin_num, gpio);
if (gpio_data_ro_bug(gpio)) {
if (zynq_gpio_is_zynq(gpio)) {
if (bank_num <= 1) {
data = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_DATA_RO_OFFSET(bank_num));
} else {
data = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_DATA_OFFSET(bank_num));
}
} else {
if (bank_num <= 2) {
data = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_DATA_RO_OFFSET(bank_num));
} else {
data = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_DATA_OFFSET(bank_num));
}
}
} else {
data = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_DATA_RO_OFFSET(bank_num));
}
return (data >> bank_pin_num) & 1;
}
/**
* zynq_gpio_set_value - Modify the state of the pin with specified value
* @chip: gpio_chip instance to be worked on
* @pin: gpio pin number within the device
* @state: value used to modify the state of the specified pin
*
* This function calculates the register offset (i.e to lower 16 bits or
* upper 16 bits) based on the given pin number and sets the state of a
* gpio pin to the specified value. The state is either 0 or non-zero.
*/
static void zynq_gpio_set_value(struct gpio_chip *chip, unsigned int pin,
int state)
{
unsigned int reg_offset, bank_num, bank_pin_num;
struct zynq_gpio *gpio = gpiochip_get_data(chip);
zynq_gpio_get_bank_pin(pin, &bank_num, &bank_pin_num, gpio);
if (bank_pin_num >= ZYNQ_GPIO_MID_PIN_NUM) {
/* only 16 data bits in bit maskable reg */
bank_pin_num -= ZYNQ_GPIO_MID_PIN_NUM;
reg_offset = ZYNQ_GPIO_DATA_MSW_OFFSET(bank_num);
} else {
reg_offset = ZYNQ_GPIO_DATA_LSW_OFFSET(bank_num);
}
/*
* get the 32 bit value to be written to the mask/data register where
* the upper 16 bits is the mask and lower 16 bits is the data
*/
state = !!state;
state = ~(1 << (bank_pin_num + ZYNQ_GPIO_MID_PIN_NUM)) &
((state << bank_pin_num) | ZYNQ_GPIO_UPPER_MASK);
writel_relaxed(state, gpio->base_addr + reg_offset);
}
/**
* zynq_gpio_dir_in - Set the direction of the specified GPIO pin as input
* @chip: gpio_chip instance to be worked on
* @pin: gpio pin number within the device
*
* This function uses the read-modify-write sequence to set the direction of
* the gpio pin as input.
*
* Return: 0 always
*/
static int zynq_gpio_dir_in(struct gpio_chip *chip, unsigned int pin)
{
u32 reg;
unsigned int bank_num, bank_pin_num;
unsigned long flags;
struct zynq_gpio *gpio = gpiochip_get_data(chip);
zynq_gpio_get_bank_pin(pin, &bank_num, &bank_pin_num, gpio);
/*
* On zynq bank 0 pins 7 and 8 are special and cannot be used
* as inputs.
*/
if (zynq_gpio_is_zynq(gpio) && bank_num == 0 &&
(bank_pin_num == 7 || bank_pin_num == 8))
return -EINVAL;
/* clear the bit in direction mode reg to set the pin as input */
spin_lock_irqsave(&gpio->dirlock, flags);
reg = readl_relaxed(gpio->base_addr + ZYNQ_GPIO_DIRM_OFFSET(bank_num));
reg &= ~BIT(bank_pin_num);
writel_relaxed(reg, gpio->base_addr + ZYNQ_GPIO_DIRM_OFFSET(bank_num));
spin_unlock_irqrestore(&gpio->dirlock, flags);
return 0;
}
/**
* zynq_gpio_dir_out - Set the direction of the specified GPIO pin as output
* @chip: gpio_chip instance to be worked on
* @pin: gpio pin number within the device
* @state: value to be written to specified pin
*
* This function sets the direction of specified GPIO pin as output, configures
* the Output Enable register for the pin and uses zynq_gpio_set to set
* the state of the pin to the value specified.
*
* Return: 0 always
*/
static int zynq_gpio_dir_out(struct gpio_chip *chip, unsigned int pin,
int state)
{
u32 reg;
unsigned int bank_num, bank_pin_num;
unsigned long flags;
struct zynq_gpio *gpio = gpiochip_get_data(chip);
zynq_gpio_get_bank_pin(pin, &bank_num, &bank_pin_num, gpio);
/* set the GPIO pin as output */
spin_lock_irqsave(&gpio->dirlock, flags);
reg = readl_relaxed(gpio->base_addr + ZYNQ_GPIO_DIRM_OFFSET(bank_num));
reg |= BIT(bank_pin_num);
writel_relaxed(reg, gpio->base_addr + ZYNQ_GPIO_DIRM_OFFSET(bank_num));
/* configure the output enable reg for the pin */
reg = readl_relaxed(gpio->base_addr + ZYNQ_GPIO_OUTEN_OFFSET(bank_num));
reg |= BIT(bank_pin_num);
writel_relaxed(reg, gpio->base_addr + ZYNQ_GPIO_OUTEN_OFFSET(bank_num));
spin_unlock_irqrestore(&gpio->dirlock, flags);
/* set the state of the pin */
zynq_gpio_set_value(chip, pin, state);
return 0;
}
/**
* zynq_gpio_get_direction - Read the direction of the specified GPIO pin
* @chip: gpio_chip instance to be worked on
* @pin: gpio pin number within the device
*
* This function returns the direction of the specified GPIO.
*
* Return: GPIO_LINE_DIRECTION_OUT or GPIO_LINE_DIRECTION_IN
*/
static int zynq_gpio_get_direction(struct gpio_chip *chip, unsigned int pin)
{
u32 reg;
unsigned int bank_num, bank_pin_num;
struct zynq_gpio *gpio = gpiochip_get_data(chip);
zynq_gpio_get_bank_pin(pin, &bank_num, &bank_pin_num, gpio);
reg = readl_relaxed(gpio->base_addr + ZYNQ_GPIO_DIRM_OFFSET(bank_num));
if (reg & BIT(bank_pin_num))
return GPIO_LINE_DIRECTION_OUT;
return GPIO_LINE_DIRECTION_IN;
}
/**
* zynq_gpio_irq_mask - Disable the interrupts for a gpio pin
* @irq_data: per irq and chip data passed down to chip functions
*
* This function calculates gpio pin number from irq number and sets the
* bit in the Interrupt Disable register of the corresponding bank to disable
* interrupts for that pin.
*/
static void zynq_gpio_irq_mask(struct irq_data *irq_data)
{
unsigned int device_pin_num, bank_num, bank_pin_num;
struct zynq_gpio *gpio =
gpiochip_get_data(irq_data_get_irq_chip_data(irq_data));
device_pin_num = irq_data->hwirq;
zynq_gpio_get_bank_pin(device_pin_num, &bank_num, &bank_pin_num, gpio);
writel_relaxed(BIT(bank_pin_num),
gpio->base_addr + ZYNQ_GPIO_INTDIS_OFFSET(bank_num));
}
/**
* zynq_gpio_irq_unmask - Enable the interrupts for a gpio pin
* @irq_data: irq data containing irq number of gpio pin for the interrupt
* to enable
*
* This function calculates the gpio pin number from irq number and sets the
* bit in the Interrupt Enable register of the corresponding bank to enable
* interrupts for that pin.
*/
static void zynq_gpio_irq_unmask(struct irq_data *irq_data)
{
unsigned int device_pin_num, bank_num, bank_pin_num;
struct zynq_gpio *gpio =
gpiochip_get_data(irq_data_get_irq_chip_data(irq_data));
device_pin_num = irq_data->hwirq;
zynq_gpio_get_bank_pin(device_pin_num, &bank_num, &bank_pin_num, gpio);
writel_relaxed(BIT(bank_pin_num),
gpio->base_addr + ZYNQ_GPIO_INTEN_OFFSET(bank_num));
}
/**
* zynq_gpio_irq_ack - Acknowledge the interrupt of a gpio pin
* @irq_data: irq data containing irq number of gpio pin for the interrupt
* to ack
*
* This function calculates gpio pin number from irq number and sets the bit
* in the Interrupt Status Register of the corresponding bank, to ACK the irq.
*/
static void zynq_gpio_irq_ack(struct irq_data *irq_data)
{
unsigned int device_pin_num, bank_num, bank_pin_num;
struct zynq_gpio *gpio =
gpiochip_get_data(irq_data_get_irq_chip_data(irq_data));
device_pin_num = irq_data->hwirq;
zynq_gpio_get_bank_pin(device_pin_num, &bank_num, &bank_pin_num, gpio);
writel_relaxed(BIT(bank_pin_num),
gpio->base_addr + ZYNQ_GPIO_INTSTS_OFFSET(bank_num));
}
/**
* zynq_gpio_irq_enable - Enable the interrupts for a gpio pin
* @irq_data: irq data containing irq number of gpio pin for the interrupt
* to enable
*
* Clears the INTSTS bit and unmasks the given interrupt.
*/
static void zynq_gpio_irq_enable(struct irq_data *irq_data)
{
/*
* The Zynq GPIO controller does not disable interrupt detection when
* the interrupt is masked and only disables the propagation of the
* interrupt. This means when the controller detects an interrupt
* condition while the interrupt is logically disabled it will propagate
* that interrupt event once the interrupt is enabled. This will cause
* the interrupt consumer to see spurious interrupts to prevent this
* first make sure that the interrupt is not asserted and then enable
* it.
*/
zynq_gpio_irq_ack(irq_data);
zynq_gpio_irq_unmask(irq_data);
}
/**
* zynq_gpio_set_irq_type - Set the irq type for a gpio pin
* @irq_data: irq data containing irq number of gpio pin
* @type: interrupt type that is to be set for the gpio pin
*
* This function gets the gpio pin number and its bank from the gpio pin number
* and configures the INT_TYPE, INT_POLARITY and INT_ANY registers.
*
* Return: 0, negative error otherwise.
* TYPE-EDGE_RISING, INT_TYPE - 1, INT_POLARITY - 1, INT_ANY - 0;
* TYPE-EDGE_FALLING, INT_TYPE - 1, INT_POLARITY - 0, INT_ANY - 0;
* TYPE-EDGE_BOTH, INT_TYPE - 1, INT_POLARITY - NA, INT_ANY - 1;
* TYPE-LEVEL_HIGH, INT_TYPE - 0, INT_POLARITY - 1, INT_ANY - NA;
* TYPE-LEVEL_LOW, INT_TYPE - 0, INT_POLARITY - 0, INT_ANY - NA
*/
static int zynq_gpio_set_irq_type(struct irq_data *irq_data, unsigned int type)
{
u32 int_type, int_pol, int_any;
unsigned int device_pin_num, bank_num, bank_pin_num;
struct zynq_gpio *gpio =
gpiochip_get_data(irq_data_get_irq_chip_data(irq_data));
device_pin_num = irq_data->hwirq;
zynq_gpio_get_bank_pin(device_pin_num, &bank_num, &bank_pin_num, gpio);
int_type = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_INTTYPE_OFFSET(bank_num));
int_pol = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_INTPOL_OFFSET(bank_num));
int_any = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_INTANY_OFFSET(bank_num));
/*
* based on the type requested, configure the INT_TYPE, INT_POLARITY
* and INT_ANY registers
*/
switch (type) {
case IRQ_TYPE_EDGE_RISING:
int_type |= BIT(bank_pin_num);
int_pol |= BIT(bank_pin_num);
int_any &= ~BIT(bank_pin_num);
break;
case IRQ_TYPE_EDGE_FALLING:
int_type |= BIT(bank_pin_num);
int_pol &= ~BIT(bank_pin_num);
int_any &= ~BIT(bank_pin_num);
break;
case IRQ_TYPE_EDGE_BOTH:
int_type |= BIT(bank_pin_num);
int_any |= BIT(bank_pin_num);
break;
case IRQ_TYPE_LEVEL_HIGH:
int_type &= ~BIT(bank_pin_num);
int_pol |= BIT(bank_pin_num);
break;
case IRQ_TYPE_LEVEL_LOW:
int_type &= ~BIT(bank_pin_num);
int_pol &= ~BIT(bank_pin_num);
break;
default:
return -EINVAL;
}
writel_relaxed(int_type,
gpio->base_addr + ZYNQ_GPIO_INTTYPE_OFFSET(bank_num));
writel_relaxed(int_pol,
gpio->base_addr + ZYNQ_GPIO_INTPOL_OFFSET(bank_num));
writel_relaxed(int_any,
gpio->base_addr + ZYNQ_GPIO_INTANY_OFFSET(bank_num));
gpio: zynq: Fix IRQ handlers The Zynq GPIO interrupt handling code as two main issues: 1) It does not support IRQF_ONESHOT interrupt since it uses handle_simple_irq() for the interrupt handler. handle_simple_irq() does not do masking and unmasking of the IRQ that is required for this chip to be able to support IRQF_ONESHOT IRQs, causing the CPU to lock up in a interrupt storm if such a interrupt is requested. 2) Interrupts are acked after the primary interrupt handlers for all asserted interrupts in a bank have been called. For edge triggered interrupt this is to late and may cause a interrupt to be missed. For level triggered oneshot interrupts this is to early and causes the interrupt handler to run twice per interrupt. This patch addresses the issue by updating the driver to use the correct IRQ chip handler functions that are appropriate for this kind of IRQ controller. The following diagram gives an overview of how the interrupt detection circuit works, it is not necessarily a accurate depiction of the real hardware though. INT_POL/INT_ON_ANY | | +---+ INT_STATUS `-| | | | E |-. | ,---| | \ |\ +----+ | +---+ | +---+ `----| | ,-------|S | ,*--| | GPIO_IN -* | |- | Q|- | & |-- IRQ_OUT | +---+ ,-----| | ,-|R | ,o| | `---| | / |/ | +----+ | +---+ | = |- | | | ,-| | INT_TYPE ACK INT_MASK | +---+ | INT_POL GPIO_IN is the raw signal level connected to the hardware pin. This signal is routed to a edge detector and to a level detector. The edge detector can be configured to either detect a rising or falling edge or both edges. The level detector can detect either a level high or level low event. Depending on the setting of the INT_TYPE register either the edge or level event will be propagated to the INT_STATUS register. As long as a interrupt condition is detected the INT_STATUS register will be set to 1. It can be cleared to 0 if (and only if) the interrupt condition is no longer detected and software acknowledges the interrupt by writing a 1 to the address of the INT_STATUS register. There is also the INT_MASK register which can be used to disable the propagation of the INT_STATUS signal to the upstream IRQ controller. What is important to note is that the interrupt detection logic itself can not be disabled, only the propagation of the INT_STATUS register can be delayed. This means that for level type interrupts the interrupt must only be acknowledged after the interrupt source has been cleared otherwise it will stay asserted and the interrupt handler will be run a second time. For IRQF_ONESHOT interrupts this means that the IRQ must only be acknowledged after the threaded interrupt has finished running. If a second interrupt comes in between handling the first interrupt and acknowledging it the external interrupt will be asserted, which means trying to acknowledge the first interrupt will not clear the INT_STATUS register and the interrupt handler will be run a second time when the IRQ is unmasked, so no interrupts will be lost. The handle_fasteoi_irq() handler in combination with the IRQCHIP_EOI_THREADED | IRQCHIP_EOI_IF_HANDLED flags will have the desired behavior. For edge triggered interrupts a slightly different strategy is necessary. For edge triggered interrupts the interrupt condition is only true when the edge itself is detected, this means this is the only time the INT_STATUS register is set, acknowledging the interrupt any time after that will clear the INT_STATUS register until the next interrupt happens. This means in order to not loose any interrupts the interrupt needs to be acknowledged before running the interrupt handler. If a second interrupt occurs after the first interrupt handler has finished but before the interrupt is unmasked the INT_STATUS register will be re-asserted and the interrupt handler runs a second time once the interrupt is unmasked. This means with this flow handling strategy no interrupts are lost for edge triggered interrupts. The handle_level_irq() handler will have the desired behavior. (Note: The handle_edge_irq() only needs to be used for edge triggered interrupts where the controller stops detecting the interrupt event when the interrupt is masked, for this controller the detection logic still works, while only the propagation is delayed when the interrupt is masked.) Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Soren Brinkmann <soren.brinkmann@xilinx.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-07-18 17:52:13 +08:00
if (type & IRQ_TYPE_LEVEL_MASK)
irq_set_chip_handler_name_locked(irq_data,
&zynq_gpio_level_irqchip,
handle_fasteoi_irq, NULL);
else
irq_set_chip_handler_name_locked(irq_data,
&zynq_gpio_edge_irqchip,
handle_level_irq, NULL);
gpio: zynq: Fix IRQ handlers The Zynq GPIO interrupt handling code as two main issues: 1) It does not support IRQF_ONESHOT interrupt since it uses handle_simple_irq() for the interrupt handler. handle_simple_irq() does not do masking and unmasking of the IRQ that is required for this chip to be able to support IRQF_ONESHOT IRQs, causing the CPU to lock up in a interrupt storm if such a interrupt is requested. 2) Interrupts are acked after the primary interrupt handlers for all asserted interrupts in a bank have been called. For edge triggered interrupt this is to late and may cause a interrupt to be missed. For level triggered oneshot interrupts this is to early and causes the interrupt handler to run twice per interrupt. This patch addresses the issue by updating the driver to use the correct IRQ chip handler functions that are appropriate for this kind of IRQ controller. The following diagram gives an overview of how the interrupt detection circuit works, it is not necessarily a accurate depiction of the real hardware though. INT_POL/INT_ON_ANY | | +---+ INT_STATUS `-| | | | E |-. | ,---| | \ |\ +----+ | +---+ | +---+ `----| | ,-------|S | ,*--| | GPIO_IN -* | |- | Q|- | & |-- IRQ_OUT | +---+ ,-----| | ,-|R | ,o| | `---| | / |/ | +----+ | +---+ | = |- | | | ,-| | INT_TYPE ACK INT_MASK | +---+ | INT_POL GPIO_IN is the raw signal level connected to the hardware pin. This signal is routed to a edge detector and to a level detector. The edge detector can be configured to either detect a rising or falling edge or both edges. The level detector can detect either a level high or level low event. Depending on the setting of the INT_TYPE register either the edge or level event will be propagated to the INT_STATUS register. As long as a interrupt condition is detected the INT_STATUS register will be set to 1. It can be cleared to 0 if (and only if) the interrupt condition is no longer detected and software acknowledges the interrupt by writing a 1 to the address of the INT_STATUS register. There is also the INT_MASK register which can be used to disable the propagation of the INT_STATUS signal to the upstream IRQ controller. What is important to note is that the interrupt detection logic itself can not be disabled, only the propagation of the INT_STATUS register can be delayed. This means that for level type interrupts the interrupt must only be acknowledged after the interrupt source has been cleared otherwise it will stay asserted and the interrupt handler will be run a second time. For IRQF_ONESHOT interrupts this means that the IRQ must only be acknowledged after the threaded interrupt has finished running. If a second interrupt comes in between handling the first interrupt and acknowledging it the external interrupt will be asserted, which means trying to acknowledge the first interrupt will not clear the INT_STATUS register and the interrupt handler will be run a second time when the IRQ is unmasked, so no interrupts will be lost. The handle_fasteoi_irq() handler in combination with the IRQCHIP_EOI_THREADED | IRQCHIP_EOI_IF_HANDLED flags will have the desired behavior. For edge triggered interrupts a slightly different strategy is necessary. For edge triggered interrupts the interrupt condition is only true when the edge itself is detected, this means this is the only time the INT_STATUS register is set, acknowledging the interrupt any time after that will clear the INT_STATUS register until the next interrupt happens. This means in order to not loose any interrupts the interrupt needs to be acknowledged before running the interrupt handler. If a second interrupt occurs after the first interrupt handler has finished but before the interrupt is unmasked the INT_STATUS register will be re-asserted and the interrupt handler runs a second time once the interrupt is unmasked. This means with this flow handling strategy no interrupts are lost for edge triggered interrupts. The handle_level_irq() handler will have the desired behavior. (Note: The handle_edge_irq() only needs to be used for edge triggered interrupts where the controller stops detecting the interrupt event when the interrupt is masked, for this controller the detection logic still works, while only the propagation is delayed when the interrupt is masked.) Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Soren Brinkmann <soren.brinkmann@xilinx.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-07-18 17:52:13 +08:00
return 0;
}
static int zynq_gpio_set_wake(struct irq_data *data, unsigned int on)
{
struct zynq_gpio *gpio =
gpiochip_get_data(irq_data_get_irq_chip_data(data));
irq_set_irq_wake(gpio->irq, on);
return 0;
}
static int zynq_gpio_irq_reqres(struct irq_data *d)
{
struct gpio_chip *chip = irq_data_get_irq_chip_data(d);
int ret;
ret = pm_runtime_get_sync(chip->parent);
if (ret < 0)
return ret;
return gpiochip_reqres_irq(chip, d->hwirq);
}
static void zynq_gpio_irq_relres(struct irq_data *d)
{
struct gpio_chip *chip = irq_data_get_irq_chip_data(d);
gpiochip_relres_irq(chip, d->hwirq);
pm_runtime_put(chip->parent);
}
/* irq chip descriptor */
gpio: zynq: Fix IRQ handlers The Zynq GPIO interrupt handling code as two main issues: 1) It does not support IRQF_ONESHOT interrupt since it uses handle_simple_irq() for the interrupt handler. handle_simple_irq() does not do masking and unmasking of the IRQ that is required for this chip to be able to support IRQF_ONESHOT IRQs, causing the CPU to lock up in a interrupt storm if such a interrupt is requested. 2) Interrupts are acked after the primary interrupt handlers for all asserted interrupts in a bank have been called. For edge triggered interrupt this is to late and may cause a interrupt to be missed. For level triggered oneshot interrupts this is to early and causes the interrupt handler to run twice per interrupt. This patch addresses the issue by updating the driver to use the correct IRQ chip handler functions that are appropriate for this kind of IRQ controller. The following diagram gives an overview of how the interrupt detection circuit works, it is not necessarily a accurate depiction of the real hardware though. INT_POL/INT_ON_ANY | | +---+ INT_STATUS `-| | | | E |-. | ,---| | \ |\ +----+ | +---+ | +---+ `----| | ,-------|S | ,*--| | GPIO_IN -* | |- | Q|- | & |-- IRQ_OUT | +---+ ,-----| | ,-|R | ,o| | `---| | / |/ | +----+ | +---+ | = |- | | | ,-| | INT_TYPE ACK INT_MASK | +---+ | INT_POL GPIO_IN is the raw signal level connected to the hardware pin. This signal is routed to a edge detector and to a level detector. The edge detector can be configured to either detect a rising or falling edge or both edges. The level detector can detect either a level high or level low event. Depending on the setting of the INT_TYPE register either the edge or level event will be propagated to the INT_STATUS register. As long as a interrupt condition is detected the INT_STATUS register will be set to 1. It can be cleared to 0 if (and only if) the interrupt condition is no longer detected and software acknowledges the interrupt by writing a 1 to the address of the INT_STATUS register. There is also the INT_MASK register which can be used to disable the propagation of the INT_STATUS signal to the upstream IRQ controller. What is important to note is that the interrupt detection logic itself can not be disabled, only the propagation of the INT_STATUS register can be delayed. This means that for level type interrupts the interrupt must only be acknowledged after the interrupt source has been cleared otherwise it will stay asserted and the interrupt handler will be run a second time. For IRQF_ONESHOT interrupts this means that the IRQ must only be acknowledged after the threaded interrupt has finished running. If a second interrupt comes in between handling the first interrupt and acknowledging it the external interrupt will be asserted, which means trying to acknowledge the first interrupt will not clear the INT_STATUS register and the interrupt handler will be run a second time when the IRQ is unmasked, so no interrupts will be lost. The handle_fasteoi_irq() handler in combination with the IRQCHIP_EOI_THREADED | IRQCHIP_EOI_IF_HANDLED flags will have the desired behavior. For edge triggered interrupts a slightly different strategy is necessary. For edge triggered interrupts the interrupt condition is only true when the edge itself is detected, this means this is the only time the INT_STATUS register is set, acknowledging the interrupt any time after that will clear the INT_STATUS register until the next interrupt happens. This means in order to not loose any interrupts the interrupt needs to be acknowledged before running the interrupt handler. If a second interrupt occurs after the first interrupt handler has finished but before the interrupt is unmasked the INT_STATUS register will be re-asserted and the interrupt handler runs a second time once the interrupt is unmasked. This means with this flow handling strategy no interrupts are lost for edge triggered interrupts. The handle_level_irq() handler will have the desired behavior. (Note: The handle_edge_irq() only needs to be used for edge triggered interrupts where the controller stops detecting the interrupt event when the interrupt is masked, for this controller the detection logic still works, while only the propagation is delayed when the interrupt is masked.) Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Soren Brinkmann <soren.brinkmann@xilinx.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-07-18 17:52:13 +08:00
static struct irq_chip zynq_gpio_level_irqchip = {
.name = DRIVER_NAME,
.irq_enable = zynq_gpio_irq_enable,
gpio: zynq: Fix IRQ handlers The Zynq GPIO interrupt handling code as two main issues: 1) It does not support IRQF_ONESHOT interrupt since it uses handle_simple_irq() for the interrupt handler. handle_simple_irq() does not do masking and unmasking of the IRQ that is required for this chip to be able to support IRQF_ONESHOT IRQs, causing the CPU to lock up in a interrupt storm if such a interrupt is requested. 2) Interrupts are acked after the primary interrupt handlers for all asserted interrupts in a bank have been called. For edge triggered interrupt this is to late and may cause a interrupt to be missed. For level triggered oneshot interrupts this is to early and causes the interrupt handler to run twice per interrupt. This patch addresses the issue by updating the driver to use the correct IRQ chip handler functions that are appropriate for this kind of IRQ controller. The following diagram gives an overview of how the interrupt detection circuit works, it is not necessarily a accurate depiction of the real hardware though. INT_POL/INT_ON_ANY | | +---+ INT_STATUS `-| | | | E |-. | ,---| | \ |\ +----+ | +---+ | +---+ `----| | ,-------|S | ,*--| | GPIO_IN -* | |- | Q|- | & |-- IRQ_OUT | +---+ ,-----| | ,-|R | ,o| | `---| | / |/ | +----+ | +---+ | = |- | | | ,-| | INT_TYPE ACK INT_MASK | +---+ | INT_POL GPIO_IN is the raw signal level connected to the hardware pin. This signal is routed to a edge detector and to a level detector. The edge detector can be configured to either detect a rising or falling edge or both edges. The level detector can detect either a level high or level low event. Depending on the setting of the INT_TYPE register either the edge or level event will be propagated to the INT_STATUS register. As long as a interrupt condition is detected the INT_STATUS register will be set to 1. It can be cleared to 0 if (and only if) the interrupt condition is no longer detected and software acknowledges the interrupt by writing a 1 to the address of the INT_STATUS register. There is also the INT_MASK register which can be used to disable the propagation of the INT_STATUS signal to the upstream IRQ controller. What is important to note is that the interrupt detection logic itself can not be disabled, only the propagation of the INT_STATUS register can be delayed. This means that for level type interrupts the interrupt must only be acknowledged after the interrupt source has been cleared otherwise it will stay asserted and the interrupt handler will be run a second time. For IRQF_ONESHOT interrupts this means that the IRQ must only be acknowledged after the threaded interrupt has finished running. If a second interrupt comes in between handling the first interrupt and acknowledging it the external interrupt will be asserted, which means trying to acknowledge the first interrupt will not clear the INT_STATUS register and the interrupt handler will be run a second time when the IRQ is unmasked, so no interrupts will be lost. The handle_fasteoi_irq() handler in combination with the IRQCHIP_EOI_THREADED | IRQCHIP_EOI_IF_HANDLED flags will have the desired behavior. For edge triggered interrupts a slightly different strategy is necessary. For edge triggered interrupts the interrupt condition is only true when the edge itself is detected, this means this is the only time the INT_STATUS register is set, acknowledging the interrupt any time after that will clear the INT_STATUS register until the next interrupt happens. This means in order to not loose any interrupts the interrupt needs to be acknowledged before running the interrupt handler. If a second interrupt occurs after the first interrupt handler has finished but before the interrupt is unmasked the INT_STATUS register will be re-asserted and the interrupt handler runs a second time once the interrupt is unmasked. This means with this flow handling strategy no interrupts are lost for edge triggered interrupts. The handle_level_irq() handler will have the desired behavior. (Note: The handle_edge_irq() only needs to be used for edge triggered interrupts where the controller stops detecting the interrupt event when the interrupt is masked, for this controller the detection logic still works, while only the propagation is delayed when the interrupt is masked.) Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Soren Brinkmann <soren.brinkmann@xilinx.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-07-18 17:52:13 +08:00
.irq_eoi = zynq_gpio_irq_ack,
.irq_mask = zynq_gpio_irq_mask,
.irq_unmask = zynq_gpio_irq_unmask,
.irq_set_type = zynq_gpio_set_irq_type,
.irq_set_wake = zynq_gpio_set_wake,
.irq_request_resources = zynq_gpio_irq_reqres,
.irq_release_resources = zynq_gpio_irq_relres,
.flags = IRQCHIP_EOI_THREADED | IRQCHIP_EOI_IF_HANDLED |
IRQCHIP_MASK_ON_SUSPEND,
gpio: zynq: Fix IRQ handlers The Zynq GPIO interrupt handling code as two main issues: 1) It does not support IRQF_ONESHOT interrupt since it uses handle_simple_irq() for the interrupt handler. handle_simple_irq() does not do masking and unmasking of the IRQ that is required for this chip to be able to support IRQF_ONESHOT IRQs, causing the CPU to lock up in a interrupt storm if such a interrupt is requested. 2) Interrupts are acked after the primary interrupt handlers for all asserted interrupts in a bank have been called. For edge triggered interrupt this is to late and may cause a interrupt to be missed. For level triggered oneshot interrupts this is to early and causes the interrupt handler to run twice per interrupt. This patch addresses the issue by updating the driver to use the correct IRQ chip handler functions that are appropriate for this kind of IRQ controller. The following diagram gives an overview of how the interrupt detection circuit works, it is not necessarily a accurate depiction of the real hardware though. INT_POL/INT_ON_ANY | | +---+ INT_STATUS `-| | | | E |-. | ,---| | \ |\ +----+ | +---+ | +---+ `----| | ,-------|S | ,*--| | GPIO_IN -* | |- | Q|- | & |-- IRQ_OUT | +---+ ,-----| | ,-|R | ,o| | `---| | / |/ | +----+ | +---+ | = |- | | | ,-| | INT_TYPE ACK INT_MASK | +---+ | INT_POL GPIO_IN is the raw signal level connected to the hardware pin. This signal is routed to a edge detector and to a level detector. The edge detector can be configured to either detect a rising or falling edge or both edges. The level detector can detect either a level high or level low event. Depending on the setting of the INT_TYPE register either the edge or level event will be propagated to the INT_STATUS register. As long as a interrupt condition is detected the INT_STATUS register will be set to 1. It can be cleared to 0 if (and only if) the interrupt condition is no longer detected and software acknowledges the interrupt by writing a 1 to the address of the INT_STATUS register. There is also the INT_MASK register which can be used to disable the propagation of the INT_STATUS signal to the upstream IRQ controller. What is important to note is that the interrupt detection logic itself can not be disabled, only the propagation of the INT_STATUS register can be delayed. This means that for level type interrupts the interrupt must only be acknowledged after the interrupt source has been cleared otherwise it will stay asserted and the interrupt handler will be run a second time. For IRQF_ONESHOT interrupts this means that the IRQ must only be acknowledged after the threaded interrupt has finished running. If a second interrupt comes in between handling the first interrupt and acknowledging it the external interrupt will be asserted, which means trying to acknowledge the first interrupt will not clear the INT_STATUS register and the interrupt handler will be run a second time when the IRQ is unmasked, so no interrupts will be lost. The handle_fasteoi_irq() handler in combination with the IRQCHIP_EOI_THREADED | IRQCHIP_EOI_IF_HANDLED flags will have the desired behavior. For edge triggered interrupts a slightly different strategy is necessary. For edge triggered interrupts the interrupt condition is only true when the edge itself is detected, this means this is the only time the INT_STATUS register is set, acknowledging the interrupt any time after that will clear the INT_STATUS register until the next interrupt happens. This means in order to not loose any interrupts the interrupt needs to be acknowledged before running the interrupt handler. If a second interrupt occurs after the first interrupt handler has finished but before the interrupt is unmasked the INT_STATUS register will be re-asserted and the interrupt handler runs a second time once the interrupt is unmasked. This means with this flow handling strategy no interrupts are lost for edge triggered interrupts. The handle_level_irq() handler will have the desired behavior. (Note: The handle_edge_irq() only needs to be used for edge triggered interrupts where the controller stops detecting the interrupt event when the interrupt is masked, for this controller the detection logic still works, while only the propagation is delayed when the interrupt is masked.) Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Soren Brinkmann <soren.brinkmann@xilinx.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-07-18 17:52:13 +08:00
};
static struct irq_chip zynq_gpio_edge_irqchip = {
.name = DRIVER_NAME,
.irq_enable = zynq_gpio_irq_enable,
.irq_ack = zynq_gpio_irq_ack,
.irq_mask = zynq_gpio_irq_mask,
.irq_unmask = zynq_gpio_irq_unmask,
.irq_set_type = zynq_gpio_set_irq_type,
.irq_set_wake = zynq_gpio_set_wake,
.irq_request_resources = zynq_gpio_irq_reqres,
.irq_release_resources = zynq_gpio_irq_relres,
.flags = IRQCHIP_MASK_ON_SUSPEND,
};
static void zynq_gpio_handle_bank_irq(struct zynq_gpio *gpio,
unsigned int bank_num,
unsigned long pending)
{
unsigned int bank_offset = gpio->p_data->bank_min[bank_num];
struct irq_domain *irqdomain = gpio->chip.irq.domain;
int offset;
if (!pending)
return;
for_each_set_bit(offset, &pending, 32) {
unsigned int gpio_irq;
gpio_irq = irq_find_mapping(irqdomain, offset + bank_offset);
generic_handle_irq(gpio_irq);
}
}
/**
* zynq_gpio_irqhandler - IRQ handler for the gpio banks of a gpio device
* @desc: irq descriptor instance of the 'irq'
*
* This function reads the Interrupt Status Register of each bank to get the
* gpio pin number which has triggered an interrupt. It then acks the triggered
* interrupt and calls the pin specific handler set by the higher layer
* application for that pin.
* Note: A bug is reported if no handler is set for the gpio pin.
*/
static void zynq_gpio_irqhandler(struct irq_desc *desc)
{
u32 int_sts, int_enb;
unsigned int bank_num;
struct zynq_gpio *gpio =
gpiochip_get_data(irq_desc_get_handler_data(desc));
struct irq_chip *irqchip = irq_desc_get_chip(desc);
chained_irq_enter(irqchip, desc);
for (bank_num = 0; bank_num < gpio->p_data->max_bank; bank_num++) {
int_sts = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_INTSTS_OFFSET(bank_num));
int_enb = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_INTMASK_OFFSET(bank_num));
zynq_gpio_handle_bank_irq(gpio, bank_num, int_sts & ~int_enb);
if (gpio->p_data->quirks & GPIO_QUIRK_VERSAL)
bank_num = bank_num + VERSAL_UNUSED_BANKS;
}
chained_irq_exit(irqchip, desc);
}
static void zynq_gpio_save_context(struct zynq_gpio *gpio)
{
unsigned int bank_num;
for (bank_num = 0; bank_num < gpio->p_data->max_bank; bank_num++) {
gpio->context.datalsw[bank_num] =
readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_DATA_LSW_OFFSET(bank_num));
gpio->context.datamsw[bank_num] =
readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_DATA_MSW_OFFSET(bank_num));
gpio->context.dirm[bank_num] = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_DIRM_OFFSET(bank_num));
gpio->context.int_en[bank_num] = readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_INTMASK_OFFSET(bank_num));
gpio->context.int_type[bank_num] =
readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_INTTYPE_OFFSET(bank_num));
gpio->context.int_polarity[bank_num] =
readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_INTPOL_OFFSET(bank_num));
gpio->context.int_any[bank_num] =
readl_relaxed(gpio->base_addr +
ZYNQ_GPIO_INTANY_OFFSET(bank_num));
if (gpio->p_data->quirks & GPIO_QUIRK_VERSAL)
bank_num = bank_num + VERSAL_UNUSED_BANKS;
}
}
static void zynq_gpio_restore_context(struct zynq_gpio *gpio)
{
unsigned int bank_num;
for (bank_num = 0; bank_num < gpio->p_data->max_bank; bank_num++) {
writel_relaxed(ZYNQ_GPIO_IXR_DISABLE_ALL, gpio->base_addr +
ZYNQ_GPIO_INTDIS_OFFSET(bank_num));
writel_relaxed(gpio->context.datalsw[bank_num],
gpio->base_addr +
ZYNQ_GPIO_DATA_LSW_OFFSET(bank_num));
writel_relaxed(gpio->context.datamsw[bank_num],
gpio->base_addr +
ZYNQ_GPIO_DATA_MSW_OFFSET(bank_num));
writel_relaxed(gpio->context.dirm[bank_num],
gpio->base_addr +
ZYNQ_GPIO_DIRM_OFFSET(bank_num));
writel_relaxed(gpio->context.int_type[bank_num],
gpio->base_addr +
ZYNQ_GPIO_INTTYPE_OFFSET(bank_num));
writel_relaxed(gpio->context.int_polarity[bank_num],
gpio->base_addr +
ZYNQ_GPIO_INTPOL_OFFSET(bank_num));
writel_relaxed(gpio->context.int_any[bank_num],
gpio->base_addr +
ZYNQ_GPIO_INTANY_OFFSET(bank_num));
writel_relaxed(~(gpio->context.int_en[bank_num]),
gpio->base_addr +
ZYNQ_GPIO_INTEN_OFFSET(bank_num));
if (gpio->p_data->quirks & GPIO_QUIRK_VERSAL)
bank_num = bank_num + VERSAL_UNUSED_BANKS;
}
}
static int __maybe_unused zynq_gpio_suspend(struct device *dev)
{
struct zynq_gpio *gpio = dev_get_drvdata(dev);
struct irq_data *data = irq_get_irq_data(gpio->irq);
if (!device_may_wakeup(dev))
disable_irq(gpio->irq);
if (!irqd_is_wakeup_set(data)) {
zynq_gpio_save_context(gpio);
return pm_runtime_force_suspend(dev);
}
return 0;
}
static int __maybe_unused zynq_gpio_resume(struct device *dev)
{
struct zynq_gpio *gpio = dev_get_drvdata(dev);
struct irq_data *data = irq_get_irq_data(gpio->irq);
int ret;
if (!device_may_wakeup(dev))
enable_irq(gpio->irq);
if (!irqd_is_wakeup_set(data)) {
ret = pm_runtime_force_resume(dev);
zynq_gpio_restore_context(gpio);
return ret;
}
return 0;
}
static int __maybe_unused zynq_gpio_runtime_suspend(struct device *dev)
{
struct zynq_gpio *gpio = dev_get_drvdata(dev);
clk_disable_unprepare(gpio->clk);
return 0;
}
static int __maybe_unused zynq_gpio_runtime_resume(struct device *dev)
{
struct zynq_gpio *gpio = dev_get_drvdata(dev);
return clk_prepare_enable(gpio->clk);
}
static int zynq_gpio_request(struct gpio_chip *chip, unsigned int offset)
{
int ret;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
ret = pm_runtime_get_sync(chip->parent);
/*
* If the device is already active pm_runtime_get() will return 1 on
* success, but gpio_request still needs to return 0.
*/
return ret < 0 ? ret : 0;
}
static void zynq_gpio_free(struct gpio_chip *chip, unsigned int offset)
{
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
pm_runtime_put(chip->parent);
}
static const struct dev_pm_ops zynq_gpio_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(zynq_gpio_suspend, zynq_gpio_resume)
SET_RUNTIME_PM_OPS(zynq_gpio_runtime_suspend,
zynq_gpio_runtime_resume, NULL)
};
static const struct zynq_platform_data versal_gpio_def = {
.label = "versal_gpio",
.quirks = GPIO_QUIRK_VERSAL,
.ngpio = 58,
.max_bank = VERSAL_GPIO_MAX_BANK,
.bank_min[0] = 0,
.bank_max[0] = 25, /* 0 to 25 are connected to MIOs (26 pins) */
.bank_min[3] = 26,
.bank_max[3] = 57, /* Bank 3 is connected to FMIOs (32 pins) */
};
static const struct zynq_platform_data pmc_gpio_def = {
.label = "pmc_gpio",
.ngpio = 116,
.max_bank = PMC_GPIO_MAX_BANK,
.bank_min[0] = 0,
.bank_max[0] = 25, /* 0 to 25 are connected to MIOs (26 pins) */
.bank_min[1] = 26,
.bank_max[1] = 51, /* Bank 1 are connected to MIOs (26 pins) */
.bank_min[3] = 52,
.bank_max[3] = 83, /* Bank 3 is connected to EMIOs (32 pins) */
.bank_min[4] = 84,
.bank_max[4] = 115, /* Bank 4 is connected to EMIOs (32 pins) */
};
static const struct zynq_platform_data zynqmp_gpio_def = {
.label = "zynqmp_gpio",
.quirks = GPIO_QUIRK_DATA_RO_BUG,
.ngpio = ZYNQMP_GPIO_NR_GPIOS,
.max_bank = ZYNQMP_GPIO_MAX_BANK,
.bank_min[0] = ZYNQ_GPIO_BANK0_PIN_MIN(MP),
.bank_max[0] = ZYNQ_GPIO_BANK0_PIN_MAX(MP),
.bank_min[1] = ZYNQ_GPIO_BANK1_PIN_MIN(MP),
.bank_max[1] = ZYNQ_GPIO_BANK1_PIN_MAX(MP),
.bank_min[2] = ZYNQ_GPIO_BANK2_PIN_MIN(MP),
.bank_max[2] = ZYNQ_GPIO_BANK2_PIN_MAX(MP),
.bank_min[3] = ZYNQ_GPIO_BANK3_PIN_MIN(MP),
.bank_max[3] = ZYNQ_GPIO_BANK3_PIN_MAX(MP),
.bank_min[4] = ZYNQ_GPIO_BANK4_PIN_MIN(MP),
.bank_max[4] = ZYNQ_GPIO_BANK4_PIN_MAX(MP),
.bank_min[5] = ZYNQ_GPIO_BANK5_PIN_MIN(MP),
.bank_max[5] = ZYNQ_GPIO_BANK5_PIN_MAX(MP),
};
static const struct zynq_platform_data zynq_gpio_def = {
.label = "zynq_gpio",
.quirks = ZYNQ_GPIO_QUIRK_IS_ZYNQ | GPIO_QUIRK_DATA_RO_BUG,
.ngpio = ZYNQ_GPIO_NR_GPIOS,
.max_bank = ZYNQ_GPIO_MAX_BANK,
.bank_min[0] = ZYNQ_GPIO_BANK0_PIN_MIN(),
.bank_max[0] = ZYNQ_GPIO_BANK0_PIN_MAX(),
.bank_min[1] = ZYNQ_GPIO_BANK1_PIN_MIN(),
.bank_max[1] = ZYNQ_GPIO_BANK1_PIN_MAX(),
.bank_min[2] = ZYNQ_GPIO_BANK2_PIN_MIN(),
.bank_max[2] = ZYNQ_GPIO_BANK2_PIN_MAX(),
.bank_min[3] = ZYNQ_GPIO_BANK3_PIN_MIN(),
.bank_max[3] = ZYNQ_GPIO_BANK3_PIN_MAX(),
};
static const struct of_device_id zynq_gpio_of_match[] = {
{ .compatible = "xlnx,zynq-gpio-1.0", .data = &zynq_gpio_def },
{ .compatible = "xlnx,zynqmp-gpio-1.0", .data = &zynqmp_gpio_def },
{ .compatible = "xlnx,versal-gpio-1.0", .data = &versal_gpio_def },
{ .compatible = "xlnx,pmc-gpio-1.0", .data = &pmc_gpio_def },
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, zynq_gpio_of_match);
/**
* zynq_gpio_probe - Initialization method for a zynq_gpio device
* @pdev: platform device instance
*
* This function allocates memory resources for the gpio device and registers
* all the banks of the device. It will also set up interrupts for the gpio
* pins.
* Note: Interrupts are disabled for all the banks during initialization.
*
* Return: 0 on success, negative error otherwise.
*/
static int zynq_gpio_probe(struct platform_device *pdev)
{
int ret, bank_num;
struct zynq_gpio *gpio;
struct gpio_chip *chip;
struct gpio_irq_chip *girq;
const struct of_device_id *match;
gpio = devm_kzalloc(&pdev->dev, sizeof(*gpio), GFP_KERNEL);
if (!gpio)
return -ENOMEM;
match = of_match_node(zynq_gpio_of_match, pdev->dev.of_node);
if (!match) {
dev_err(&pdev->dev, "of_match_node() failed\n");
return -EINVAL;
}
gpio->p_data = match->data;
platform_set_drvdata(pdev, gpio);
gpio->base_addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(gpio->base_addr))
return PTR_ERR(gpio->base_addr);
gpio->irq = platform_get_irq(pdev, 0);
if (gpio->irq < 0)
return gpio->irq;
/* configure the gpio chip */
chip = &gpio->chip;
chip->label = gpio->p_data->label;
chip->owner = THIS_MODULE;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
chip->parent = &pdev->dev;
chip->get = zynq_gpio_get_value;
chip->set = zynq_gpio_set_value;
chip->request = zynq_gpio_request;
chip->free = zynq_gpio_free;
chip->direction_input = zynq_gpio_dir_in;
chip->direction_output = zynq_gpio_dir_out;
chip->get_direction = zynq_gpio_get_direction;
chip->base = of_alias_get_id(pdev->dev.of_node, "gpio");
chip->ngpio = gpio->p_data->ngpio;
/* Retrieve GPIO clock */
gpio->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(gpio->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(gpio->clk), "input clock not found.\n");
ret = clk_prepare_enable(gpio->clk);
if (ret) {
dev_err(&pdev->dev, "Unable to enable clock.\n");
return ret;
}
spin_lock_init(&gpio->dirlock);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
goto err_pm_dis;
/* disable interrupts for all banks */
for (bank_num = 0; bank_num < gpio->p_data->max_bank; bank_num++) {
writel_relaxed(ZYNQ_GPIO_IXR_DISABLE_ALL, gpio->base_addr +
ZYNQ_GPIO_INTDIS_OFFSET(bank_num));
if (gpio->p_data->quirks & GPIO_QUIRK_VERSAL)
bank_num = bank_num + VERSAL_UNUSED_BANKS;
}
/* Set up the GPIO irqchip */
girq = &chip->irq;
girq->chip = &zynq_gpio_edge_irqchip;
girq->parent_handler = zynq_gpio_irqhandler;
girq->num_parents = 1;
girq->parents = devm_kcalloc(&pdev->dev, 1,
sizeof(*girq->parents),
GFP_KERNEL);
if (!girq->parents) {
ret = -ENOMEM;
goto err_pm_put;
}
girq->parents[0] = gpio->irq;
girq->default_type = IRQ_TYPE_NONE;
girq->handler = handle_level_irq;
/* report a bug if gpio chip registration fails */
ret = gpiochip_add_data(chip, gpio);
if (ret) {
dev_err(&pdev->dev, "Failed to add gpio chip\n");
goto err_pm_put;
}
irq_set_status_flags(gpio->irq, IRQ_DISABLE_UNLAZY);
device_init_wakeup(&pdev->dev, 1);
pm_runtime_put(&pdev->dev);
return 0;
err_pm_put:
pm_runtime_put(&pdev->dev);
err_pm_dis:
pm_runtime_disable(&pdev->dev);
clk_disable_unprepare(gpio->clk);
return ret;
}
/**
* zynq_gpio_remove - Driver removal function
* @pdev: platform device instance
*
* Return: 0 always
*/
static int zynq_gpio_remove(struct platform_device *pdev)
{
struct zynq_gpio *gpio = platform_get_drvdata(pdev);
pm_runtime_get_sync(&pdev->dev);
gpiochip_remove(&gpio->chip);
clk_disable_unprepare(gpio->clk);
device_set_wakeup_capable(&pdev->dev, 0);
pm_runtime_disable(&pdev->dev);
return 0;
}
static struct platform_driver zynq_gpio_driver = {
.driver = {
.name = DRIVER_NAME,
.pm = &zynq_gpio_dev_pm_ops,
.of_match_table = zynq_gpio_of_match,
},
.probe = zynq_gpio_probe,
.remove = zynq_gpio_remove,
};
/**
* zynq_gpio_init - Initial driver registration call
*
* Return: value from platform_driver_register
*/
static int __init zynq_gpio_init(void)
{
return platform_driver_register(&zynq_gpio_driver);
}
postcore_initcall(zynq_gpio_init);
static void __exit zynq_gpio_exit(void)
{
platform_driver_unregister(&zynq_gpio_driver);
}
module_exit(zynq_gpio_exit);
MODULE_AUTHOR("Xilinx Inc.");
MODULE_DESCRIPTION("Zynq GPIO driver");
MODULE_LICENSE("GPL");