linux/arch/x86/kernel/microcode_amd_early.c

223 lines
5.4 KiB
C
Raw Normal View History

/*
* Copyright (C) 2013 Advanced Micro Devices, Inc.
*
* Author: Jacob Shin <jacob.shin@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/earlycpio.h>
#include <asm/cpu.h>
#include <asm/setup.h>
#include <asm/microcode_amd.h>
static bool ucode_loaded;
static u32 ucode_new_rev;
/*
* Microcode patch container file is prepended to the initrd in cpio format.
* See Documentation/x86/early-microcode.txt
*/
static __cpuinitdata char ucode_path[] = "kernel/x86/microcode/AuthenticAMD.bin";
static struct cpio_data __cpuinit find_ucode_in_initrd(void)
{
long offset = 0;
struct cpio_data cd;
#ifdef CONFIG_X86_32
/*
* On 32-bit, early load occurs before paging is turned on so we need
* to use physical addresses.
*/
if (!(read_cr0() & X86_CR0_PG)) {
struct boot_params *p;
p = (struct boot_params *)__pa_nodebug(&boot_params);
cd = find_cpio_data((char *)__pa_nodebug(ucode_path),
(void *)p->hdr.ramdisk_image, p->hdr.ramdisk_size,
&offset);
} else
#endif
cd = find_cpio_data(ucode_path,
(void *)(boot_params.hdr.ramdisk_image + PAGE_OFFSET),
boot_params.hdr.ramdisk_size, &offset);
if (*(u32 *)cd.data != UCODE_MAGIC) {
cd.data = NULL;
cd.size = 0;
}
return cd;
}
/*
* Early load occurs before we can vmalloc(). So we look for the microcode
* patch container file in initrd, traverse equivalent cpu table, look for a
* matching microcode patch, and update, all in initrd memory in place.
* When vmalloc() is available for use later -- on 64-bit during first AP load,
* and on 32-bit during save_microcode_in_initrd_amd() -- we can call
* load_microcode_amd() to save equivalent cpu table and microcode patches in
* kernel heap memory.
*/
static void __cpuinit apply_ucode_in_initrd(void)
{
struct cpio_data cd;
struct equiv_cpu_entry *eq;
u32 *header;
u8 *data;
u16 eq_id;
int offset, left;
u32 rev, dummy;
u32 *new_rev;
#ifdef CONFIG_X86_32
new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
#else
new_rev = &ucode_new_rev;
#endif
cd = find_ucode_in_initrd();
if (!cd.data)
return;
data = cd.data;
left = cd.size;
header = (u32 *)data;
/* find equiv cpu table */
if (header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
header[2] == 0) /* size */
return;
eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);
offset = header[2] + CONTAINER_HDR_SZ;
data += offset;
left -= offset;
eq_id = find_equiv_id(eq, cpuid_eax(0x00000001));
if (!eq_id)
return;
/* find ucode and update if needed */
rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
while (left > 0) {
struct microcode_amd *mc;
header = (u32 *)data;
if (header[0] != UCODE_UCODE_TYPE || /* type */
header[1] == 0) /* size */
break;
mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id)
if (__apply_microcode_amd(mc) == 0) {
if (!(*new_rev))
*new_rev = mc->hdr.patch_id;
break;
}
offset = header[1] + SECTION_HDR_SIZE;
data += offset;
left -= offset;
}
}
void __init load_ucode_amd_bsp(void)
{
apply_ucode_in_initrd();
}
#ifdef CONFIG_X86_32
u8 amd_bsp_mpb[MPB_MAX_SIZE];
/*
* On 32-bit, since AP's early load occurs before paging is turned on, we
* cannot traverse cpu_equiv_table and pcache in kernel heap memory. So during
* cold boot, AP will apply_ucode_in_initrd() just like the BSP. During
* save_microcode_in_initrd_amd() BSP's patch is copied to amd_bsp_mpb, which
* is used upon resume from suspend.
*/
void __cpuinit load_ucode_amd_ap(void)
{
struct microcode_amd *mc;
mc = (struct microcode_amd *)__pa_nodebug(amd_bsp_mpb);
if (mc->hdr.patch_id && mc->hdr.processor_rev_id)
__apply_microcode_amd(mc);
else
apply_ucode_in_initrd();
}
static void __init collect_cpu_sig_on_bsp(void *arg)
{
unsigned int cpu = smp_processor_id();
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
uci->cpu_sig.sig = cpuid_eax(0x00000001);
}
#else
static void __cpuinit collect_cpu_info_amd_early(struct cpuinfo_x86 *c,
struct ucode_cpu_info *uci)
{
u32 rev, eax;
rdmsr(MSR_AMD64_PATCH_LEVEL, rev, eax);
eax = cpuid_eax(0x00000001);
uci->cpu_sig.sig = eax;
uci->cpu_sig.rev = rev;
c->microcode = rev;
c->x86 = ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff);
}
void __cpuinit load_ucode_amd_ap(void)
{
unsigned int cpu = smp_processor_id();
collect_cpu_info_amd_early(&cpu_data(cpu), ucode_cpu_info + cpu);
if (cpu && !ucode_loaded) {
struct cpio_data cd = find_ucode_in_initrd();
if (load_microcode_amd(0, cd.data, cd.size) != UCODE_OK)
return;
ucode_loaded = true;
}
apply_microcode_amd(cpu);
}
#endif
int __init save_microcode_in_initrd_amd(void)
{
enum ucode_state ret;
struct cpio_data cd;
#ifdef CONFIG_X86_32
unsigned int bsp = boot_cpu_data.cpu_index;
struct ucode_cpu_info *uci = ucode_cpu_info + bsp;
if (!uci->cpu_sig.sig)
smp_call_function_single(bsp, collect_cpu_sig_on_bsp, NULL, 1);
#endif
if (ucode_new_rev)
pr_info("microcode: updated early to new patch_level=0x%08x\n",
ucode_new_rev);
if (ucode_loaded)
return 0;
cd = find_ucode_in_initrd();
if (!cd.data)
return -EINVAL;
ret = load_microcode_amd(0, cd.data, cd.size);
if (ret != UCODE_OK)
return -EINVAL;
ucode_loaded = true;
return 0;
}