linux/arch/arm64/kernel/debug-monitors.c

457 lines
11 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* ARMv8 single-step debug support and mdscr context switching.
*
* Copyright (C) 2012 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*/
#include <linux/cpu.h>
#include <linux/debugfs.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/ptrace.h>
arm64: Kprobes with single stepping support Add support for basic kernel probes(kprobes) and jump probes (jprobes) for ARM64. Kprobes utilizes software breakpoint and single step debug exceptions supported on ARM v8. A software breakpoint is placed at the probe address to trap the kernel execution into the kprobe handler. ARM v8 supports enabling single stepping before the break exception return (ERET), with next PC in exception return address (ELR_EL1). The kprobe handler prepares an executable memory slot for out-of-line execution with a copy of the original instruction being probed, and enables single stepping. The PC is set to the out-of-line slot address before the ERET. With this scheme, the instruction is executed with the exact same register context except for the PC (and DAIF) registers. Debug mask (PSTATE.D) is enabled only when single stepping a recursive kprobe, e.g.: during kprobes reenter so that probed instruction can be single stepped within the kprobe handler -exception- context. The recursion depth of kprobe is always 2, i.e. upon probe re-entry, any further re-entry is prevented by not calling handlers and the case counted as a missed kprobe). Single stepping from the x-o-l slot has a drawback for PC-relative accesses like branching and symbolic literals access as the offset from the new PC (slot address) may not be ensured to fit in the immediate value of the opcode. Such instructions need simulation, so reject probing them. Instructions generating exceptions or cpu mode change are rejected for probing. Exclusive load/store instructions are rejected too. Additionally, the code is checked to see if it is inside an exclusive load/store sequence (code from Pratyush). System instructions are mostly enabled for stepping, except MSR/MRS accesses to "DAIF" flags in PSTATE, which are not safe for probing. This also changes arch/arm64/include/asm/ptrace.h to use include/asm-generic/ptrace.h. Thanks to Steve Capper and Pratyush Anand for several suggested Changes. Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com> Signed-off-by: David A. Long <dave.long@linaro.org> Signed-off-by: Pratyush Anand <panand@redhat.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-09 00:35:48 +08:00
#include <linux/kprobes.h>
#include <linux/stat.h>
#include <linux/uaccess.h>
#include <linux/sched/task_stack.h>
#include <asm/cpufeature.h>
#include <asm/cputype.h>
#include <asm/daifflags.h>
#include <asm/debug-monitors.h>
#include <asm/system_misc.h>
#include <asm/traps.h>
/* Determine debug architecture. */
u8 debug_monitors_arch(void)
{
return cpuid_feature_extract_unsigned_field(read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1),
ID_AA64DFR0_DEBUGVER_SHIFT);
}
/*
* MDSCR access routines.
*/
static void mdscr_write(u32 mdscr)
{
unsigned long flags;
flags = local_daif_save();
write_sysreg(mdscr, mdscr_el1);
local_daif_restore(flags);
}
NOKPROBE_SYMBOL(mdscr_write);
static u32 mdscr_read(void)
{
return read_sysreg(mdscr_el1);
}
NOKPROBE_SYMBOL(mdscr_read);
/*
* Allow root to disable self-hosted debug from userspace.
* This is useful if you want to connect an external JTAG debugger.
*/
static bool debug_enabled = true;
static int create_debug_debugfs_entry(void)
{
debugfs_create_bool("debug_enabled", 0644, NULL, &debug_enabled);
return 0;
}
fs_initcall(create_debug_debugfs_entry);
static int __init early_debug_disable(char *buf)
{
debug_enabled = false;
return 0;
}
early_param("nodebugmon", early_debug_disable);
/*
* Keep track of debug users on each core.
* The ref counts are per-cpu so we use a local_t type.
*/
static DEFINE_PER_CPU(int, mde_ref_count);
static DEFINE_PER_CPU(int, kde_ref_count);
void enable_debug_monitors(enum dbg_active_el el)
{
u32 mdscr, enable = 0;
WARN_ON(preemptible());
if (this_cpu_inc_return(mde_ref_count) == 1)
enable = DBG_MDSCR_MDE;
if (el == DBG_ACTIVE_EL1 &&
this_cpu_inc_return(kde_ref_count) == 1)
enable |= DBG_MDSCR_KDE;
if (enable && debug_enabled) {
mdscr = mdscr_read();
mdscr |= enable;
mdscr_write(mdscr);
}
}
NOKPROBE_SYMBOL(enable_debug_monitors);
void disable_debug_monitors(enum dbg_active_el el)
{
u32 mdscr, disable = 0;
WARN_ON(preemptible());
if (this_cpu_dec_return(mde_ref_count) == 0)
disable = ~DBG_MDSCR_MDE;
if (el == DBG_ACTIVE_EL1 &&
this_cpu_dec_return(kde_ref_count) == 0)
disable &= ~DBG_MDSCR_KDE;
if (disable) {
mdscr = mdscr_read();
mdscr &= disable;
mdscr_write(mdscr);
}
}
NOKPROBE_SYMBOL(disable_debug_monitors);
/*
* OS lock clearing.
*/
static int clear_os_lock(unsigned int cpu)
{
write_sysreg(0, osdlr_el1);
write_sysreg(0, oslar_el1);
isb();
return 0;
}
static int __init debug_monitors_init(void)
{
return cpuhp_setup_state(CPUHP_AP_ARM64_DEBUG_MONITORS_STARTING,
"arm64/debug_monitors:starting",
clear_os_lock, NULL);
}
postcore_initcall(debug_monitors_init);
/*
* Single step API and exception handling.
*/
static void set_user_regs_spsr_ss(struct user_pt_regs *regs)
{
regs->pstate |= DBG_SPSR_SS;
}
NOKPROBE_SYMBOL(set_user_regs_spsr_ss);
static void clear_user_regs_spsr_ss(struct user_pt_regs *regs)
{
regs->pstate &= ~DBG_SPSR_SS;
}
NOKPROBE_SYMBOL(clear_user_regs_spsr_ss);
#define set_regs_spsr_ss(r) set_user_regs_spsr_ss(&(r)->user_regs)
#define clear_regs_spsr_ss(r) clear_user_regs_spsr_ss(&(r)->user_regs)
static DEFINE_SPINLOCK(debug_hook_lock);
static LIST_HEAD(user_step_hook);
static LIST_HEAD(kernel_step_hook);
static void register_debug_hook(struct list_head *node, struct list_head *list)
{
spin_lock(&debug_hook_lock);
list_add_rcu(node, list);
spin_unlock(&debug_hook_lock);
}
static void unregister_debug_hook(struct list_head *node)
{
spin_lock(&debug_hook_lock);
list_del_rcu(node);
spin_unlock(&debug_hook_lock);
arm64: replace read_lock to rcu lock in call_step_hook BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:917 in_atomic(): 1, irqs_disabled(): 128, pid: 383, name: sh Preemption disabled at:[<ffff800000124c18>] kgdb_cpu_enter+0x158/0x6b8 CPU: 3 PID: 383 Comm: sh Tainted: G W 4.1.13-rt13 #2 Hardware name: Freescale Layerscape 2085a RDB Board (DT) Call trace: [<ffff8000000885e8>] dump_backtrace+0x0/0x128 [<ffff800000088734>] show_stack+0x24/0x30 [<ffff80000079a7c4>] dump_stack+0x80/0xa0 [<ffff8000000bd324>] ___might_sleep+0x18c/0x1a0 [<ffff8000007a20ac>] __rt_spin_lock+0x2c/0x40 [<ffff8000007a2268>] rt_read_lock+0x40/0x58 [<ffff800000085328>] single_step_handler+0x38/0xd8 [<ffff800000082368>] do_debug_exception+0x58/0xb8 Exception stack(0xffff80834a1e7c80 to 0xffff80834a1e7da0) 7c80: ffffff9c ffffffff 92c23ba0 0000ffff 4a1e7e40 ffff8083 001bfcc4 ffff8000 7ca0: f2000400 00000000 00000000 00000000 4a1e7d80 ffff8083 0049501c ffff8000 7cc0: 00005402 00000000 00aaa210 ffff8000 4a1e7ea0 ffff8083 000833f4 ffff8000 7ce0: ffffff9c ffffffff 92c23ba0 0000ffff 4a1e7ea0 ffff8083 001bfcc0 ffff8000 7d00: 4a0fc400 ffff8083 00005402 00000000 4a1e7d40 ffff8083 00490324 ffff8000 7d20: ffffff9c 00000000 92c23ba0 0000ffff 000a0000 00000000 00000000 00000000 7d40: 00000008 00000000 00080000 00000000 92c23b8b 0000ffff 92c23b8e 0000ffff 7d60: 00000038 00000000 00001cb2 00000000 00000005 00000000 92d7b498 0000ffff 7d80: 01010101 01010101 92be9000 0000ffff 00000000 00000000 00000030 00000000 [<ffff8000000833f4>] el1_dbg+0x18/0x6c This issue is similar with 62c6c61("arm64: replace read_lock to rcu lock in call_break_hook"), but comes to single_step_handler. This also solves kgdbts boot test silent hang issue on 4.4 -rt kernel. Signed-off-by: Yang Shi <yang.shi@linaro.org> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-09 06:49:24 +08:00
synchronize_rcu();
}
void register_user_step_hook(struct step_hook *hook)
{
register_debug_hook(&hook->node, &user_step_hook);
}
void unregister_user_step_hook(struct step_hook *hook)
{
unregister_debug_hook(&hook->node);
}
void register_kernel_step_hook(struct step_hook *hook)
{
register_debug_hook(&hook->node, &kernel_step_hook);
}
void unregister_kernel_step_hook(struct step_hook *hook)
{
unregister_debug_hook(&hook->node);
}
/*
* Call registered single step handlers
* There is no Syndrome info to check for determining the handler.
* So we call all the registered handlers, until the right handler is
* found which returns zero.
*/
static int call_step_hook(struct pt_regs *regs, unsigned int esr)
{
struct step_hook *hook;
struct list_head *list;
int retval = DBG_HOOK_ERROR;
list = user_mode(regs) ? &user_step_hook : &kernel_step_hook;
/*
* Since single-step exception disables interrupt, this function is
* entirely not preemptible, and we can use rcu list safely here.
*/
list_for_each_entry_rcu(hook, list, node) {
retval = hook->fn(regs, esr);
if (retval == DBG_HOOK_HANDLED)
break;
}
return retval;
}
NOKPROBE_SYMBOL(call_step_hook);
static void send_user_sigtrap(int si_code)
{
struct pt_regs *regs = current_pt_regs();
if (WARN_ON(!user_mode(regs)))
return;
if (interrupts_enabled(regs))
local_irq_enable();
arm64_force_sig_fault(SIGTRAP, si_code,
(void __user *)instruction_pointer(regs),
"User debug trap");
}
static int single_step_handler(unsigned long unused, unsigned int esr,
struct pt_regs *regs)
{
bool handler_found = false;
/*
* If we are stepping a pending breakpoint, call the hw_breakpoint
* handler first.
*/
if (!reinstall_suspended_bps(regs))
return 0;
if (!handler_found && call_step_hook(regs, esr) == DBG_HOOK_HANDLED)
handler_found = true;
if (!handler_found && user_mode(regs)) {
send_user_sigtrap(TRAP_TRACE);
/*
* ptrace will disable single step unless explicitly
* asked to re-enable it. For other clients, it makes
* sense to leave it enabled (i.e. rewind the controls
* to the active-not-pending state).
*/
user_rewind_single_step(current);
} else if (!handler_found) {
pr_warn("Unexpected kernel single-step exception at EL1\n");
/*
* Re-enable stepping since we know that we will be
* returning to regs.
*/
set_regs_spsr_ss(regs);
}
return 0;
}
NOKPROBE_SYMBOL(single_step_handler);
static LIST_HEAD(user_break_hook);
static LIST_HEAD(kernel_break_hook);
void register_user_break_hook(struct break_hook *hook)
{
register_debug_hook(&hook->node, &user_break_hook);
}
void unregister_user_break_hook(struct break_hook *hook)
{
unregister_debug_hook(&hook->node);
}
void register_kernel_break_hook(struct break_hook *hook)
{
register_debug_hook(&hook->node, &kernel_break_hook);
}
void unregister_kernel_break_hook(struct break_hook *hook)
{
unregister_debug_hook(&hook->node);
}
static int call_break_hook(struct pt_regs *regs, unsigned int esr)
{
struct break_hook *hook;
struct list_head *list;
int (*fn)(struct pt_regs *regs, unsigned int esr) = NULL;
list = user_mode(regs) ? &user_break_hook : &kernel_break_hook;
/*
* Since brk exception disables interrupt, this function is
* entirely not preemptible, and we can use rcu list safely here.
*/
list_for_each_entry_rcu(hook, list, node) {
unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
if ((comment & ~hook->mask) == hook->imm)
fn = hook->fn;
}
return fn ? fn(regs, esr) : DBG_HOOK_ERROR;
}
NOKPROBE_SYMBOL(call_break_hook);
static int brk_handler(unsigned long unused, unsigned int esr,
struct pt_regs *regs)
{
if (call_break_hook(regs, esr) == DBG_HOOK_HANDLED)
return 0;
if (user_mode(regs)) {
send_user_sigtrap(TRAP_BRKPT);
} else {
arm64: Kprobes with single stepping support Add support for basic kernel probes(kprobes) and jump probes (jprobes) for ARM64. Kprobes utilizes software breakpoint and single step debug exceptions supported on ARM v8. A software breakpoint is placed at the probe address to trap the kernel execution into the kprobe handler. ARM v8 supports enabling single stepping before the break exception return (ERET), with next PC in exception return address (ELR_EL1). The kprobe handler prepares an executable memory slot for out-of-line execution with a copy of the original instruction being probed, and enables single stepping. The PC is set to the out-of-line slot address before the ERET. With this scheme, the instruction is executed with the exact same register context except for the PC (and DAIF) registers. Debug mask (PSTATE.D) is enabled only when single stepping a recursive kprobe, e.g.: during kprobes reenter so that probed instruction can be single stepped within the kprobe handler -exception- context. The recursion depth of kprobe is always 2, i.e. upon probe re-entry, any further re-entry is prevented by not calling handlers and the case counted as a missed kprobe). Single stepping from the x-o-l slot has a drawback for PC-relative accesses like branching and symbolic literals access as the offset from the new PC (slot address) may not be ensured to fit in the immediate value of the opcode. Such instructions need simulation, so reject probing them. Instructions generating exceptions or cpu mode change are rejected for probing. Exclusive load/store instructions are rejected too. Additionally, the code is checked to see if it is inside an exclusive load/store sequence (code from Pratyush). System instructions are mostly enabled for stepping, except MSR/MRS accesses to "DAIF" flags in PSTATE, which are not safe for probing. This also changes arch/arm64/include/asm/ptrace.h to use include/asm-generic/ptrace.h. Thanks to Steve Capper and Pratyush Anand for several suggested Changes. Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com> Signed-off-by: David A. Long <dave.long@linaro.org> Signed-off-by: Pratyush Anand <panand@redhat.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-09 00:35:48 +08:00
pr_warn("Unexpected kernel BRK exception at EL1\n");
return -EFAULT;
}
return 0;
}
NOKPROBE_SYMBOL(brk_handler);
int aarch32_break_handler(struct pt_regs *regs)
{
u32 arm_instr;
u16 thumb_instr;
bool bp = false;
void __user *pc = (void __user *)instruction_pointer(regs);
if (!compat_user_mode(regs))
return -EFAULT;
if (compat_thumb_mode(regs)) {
/* get 16-bit Thumb instruction */
__le16 instr;
get_user(instr, (__le16 __user *)pc);
thumb_instr = le16_to_cpu(instr);
if (thumb_instr == AARCH32_BREAK_THUMB2_LO) {
/* get second half of 32-bit Thumb-2 instruction */
get_user(instr, (__le16 __user *)(pc + 2));
thumb_instr = le16_to_cpu(instr);
bp = thumb_instr == AARCH32_BREAK_THUMB2_HI;
} else {
bp = thumb_instr == AARCH32_BREAK_THUMB;
}
} else {
/* 32-bit ARM instruction */
__le32 instr;
get_user(instr, (__le32 __user *)pc);
arm_instr = le32_to_cpu(instr);
bp = (arm_instr & ~0xf0000000) == AARCH32_BREAK_ARM;
}
if (!bp)
return -EFAULT;
send_user_sigtrap(TRAP_BRKPT);
return 0;
}
NOKPROBE_SYMBOL(aarch32_break_handler);
arm64: Call debug_traps_init() from trap_init() to help early kgdb A new kgdb feature will soon land (kgdb_earlycon) that lets us run kgdb much earlier. In order for everything to work properly it's important that the break hook is setup by the time we process "kgdbwait". Right now the break hook is setup in debug_traps_init() and that's called from arch_initcall(). That's a bit too late since kgdb_earlycon really needs things to be setup by the time the system calls dbg_late_init(). We could fix this by adding call_break_hook() into early_brk64() and that works fine. However, it's a little ugly. Instead, let's just add a call to debug_traps_init() straight from trap_init(). There's already a documented dependency between trap_init() and debug_traps_init() and this makes the dependency more obvious rather than just relying on a comment. NOTE: this solution isn't early enough to let us select the "ARCH_HAS_EARLY_DEBUG" KConfig option that is introduced by the kgdb_earlycon patch series. That would only be set if we could do breakpoints when early params are parsed. This patch only enables "late early" breakpoints, AKA breakpoints when dbg_late_init() is called. It's expected that this should be fine for most people. It should also be noted that if you crash you can still end up in kgdb earlier than debug_traps_init(). Since you don't need breakpoints to debug a crash that's fine. Suggested-by: Will Deacon <will@kernel.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Acked-by: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20200513160501.1.I0b5edf030cc6ebef6ab4829f8867cdaea42485d8@changeid Signed-off-by: Will Deacon <will@kernel.org>
2020-05-14 07:06:37 +08:00
void __init debug_traps_init(void)
{
hook_debug_fault_code(DBG_ESR_EVT_HWSS, single_step_handler, SIGTRAP,
TRAP_TRACE, "single-step handler");
hook_debug_fault_code(DBG_ESR_EVT_BRK, brk_handler, SIGTRAP,
TRAP_BRKPT, "BRK handler");
}
/* Re-enable single step for syscall restarting. */
void user_rewind_single_step(struct task_struct *task)
{
/*
* If single step is active for this thread, then set SPSR.SS
* to 1 to avoid returning to the active-pending state.
*/
if (test_tsk_thread_flag(task, TIF_SINGLESTEP))
set_regs_spsr_ss(task_pt_regs(task));
}
NOKPROBE_SYMBOL(user_rewind_single_step);
void user_fastforward_single_step(struct task_struct *task)
{
if (test_tsk_thread_flag(task, TIF_SINGLESTEP))
clear_regs_spsr_ss(task_pt_regs(task));
}
void user_regs_reset_single_step(struct user_pt_regs *regs,
struct task_struct *task)
{
if (test_tsk_thread_flag(task, TIF_SINGLESTEP))
set_user_regs_spsr_ss(regs);
else
clear_user_regs_spsr_ss(regs);
}
/* Kernel API */
void kernel_enable_single_step(struct pt_regs *regs)
{
WARN_ON(!irqs_disabled());
set_regs_spsr_ss(regs);
mdscr_write(mdscr_read() | DBG_MDSCR_SS);
enable_debug_monitors(DBG_ACTIVE_EL1);
}
NOKPROBE_SYMBOL(kernel_enable_single_step);
void kernel_disable_single_step(void)
{
WARN_ON(!irqs_disabled());
mdscr_write(mdscr_read() & ~DBG_MDSCR_SS);
disable_debug_monitors(DBG_ACTIVE_EL1);
}
NOKPROBE_SYMBOL(kernel_disable_single_step);
int kernel_active_single_step(void)
{
WARN_ON(!irqs_disabled());
return mdscr_read() & DBG_MDSCR_SS;
}
NOKPROBE_SYMBOL(kernel_active_single_step);
/* ptrace API */
void user_enable_single_step(struct task_struct *task)
{
struct thread_info *ti = task_thread_info(task);
if (!test_and_set_ti_thread_flag(ti, TIF_SINGLESTEP))
set_regs_spsr_ss(task_pt_regs(task));
}
NOKPROBE_SYMBOL(user_enable_single_step);
void user_disable_single_step(struct task_struct *task)
{
clear_ti_thread_flag(task_thread_info(task), TIF_SINGLESTEP);
}
NOKPROBE_SYMBOL(user_disable_single_step);