linux/mm/slab_common.c

1465 lines
37 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Slab allocator functions that are independent of the allocator strategy
*
* (C) 2012 Christoph Lameter <cl@linux.com>
*/
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/cache.h>
#include <linux/compiler.h>
mm, kfence: insert KFENCE hooks for SLAB Inserts KFENCE hooks into the SLAB allocator. To pass the originally requested size to KFENCE, add an argument 'orig_size' to slab_alloc*(). The additional argument is required to preserve the requested original size for kmalloc() allocations, which uses size classes (e.g. an allocation of 272 bytes will return an object of size 512). Therefore, kmem_cache::size does not represent the kmalloc-caller's requested size, and we must introduce the argument 'orig_size' to propagate the originally requested size to KFENCE. Without the originally requested size, we would not be able to detect out-of-bounds accesses for objects placed at the end of a KFENCE object page if that object is not equal to the kmalloc-size class it was bucketed into. When KFENCE is disabled, there is no additional overhead, since slab_alloc*() functions are __always_inline. Link: https://lkml.kernel.org/r/20201103175841.3495947-5-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Marco Elver <elver@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:19:11 +08:00
#include <linux/kfence.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
mm, memcg: add a memcg_slabinfo debugfs file There are concerns about memory leaks from extensive use of memory cgroups as each memory cgroup creates its own set of kmem caches. There is a possiblity that the memcg kmem caches may remain even after the memory cgroups have been offlined. Therefore, it will be useful to show the status of each of memcg kmem caches. This patch introduces a new <debugfs>/memcg_slabinfo file which is somewhat similar to /proc/slabinfo in format, but lists only information about kmem caches that have child memcg kmem caches. Information available in /proc/slabinfo are not repeated in memcg_slabinfo. A portion of a sample output of the file was: # <name> <css_id[:dead]> <active_objs> <num_objs> <active_slabs> <num_slabs> rpc_inode_cache root 13 51 1 1 rpc_inode_cache 48 0 0 0 0 fat_inode_cache root 1 45 1 1 fat_inode_cache 41 2 45 1 1 xfs_inode root 770 816 24 24 xfs_inode 92 22 34 1 1 xfs_inode 88:dead 1 34 1 1 xfs_inode 89:dead 23 34 1 1 xfs_inode 85 4 34 1 1 xfs_inode 84 9 34 1 1 The css id of the memcg is also listed. If a memcg is not online, the tag ":dead" will be attached as shown above. [longman@redhat.com: memcg: add ":deact" tag for reparented kmem caches in memcg_slabinfo] Link: http://lkml.kernel.org/r/20190621173005.31514-1-longman@redhat.com [longman@redhat.com: set the flag in the common code as suggested by Roman] Link: http://lkml.kernel.org/r/20190627184324.5875-1-longman@redhat.com Link: http://lkml.kernel.org/r/20190619171621.26209-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Suggested-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:56:38 +08:00
#include <linux/debugfs.h>
kasan, mm: allow cache merging with no metadata The reason cache merging is disabled with KASAN is because KASAN puts its metadata right after the allocated object. When the merged caches have slightly different sizes, the metadata ends up in different places, which KASAN doesn't support. It might be possible to adjust the metadata allocation algorithm and make it friendly to the cache merging code. Instead this change takes a simpler approach and allows merging caches when no metadata is present. Which is the case for hardware tag-based KASAN with kasan.mode=prod. Link: https://lkml.kernel.org/r/37497e940bfd4b32c0a93a702a9ae4cf061d5392.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/Ia114847dfb2244f297d2cb82d592bf6a07455dba Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Marco Elver <elver@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-23 04:03:31 +08:00
#include <linux/kasan.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <linux/memcontrol.h>
mm/slub: use stackdepot to save stack trace in objects Many stack traces are similar so there are many similar arrays. Stackdepot saves each unique stack only once. Replace field addrs in struct track with depot_stack_handle_t handle. Use stackdepot to save stack trace. The benefits are smaller memory overhead and possibility to aggregate per-cache statistics in the following patch using the stackdepot handle instead of matching stacks manually. [ vbabka@suse.cz: rebase to 5.17-rc1 and adjust accordingly ] This was initially merged as commit 788691464c29 and reverted by commit ae14c63a9f20 due to several issues, that should now be fixed. The problem of unconditional memory overhead by stackdepot has been addressed by commit 2dba5eb1c73b ("lib/stackdepot: allow optional init and stack_table allocation by kvmalloc()"), so the dependency on stackdepot will result in extra memory usage only when a slab cache tracking is actually enabled, and not for all CONFIG_SLUB_DEBUG builds. The build failures on some architectures were also addressed, and the reported issue with xfs/433 test did not reproduce on 5.17-rc1 with this patch. Signed-off-by: Oliver Glitta <glittao@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-and-tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
2021-07-08 09:07:47 +08:00
#include <linux/stackdepot.h>
#include "internal.h"
#include "slab.h"
#define CREATE_TRACE_POINTS
#include <trace/events/kmem.h>
enum slab_state slab_state;
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
struct kmem_cache *kmem_cache;
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
slab_caches_to_rcu_destroy_workfn);
/*
* Set of flags that will prevent slab merging
*/
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
kasan, mm: allow cache merging with no metadata The reason cache merging is disabled with KASAN is because KASAN puts its metadata right after the allocated object. When the merged caches have slightly different sizes, the metadata ends up in different places, which KASAN doesn't support. It might be possible to adjust the metadata allocation algorithm and make it friendly to the cache merging code. Instead this change takes a simpler approach and allows merging caches when no metadata is present. Which is the case for hardware tag-based KASAN with kasan.mode=prod. Link: https://lkml.kernel.org/r/37497e940bfd4b32c0a93a702a9ae4cf061d5392.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/Ia114847dfb2244f297d2cb82d592bf6a07455dba Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Marco Elver <elver@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-23 04:03:31 +08:00
SLAB_FAILSLAB | kasan_never_merge())
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
mm: add support for kmem caches in DMA32 zone Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables", v6. This is a followup to the discussion in [1], [2]. IOMMUs using ARMv7 short-descriptor format require page tables (level 1 and 2) to be allocated within the first 4GB of RAM, even on 64-bit systems. For L1 tables that are bigger than a page, we can just use __get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still use GFP_DMA). For L2 tables that only take 1KB, it would be a waste to allocate a full page, so we considered 3 approaches: 1. This series, adding support for GFP_DMA32 slab caches. 2. genalloc, which requires pre-allocating the maximum number of L2 page tables (4096, so 4MB of memory). 3. page_frag, which is not very memory-efficient as it is unable to reuse freed fragments until the whole page is freed. [3] This series is the most memory-efficient approach. stable@ note: We confirmed that this is a regression, and IOMMU errors happen on 4.19 and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue most likely starts from commit ad67f5a6545f ("arm64: replace ZONE_DMA with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek platforms (and maybe others?). [1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html [2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html [3] https://patchwork.codeaurora.org/patch/671639/ This patch (of 3): IOMMUs using ARMv7 short-descriptor format require page tables to be allocated within the first 4GB of RAM, even on 64-bit systems. On arm64, this is done by passing GFP_DMA32 flag to memory allocation functions. For IOMMU L2 tables that only take 1KB, it would be a waste to allocate a full page using get_free_pages, so we considered 3 approaches: 1. This patch, adding support for GFP_DMA32 slab caches. 2. genalloc, which requires pre-allocating the maximum number of L2 page tables (4096, so 4MB of memory). 3. page_frag, which is not very memory-efficient as it is unable to reuse freed fragments until the whole page is freed. This change makes it possible to create a custom cache in DMA32 zone using kmem_cache_create, then allocate memory using kmem_cache_alloc. We do not create a DMA32 kmalloc cache array, as there are currently no users of kmalloc(..., GFP_DMA32). These calls will continue to trigger a warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK. This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32 kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and unnecessary). Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org Signed-off-by: Nicolas Boichat <drinkcat@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Sasha Levin <Alexander.Levin@microsoft.com> Cc: Huaisheng Ye <yehs1@lenovo.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yong Wu <yong.wu@mediatek.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Tomasz Figa <tfiga@google.com> Cc: Yingjoe Chen <yingjoe.chen@mediatek.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 11:43:42 +08:00
SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
/*
* Merge control. If this is set then no merging of slab caches will occur.
*/
mm: allow slab_nomerge to be set at build time Some hardened environments want to build kernels with slab_nomerge already set (so that they do not depend on remembering to set the kernel command line option). This is desired to reduce the risk of kernel heap overflows being able to overwrite objects from merged caches and changes the requirements for cache layout control, increasing the difficulty of these attacks. By keeping caches unmerged, these kinds of exploits can usually only damage objects in the same cache (though the risk to metadata exploitation is unchanged). Link: http://lkml.kernel.org/r/20170620230911.GA25238@beast Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Cc: David Windsor <dave@nullcore.net> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: David Windsor <dave@nullcore.net> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: Tejun Heo <tj@kernel.org> Cc: Daniel Mack <daniel@zonque.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Helge Deller <deller@gmx.de> Cc: Rik van Riel <riel@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:36:40 +08:00
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
static int __init setup_slab_nomerge(char *str)
{
mm: allow slab_nomerge to be set at build time Some hardened environments want to build kernels with slab_nomerge already set (so that they do not depend on remembering to set the kernel command line option). This is desired to reduce the risk of kernel heap overflows being able to overwrite objects from merged caches and changes the requirements for cache layout control, increasing the difficulty of these attacks. By keeping caches unmerged, these kinds of exploits can usually only damage objects in the same cache (though the risk to metadata exploitation is unchanged). Link: http://lkml.kernel.org/r/20170620230911.GA25238@beast Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Cc: David Windsor <dave@nullcore.net> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: David Windsor <dave@nullcore.net> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: Tejun Heo <tj@kernel.org> Cc: Daniel Mack <daniel@zonque.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Helge Deller <deller@gmx.de> Cc: Rik van Riel <riel@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:36:40 +08:00
slab_nomerge = true;
return 1;
}
static int __init setup_slab_merge(char *str)
{
slab_nomerge = false;
return 1;
}
#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
#endif
__setup("slab_nomerge", setup_slab_nomerge);
__setup("slab_merge", setup_slab_merge);
/*
* Determine the size of a slab object
*/
unsigned int kmem_cache_size(struct kmem_cache *s)
{
return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);
#ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(const char *name, unsigned int size)
{
mm/slub: fix redzoning for small allocations The redzone area for SLUB exists between s->object_size and s->inuse (which is at least the word-aligned object_size). If a cache were created with an object_size smaller than sizeof(void *), the in-object stored freelist pointer would overwrite the redzone (e.g. with boot param "slub_debug=ZF"): BUG test (Tainted: G B ): Right Redzone overwritten ----------------------------------------------------------------------------- INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200 INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620 Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........ Object (____ptrval____): f6 f4 a5 40 1d e8 ...@.. Redzone (____ptrval____): 1a aa .. Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........ Store the freelist pointer out of line when object_size is smaller than sizeof(void *) and redzoning is enabled. Additionally remove the "smaller than sizeof(void *)" check under CONFIG_DEBUG_VM in kmem_cache_sanity_check() as it is now redundant: SLAB and SLOB both handle small sizes. (Note that no caches within this size range are known to exist in the kernel currently.) Link: https://lkml.kernel.org/r/20210608183955.280836-3-keescook@chromium.org Fixes: 81819f0fc828 ("SLUB core") Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Lin, Zhenpeng" <zplin@psu.edu> Cc: Marco Elver <elver@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:23:22 +08:00
if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
pr_err("kmem_cache_create(%s) integrity check failed\n", name);
return -EINVAL;
}
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
return 0;
}
#else
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
{
return 0;
}
#endif
/*
* Figure out what the alignment of the objects will be given a set of
* flags, a user specified alignment and the size of the objects.
*/
static unsigned int calculate_alignment(slab_flags_t flags,
unsigned int align, unsigned int size)
{
/*
* If the user wants hardware cache aligned objects then follow that
* suggestion if the object is sufficiently large.
*
* The hardware cache alignment cannot override the specified
* alignment though. If that is greater then use it.
*/
if (flags & SLAB_HWCACHE_ALIGN) {
unsigned int ralign;
ralign = cache_line_size();
while (size <= ralign / 2)
ralign /= 2;
align = max(align, ralign);
}
mm: make minimum slab alignment a runtime property When CONFIG_KASAN_HW_TAGS is enabled we currently increase the minimum slab alignment to 16. This happens even if MTE is not supported in hardware or disabled via kasan=off, which creates an unnecessary memory overhead in those cases. Eliminate this overhead by making the minimum slab alignment a runtime property and only aligning to 16 if KASAN is enabled at runtime. On a DragonBoard 845c (non-MTE hardware) with a kernel built with CONFIG_KASAN_HW_TAGS, waiting for quiescence after a full Android boot I see the following Slab measurements in /proc/meminfo (median of 3 reboots): Before: 169020 kB After: 167304 kB [akpm@linux-foundation.org: make slab alignment type `unsigned int' to avoid casting] Link: https://linux-review.googlesource.com/id/I752e725179b43b144153f4b6f584ceb646473ead Link: https://lkml.kernel.org/r/20220427195820.1716975-2-pcc@google.com Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10 09:20:53 +08:00
align = max(align, arch_slab_minalign());
return ALIGN(align, sizeof(void *));
}
/*
* Find a mergeable slab cache
*/
int slab_unmergeable(struct kmem_cache *s)
{
if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
return 1;
if (s->ctor)
return 1;
#ifdef CONFIG_HARDENED_USERCOPY
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
if (s->usersize)
return 1;
#endif
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
/*
* We may have set a slab to be unmergeable during bootstrap.
*/
if (s->refcount < 0)
return 1;
return 0;
}
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
slab_flags_t flags, const char *name, void (*ctor)(void *))
{
struct kmem_cache *s;
if (slab_nomerge)
return NULL;
if (ctor)
return NULL;
size = ALIGN(size, sizeof(void *));
align = calculate_alignment(flags, align, size);
size = ALIGN(size, align);
flags = kmem_cache_flags(size, flags, name);
if (flags & SLAB_NEVER_MERGE)
return NULL;
list_for_each_entry_reverse(s, &slab_caches, list) {
if (slab_unmergeable(s))
continue;
if (size > s->size)
continue;
if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
continue;
/*
* Check if alignment is compatible.
* Courtesy of Adrian Drzewiecki
*/
if ((s->size & ~(align - 1)) != s->size)
continue;
if (s->size - size >= sizeof(void *))
continue;
mm/slab: fix unalignment problem on Malta with EVA due to slab merge Unlike SLUB, sometimes, object isn't started at the beginning of the slab in SLAB. This causes the unalignment problem after slab merging is supported by commit 12220dea07f1 ("mm/slab: support slab merge"). Following is the report from Markos that fail to boot on Malta with EVA. Calibrating delay loop... 19.86 BogoMIPS (lpj=99328) pid_max: default: 32768 minimum: 301 Mount-cache hash table entries: 4096 (order: 0, 16384 bytes) Mountpoint-cache hash table entries: 4096 (order: 0, 16384 bytes) Kernel bug detected[#1]: CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.17.0-05639-g12220dea07f1 #1631 task: 1f04f5d8 ti: 1f050000 task.ti: 1f050000 epc : 80141190 alloc_unbound_pwq+0x234/0x304 Not tainted ra : 80141184 alloc_unbound_pwq+0x228/0x304 Process swapper/0 (pid: 1, threadinfo=1f050000, task=1f04f5d8, tls=00000000) Call Trace: alloc_unbound_pwq+0x234/0x304 apply_workqueue_attrs+0x11c/0x294 __alloc_workqueue_key+0x23c/0x470 init_workqueues+0x320/0x400 do_one_initcall+0xe8/0x23c kernel_init_freeable+0x9c/0x224 kernel_init+0x10/0x100 ret_from_kernel_thread+0x14/0x1c [ end trace cb88537fdc8fa200 ] Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b alloc_unbound_pwq() allocates slab object from pool_workqueue. This kmem_cache requires 256 bytes alignment, but, current merging code doesn't honor that, and merge it with kmalloc-256. kmalloc-256 requires only cacheline size alignment so that above failure occurs. However, in x86, kmalloc-256 is luckily aligned in 256 bytes, so the problem didn't happen on it. To fix this problem, this patch introduces alignment mismatch check in find_mergeable(). This will fix the problem. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Markos Chandras <Markos.Chandras@imgtec.com> Tested-by: Markos Chandras <Markos.Chandras@imgtec.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-14 07:19:25 +08:00
if (IS_ENABLED(CONFIG_SLAB) && align &&
(align > s->align || s->align % align))
continue;
return s;
}
return NULL;
}
static struct kmem_cache *create_cache(const char *name,
slab, slub: remove size disparity on debug kernel I have noticed on debug kernel with SLAB, the size of some non-root slabs were larger than their corresponding root slabs. e.g. for radix_tree_node: $cat /proc/slabinfo | grep radix name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ... radix_tree_node 15052 15075 4096 1 1 ... $cat /cgroup/memory/temp/memory.kmem.slabinfo | grep radix name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ... radix_tree_node 1581 158 4120 1 2 ... However for SLUB in debug kernel, the sizes were same. On further inspection it is found that SLUB always use kmem_cache.object_size to measure the kmem_cache.size while SLAB use the given kmem_cache.size. In the debug kernel the slab's size can be larger than its object_size. Thus in the creation of non-root slab, the SLAB uses the root's size as base to calculate the non-root slab's size and thus non-root slab's size can be larger than the root slab's size. For SLUB, the non-root slab's size is measured based on the root's object_size and thus the size will remain same for root and non-root slab. This patch makes slab's object_size the default base to measure the slab's size. Link: http://lkml.kernel.org/r/20180313165428.58699-1-shakeelb@google.com Fixes: 794b1248be4e ("memcg, slab: separate memcg vs root cache creation paths") Signed-off-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 07:21:50 +08:00
unsigned int object_size, unsigned int align,
slab_flags_t flags, unsigned int useroffset,
unsigned int usersize, void (*ctor)(void *),
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:21:10 +08:00
struct kmem_cache *root_cache)
{
struct kmem_cache *s;
int err;
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
if (WARN_ON(useroffset + usersize > object_size))
useroffset = usersize = 0;
err = -ENOMEM;
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
if (!s)
goto out;
s->name = name;
slab, slub: remove size disparity on debug kernel I have noticed on debug kernel with SLAB, the size of some non-root slabs were larger than their corresponding root slabs. e.g. for radix_tree_node: $cat /proc/slabinfo | grep radix name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ... radix_tree_node 15052 15075 4096 1 1 ... $cat /cgroup/memory/temp/memory.kmem.slabinfo | grep radix name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ... radix_tree_node 1581 158 4120 1 2 ... However for SLUB in debug kernel, the sizes were same. On further inspection it is found that SLUB always use kmem_cache.object_size to measure the kmem_cache.size while SLAB use the given kmem_cache.size. In the debug kernel the slab's size can be larger than its object_size. Thus in the creation of non-root slab, the SLAB uses the root's size as base to calculate the non-root slab's size and thus non-root slab's size can be larger than the root slab's size. For SLUB, the non-root slab's size is measured based on the root's object_size and thus the size will remain same for root and non-root slab. This patch makes slab's object_size the default base to measure the slab's size. Link: http://lkml.kernel.org/r/20180313165428.58699-1-shakeelb@google.com Fixes: 794b1248be4e ("memcg, slab: separate memcg vs root cache creation paths") Signed-off-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 07:21:50 +08:00
s->size = s->object_size = object_size;
s->align = align;
s->ctor = ctor;
#ifdef CONFIG_HARDENED_USERCOPY
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
s->useroffset = useroffset;
s->usersize = usersize;
#endif
err = __kmem_cache_create(s, flags);
if (err)
goto out_free_cache;
s->refcount = 1;
list_add(&s->list, &slab_caches);
out:
if (err)
return ERR_PTR(err);
return s;
out_free_cache:
kmem_cache_free(kmem_cache, s);
goto out;
}
/**
* kmem_cache_create_usercopy - Create a cache with a region suitable
* for copying to userspace
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
* @useroffset: Usercopy region offset
* @usersize: Usercopy region size
* @ctor: A constructor for the objects.
*
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*
* Return: a pointer to the cache on success, NULL on failure.
*/
struct kmem_cache *
kmem_cache_create_usercopy(const char *name,
unsigned int size, unsigned int align,
slab_flags_t flags,
unsigned int useroffset, unsigned int usersize,
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
void (*ctor)(void *))
{
struct kmem_cache *s = NULL;
const char *cache_name;
int err;
mm, slub: move slub_debug static key enabling outside slab_mutex Paul E. McKenney reported [1] that commit 1f0723a4c0df ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags") results in the lockdep complaint: ====================================================== WARNING: possible circular locking dependency detected 5.12.0+ #15 Not tainted ------------------------------------------------------ rcu_torture_sta/109 is trying to acquire lock: ffffffff96063cd0 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_enable+0x9/0x20 but task is already holding lock: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (slab_mutex){+.+.}-{3:3}: lock_acquire+0xb9/0x3a0 __mutex_lock+0x8d/0x920 slub_cpu_dead+0x15/0xf0 cpuhp_invoke_callback+0x17a/0x7c0 cpuhp_invoke_callback_range+0x3b/0x80 _cpu_down+0xdf/0x2a0 cpu_down+0x2c/0x50 device_offline+0x82/0xb0 remove_cpu+0x1a/0x30 torture_offline+0x80/0x140 torture_onoff+0x147/0x260 kthread+0x10a/0x140 ret_from_fork+0x22/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: check_prev_add+0x8f/0xbf0 __lock_acquire+0x13f0/0x1d80 lock_acquire+0xb9/0x3a0 cpus_read_lock+0x21/0xa0 static_key_enable+0x9/0x20 __kmem_cache_create+0x38d/0x430 kmem_cache_create_usercopy+0x146/0x250 kmem_cache_create+0xd/0x10 rcu_torture_stats+0x79/0x280 kthread+0x10a/0x140 ret_from_fork+0x22/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(slab_mutex); lock(cpu_hotplug_lock); lock(slab_mutex); lock(cpu_hotplug_lock); *** DEADLOCK *** 1 lock held by rcu_torture_sta/109: #0: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250 stack backtrace: CPU: 3 PID: 109 Comm: rcu_torture_sta Not tainted 5.12.0+ #15 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: dump_stack+0x6d/0x89 check_noncircular+0xfe/0x110 ? lock_is_held_type+0x98/0x110 check_prev_add+0x8f/0xbf0 __lock_acquire+0x13f0/0x1d80 lock_acquire+0xb9/0x3a0 ? static_key_enable+0x9/0x20 ? mark_held_locks+0x49/0x70 cpus_read_lock+0x21/0xa0 ? static_key_enable+0x9/0x20 static_key_enable+0x9/0x20 __kmem_cache_create+0x38d/0x430 kmem_cache_create_usercopy+0x146/0x250 ? rcu_torture_stats_print+0xd0/0xd0 kmem_cache_create+0xd/0x10 rcu_torture_stats+0x79/0x280 ? rcu_torture_stats_print+0xd0/0xd0 kthread+0x10a/0x140 ? kthread_park+0x80/0x80 ret_from_fork+0x22/0x30 This is because there's one order of locking from the hotplug callbacks: lock(cpu_hotplug_lock); // from hotplug machinery itself lock(slab_mutex); // in e.g. slab_mem_going_offline_callback() And commit 1f0723a4c0df made the reverse sequence possible: lock(slab_mutex); // in kmem_cache_create_usercopy() lock(cpu_hotplug_lock); // kmem_cache_open() -> static_key_enable() The simplest fix is to move static_key_enable() to a place before slab_mutex is taken. That means kmem_cache_create_usercopy() in mm/slab_common.c which is not ideal for SLUB-specific code, but the #ifdef CONFIG_SLUB_DEBUG makes it at least self-contained and obvious. [1] https://lore.kernel.org/lkml/20210502171827.GA3670492@paulmck-ThinkPad-P17-Gen-1/ Link: https://lkml.kernel.org/r/20210504120019.26791-1-vbabka@suse.cz Fixes: 1f0723a4c0df ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Paul E. McKenney <paulmck@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-15 08:27:10 +08:00
#ifdef CONFIG_SLUB_DEBUG
/*
* If no slub_debug was enabled globally, the static key is not yet
* enabled by setup_slub_debug(). Enable it if the cache is being
* created with any of the debugging flags passed explicitly.
mm/slub: use stackdepot to save stack trace in objects Many stack traces are similar so there are many similar arrays. Stackdepot saves each unique stack only once. Replace field addrs in struct track with depot_stack_handle_t handle. Use stackdepot to save stack trace. The benefits are smaller memory overhead and possibility to aggregate per-cache statistics in the following patch using the stackdepot handle instead of matching stacks manually. [ vbabka@suse.cz: rebase to 5.17-rc1 and adjust accordingly ] This was initially merged as commit 788691464c29 and reverted by commit ae14c63a9f20 due to several issues, that should now be fixed. The problem of unconditional memory overhead by stackdepot has been addressed by commit 2dba5eb1c73b ("lib/stackdepot: allow optional init and stack_table allocation by kvmalloc()"), so the dependency on stackdepot will result in extra memory usage only when a slab cache tracking is actually enabled, and not for all CONFIG_SLUB_DEBUG builds. The build failures on some architectures were also addressed, and the reported issue with xfs/433 test did not reproduce on 5.17-rc1 with this patch. Signed-off-by: Oliver Glitta <glittao@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-and-tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
2021-07-08 09:07:47 +08:00
* It's also possible that this is the first cache created with
* SLAB_STORE_USER and we should init stack_depot for it.
mm, slub: move slub_debug static key enabling outside slab_mutex Paul E. McKenney reported [1] that commit 1f0723a4c0df ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags") results in the lockdep complaint: ====================================================== WARNING: possible circular locking dependency detected 5.12.0+ #15 Not tainted ------------------------------------------------------ rcu_torture_sta/109 is trying to acquire lock: ffffffff96063cd0 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_enable+0x9/0x20 but task is already holding lock: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (slab_mutex){+.+.}-{3:3}: lock_acquire+0xb9/0x3a0 __mutex_lock+0x8d/0x920 slub_cpu_dead+0x15/0xf0 cpuhp_invoke_callback+0x17a/0x7c0 cpuhp_invoke_callback_range+0x3b/0x80 _cpu_down+0xdf/0x2a0 cpu_down+0x2c/0x50 device_offline+0x82/0xb0 remove_cpu+0x1a/0x30 torture_offline+0x80/0x140 torture_onoff+0x147/0x260 kthread+0x10a/0x140 ret_from_fork+0x22/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: check_prev_add+0x8f/0xbf0 __lock_acquire+0x13f0/0x1d80 lock_acquire+0xb9/0x3a0 cpus_read_lock+0x21/0xa0 static_key_enable+0x9/0x20 __kmem_cache_create+0x38d/0x430 kmem_cache_create_usercopy+0x146/0x250 kmem_cache_create+0xd/0x10 rcu_torture_stats+0x79/0x280 kthread+0x10a/0x140 ret_from_fork+0x22/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(slab_mutex); lock(cpu_hotplug_lock); lock(slab_mutex); lock(cpu_hotplug_lock); *** DEADLOCK *** 1 lock held by rcu_torture_sta/109: #0: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250 stack backtrace: CPU: 3 PID: 109 Comm: rcu_torture_sta Not tainted 5.12.0+ #15 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: dump_stack+0x6d/0x89 check_noncircular+0xfe/0x110 ? lock_is_held_type+0x98/0x110 check_prev_add+0x8f/0xbf0 __lock_acquire+0x13f0/0x1d80 lock_acquire+0xb9/0x3a0 ? static_key_enable+0x9/0x20 ? mark_held_locks+0x49/0x70 cpus_read_lock+0x21/0xa0 ? static_key_enable+0x9/0x20 static_key_enable+0x9/0x20 __kmem_cache_create+0x38d/0x430 kmem_cache_create_usercopy+0x146/0x250 ? rcu_torture_stats_print+0xd0/0xd0 kmem_cache_create+0xd/0x10 rcu_torture_stats+0x79/0x280 ? rcu_torture_stats_print+0xd0/0xd0 kthread+0x10a/0x140 ? kthread_park+0x80/0x80 ret_from_fork+0x22/0x30 This is because there's one order of locking from the hotplug callbacks: lock(cpu_hotplug_lock); // from hotplug machinery itself lock(slab_mutex); // in e.g. slab_mem_going_offline_callback() And commit 1f0723a4c0df made the reverse sequence possible: lock(slab_mutex); // in kmem_cache_create_usercopy() lock(cpu_hotplug_lock); // kmem_cache_open() -> static_key_enable() The simplest fix is to move static_key_enable() to a place before slab_mutex is taken. That means kmem_cache_create_usercopy() in mm/slab_common.c which is not ideal for SLUB-specific code, but the #ifdef CONFIG_SLUB_DEBUG makes it at least self-contained and obvious. [1] https://lore.kernel.org/lkml/20210502171827.GA3670492@paulmck-ThinkPad-P17-Gen-1/ Link: https://lkml.kernel.org/r/20210504120019.26791-1-vbabka@suse.cz Fixes: 1f0723a4c0df ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Paul E. McKenney <paulmck@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-15 08:27:10 +08:00
*/
if (flags & SLAB_DEBUG_FLAGS)
static_branch_enable(&slub_debug_enabled);
mm/slub: use stackdepot to save stack trace in objects Many stack traces are similar so there are many similar arrays. Stackdepot saves each unique stack only once. Replace field addrs in struct track with depot_stack_handle_t handle. Use stackdepot to save stack trace. The benefits are smaller memory overhead and possibility to aggregate per-cache statistics in the following patch using the stackdepot handle instead of matching stacks manually. [ vbabka@suse.cz: rebase to 5.17-rc1 and adjust accordingly ] This was initially merged as commit 788691464c29 and reverted by commit ae14c63a9f20 due to several issues, that should now be fixed. The problem of unconditional memory overhead by stackdepot has been addressed by commit 2dba5eb1c73b ("lib/stackdepot: allow optional init and stack_table allocation by kvmalloc()"), so the dependency on stackdepot will result in extra memory usage only when a slab cache tracking is actually enabled, and not for all CONFIG_SLUB_DEBUG builds. The build failures on some architectures were also addressed, and the reported issue with xfs/433 test did not reproduce on 5.17-rc1 with this patch. Signed-off-by: Oliver Glitta <glittao@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-and-tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
2021-07-08 09:07:47 +08:00
if (flags & SLAB_STORE_USER)
stack_depot_init();
mm, slub: move slub_debug static key enabling outside slab_mutex Paul E. McKenney reported [1] that commit 1f0723a4c0df ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags") results in the lockdep complaint: ====================================================== WARNING: possible circular locking dependency detected 5.12.0+ #15 Not tainted ------------------------------------------------------ rcu_torture_sta/109 is trying to acquire lock: ffffffff96063cd0 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_enable+0x9/0x20 but task is already holding lock: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (slab_mutex){+.+.}-{3:3}: lock_acquire+0xb9/0x3a0 __mutex_lock+0x8d/0x920 slub_cpu_dead+0x15/0xf0 cpuhp_invoke_callback+0x17a/0x7c0 cpuhp_invoke_callback_range+0x3b/0x80 _cpu_down+0xdf/0x2a0 cpu_down+0x2c/0x50 device_offline+0x82/0xb0 remove_cpu+0x1a/0x30 torture_offline+0x80/0x140 torture_onoff+0x147/0x260 kthread+0x10a/0x140 ret_from_fork+0x22/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: check_prev_add+0x8f/0xbf0 __lock_acquire+0x13f0/0x1d80 lock_acquire+0xb9/0x3a0 cpus_read_lock+0x21/0xa0 static_key_enable+0x9/0x20 __kmem_cache_create+0x38d/0x430 kmem_cache_create_usercopy+0x146/0x250 kmem_cache_create+0xd/0x10 rcu_torture_stats+0x79/0x280 kthread+0x10a/0x140 ret_from_fork+0x22/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(slab_mutex); lock(cpu_hotplug_lock); lock(slab_mutex); lock(cpu_hotplug_lock); *** DEADLOCK *** 1 lock held by rcu_torture_sta/109: #0: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250 stack backtrace: CPU: 3 PID: 109 Comm: rcu_torture_sta Not tainted 5.12.0+ #15 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: dump_stack+0x6d/0x89 check_noncircular+0xfe/0x110 ? lock_is_held_type+0x98/0x110 check_prev_add+0x8f/0xbf0 __lock_acquire+0x13f0/0x1d80 lock_acquire+0xb9/0x3a0 ? static_key_enable+0x9/0x20 ? mark_held_locks+0x49/0x70 cpus_read_lock+0x21/0xa0 ? static_key_enable+0x9/0x20 static_key_enable+0x9/0x20 __kmem_cache_create+0x38d/0x430 kmem_cache_create_usercopy+0x146/0x250 ? rcu_torture_stats_print+0xd0/0xd0 kmem_cache_create+0xd/0x10 rcu_torture_stats+0x79/0x280 ? rcu_torture_stats_print+0xd0/0xd0 kthread+0x10a/0x140 ? kthread_park+0x80/0x80 ret_from_fork+0x22/0x30 This is because there's one order of locking from the hotplug callbacks: lock(cpu_hotplug_lock); // from hotplug machinery itself lock(slab_mutex); // in e.g. slab_mem_going_offline_callback() And commit 1f0723a4c0df made the reverse sequence possible: lock(slab_mutex); // in kmem_cache_create_usercopy() lock(cpu_hotplug_lock); // kmem_cache_open() -> static_key_enable() The simplest fix is to move static_key_enable() to a place before slab_mutex is taken. That means kmem_cache_create_usercopy() in mm/slab_common.c which is not ideal for SLUB-specific code, but the #ifdef CONFIG_SLUB_DEBUG makes it at least self-contained and obvious. [1] https://lore.kernel.org/lkml/20210502171827.GA3670492@paulmck-ThinkPad-P17-Gen-1/ Link: https://lkml.kernel.org/r/20210504120019.26791-1-vbabka@suse.cz Fixes: 1f0723a4c0df ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Paul E. McKenney <paulmck@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-15 08:27:10 +08:00
#endif
mutex_lock(&slab_mutex);
err = kmem_cache_sanity_check(name, size);
if (err) {
goto out_unlock;
}
/* Refuse requests with allocator specific flags */
if (flags & ~SLAB_FLAGS_PERMITTED) {
err = -EINVAL;
goto out_unlock;
}
/*
* Some allocators will constraint the set of valid flags to a subset
* of all flags. We expect them to define CACHE_CREATE_MASK in this
* case, and we'll just provide them with a sanitized version of the
* passed flags.
*/
flags &= CACHE_CREATE_MASK;
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
/* Fail closed on bad usersize of useroffset values. */
if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
WARN_ON(!usersize && useroffset) ||
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
WARN_ON(size < usersize || size - usersize < useroffset))
usersize = useroffset = 0;
if (!usersize)
s = __kmem_cache_alias(name, size, align, flags, ctor);
if (s)
goto out_unlock;
cache_name = kstrdup_const(name, GFP_KERNEL);
if (!cache_name) {
err = -ENOMEM;
goto out_unlock;
}
slab, slub: remove size disparity on debug kernel I have noticed on debug kernel with SLAB, the size of some non-root slabs were larger than their corresponding root slabs. e.g. for radix_tree_node: $cat /proc/slabinfo | grep radix name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ... radix_tree_node 15052 15075 4096 1 1 ... $cat /cgroup/memory/temp/memory.kmem.slabinfo | grep radix name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ... radix_tree_node 1581 158 4120 1 2 ... However for SLUB in debug kernel, the sizes were same. On further inspection it is found that SLUB always use kmem_cache.object_size to measure the kmem_cache.size while SLAB use the given kmem_cache.size. In the debug kernel the slab's size can be larger than its object_size. Thus in the creation of non-root slab, the SLAB uses the root's size as base to calculate the non-root slab's size and thus non-root slab's size can be larger than the root slab's size. For SLUB, the non-root slab's size is measured based on the root's object_size and thus the size will remain same for root and non-root slab. This patch makes slab's object_size the default base to measure the slab's size. Link: http://lkml.kernel.org/r/20180313165428.58699-1-shakeelb@google.com Fixes: 794b1248be4e ("memcg, slab: separate memcg vs root cache creation paths") Signed-off-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 07:21:50 +08:00
s = create_cache(cache_name, size,
calculate_alignment(flags, align, size),
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:21:10 +08:00
flags, useroffset, usersize, ctor, NULL);
if (IS_ERR(s)) {
err = PTR_ERR(s);
kfree_const(cache_name);
}
out_unlock:
mutex_unlock(&slab_mutex);
slab: get_online_mems for kmem_cache_{create,destroy,shrink} When we create a sl[au]b cache, we allocate kmem_cache_node structures for each online NUMA node. To handle nodes taken online/offline, we register memory hotplug notifier and allocate/free kmem_cache_node corresponding to the node that changes its state for each kmem cache. To synchronize between the two paths we hold the slab_mutex during both the cache creationg/destruction path and while tuning per-node parts of kmem caches in memory hotplug handler, but that's not quite right, because it does not guarantee that a newly created cache will have all kmem_cache_nodes initialized in case it races with memory hotplug. For instance, in case of slub: CPU0 CPU1 ---- ---- kmem_cache_create: online_pages: __kmem_cache_create: slab_memory_callback: slab_mem_going_online_callback: lock slab_mutex for each slab_caches list entry allocate kmem_cache node unlock slab_mutex lock slab_mutex init_kmem_cache_nodes: for_each_node_state(node, N_NORMAL_MEMORY) allocate kmem_cache node add kmem_cache to slab_caches list unlock slab_mutex online_pages (continued): node_states_set_node As a result we'll get a kmem cache with not all kmem_cache_nodes allocated. To avoid issues like that we should hold get/put_online_mems() during the whole kmem cache creation/destruction/shrink paths, just like we deal with cpu hotplug. This patch does the trick. Note, that after it's applied, there is no need in taking the slab_mutex for kmem_cache_shrink any more, so it is removed from there. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:20 +08:00
slab: fix wrong retval on kmem_cache_create_memcg error path On kmem_cache_create_memcg() error path we set 'err', but leave 's' (the new cache ptr) undefined. The latter can be NULL if we could not allocate the cache, or pointing to a freed area if we failed somewhere later while trying to initialize it. Initially we checked 'err' immediately before exiting the function and returned NULL if it was set ignoring the value of 's': out_unlock: ... if (err) { /* report error */ return NULL; } return s; Recently this check was, in fact, broken by commit f717eb3abb5e ("slab: do not panic if we fail to create memcg cache"), which turned it to: out_unlock: ... if (err && !memcg) { /* report error */ return NULL; } return s; As a result, if we are failing creating a cache for a memcg, we will skip the check and return 's' that can contain crap. Obviously, commit f717eb3abb5e intended not to return crap on error allocating a cache for a memcg, but only to remove the error reporting in this case, so the check should look like this: out_unlock: ... if (err) { if (!memcg) return NULL; /* report error */ return NULL; } return s; [rientjes@google.com: despaghettification] [vdavydov@parallels.com: patch monkeying] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Dave Jones <davej@redhat.com> Reported-by: Dave Jones <davej@redhat.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-30 06:05:48 +08:00
if (err) {
if (flags & SLAB_PANIC)
panic("%s: Failed to create slab '%s'. Error %d\n",
__func__, name, err);
else {
pr_warn("%s(%s) failed with error %d\n",
__func__, name, err);
dump_stack();
}
return NULL;
}
return s;
}
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
EXPORT_SYMBOL(kmem_cache_create_usercopy);
/**
* kmem_cache_create - Create a cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @ctor: A constructor for the objects.
*
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*
* Return: a pointer to the cache on success, NULL on failure.
*/
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
struct kmem_cache *
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
slab_flags_t flags, void (*ctor)(void *))
{
return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
ctor);
}
EXPORT_SYMBOL(kmem_cache_create);
mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock A circular locking problem is reported by lockdep due to the following circular locking dependency. +--> cpu_hotplug_lock --> slab_mutex --> kn->active --+ | | +-----------------------------------------------------+ The forward cpu_hotplug_lock ==> slab_mutex ==> kn->active dependency happens in kmem_cache_destroy(): cpus_read_lock(); mutex_lock(&slab_mutex); ==> sysfs_slab_unlink() ==> kobject_del() ==> kernfs_remove() ==> __kernfs_remove() ==> kernfs_drain(): rwsem_acquire(&kn->dep_map, ...); The backward kn->active ==> cpu_hotplug_lock dependency happens in kernfs_fop_write_iter(): kernfs_get_active(); ==> slab_attr_store() ==> cpu_partial_store() ==> flush_all(): cpus_read_lock() One way to break this circular locking chain is to avoid holding cpu_hotplug_lock and slab_mutex while deleting the kobject in sysfs_slab_unlink() which should be equivalent to doing a write_lock and write_unlock pair of the kn->active virtual lock. Since the kobject structures are not protected by slab_mutex or the cpu_hotplug_lock, we can certainly release those locks before doing the delete operation. Move sysfs_slab_unlink() and sysfs_slab_release() to the newly created kmem_cache_release() and call it outside the slab_mutex & cpu_hotplug_lock critical sections. There will be a slight delay in the deletion of sysfs files if kmem_cache_release() is called indirectly from a work function. Fixes: 5a836bf6b09f ("mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context") Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: David Rientjes <rientjes@google.com> Link: https://lore.kernel.org/all/YwOImVd+nRUsSAga@hyeyoo/ Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-08-13 02:30:33 +08:00
#ifdef SLAB_SUPPORTS_SYSFS
/*
* For a given kmem_cache, kmem_cache_destroy() should only be called
* once or there will be a use-after-free problem. The actual deletion
* and release of the kobject does not need slab_mutex or cpu_hotplug_lock
* protection. So they are now done without holding those locks.
*
* Note that there will be a slight delay in the deletion of sysfs files
* if kmem_cache_release() is called indrectly from a work function.
*/
static void kmem_cache_release(struct kmem_cache *s)
{
sysfs_slab_unlink(s);
sysfs_slab_release(s);
}
#else
static void kmem_cache_release(struct kmem_cache *s)
{
slab_kmem_cache_release(s);
}
#endif
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
memcg: zap memcg_slab_caches and memcg_slab_mutex mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 06:11:47 +08:00
{
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
LIST_HEAD(to_destroy);
struct kmem_cache *s, *s2;
memcg: zap memcg_slab_caches and memcg_slab_mutex mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 06:11:47 +08:00
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
/*
* On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
* @slab_caches_to_rcu_destroy list. The slab pages are freed
* through RCU and the associated kmem_cache are dereferenced
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
* while freeing the pages, so the kmem_caches should be freed only
* after the pending RCU operations are finished. As rcu_barrier()
* is a pretty slow operation, we batch all pending destructions
* asynchronously.
*/
mutex_lock(&slab_mutex);
list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
mutex_unlock(&slab_mutex);
memcg: zap memcg_slab_caches and memcg_slab_mutex mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 06:11:47 +08:00
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
if (list_empty(&to_destroy))
return;
rcu_barrier();
list_for_each_entry_safe(s, s2, &to_destroy, list) {
debugfs_slab_release(s);
mm, kfence: insert KFENCE hooks for SLAB Inserts KFENCE hooks into the SLAB allocator. To pass the originally requested size to KFENCE, add an argument 'orig_size' to slab_alloc*(). The additional argument is required to preserve the requested original size for kmalloc() allocations, which uses size classes (e.g. an allocation of 272 bytes will return an object of size 512). Therefore, kmem_cache::size does not represent the kmalloc-caller's requested size, and we must introduce the argument 'orig_size' to propagate the originally requested size to KFENCE. Without the originally requested size, we would not be able to detect out-of-bounds accesses for objects placed at the end of a KFENCE object page if that object is not equal to the kmalloc-size class it was bucketed into. When KFENCE is disabled, there is no additional overhead, since slab_alloc*() functions are __always_inline. Link: https://lkml.kernel.org/r/20201103175841.3495947-5-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Marco Elver <elver@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:19:11 +08:00
kfence_shutdown_cache(s);
mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock A circular locking problem is reported by lockdep due to the following circular locking dependency. +--> cpu_hotplug_lock --> slab_mutex --> kn->active --+ | | +-----------------------------------------------------+ The forward cpu_hotplug_lock ==> slab_mutex ==> kn->active dependency happens in kmem_cache_destroy(): cpus_read_lock(); mutex_lock(&slab_mutex); ==> sysfs_slab_unlink() ==> kobject_del() ==> kernfs_remove() ==> __kernfs_remove() ==> kernfs_drain(): rwsem_acquire(&kn->dep_map, ...); The backward kn->active ==> cpu_hotplug_lock dependency happens in kernfs_fop_write_iter(): kernfs_get_active(); ==> slab_attr_store() ==> cpu_partial_store() ==> flush_all(): cpus_read_lock() One way to break this circular locking chain is to avoid holding cpu_hotplug_lock and slab_mutex while deleting the kobject in sysfs_slab_unlink() which should be equivalent to doing a write_lock and write_unlock pair of the kn->active virtual lock. Since the kobject structures are not protected by slab_mutex or the cpu_hotplug_lock, we can certainly release those locks before doing the delete operation. Move sysfs_slab_unlink() and sysfs_slab_release() to the newly created kmem_cache_release() and call it outside the slab_mutex & cpu_hotplug_lock critical sections. There will be a slight delay in the deletion of sysfs files if kmem_cache_release() is called indirectly from a work function. Fixes: 5a836bf6b09f ("mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context") Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: David Rientjes <rientjes@google.com> Link: https://lore.kernel.org/all/YwOImVd+nRUsSAga@hyeyoo/ Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-08-13 02:30:33 +08:00
kmem_cache_release(s);
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
}
memcg: zap memcg_slab_caches and memcg_slab_mutex mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 06:11:47 +08:00
}
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
static int shutdown_cache(struct kmem_cache *s)
memcg: zap memcg_slab_caches and memcg_slab_mutex mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 06:11:47 +08:00
{
kasan: drain quarantine of memcg slab objects Per memcg slab accounting and kasan have a problem with kmem_cache destruction. - kmem_cache_create() allocates a kmem_cache, which is used for allocations from processes running in root (top) memcg. - Processes running in non root memcg and allocating with either __GFP_ACCOUNT or from a SLAB_ACCOUNT cache use a per memcg kmem_cache. - Kasan catches use-after-free by having kfree() and kmem_cache_free() defer freeing of objects. Objects are placed in a quarantine. - kmem_cache_destroy() destroys root and non root kmem_caches. It takes care to drain the quarantine of objects from the root memcg's kmem_cache, but ignores objects associated with non root memcg. This causes leaks because quarantined per memcg objects refer to per memcg kmem cache being destroyed. To see the problem: 1) create a slab cache with kmem_cache_create(,,,SLAB_ACCOUNT,) 2) from non root memcg, allocate and free a few objects from cache 3) dispose of the cache with kmem_cache_destroy() kmem_cache_destroy() will trigger a "Slab cache still has objects" warning indicating that the per memcg kmem_cache structure was leaked. Fix the leak by draining kasan quarantined objects allocated from non root memcg. Racing memcg deletion is tricky, but handled. kmem_cache_destroy() => shutdown_memcg_caches() => __shutdown_memcg_cache() => shutdown_cache() flushes per memcg quarantined objects, even if that memcg has been rmdir'd and gone through memcg_deactivate_kmem_caches(). This leak only affects destroyed SLAB_ACCOUNT kmem caches when kasan is enabled. So I don't think it's worth patching stable kernels. Link: http://lkml.kernel.org/r/1482257462-36948-1-git-send-email-gthelen@google.com Signed-off-by: Greg Thelen <gthelen@google.com> Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 07:00:05 +08:00
/* free asan quarantined objects */
kasan_cache_shutdown(s);
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
if (__kmem_cache_shutdown(s) != 0)
return -EBUSY;
memcg: zap memcg_slab_caches and memcg_slab_mutex mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 06:11:47 +08:00
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
list_del(&s->list);
memcg: zap memcg_slab_caches and memcg_slab_mutex mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 06:11:47 +08:00
if (s->flags & SLAB_TYPESAFE_BY_RCU) {
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
schedule_work(&slab_caches_to_rcu_destroy_work);
} else {
mm, kfence: insert KFENCE hooks for SLAB Inserts KFENCE hooks into the SLAB allocator. To pass the originally requested size to KFENCE, add an argument 'orig_size' to slab_alloc*(). The additional argument is required to preserve the requested original size for kmalloc() allocations, which uses size classes (e.g. an allocation of 272 bytes will return an object of size 512). Therefore, kmem_cache::size does not represent the kmalloc-caller's requested size, and we must introduce the argument 'orig_size' to propagate the originally requested size to KFENCE. Without the originally requested size, we would not be able to detect out-of-bounds accesses for objects placed at the end of a KFENCE object page if that object is not equal to the kmalloc-size class it was bucketed into. When KFENCE is disabled, there is no additional overhead, since slab_alloc*() functions are __always_inline. Link: https://lkml.kernel.org/r/20201103175841.3495947-5-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Marco Elver <elver@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:19:11 +08:00
kfence_shutdown_cache(s);
debugfs_slab_release(s);
memcg: zap memcg_slab_caches and memcg_slab_mutex mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 06:11:47 +08:00
}
slab: remove synchronous rcu_barrier() call in memcg cache release path With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:14 +08:00
return 0;
memcg: zap memcg_slab_caches and memcg_slab_mutex mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 06:11:47 +08:00
}
slub: use sysfs'es release mechanism for kmem_cache debugobjects warning during netfilter exit: ------------[ cut here ]------------ WARNING: CPU: 6 PID: 4178 at lib/debugobjects.c:260 debug_print_object+0x8d/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 6 PID: 4178 Comm: kworker/u16:2 Tainted: G W 3.11.0-next-20130906-sasha #3984 Workqueue: netns cleanup_net Call Trace: dump_stack+0x52/0x87 warn_slowpath_common+0x8c/0xc0 warn_slowpath_fmt+0x46/0x50 debug_print_object+0x8d/0xb0 __debug_check_no_obj_freed+0xa5/0x220 debug_check_no_obj_freed+0x15/0x20 kmem_cache_free+0x197/0x340 kmem_cache_destroy+0x86/0xe0 nf_conntrack_cleanup_net_list+0x131/0x170 nf_conntrack_pernet_exit+0x5d/0x70 ops_exit_list+0x5e/0x70 cleanup_net+0xfb/0x1c0 process_one_work+0x338/0x550 worker_thread+0x215/0x350 kthread+0xe7/0xf0 ret_from_fork+0x7c/0xb0 Also during dcookie cleanup: WARNING: CPU: 12 PID: 9725 at lib/debugobjects.c:260 debug_print_object+0x8c/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 12 PID: 9725 Comm: trinity-c141 Not tainted 3.15.0-rc2-next-20140423-sasha-00018-gc4ff6c4 #408 Call Trace: dump_stack (lib/dump_stack.c:52) warn_slowpath_common (kernel/panic.c:430) warn_slowpath_fmt (kernel/panic.c:445) debug_print_object (lib/debugobjects.c:262) __debug_check_no_obj_freed (lib/debugobjects.c:697) debug_check_no_obj_freed (lib/debugobjects.c:726) kmem_cache_free (mm/slub.c:2689 mm/slub.c:2717) kmem_cache_destroy (mm/slab_common.c:363) dcookie_unregister (fs/dcookies.c:302 fs/dcookies.c:343) event_buffer_release (arch/x86/oprofile/../../../drivers/oprofile/event_buffer.c:153) __fput (fs/file_table.c:217) ____fput (fs/file_table.c:253) task_work_run (kernel/task_work.c:125 (discriminator 1)) do_notify_resume (include/linux/tracehook.h:196 arch/x86/kernel/signal.c:751) int_signal (arch/x86/kernel/entry_64.S:807) Sysfs has a release mechanism. Use that to release the kmem_cache structure if CONFIG_SYSFS is enabled. Only slub is changed - slab currently only supports /proc/slabinfo and not /sys/kernel/slab/*. We talked about adding that and someone was working on it. [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build] [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build even more] Signed-off-by: Christoph Lameter <cl@linux.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Greg KH <greg@kroah.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Pekka Enberg <penberg@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Bart Van Assche <bvanassche@acm.org> Cc: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:08 +08:00
void slab_kmem_cache_release(struct kmem_cache *s)
{
mm: slab: free kmem_cache_node after destroy sysfs file When slub_debug alloc_calls_show is enabled we will try to track location and user of slab object on each online node, kmem_cache_node structure and cpu_cache/cpu_slub shouldn't be freed till there is the last reference to sysfs file. This fixes the following panic: BUG: unable to handle kernel NULL pointer dereference at 0000000000000020 IP: list_locations+0x169/0x4e0 PGD 257304067 PUD 438456067 PMD 0 Oops: 0000 [#1] SMP CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30 Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011 task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000 RIP: list_locations+0x169/0x4e0 Call Trace: alloc_calls_show+0x1d/0x30 slab_attr_show+0x1b/0x30 sysfs_read_file+0x9a/0x1a0 vfs_read+0x9c/0x170 SyS_read+0x58/0xb0 system_call_fastpath+0x16/0x1b Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10 CR2: 0000000000000020 Separated __kmem_cache_release from __kmem_cache_shutdown which now called on slab_kmem_cache_release (after the last reference to sysfs file object has dropped). Reintroduced locking in free_partial as sysfs file might access cache's partial list after shutdowning - partial revert of the commit 69cb8e6b7c29 ("slub: free slabs without holding locks"). Zap __remove_partial and use remove_partial (w/o underscores) as free_partial now takes list_lock which s partial revert for commit 1e4dd9461fab ("slub: do not assert not having lock in removing freed partial") Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-18 05:11:37 +08:00
__kmem_cache_release(s);
kfree_const(s->name);
slub: use sysfs'es release mechanism for kmem_cache debugobjects warning during netfilter exit: ------------[ cut here ]------------ WARNING: CPU: 6 PID: 4178 at lib/debugobjects.c:260 debug_print_object+0x8d/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 6 PID: 4178 Comm: kworker/u16:2 Tainted: G W 3.11.0-next-20130906-sasha #3984 Workqueue: netns cleanup_net Call Trace: dump_stack+0x52/0x87 warn_slowpath_common+0x8c/0xc0 warn_slowpath_fmt+0x46/0x50 debug_print_object+0x8d/0xb0 __debug_check_no_obj_freed+0xa5/0x220 debug_check_no_obj_freed+0x15/0x20 kmem_cache_free+0x197/0x340 kmem_cache_destroy+0x86/0xe0 nf_conntrack_cleanup_net_list+0x131/0x170 nf_conntrack_pernet_exit+0x5d/0x70 ops_exit_list+0x5e/0x70 cleanup_net+0xfb/0x1c0 process_one_work+0x338/0x550 worker_thread+0x215/0x350 kthread+0xe7/0xf0 ret_from_fork+0x7c/0xb0 Also during dcookie cleanup: WARNING: CPU: 12 PID: 9725 at lib/debugobjects.c:260 debug_print_object+0x8c/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 12 PID: 9725 Comm: trinity-c141 Not tainted 3.15.0-rc2-next-20140423-sasha-00018-gc4ff6c4 #408 Call Trace: dump_stack (lib/dump_stack.c:52) warn_slowpath_common (kernel/panic.c:430) warn_slowpath_fmt (kernel/panic.c:445) debug_print_object (lib/debugobjects.c:262) __debug_check_no_obj_freed (lib/debugobjects.c:697) debug_check_no_obj_freed (lib/debugobjects.c:726) kmem_cache_free (mm/slub.c:2689 mm/slub.c:2717) kmem_cache_destroy (mm/slab_common.c:363) dcookie_unregister (fs/dcookies.c:302 fs/dcookies.c:343) event_buffer_release (arch/x86/oprofile/../../../drivers/oprofile/event_buffer.c:153) __fput (fs/file_table.c:217) ____fput (fs/file_table.c:253) task_work_run (kernel/task_work.c:125 (discriminator 1)) do_notify_resume (include/linux/tracehook.h:196 arch/x86/kernel/signal.c:751) int_signal (arch/x86/kernel/entry_64.S:807) Sysfs has a release mechanism. Use that to release the kmem_cache structure if CONFIG_SYSFS is enabled. Only slub is changed - slab currently only supports /proc/slabinfo and not /sys/kernel/slab/*. We talked about adding that and someone was working on it. [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build] [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build even more] Signed-off-by: Christoph Lameter <cl@linux.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Greg KH <greg@kroah.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Pekka Enberg <penberg@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Bart Van Assche <bvanassche@acm.org> Cc: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07 03:50:08 +08:00
kmem_cache_free(kmem_cache, s);
}
void kmem_cache_destroy(struct kmem_cache *s)
{
mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock A circular locking problem is reported by lockdep due to the following circular locking dependency. +--> cpu_hotplug_lock --> slab_mutex --> kn->active --+ | | +-----------------------------------------------------+ The forward cpu_hotplug_lock ==> slab_mutex ==> kn->active dependency happens in kmem_cache_destroy(): cpus_read_lock(); mutex_lock(&slab_mutex); ==> sysfs_slab_unlink() ==> kobject_del() ==> kernfs_remove() ==> __kernfs_remove() ==> kernfs_drain(): rwsem_acquire(&kn->dep_map, ...); The backward kn->active ==> cpu_hotplug_lock dependency happens in kernfs_fop_write_iter(): kernfs_get_active(); ==> slab_attr_store() ==> cpu_partial_store() ==> flush_all(): cpus_read_lock() One way to break this circular locking chain is to avoid holding cpu_hotplug_lock and slab_mutex while deleting the kobject in sysfs_slab_unlink() which should be equivalent to doing a write_lock and write_unlock pair of the kn->active virtual lock. Since the kobject structures are not protected by slab_mutex or the cpu_hotplug_lock, we can certainly release those locks before doing the delete operation. Move sysfs_slab_unlink() and sysfs_slab_release() to the newly created kmem_cache_release() and call it outside the slab_mutex & cpu_hotplug_lock critical sections. There will be a slight delay in the deletion of sysfs files if kmem_cache_release() is called indirectly from a work function. Fixes: 5a836bf6b09f ("mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context") Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: David Rientjes <rientjes@google.com> Link: https://lore.kernel.org/all/YwOImVd+nRUsSAga@hyeyoo/ Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-08-13 02:30:33 +08:00
int refcnt;
mm/slab_common: fix possible double free of kmem_cache When doing slub_debug test, kfence's 'test_memcache_typesafe_by_rcu' kunit test case cause a use-after-free error: BUG: KASAN: use-after-free in kobject_del+0x14/0x30 Read of size 8 at addr ffff888007679090 by task kunit_try_catch/261 CPU: 1 PID: 261 Comm: kunit_try_catch Tainted: G B N 6.0.0-rc5-next-20220916 #17 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x48 print_address_description.constprop.0+0x87/0x2a5 print_report+0x103/0x1ed kasan_report+0xb7/0x140 kobject_del+0x14/0x30 kmem_cache_destroy+0x130/0x170 test_exit+0x1a/0x30 kunit_try_run_case+0xad/0xc0 kunit_generic_run_threadfn_adapter+0x26/0x50 kthread+0x17b/0x1b0 </TASK> The cause is inside kmem_cache_destroy(): kmem_cache_destroy acquire lock/mutex shutdown_cache schedule_work(kmem_cache_release) (if RCU flag set) release lock/mutex kmem_cache_release (if RCU flag not set) In some certain timing, the scheduled work could be run before the next RCU flag checking, which can then get a wrong value and lead to double kmem_cache_release(). Fix it by caching the RCU flag inside protected area, just like 'refcnt' Fixes: 0495e337b703 ("mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock") Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-09-19 11:12:41 +08:00
bool rcu_set;
mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock A circular locking problem is reported by lockdep due to the following circular locking dependency. +--> cpu_hotplug_lock --> slab_mutex --> kn->active --+ | | +-----------------------------------------------------+ The forward cpu_hotplug_lock ==> slab_mutex ==> kn->active dependency happens in kmem_cache_destroy(): cpus_read_lock(); mutex_lock(&slab_mutex); ==> sysfs_slab_unlink() ==> kobject_del() ==> kernfs_remove() ==> __kernfs_remove() ==> kernfs_drain(): rwsem_acquire(&kn->dep_map, ...); The backward kn->active ==> cpu_hotplug_lock dependency happens in kernfs_fop_write_iter(): kernfs_get_active(); ==> slab_attr_store() ==> cpu_partial_store() ==> flush_all(): cpus_read_lock() One way to break this circular locking chain is to avoid holding cpu_hotplug_lock and slab_mutex while deleting the kobject in sysfs_slab_unlink() which should be equivalent to doing a write_lock and write_unlock pair of the kn->active virtual lock. Since the kobject structures are not protected by slab_mutex or the cpu_hotplug_lock, we can certainly release those locks before doing the delete operation. Move sysfs_slab_unlink() and sysfs_slab_release() to the newly created kmem_cache_release() and call it outside the slab_mutex & cpu_hotplug_lock critical sections. There will be a slight delay in the deletion of sysfs files if kmem_cache_release() is called indirectly from a work function. Fixes: 5a836bf6b09f ("mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context") Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: David Rientjes <rientjes@google.com> Link: https://lore.kernel.org/all/YwOImVd+nRUsSAga@hyeyoo/ Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-08-13 02:30:33 +08:00
kasan: add ability to detect double-kmem_cache_destroy() Because mm/slab_common.c is not instrumented with software KASAN modes, it is not possible to detect use-after-free of the kmem_cache passed into kmem_cache_destroy(). In particular, because of the s->refcount-- and subsequent early return if non-zero, KASAN would never be able to see the double-free via kmem_cache_free(kmem_cache, s). To be able to detect a double-kmem_cache_destroy(), check accessibility of the kmem_cache, and in case of failure return early. While KASAN_HW_TAGS is able to detect such bugs, by checking accessibility and returning early we fail more gracefully and also avoid corrupting reused objects (where tags mismatch). A recent case of a double-kmem_cache_destroy() was detected by KFENCE: https://lkml.kernel.org/r/0000000000003f654905c168b09d@google.com, which was not detectable by software KASAN modes. Link: https://lkml.kernel.org/r/20211119142219.1519617-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 06:04:54 +08:00
if (unlikely(!s) || !kasan_check_byte(s))
return;
cpus_read_lock();
mutex_lock(&slab_mutex);
memcg, slab: do not destroy children caches if parent has aliases Currently we destroy children caches at the very beginning of kmem_cache_destroy(). This is wrong, because the root cache will not necessarily be destroyed in the end - if it has aliases (refcount > 0), kmem_cache_destroy() will simply decrement its refcount and return. In this case, at best we will get a bunch of warnings in dmesg, like this one: kmem_cache_destroy kmalloc-32:0: Slab cache still has objects CPU: 1 PID: 7139 Comm: modprobe Tainted: G B W 3.13.0+ #117 Call Trace: dump_stack+0x49/0x5b kmem_cache_destroy+0xdf/0xf0 kmem_cache_destroy_memcg_children+0x97/0xc0 kmem_cache_destroy+0xf/0xf0 xfs_mru_cache_uninit+0x21/0x30 [xfs] exit_xfs_fs+0x2e/0xc44 [xfs] SyS_delete_module+0x198/0x1f0 system_call_fastpath+0x16/0x1b At worst - if kmem_cache_destroy() will race with an allocation from a memcg cache - the kernel will panic. This patch fixes this by moving children caches destruction after the check if the cache has aliases. Plus, it forbids destroying a root cache if it still has children caches, because each children cache keeps a reference to its parent. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:39:28 +08:00
mm/slab_common: fix possible double free of kmem_cache When doing slub_debug test, kfence's 'test_memcache_typesafe_by_rcu' kunit test case cause a use-after-free error: BUG: KASAN: use-after-free in kobject_del+0x14/0x30 Read of size 8 at addr ffff888007679090 by task kunit_try_catch/261 CPU: 1 PID: 261 Comm: kunit_try_catch Tainted: G B N 6.0.0-rc5-next-20220916 #17 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x48 print_address_description.constprop.0+0x87/0x2a5 print_report+0x103/0x1ed kasan_report+0xb7/0x140 kobject_del+0x14/0x30 kmem_cache_destroy+0x130/0x170 test_exit+0x1a/0x30 kunit_try_run_case+0xad/0xc0 kunit_generic_run_threadfn_adapter+0x26/0x50 kthread+0x17b/0x1b0 </TASK> The cause is inside kmem_cache_destroy(): kmem_cache_destroy acquire lock/mutex shutdown_cache schedule_work(kmem_cache_release) (if RCU flag set) release lock/mutex kmem_cache_release (if RCU flag not set) In some certain timing, the scheduled work could be run before the next RCU flag checking, which can then get a wrong value and lead to double kmem_cache_release(). Fix it by caching the RCU flag inside protected area, just like 'refcnt' Fixes: 0495e337b703 ("mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock") Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-09-19 11:12:41 +08:00
rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock A circular locking problem is reported by lockdep due to the following circular locking dependency. +--> cpu_hotplug_lock --> slab_mutex --> kn->active --+ | | +-----------------------------------------------------+ The forward cpu_hotplug_lock ==> slab_mutex ==> kn->active dependency happens in kmem_cache_destroy(): cpus_read_lock(); mutex_lock(&slab_mutex); ==> sysfs_slab_unlink() ==> kobject_del() ==> kernfs_remove() ==> __kernfs_remove() ==> kernfs_drain(): rwsem_acquire(&kn->dep_map, ...); The backward kn->active ==> cpu_hotplug_lock dependency happens in kernfs_fop_write_iter(): kernfs_get_active(); ==> slab_attr_store() ==> cpu_partial_store() ==> flush_all(): cpus_read_lock() One way to break this circular locking chain is to avoid holding cpu_hotplug_lock and slab_mutex while deleting the kobject in sysfs_slab_unlink() which should be equivalent to doing a write_lock and write_unlock pair of the kn->active virtual lock. Since the kobject structures are not protected by slab_mutex or the cpu_hotplug_lock, we can certainly release those locks before doing the delete operation. Move sysfs_slab_unlink() and sysfs_slab_release() to the newly created kmem_cache_release() and call it outside the slab_mutex & cpu_hotplug_lock critical sections. There will be a slight delay in the deletion of sysfs files if kmem_cache_release() is called indirectly from a work function. Fixes: 5a836bf6b09f ("mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context") Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: David Rientjes <rientjes@google.com> Link: https://lore.kernel.org/all/YwOImVd+nRUsSAga@hyeyoo/ Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-08-13 02:30:33 +08:00
refcnt = --s->refcount;
if (refcnt)
memcg, slab: do not destroy children caches if parent has aliases Currently we destroy children caches at the very beginning of kmem_cache_destroy(). This is wrong, because the root cache will not necessarily be destroyed in the end - if it has aliases (refcount > 0), kmem_cache_destroy() will simply decrement its refcount and return. In this case, at best we will get a bunch of warnings in dmesg, like this one: kmem_cache_destroy kmalloc-32:0: Slab cache still has objects CPU: 1 PID: 7139 Comm: modprobe Tainted: G B W 3.13.0+ #117 Call Trace: dump_stack+0x49/0x5b kmem_cache_destroy+0xdf/0xf0 kmem_cache_destroy_memcg_children+0x97/0xc0 kmem_cache_destroy+0xf/0xf0 xfs_mru_cache_uninit+0x21/0x30 [xfs] exit_xfs_fs+0x2e/0xc44 [xfs] SyS_delete_module+0x198/0x1f0 system_call_fastpath+0x16/0x1b At worst - if kmem_cache_destroy() will race with an allocation from a memcg cache - the kernel will panic. This patch fixes this by moving children caches destruction after the check if the cache has aliases. Plus, it forbids destroying a root cache if it still has children caches, because each children cache keeps a reference to its parent. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:39:28 +08:00
goto out_unlock;
mm/slab_common: use WARN() if cache still has objects on destroy Calling kmem_cache_destroy() while the cache still has objects allocated is a kernel bug, and will usually result in the entire cache being leaked. While the message in kmem_cache_destroy() resembles a warning, it is currently not implemented using a real WARN(). This is problematic for infrastructure testing the kernel, all of which rely on the specific format of WARN()s to pick up on bugs. Some 13 years ago this used to be a simple WARN_ON() in slub, but commit d629d8195793 ("slub: improve kmem_cache_destroy() error message") changed it into an open-coded warning to avoid confusion with a bug in slub itself. Instead, turn the open-coded warning into a real WARN() with the message preserved, so that test systems can actually identify these issues, and we get all the other benefits of using a normal WARN(). The warning message is extended with "when called from <caller-ip>" to make it even clearer where the fault lies. For most configurations this is only a cosmetic change, however, note that WARN() here will now also respect panic_on_warn. Link: https://lkml.kernel.org/r/20211102170733.648216-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 06:03:58 +08:00
WARN(shutdown_cache(s),
"%s %s: Slab cache still has objects when called from %pS",
__func__, s->name, (void *)_RET_IP_);
memcg, slab: do not destroy children caches if parent has aliases Currently we destroy children caches at the very beginning of kmem_cache_destroy(). This is wrong, because the root cache will not necessarily be destroyed in the end - if it has aliases (refcount > 0), kmem_cache_destroy() will simply decrement its refcount and return. In this case, at best we will get a bunch of warnings in dmesg, like this one: kmem_cache_destroy kmalloc-32:0: Slab cache still has objects CPU: 1 PID: 7139 Comm: modprobe Tainted: G B W 3.13.0+ #117 Call Trace: dump_stack+0x49/0x5b kmem_cache_destroy+0xdf/0xf0 kmem_cache_destroy_memcg_children+0x97/0xc0 kmem_cache_destroy+0xf/0xf0 xfs_mru_cache_uninit+0x21/0x30 [xfs] exit_xfs_fs+0x2e/0xc44 [xfs] SyS_delete_module+0x198/0x1f0 system_call_fastpath+0x16/0x1b At worst - if kmem_cache_destroy() will race with an allocation from a memcg cache - the kernel will panic. This patch fixes this by moving children caches destruction after the check if the cache has aliases. Plus, it forbids destroying a root cache if it still has children caches, because each children cache keeps a reference to its parent. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:39:28 +08:00
out_unlock:
mutex_unlock(&slab_mutex);
cpus_read_unlock();
mm/slab_common: fix possible double free of kmem_cache When doing slub_debug test, kfence's 'test_memcache_typesafe_by_rcu' kunit test case cause a use-after-free error: BUG: KASAN: use-after-free in kobject_del+0x14/0x30 Read of size 8 at addr ffff888007679090 by task kunit_try_catch/261 CPU: 1 PID: 261 Comm: kunit_try_catch Tainted: G B N 6.0.0-rc5-next-20220916 #17 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x48 print_address_description.constprop.0+0x87/0x2a5 print_report+0x103/0x1ed kasan_report+0xb7/0x140 kobject_del+0x14/0x30 kmem_cache_destroy+0x130/0x170 test_exit+0x1a/0x30 kunit_try_run_case+0xad/0xc0 kunit_generic_run_threadfn_adapter+0x26/0x50 kthread+0x17b/0x1b0 </TASK> The cause is inside kmem_cache_destroy(): kmem_cache_destroy acquire lock/mutex shutdown_cache schedule_work(kmem_cache_release) (if RCU flag set) release lock/mutex kmem_cache_release (if RCU flag not set) In some certain timing, the scheduled work could be run before the next RCU flag checking, which can then get a wrong value and lead to double kmem_cache_release(). Fix it by caching the RCU flag inside protected area, just like 'refcnt' Fixes: 0495e337b703 ("mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock") Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-09-19 11:12:41 +08:00
if (!refcnt && !rcu_set)
mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock A circular locking problem is reported by lockdep due to the following circular locking dependency. +--> cpu_hotplug_lock --> slab_mutex --> kn->active --+ | | +-----------------------------------------------------+ The forward cpu_hotplug_lock ==> slab_mutex ==> kn->active dependency happens in kmem_cache_destroy(): cpus_read_lock(); mutex_lock(&slab_mutex); ==> sysfs_slab_unlink() ==> kobject_del() ==> kernfs_remove() ==> __kernfs_remove() ==> kernfs_drain(): rwsem_acquire(&kn->dep_map, ...); The backward kn->active ==> cpu_hotplug_lock dependency happens in kernfs_fop_write_iter(): kernfs_get_active(); ==> slab_attr_store() ==> cpu_partial_store() ==> flush_all(): cpus_read_lock() One way to break this circular locking chain is to avoid holding cpu_hotplug_lock and slab_mutex while deleting the kobject in sysfs_slab_unlink() which should be equivalent to doing a write_lock and write_unlock pair of the kn->active virtual lock. Since the kobject structures are not protected by slab_mutex or the cpu_hotplug_lock, we can certainly release those locks before doing the delete operation. Move sysfs_slab_unlink() and sysfs_slab_release() to the newly created kmem_cache_release() and call it outside the slab_mutex & cpu_hotplug_lock critical sections. There will be a slight delay in the deletion of sysfs files if kmem_cache_release() is called indirectly from a work function. Fixes: 5a836bf6b09f ("mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context") Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: David Rientjes <rientjes@google.com> Link: https://lore.kernel.org/all/YwOImVd+nRUsSAga@hyeyoo/ Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-08-13 02:30:33 +08:00
kmem_cache_release(s);
}
EXPORT_SYMBOL(kmem_cache_destroy);
slab: get_online_mems for kmem_cache_{create,destroy,shrink} When we create a sl[au]b cache, we allocate kmem_cache_node structures for each online NUMA node. To handle nodes taken online/offline, we register memory hotplug notifier and allocate/free kmem_cache_node corresponding to the node that changes its state for each kmem cache. To synchronize between the two paths we hold the slab_mutex during both the cache creationg/destruction path and while tuning per-node parts of kmem caches in memory hotplug handler, but that's not quite right, because it does not guarantee that a newly created cache will have all kmem_cache_nodes initialized in case it races with memory hotplug. For instance, in case of slub: CPU0 CPU1 ---- ---- kmem_cache_create: online_pages: __kmem_cache_create: slab_memory_callback: slab_mem_going_online_callback: lock slab_mutex for each slab_caches list entry allocate kmem_cache node unlock slab_mutex lock slab_mutex init_kmem_cache_nodes: for_each_node_state(node, N_NORMAL_MEMORY) allocate kmem_cache node add kmem_cache to slab_caches list unlock slab_mutex online_pages (continued): node_states_set_node As a result we'll get a kmem cache with not all kmem_cache_nodes allocated. To avoid issues like that we should hold get/put_online_mems() during the whole kmem cache creation/destruction/shrink paths, just like we deal with cpu hotplug. This patch does the trick. Note, that after it's applied, there is no need in taking the slab_mutex for kmem_cache_shrink any more, so it is removed from there. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:20 +08:00
/**
* kmem_cache_shrink - Shrink a cache.
* @cachep: The cache to shrink.
*
* Releases as many slabs as possible for a cache.
* To help debugging, a zero exit status indicates all slabs were released.
*
* Return: %0 if all slabs were released, non-zero otherwise
slab: get_online_mems for kmem_cache_{create,destroy,shrink} When we create a sl[au]b cache, we allocate kmem_cache_node structures for each online NUMA node. To handle nodes taken online/offline, we register memory hotplug notifier and allocate/free kmem_cache_node corresponding to the node that changes its state for each kmem cache. To synchronize between the two paths we hold the slab_mutex during both the cache creationg/destruction path and while tuning per-node parts of kmem caches in memory hotplug handler, but that's not quite right, because it does not guarantee that a newly created cache will have all kmem_cache_nodes initialized in case it races with memory hotplug. For instance, in case of slub: CPU0 CPU1 ---- ---- kmem_cache_create: online_pages: __kmem_cache_create: slab_memory_callback: slab_mem_going_online_callback: lock slab_mutex for each slab_caches list entry allocate kmem_cache node unlock slab_mutex lock slab_mutex init_kmem_cache_nodes: for_each_node_state(node, N_NORMAL_MEMORY) allocate kmem_cache node add kmem_cache to slab_caches list unlock slab_mutex online_pages (continued): node_states_set_node As a result we'll get a kmem cache with not all kmem_cache_nodes allocated. To avoid issues like that we should hold get/put_online_mems() during the whole kmem cache creation/destruction/shrink paths, just like we deal with cpu hotplug. This patch does the trick. Note, that after it's applied, there is no need in taking the slab_mutex for kmem_cache_shrink any more, so it is removed from there. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:20 +08:00
*/
int kmem_cache_shrink(struct kmem_cache *cachep)
{
mm: kasan: initial memory quarantine implementation Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. When the object is freed, its state changes from KASAN_STATE_ALLOC to KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine instead of being returned to the allocator, therefore every subsequent access to that object triggers a KASAN error, and the error handler is able to say where the object has been allocated and deallocated. When it's time for the object to leave quarantine, its state becomes KASAN_STATE_FREE and it's returned to the allocator. From now on the allocator may reuse it for another allocation. Before that happens, it's still possible to detect a use-after free on that object (it retains the allocation/deallocation stacks). When the allocator reuses this object, the shadow is unpoisoned and old allocation/deallocation stacks are wiped. Therefore a use of this object, even an incorrect one, won't trigger ASan warning. Without the quarantine, it's not guaranteed that the objects aren't reused immediately, that's why the probability of catching a use-after-free is lower than with quarantine in place. Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. Freed objects are first added to per-cpu quarantine queues. When a cache is destroyed or memory shrinking is requested, the objects are moved into the global quarantine queue. Whenever a kmalloc call allows memory reclaiming, the oldest objects are popped out of the global queue until the total size of objects in quarantine is less than 3/4 of the maximum quarantine size (which is a fraction of installed physical memory). As long as an object remains in the quarantine, KASAN is able to report accesses to it, so the chance of reporting a use-after-free is increased. Once the object leaves quarantine, the allocator may reuse it, in which case the object is unpoisoned and KASAN can't detect incorrect accesses to it. Right now quarantine support is only enabled in SLAB allocator. Unification of KASAN features in SLAB and SLUB will be done later. This patch is based on the "mm: kasan: quarantine" patch originally prepared by Dmitry Chernenkov. A number of improvements have been suggested by Andrey Ryabinin. [glider@google.com: v9] Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 07:59:11 +08:00
kasan_cache_shrink(cachep);
mm, slab, slub: stop taking memory hotplug lock Since commit 03afc0e25f7f ("slab: get_online_mems for kmem_cache_{create,destroy,shrink}") we are taking memory hotplug lock for SLAB and SLUB when creating, destroying or shrinking a cache. It is quite a heavy lock and it's best to avoid it if possible, as we had several issues with lockdep complaining about ordering in the past, see e.g. e4f8e513c3d3 ("mm/slub: fix a deadlock in show_slab_objects()"). The problem scenario in 03afc0e25f7f (solved by the memory hotplug lock) can be summarized as follows: while there's slab_mutex synchronizing new kmem cache creation and SLUB's MEM_GOING_ONLINE callback slab_mem_going_online_callback(), we may miss creation of kmem_cache_node for the hotplugged node in the new kmem cache, because the hotplug callback doesn't yet see the new cache, and cache creation in init_kmem_cache_nodes() only inits kmem_cache_node for nodes in the N_NORMAL_MEMORY nodemask, which however may not yet include the new node, as that happens only later after the MEM_GOING_ONLINE callback. Instead of using get/put_online_mems(), the problem can be solved by SLUB maintaining its own nodemask of nodes for which it has allocated the per-node kmem_cache_node structures. This nodemask would generally mirror the N_NORMAL_MEMORY nodemask, but would be updated only in under SLUB's control in its memory hotplug callbacks under the slab_mutex. This patch adds such nodemask and its handling. Commit 03afc0e25f7f mentiones "issues like [the one above]", but there don't appear to be further issues. All the paths (shared for SLAB and SLUB) taking the memory hotplug locks are also taking the slab_mutex, except kmem_cache_shrink() where 03afc0e25f7f replaced slab_mutex with get/put_online_mems(). We however cannot simply restore slab_mutex in kmem_cache_shrink(), as SLUB can enters the function from a write to sysfs 'shrink' file, thus holding kernfs lock, and in kmem_cache_create() the kernfs lock is nested within slab_mutex. But on closer inspection we don't actually need to protect kmem_cache_shrink() from hotplug callbacks: While SLUB's __kmem_cache_shrink() does for_each_kmem_cache_node(), missing a new node added in parallel hotplug is not fatal, and parallel hotremove does not free kmem_cache_node's anymore after the previous patch, so use-after free cannot happen. The per-node shrinking itself is protected by n->list_lock. Same is true for SLAB, and SLOB is no-op. SLAB also doesn't need the memory hotplug locking, which it only gained by 03afc0e25f7f through the shared paths in slab_common.c. Its memory hotplug callbacks are also protected by slab_mutex against races with these paths. The problem of SLUB relying on N_NORMAL_MEMORY doesn't apply to SLAB, as its setup_kmem_cache_nodes relies on N_ONLINE, and the new node is already set there during the MEM_GOING_ONLINE callback, so no special care is needed for SLAB. As such, this patch removes all get/put_online_mems() usage by the slab subsystem. Link: https://lkml.kernel.org/r/20210113131634.3671-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Qian Cai <cai@redhat.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:01:12 +08:00
return __kmem_cache_shrink(cachep);
slab: get_online_mems for kmem_cache_{create,destroy,shrink} When we create a sl[au]b cache, we allocate kmem_cache_node structures for each online NUMA node. To handle nodes taken online/offline, we register memory hotplug notifier and allocate/free kmem_cache_node corresponding to the node that changes its state for each kmem cache. To synchronize between the two paths we hold the slab_mutex during both the cache creationg/destruction path and while tuning per-node parts of kmem caches in memory hotplug handler, but that's not quite right, because it does not guarantee that a newly created cache will have all kmem_cache_nodes initialized in case it races with memory hotplug. For instance, in case of slub: CPU0 CPU1 ---- ---- kmem_cache_create: online_pages: __kmem_cache_create: slab_memory_callback: slab_mem_going_online_callback: lock slab_mutex for each slab_caches list entry allocate kmem_cache node unlock slab_mutex lock slab_mutex init_kmem_cache_nodes: for_each_node_state(node, N_NORMAL_MEMORY) allocate kmem_cache node add kmem_cache to slab_caches list unlock slab_mutex online_pages (continued): node_states_set_node As a result we'll get a kmem cache with not all kmem_cache_nodes allocated. To avoid issues like that we should hold get/put_online_mems() during the whole kmem cache creation/destruction/shrink paths, just like we deal with cpu hotplug. This patch does the trick. Note, that after it's applied, there is no need in taking the slab_mutex for kmem_cache_shrink any more, so it is removed from there. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 07:07:20 +08:00
}
EXPORT_SYMBOL(kmem_cache_shrink);
bool slab_is_available(void)
{
return slab_state >= UP;
}
#ifdef CONFIG_PRINTK
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
/**
* kmem_valid_obj - does the pointer reference a valid slab object?
* @object: pointer to query.
*
* Return: %true if the pointer is to a not-yet-freed object from
* kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
* is to an already-freed object, and %false otherwise.
*/
bool kmem_valid_obj(void *object)
{
struct folio *folio;
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
return false;
folio = virt_to_folio(object);
return folio_test_slab(folio);
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
}
EXPORT_SYMBOL_GPL(kmem_valid_obj);
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
{
if (__kfence_obj_info(kpp, object, slab))
return;
__kmem_obj_info(kpp, object, slab);
}
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
/**
* kmem_dump_obj - Print available slab provenance information
* @object: slab object for which to find provenance information.
*
* This function uses pr_cont(), so that the caller is expected to have
* printed out whatever preamble is appropriate. The provenance information
* depends on the type of object and on how much debugging is enabled.
* For a slab-cache object, the fact that it is a slab object is printed,
* and, if available, the slab name, return address, and stack trace from
* the allocation and last free path of that object.
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
*
* This function will splat if passed a pointer to a non-slab object.
* If you are not sure what type of object you have, you should instead
* use mem_dump_obj().
*/
void kmem_dump_obj(void *object)
{
char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
int i;
struct slab *slab;
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
unsigned long ptroffset;
struct kmem_obj_info kp = { };
if (WARN_ON_ONCE(!virt_addr_valid(object)))
return;
slab = virt_to_slab(object);
if (WARN_ON_ONCE(!slab)) {
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
pr_cont(" non-slab memory.\n");
return;
}
kmem_obj_info(&kp, object, slab);
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
if (kp.kp_slab_cache)
pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
else
pr_cont(" slab%s", cp);
if (is_kfence_address(object))
pr_cont(" (kfence)");
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
if (kp.kp_objp)
pr_cont(" start %px", kp.kp_objp);
if (kp.kp_data_offset)
pr_cont(" data offset %lu", kp.kp_data_offset);
if (kp.kp_objp) {
ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
pr_cont(" pointer offset %lu", ptroffset);
}
if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
pr_cont(" size %u", kp.kp_slab_cache->object_size);
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
if (kp.kp_ret)
pr_cont(" allocated at %pS\n", kp.kp_ret);
else
pr_cont("\n");
for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
if (!kp.kp_stack[i])
break;
pr_info(" %pS\n", kp.kp_stack[i]);
}
if (kp.kp_free_stack[0])
pr_cont(" Free path:\n");
for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
if (!kp.kp_free_stack[i])
break;
pr_info(" %pS\n", kp.kp_free_stack[i]);
}
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
}
EXPORT_SYMBOL_GPL(kmem_dump_obj);
#endif
mm: Add mem_dump_obj() to print source of memory block There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-08 09:41:02 +08:00
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize)
{
int err;
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two) In most configurations, kmalloc() happens to return naturally aligned (i.e. aligned to the block size itself) blocks for power of two sizes. That means some kmalloc() users might unknowingly rely on that alignment, until stuff breaks when the kernel is built with e.g. CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then developers have to devise workaround such as own kmem caches with specified alignment [1], which is not always practical, as recently evidenced in [2]. The topic has been discussed at LSF/MM 2019 [3]. Adding a 'kmalloc_aligned()' variant would not help with code unknowingly relying on the implicit alignment. For slab implementations it would either require creating more kmalloc caches, or allocate a larger size and only give back part of it. That would be wasteful, especially with a generic alignment parameter (in contrast with a fixed alignment to size). Ideally we should provide to mm users what they need without difficult workarounds or own reimplementations, so let's make the kmalloc() alignment to size explicitly guaranteed for power-of-two sizes under all configurations. What this means for the three available allocators? * SLAB object layout happens to be mostly unchanged by the patch. The implicitly provided alignment could be compromised with CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for caches with alignment larger than unsigned long long. Practically on at least x86 this includes kmalloc caches as they use cache line alignment, which is larger than that. Still, this patch ensures alignment on all arches and cache sizes. * SLUB layout is also unchanged unless redzoning is enabled through CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache. With this patch, explicit alignment is guaranteed with redzoning as well. This will result in more memory being wasted, but that should be acceptable in a debugging scenario. * SLOB has no implicit alignment so this patch adds it explicitly for kmalloc(). The potential downside is increased fragmentation. While pathological allocation scenarios are certainly possible, in my testing, after booting a x86_64 kernel+userspace with virtme, around 16MB memory was consumed by slab pages both before and after the patch, with difference in the noise. [1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/ [2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/ [3] https://lwn.net/Articles/787740/ [akpm@linux-foundation.org: documentation fixlet, per Matthew] Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Cc: David Sterba <dsterba@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: "Darrick J . Wong" <darrick.wong@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
unsigned int align = ARCH_KMALLOC_MINALIGN;
s->name = name;
s->size = s->object_size = size;
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two) In most configurations, kmalloc() happens to return naturally aligned (i.e. aligned to the block size itself) blocks for power of two sizes. That means some kmalloc() users might unknowingly rely on that alignment, until stuff breaks when the kernel is built with e.g. CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then developers have to devise workaround such as own kmem caches with specified alignment [1], which is not always practical, as recently evidenced in [2]. The topic has been discussed at LSF/MM 2019 [3]. Adding a 'kmalloc_aligned()' variant would not help with code unknowingly relying on the implicit alignment. For slab implementations it would either require creating more kmalloc caches, or allocate a larger size and only give back part of it. That would be wasteful, especially with a generic alignment parameter (in contrast with a fixed alignment to size). Ideally we should provide to mm users what they need without difficult workarounds or own reimplementations, so let's make the kmalloc() alignment to size explicitly guaranteed for power-of-two sizes under all configurations. What this means for the three available allocators? * SLAB object layout happens to be mostly unchanged by the patch. The implicitly provided alignment could be compromised with CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for caches with alignment larger than unsigned long long. Practically on at least x86 this includes kmalloc caches as they use cache line alignment, which is larger than that. Still, this patch ensures alignment on all arches and cache sizes. * SLUB layout is also unchanged unless redzoning is enabled through CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache. With this patch, explicit alignment is guaranteed with redzoning as well. This will result in more memory being wasted, but that should be acceptable in a debugging scenario. * SLOB has no implicit alignment so this patch adds it explicitly for kmalloc(). The potential downside is increased fragmentation. While pathological allocation scenarios are certainly possible, in my testing, after booting a x86_64 kernel+userspace with virtme, around 16MB memory was consumed by slab pages both before and after the patch, with difference in the noise. [1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/ [2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/ [3] https://lwn.net/Articles/787740/ [akpm@linux-foundation.org: documentation fixlet, per Matthew] Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Cc: David Sterba <dsterba@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: "Darrick J . Wong" <darrick.wong@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:45 +08:00
/*
* For power of two sizes, guarantee natural alignment for kmalloc
* caches, regardless of SL*B debugging options.
*/
if (is_power_of_2(size))
align = max(align, size);
s->align = calculate_alignment(flags, align, size);
#ifdef CONFIG_HARDENED_USERCOPY
usercopy: Prepare for usercopy whitelisting This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-06-11 10:50:28 +08:00
s->useroffset = useroffset;
s->usersize = usersize;
#endif
slab: embed memcg_cache_params to kmem_cache Currently, kmem_cache stores a pointer to struct memcg_cache_params instead of embedding it. The rationale is to save memory when kmem accounting is disabled. However, the memcg_cache_params has shrivelled drastically since it was first introduced: * Initially: struct memcg_cache_params { bool is_root_cache; union { struct kmem_cache *memcg_caches[0]; struct { struct mem_cgroup *memcg; struct list_head list; struct kmem_cache *root_cache; bool dead; atomic_t nr_pages; struct work_struct destroy; }; }; }; * Now: struct memcg_cache_params { bool is_root_cache; union { struct { struct rcu_head rcu_head; struct kmem_cache *memcg_caches[0]; }; struct { struct mem_cgroup *memcg; struct kmem_cache *root_cache; }; }; }; So the memory saving does not seem to be a clear win anymore. OTOH, keeping a pointer to memcg_cache_params struct instead of embedding it results in touching one more cache line on kmem alloc/free hot paths. Besides, it makes linking kmem caches in a list chained by a field of struct memcg_cache_params really painful due to a level of indirection, while I want to make them linked in the following patch. That said, let us embed it. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 06:59:20 +08:00
err = __kmem_cache_create(s, flags);
if (err)
panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
name, size, err);
s->refcount = -1; /* Exempt from merging for now */
}
struct kmem_cache *__init create_kmalloc_cache(const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize)
{
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
if (!s)
panic("Out of memory when creating slab %s\n", name);
mm/slub: enable debugging memory wasting of kmalloc kmalloc's API family is critical for mm, with one nature that it will round up the request size to a fixed one (mostly power of 2). Say when user requests memory for '2^n + 1' bytes, actually 2^(n+1) bytes could be allocated, so in worst case, there is around 50% memory space waste. The wastage is not a big issue for requests that get allocated/freed quickly, but may cause problems with objects that have longer life time. We've met a kernel boot OOM panic (v5.10), and from the dumped slab info: [ 26.062145] kmalloc-2k 814056KB 814056KB From debug we found there are huge number of 'struct iova_magazine', whose size is 1032 bytes (1024 + 8), so each allocation will waste 1016 bytes. Though the issue was solved by giving the right (bigger) size of RAM, it is still nice to optimize the size (either use a kmalloc friendly size or create a dedicated slab for it). And from lkml archive, there was another crash kernel OOM case [1] back in 2019, which seems to be related with the similar slab waste situation, as the log is similar: [ 4.332648] iommu: Adding device 0000:20:02.0 to group 16 [ 4.338946] swapper/0 invoked oom-killer: gfp_mask=0x6040c0(GFP_KERNEL|__GFP_COMP), nodemask=(null), order=0, oom_score_adj=0 ... [ 4.857565] kmalloc-2048 59164KB 59164KB The crash kernel only has 256M memory, and 59M is pretty big here. (Note: the related code has been changed and optimised in recent kernel [2], these logs are just picked to demo the problem, also a patch changing its size to 1024 bytes has been merged) So add an way to track each kmalloc's memory waste info, and leverage the existing SLUB debug framework (specifically SLUB_STORE_USER) to show its call stack of original allocation, so that user can evaluate the waste situation, identify some hot spots and optimize accordingly, for a better utilization of memory. The waste info is integrated into existing interface: '/sys/kernel/debug/slab/kmalloc-xx/alloc_traces', one example of 'kmalloc-4k' after boot is: 126 ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe] waste=233856/1856 age=280763/281414/282065 pid=1330 cpus=32 nodes=1 __kmem_cache_alloc_node+0x11f/0x4e0 __kmalloc_node+0x4e/0x140 ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe] ixgbe_init_interrupt_scheme+0x2ae/0xc90 [ixgbe] ixgbe_probe+0x165f/0x1d20 [ixgbe] local_pci_probe+0x78/0xc0 work_for_cpu_fn+0x26/0x40 ... which means in 'kmalloc-4k' slab, there are 126 requests of 2240 bytes which got a 4KB space (wasting 1856 bytes each and 233856 bytes in total), from ixgbe_alloc_q_vector(). And when system starts some real workload like multiple docker instances, there could are more severe waste. [1]. https://lkml.org/lkml/2019/8/12/266 [2]. https://lore.kernel.org/lkml/2920df89-9975-5785-f79b-257d3052dfaf@huawei.com/ [Thanks Hyeonggon for pointing out several bugs about sorting/format] [Thanks Vlastimil for suggesting way to reduce memory usage of orig_size and keep it only for kmalloc objects] Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: John Garry <john.garry@huawei.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-09-13 14:54:20 +08:00
create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
usersize);
list_add(&s->list, &slab_caches);
s->refcount = 1;
return s;
}
mm, slab: combine kmalloc_caches and kmalloc_dma_caches Patch series "kmalloc-reclaimable caches", v4. As discussed at LSF/MM [1] here's a patchset that introduces kmalloc-reclaimable caches (more details in the second patch) and uses them for dcache external names. That allows us to repurpose the NR_INDIRECTLY_RECLAIMABLE_BYTES counter later in the series. With patch 3/6, dcache external names are allocated from kmalloc-rcl-* caches, eliminating the need for manual accounting. More importantly, it also ensures the reclaimable kmalloc allocations are grouped in pages separate from the regular kmalloc allocations. The need for proper accounting of dcache external names has shown it's easy for misbehaving process to allocate lots of them, causing premature OOMs. Without the added grouping, it's likely that a similar workload can interleave the dcache external names allocations with regular kmalloc allocations (note: I haven't searched myself for an example of such regular kmalloc allocation, but I would be very surprised if there wasn't some). A pathological case would be e.g. one 64byte regular allocations with 63 external dcache names in a page (64x64=4096), which means the page is not freed even after reclaiming after all dcache names, and the process can thus "steal" the whole page with single 64byte allocation. If other kmalloc users similar to dcache external names become identified, they can also benefit from the new functionality simply by adding __GFP_RECLAIMABLE to the kmalloc calls. Side benefits of the patchset (that could be also merged separately) include removed branch for detecting __GFP_DMA kmalloc(), and shortening kmalloc cache names in /proc/slabinfo output. The latter is potentially an ABI break in case there are tools parsing the names and expecting the values to be in bytes. This is how /proc/slabinfo looks like after booting in virtme: ... kmalloc-rcl-4M 0 0 4194304 1 1024 : tunables 1 1 0 : slabdata 0 0 0 ... kmalloc-rcl-96 7 32 128 32 1 : tunables 120 60 8 : slabdata 1 1 0 kmalloc-rcl-64 25 128 64 64 1 : tunables 120 60 8 : slabdata 2 2 0 kmalloc-rcl-32 0 0 32 124 1 : tunables 120 60 8 : slabdata 0 0 0 kmalloc-4M 0 0 4194304 1 1024 : tunables 1 1 0 : slabdata 0 0 0 kmalloc-2M 0 0 2097152 1 512 : tunables 1 1 0 : slabdata 0 0 0 kmalloc-1M 0 0 1048576 1 256 : tunables 1 1 0 : slabdata 0 0 0 ... /proc/vmstat with renamed nr_indirectly_reclaimable_bytes counter: ... nr_slab_reclaimable 2817 nr_slab_unreclaimable 1781 ... nr_kernel_misc_reclaimable 0 ... /proc/meminfo with new KReclaimable counter: ... Shmem: 564 kB KReclaimable: 11260 kB Slab: 18368 kB SReclaimable: 11260 kB SUnreclaim: 7108 kB KernelStack: 1248 kB ... This patch (of 6): The kmalloc caches currently mainain separate (optional) array kmalloc_dma_caches for __GFP_DMA allocations. There are tests for __GFP_DMA in the allocation hotpaths. We can avoid the branches by combining kmalloc_caches and kmalloc_dma_caches into a single two-dimensional array where the outer dimension is cache "type". This will also allow to add kmalloc-reclaimable caches as a third type. Link: http://lkml.kernel.org/r/20180731090649.16028-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:05:34 +08:00
struct kmem_cache *
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
EXPORT_SYMBOL(kmalloc_caches);
/*
* Conversion table for small slabs sizes / 8 to the index in the
* kmalloc array. This is necessary for slabs < 192 since we have non power
* of two cache sizes there. The size of larger slabs can be determined using
* fls.
*/
static u8 size_index[24] __ro_after_init = {
3, /* 8 */
4, /* 16 */
5, /* 24 */
5, /* 32 */
6, /* 40 */
6, /* 48 */
6, /* 56 */
6, /* 64 */
1, /* 72 */
1, /* 80 */
1, /* 88 */
1, /* 96 */
7, /* 104 */
7, /* 112 */
7, /* 120 */
7, /* 128 */
2, /* 136 */
2, /* 144 */
2, /* 152 */
2, /* 160 */
2, /* 168 */
2, /* 176 */
2, /* 184 */
2 /* 192 */
};
static inline unsigned int size_index_elem(unsigned int bytes)
{
return (bytes - 1) / 8;
}
/*
* Find the kmem_cache structure that serves a given size of
* allocation
*/
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
unsigned int index;
if (size <= 192) {
if (!size)
return ZERO_SIZE_PTR;
index = size_index[size_index_elem(size)];
mm: don't warn about large allocations for slab Slub does not call kmalloc_slab() for sizes > KMALLOC_MAX_CACHE_SIZE, instead it falls back to kmalloc_large(). For slab KMALLOC_MAX_CACHE_SIZE == KMALLOC_MAX_SIZE and it calls kmalloc_slab() for all allocations relying on NULL return value for over-sized allocations. This inconsistency leads to unwanted warnings from kmalloc_slab() for over-sized allocations for slab. Returning NULL for failed allocations is the expected behavior. Make slub and slab code consistent by checking size > KMALLOC_MAX_CACHE_SIZE in slab before calling kmalloc_slab(). While we are here also fix the check in kmalloc_slab(). We should check against KMALLOC_MAX_CACHE_SIZE rather than KMALLOC_MAX_SIZE. It all kinda worked because for slab the constants are the same, and slub always checks the size against KMALLOC_MAX_CACHE_SIZE before kmalloc_slab(). But if we get there with size > KMALLOC_MAX_CACHE_SIZE anyhow bad things will happen. For example, in case of a newly introduced bug in slub code. Also move the check in kmalloc_slab() from function entry to the size > 192 case. This partially compensates for the additional check in slab code and makes slub code a bit faster (at least theoretically). Also drop __GFP_NOWARN in the warning check. This warning means a bug in slab code itself, user-passed flags have nothing to do with it. Nothing of this affects slob. Link: http://lkml.kernel.org/r/20180927171502.226522-1-dvyukov@gmail.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: syzbot+87829a10073277282ad1@syzkaller.appspotmail.com Reported-by: syzbot+ef4e8fc3a06e9019bb40@syzkaller.appspotmail.com Reported-by: syzbot+6e438f4036df52cbb863@syzkaller.appspotmail.com Reported-by: syzbot+8574471d8734457d98aa@syzkaller.appspotmail.com Reported-by: syzbot+af1504df0807a083dbd9@syzkaller.appspotmail.com Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:03:12 +08:00
} else {
if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
mm: don't warn about large allocations for slab Slub does not call kmalloc_slab() for sizes > KMALLOC_MAX_CACHE_SIZE, instead it falls back to kmalloc_large(). For slab KMALLOC_MAX_CACHE_SIZE == KMALLOC_MAX_SIZE and it calls kmalloc_slab() for all allocations relying on NULL return value for over-sized allocations. This inconsistency leads to unwanted warnings from kmalloc_slab() for over-sized allocations for slab. Returning NULL for failed allocations is the expected behavior. Make slub and slab code consistent by checking size > KMALLOC_MAX_CACHE_SIZE in slab before calling kmalloc_slab(). While we are here also fix the check in kmalloc_slab(). We should check against KMALLOC_MAX_CACHE_SIZE rather than KMALLOC_MAX_SIZE. It all kinda worked because for slab the constants are the same, and slub always checks the size against KMALLOC_MAX_CACHE_SIZE before kmalloc_slab(). But if we get there with size > KMALLOC_MAX_CACHE_SIZE anyhow bad things will happen. For example, in case of a newly introduced bug in slub code. Also move the check in kmalloc_slab() from function entry to the size > 192 case. This partially compensates for the additional check in slab code and makes slub code a bit faster (at least theoretically). Also drop __GFP_NOWARN in the warning check. This warning means a bug in slab code itself, user-passed flags have nothing to do with it. Nothing of this affects slob. Link: http://lkml.kernel.org/r/20180927171502.226522-1-dvyukov@gmail.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: syzbot+87829a10073277282ad1@syzkaller.appspotmail.com Reported-by: syzbot+ef4e8fc3a06e9019bb40@syzkaller.appspotmail.com Reported-by: syzbot+6e438f4036df52cbb863@syzkaller.appspotmail.com Reported-by: syzbot+8574471d8734457d98aa@syzkaller.appspotmail.com Reported-by: syzbot+af1504df0807a083dbd9@syzkaller.appspotmail.com Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:03:12 +08:00
return NULL;
index = fls(size - 1);
mm: don't warn about large allocations for slab Slub does not call kmalloc_slab() for sizes > KMALLOC_MAX_CACHE_SIZE, instead it falls back to kmalloc_large(). For slab KMALLOC_MAX_CACHE_SIZE == KMALLOC_MAX_SIZE and it calls kmalloc_slab() for all allocations relying on NULL return value for over-sized allocations. This inconsistency leads to unwanted warnings from kmalloc_slab() for over-sized allocations for slab. Returning NULL for failed allocations is the expected behavior. Make slub and slab code consistent by checking size > KMALLOC_MAX_CACHE_SIZE in slab before calling kmalloc_slab(). While we are here also fix the check in kmalloc_slab(). We should check against KMALLOC_MAX_CACHE_SIZE rather than KMALLOC_MAX_SIZE. It all kinda worked because for slab the constants are the same, and slub always checks the size against KMALLOC_MAX_CACHE_SIZE before kmalloc_slab(). But if we get there with size > KMALLOC_MAX_CACHE_SIZE anyhow bad things will happen. For example, in case of a newly introduced bug in slub code. Also move the check in kmalloc_slab() from function entry to the size > 192 case. This partially compensates for the additional check in slab code and makes slub code a bit faster (at least theoretically). Also drop __GFP_NOWARN in the warning check. This warning means a bug in slab code itself, user-passed flags have nothing to do with it. Nothing of this affects slob. Link: http://lkml.kernel.org/r/20180927171502.226522-1-dvyukov@gmail.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: syzbot+87829a10073277282ad1@syzkaller.appspotmail.com Reported-by: syzbot+ef4e8fc3a06e9019bb40@syzkaller.appspotmail.com Reported-by: syzbot+6e438f4036df52cbb863@syzkaller.appspotmail.com Reported-by: syzbot+8574471d8734457d98aa@syzkaller.appspotmail.com Reported-by: syzbot+af1504df0807a083dbd9@syzkaller.appspotmail.com Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:03:12 +08:00
}
mm, slab: combine kmalloc_caches and kmalloc_dma_caches Patch series "kmalloc-reclaimable caches", v4. As discussed at LSF/MM [1] here's a patchset that introduces kmalloc-reclaimable caches (more details in the second patch) and uses them for dcache external names. That allows us to repurpose the NR_INDIRECTLY_RECLAIMABLE_BYTES counter later in the series. With patch 3/6, dcache external names are allocated from kmalloc-rcl-* caches, eliminating the need for manual accounting. More importantly, it also ensures the reclaimable kmalloc allocations are grouped in pages separate from the regular kmalloc allocations. The need for proper accounting of dcache external names has shown it's easy for misbehaving process to allocate lots of them, causing premature OOMs. Without the added grouping, it's likely that a similar workload can interleave the dcache external names allocations with regular kmalloc allocations (note: I haven't searched myself for an example of such regular kmalloc allocation, but I would be very surprised if there wasn't some). A pathological case would be e.g. one 64byte regular allocations with 63 external dcache names in a page (64x64=4096), which means the page is not freed even after reclaiming after all dcache names, and the process can thus "steal" the whole page with single 64byte allocation. If other kmalloc users similar to dcache external names become identified, they can also benefit from the new functionality simply by adding __GFP_RECLAIMABLE to the kmalloc calls. Side benefits of the patchset (that could be also merged separately) include removed branch for detecting __GFP_DMA kmalloc(), and shortening kmalloc cache names in /proc/slabinfo output. The latter is potentially an ABI break in case there are tools parsing the names and expecting the values to be in bytes. This is how /proc/slabinfo looks like after booting in virtme: ... kmalloc-rcl-4M 0 0 4194304 1 1024 : tunables 1 1 0 : slabdata 0 0 0 ... kmalloc-rcl-96 7 32 128 32 1 : tunables 120 60 8 : slabdata 1 1 0 kmalloc-rcl-64 25 128 64 64 1 : tunables 120 60 8 : slabdata 2 2 0 kmalloc-rcl-32 0 0 32 124 1 : tunables 120 60 8 : slabdata 0 0 0 kmalloc-4M 0 0 4194304 1 1024 : tunables 1 1 0 : slabdata 0 0 0 kmalloc-2M 0 0 2097152 1 512 : tunables 1 1 0 : slabdata 0 0 0 kmalloc-1M 0 0 1048576 1 256 : tunables 1 1 0 : slabdata 0 0 0 ... /proc/vmstat with renamed nr_indirectly_reclaimable_bytes counter: ... nr_slab_reclaimable 2817 nr_slab_unreclaimable 1781 ... nr_kernel_misc_reclaimable 0 ... /proc/meminfo with new KReclaimable counter: ... Shmem: 564 kB KReclaimable: 11260 kB Slab: 18368 kB SReclaimable: 11260 kB SUnreclaim: 7108 kB KernelStack: 1248 kB ... This patch (of 6): The kmalloc caches currently mainain separate (optional) array kmalloc_dma_caches for __GFP_DMA allocations. There are tests for __GFP_DMA in the allocation hotpaths. We can avoid the branches by combining kmalloc_caches and kmalloc_dma_caches into a single two-dimensional array where the outer dimension is cache "type". This will also allow to add kmalloc-reclaimable caches as a third type. Link: http://lkml.kernel.org/r/20180731090649.16028-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:05:34 +08:00
return kmalloc_caches[kmalloc_type(flags)][index];
}
slab: Introduce kmalloc_size_roundup() In the effort to help the compiler reason about buffer sizes, the __alloc_size attribute was added to allocators. This improves the scope of the compiler's ability to apply CONFIG_UBSAN_BOUNDS and (in the near future) CONFIG_FORTIFY_SOURCE. For most allocations, this works well, as the vast majority of callers are not expecting to use more memory than what they asked for. There is, however, one common exception to this: anticipatory resizing of kmalloc allocations. These cases all use ksize() to determine the actual bucket size of a given allocation (e.g. 128 when 126 was asked for). This comes in two styles in the kernel: 1) An allocation has been determined to be too small, and needs to be resized. Instead of the caller choosing its own next best size, it wants to minimize the number of calls to krealloc(), so it just uses ksize() plus some additional bytes, forcing the realloc into the next bucket size, from which it can learn how large it is now. For example: data = krealloc(data, ksize(data) + 1, gfp); data_len = ksize(data); 2) The minimum size of an allocation is calculated, but since it may grow in the future, just use all the space available in the chosen bucket immediately, to avoid needing to reallocate later. A good example of this is skbuff's allocators: data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); ... /* kmalloc(size) might give us more room than requested. * Put skb_shared_info exactly at the end of allocated zone, * to allow max possible filling before reallocation. */ osize = ksize(data); size = SKB_WITH_OVERHEAD(osize); In both cases, the "how much was actually allocated?" question is answered _after_ the allocation, where the compiler hinting is not in an easy place to make the association any more. This mismatch between the compiler's view of the buffer length and the code's intention about how much it is going to actually use has already caused problems[1]. It is possible to fix this by reordering the use of the "actual size" information. We can serve the needs of users of ksize() and still have accurate buffer length hinting for the compiler by doing the bucket size calculation _before_ the allocation. Code can instead ask "how large an allocation would I get for a given size?". Introduce kmalloc_size_roundup(), to serve this function so we can start replacing the "anticipatory resizing" uses of ksize(). [1] https://github.com/ClangBuiltLinux/linux/issues/1599 https://github.com/KSPP/linux/issues/183 [ vbabka@suse.cz: add SLOB version ] Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-09-24 04:28:08 +08:00
size_t kmalloc_size_roundup(size_t size)
{
struct kmem_cache *c;
/* Short-circuit the 0 size case. */
if (unlikely(size == 0))
return 0;
/* Short-circuit saturated "too-large" case. */
if (unlikely(size == SIZE_MAX))
return SIZE_MAX;
/* Above the smaller buckets, size is a multiple of page size. */
if (size > KMALLOC_MAX_CACHE_SIZE)
return PAGE_SIZE << get_order(size);
/* The flags don't matter since size_index is common to all. */
c = kmalloc_slab(size, GFP_KERNEL);
return c ? c->object_size : 0;
}
EXPORT_SYMBOL(kmalloc_size_roundup);
mm, slab: make kmalloc_info[] contain all types of names Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 09:49:21 +08:00
#ifdef CONFIG_ZONE_DMA
mm: memcg/slab: create a new set of kmalloc-cg-<n> caches There are currently two problems in the way the objcg pointer array (memcg_data) in the page structure is being allocated and freed. On its allocation, it is possible that the allocated objcg pointer array comes from the same slab that requires memory accounting. If this happens, the slab will never become empty again as there is at least one object left (the obj_cgroup array) in the slab. When it is freed, the objcg pointer array object may be the last one in its slab and hence causes kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. One way to solve this problem is to split the kmalloc-<n> caches (KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n> (KMALLOC_NORMAL) caches for unaccounted objects only and a new set of kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All the other caches can still allow a mix of accounted and unaccounted objects. With this change, all the objcg pointer array objects will come from KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So both the recursive kfree() problem and non-freeable slab problem are gone. Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have mixed accounted and unaccounted objects, this will slightly reduce the number of objcg pointer arrays that need to be allocated and save a bit of memory. On the other hand, creating a new set of kmalloc caches does have the effect of reducing cache utilization. So it is properly a wash. The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches() will include the newly added caches without change. [vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem] Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com [akpm@linux-foundation.org: un-fat-finger v5 delta creation] [longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches] Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> [longman@redhat.com: fix for CONFIG_ZONE_DMA=n] Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:37:38 +08:00
#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
#else
#define KMALLOC_DMA_NAME(sz)
#endif
#ifdef CONFIG_MEMCG_KMEM
#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
mm, slab: make kmalloc_info[] contain all types of names Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 09:49:21 +08:00
#else
mm: memcg/slab: create a new set of kmalloc-cg-<n> caches There are currently two problems in the way the objcg pointer array (memcg_data) in the page structure is being allocated and freed. On its allocation, it is possible that the allocated objcg pointer array comes from the same slab that requires memory accounting. If this happens, the slab will never become empty again as there is at least one object left (the obj_cgroup array) in the slab. When it is freed, the objcg pointer array object may be the last one in its slab and hence causes kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. One way to solve this problem is to split the kmalloc-<n> caches (KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n> (KMALLOC_NORMAL) caches for unaccounted objects only and a new set of kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All the other caches can still allow a mix of accounted and unaccounted objects. With this change, all the objcg pointer array objects will come from KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So both the recursive kfree() problem and non-freeable slab problem are gone. Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have mixed accounted and unaccounted objects, this will slightly reduce the number of objcg pointer arrays that need to be allocated and save a bit of memory. On the other hand, creating a new set of kmalloc caches does have the effect of reducing cache utilization. So it is properly a wash. The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches() will include the newly added caches without change. [vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem] Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com [akpm@linux-foundation.org: un-fat-finger v5 delta creation] [longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches] Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> [longman@redhat.com: fix for CONFIG_ZONE_DMA=n] Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:37:38 +08:00
#define KMALLOC_CGROUP_NAME(sz)
#endif
#ifndef CONFIG_SLUB_TINY
#define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
#else
#define KMALLOC_RCL_NAME(sz)
#endif
mm, slab: make kmalloc_info[] contain all types of names Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 09:49:21 +08:00
#define INIT_KMALLOC_INFO(__size, __short_size) \
{ \
.name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
KMALLOC_RCL_NAME(__short_size) \
mm: memcg/slab: create a new set of kmalloc-cg-<n> caches There are currently two problems in the way the objcg pointer array (memcg_data) in the page structure is being allocated and freed. On its allocation, it is possible that the allocated objcg pointer array comes from the same slab that requires memory accounting. If this happens, the slab will never become empty again as there is at least one object left (the obj_cgroup array) in the slab. When it is freed, the objcg pointer array object may be the last one in its slab and hence causes kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. One way to solve this problem is to split the kmalloc-<n> caches (KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n> (KMALLOC_NORMAL) caches for unaccounted objects only and a new set of kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All the other caches can still allow a mix of accounted and unaccounted objects. With this change, all the objcg pointer array objects will come from KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So both the recursive kfree() problem and non-freeable slab problem are gone. Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have mixed accounted and unaccounted objects, this will slightly reduce the number of objcg pointer arrays that need to be allocated and save a bit of memory. On the other hand, creating a new set of kmalloc caches does have the effect of reducing cache utilization. So it is properly a wash. The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches() will include the newly added caches without change. [vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem] Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com [akpm@linux-foundation.org: un-fat-finger v5 delta creation] [longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches] Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> [longman@redhat.com: fix for CONFIG_ZONE_DMA=n] Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:37:38 +08:00
KMALLOC_CGROUP_NAME(__short_size) \
KMALLOC_DMA_NAME(__short_size) \
mm, slab: make kmalloc_info[] contain all types of names Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 09:49:21 +08:00
.size = __size, \
}
/*
* kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
* kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
* kmalloc-2M.
*/
mm, slab: rename kmalloc-node cache to kmalloc-<size> SLAB as part of its bootstrap pre-creates one kmalloc cache that can fit the kmem_cache_node management structure, and puts it into the generic kmalloc cache array (e.g. for 128b objects). The name of this cache is "kmalloc-node", which is confusing for readers of /proc/slabinfo as the cache is used for generic allocations (and not just the kmem_cache_node struct) and it appears as the kmalloc-128 cache is missing. An easy solution is to use the kmalloc-<size> name when pre-creating the cache, which we can get from the kmalloc_info array. Example /proc/slabinfo before the patch: ... kmalloc-256 1647 1984 256 16 1 : tunables 120 60 8 : slabdata 124 124 828 kmalloc-192 1974 1974 192 21 1 : tunables 120 60 8 : slabdata 94 94 133 kmalloc-96 1332 1344 128 32 1 : tunables 120 60 8 : slabdata 42 42 219 kmalloc-64 2505 5952 64 64 1 : tunables 120 60 8 : slabdata 93 93 715 kmalloc-32 4278 4464 32 124 1 : tunables 120 60 8 : slabdata 36 36 346 kmalloc-node 1352 1376 128 32 1 : tunables 120 60 8 : slabdata 43 43 53 kmem_cache 132 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 After the patch: ... kmalloc-256 1672 2160 256 16 1 : tunables 120 60 8 : slabdata 135 135 807 kmalloc-192 1992 2016 192 21 1 : tunables 120 60 8 : slabdata 96 96 203 kmalloc-96 1159 1184 128 32 1 : tunables 120 60 8 : slabdata 37 37 116 kmalloc-64 2561 4864 64 64 1 : tunables 120 60 8 : slabdata 76 76 785 kmalloc-32 4253 4340 32 124 1 : tunables 120 60 8 : slabdata 35 35 270 kmalloc-128 1256 1280 128 32 1 : tunables 120 60 8 : slabdata 40 40 39 kmem_cache 125 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 [vbabka@suse.cz: export the whole kmalloc_info structure instead of just a name accessor, per Christoph Lameter] Link: http://lkml.kernel.org/r/54e80303-b814-4232-66d4-95b34d3eb9d0@suse.cz Link: http://lkml.kernel.org/r/20170203181008.24898-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:41:05 +08:00
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
mm, slab: make kmalloc_info[] contain all types of names Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 09:49:21 +08:00
INIT_KMALLOC_INFO(0, 0),
INIT_KMALLOC_INFO(96, 96),
INIT_KMALLOC_INFO(192, 192),
INIT_KMALLOC_INFO(8, 8),
INIT_KMALLOC_INFO(16, 16),
INIT_KMALLOC_INFO(32, 32),
INIT_KMALLOC_INFO(64, 64),
INIT_KMALLOC_INFO(128, 128),
INIT_KMALLOC_INFO(256, 256),
INIT_KMALLOC_INFO(512, 512),
INIT_KMALLOC_INFO(1024, 1k),
INIT_KMALLOC_INFO(2048, 2k),
INIT_KMALLOC_INFO(4096, 4k),
INIT_KMALLOC_INFO(8192, 8k),
INIT_KMALLOC_INFO(16384, 16k),
INIT_KMALLOC_INFO(32768, 32k),
INIT_KMALLOC_INFO(65536, 64k),
INIT_KMALLOC_INFO(131072, 128k),
INIT_KMALLOC_INFO(262144, 256k),
INIT_KMALLOC_INFO(524288, 512k),
INIT_KMALLOC_INFO(1048576, 1M),
INIT_KMALLOC_INFO(2097152, 2M)
};
/*
slab: correct size_index table before replacing the bootstrap kmem_cache_node This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:57 +08:00
* Patch up the size_index table if we have strange large alignment
* requirements for the kmalloc array. This is only the case for
* MIPS it seems. The standard arches will not generate any code here.
*
* Largest permitted alignment is 256 bytes due to the way we
* handle the index determination for the smaller caches.
*
* Make sure that nothing crazy happens if someone starts tinkering
* around with ARCH_KMALLOC_MINALIGN
*/
slab: correct size_index table before replacing the bootstrap kmem_cache_node This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:57 +08:00
void __init setup_kmalloc_cache_index_table(void)
{
unsigned int i;
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
!is_power_of_2(KMALLOC_MIN_SIZE));
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
unsigned int elem = size_index_elem(i);
if (elem >= ARRAY_SIZE(size_index))
break;
size_index[elem] = KMALLOC_SHIFT_LOW;
}
if (KMALLOC_MIN_SIZE >= 64) {
/*
* The 96 byte sized cache is not used if the alignment
* is 64 byte.
*/
for (i = 64 + 8; i <= 96; i += 8)
size_index[size_index_elem(i)] = 7;
}
if (KMALLOC_MIN_SIZE >= 128) {
/*
* The 192 byte sized cache is not used if the alignment
* is 128 byte. Redirect kmalloc to use the 256 byte cache
* instead.
*/
for (i = 128 + 8; i <= 192; i += 8)
size_index[size_index_elem(i)] = 8;
}
slab: correct size_index table before replacing the bootstrap kmem_cache_node This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:57 +08:00
}
mm, slab/slub: introduce kmalloc-reclaimable caches Kmem caches can be created with a SLAB_RECLAIM_ACCOUNT flag, which indicates they contain objects which can be reclaimed under memory pressure (typically through a shrinker). This makes the slab pages accounted as NR_SLAB_RECLAIMABLE in vmstat, which is reflected also the MemAvailable meminfo counter and in overcommit decisions. The slab pages are also allocated with __GFP_RECLAIMABLE, which is good for anti-fragmentation through grouping pages by mobility. The generic kmalloc-X caches are created without this flag, but sometimes are used also for objects that can be reclaimed, which due to varying size cannot have a dedicated kmem cache with SLAB_RECLAIM_ACCOUNT flag. A prominent example are dcache external names, which prompted the creation of a new, manually managed vmstat counter NR_INDIRECTLY_RECLAIMABLE_BYTES in commit f1782c9bc547 ("dcache: account external names as indirectly reclaimable memory"). To better handle this and any other similar cases, this patch introduces SLAB_RECLAIM_ACCOUNT variants of kmalloc caches, named kmalloc-rcl-X. They are used whenever the kmalloc() call passes __GFP_RECLAIMABLE among gfp flags. They are added to the kmalloc_caches array as a new type. Allocations with both __GFP_DMA and __GFP_RECLAIMABLE will use a dma type cache. This change only applies to SLAB and SLUB, not SLOB. This is fine, since SLOB's target are tiny system and this patch does add some overhead of kmem management objects. Link: http://lkml.kernel.org/r/20180731090649.16028-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:05:38 +08:00
static void __init
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
{
if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
mm, slab/slub: introduce kmalloc-reclaimable caches Kmem caches can be created with a SLAB_RECLAIM_ACCOUNT flag, which indicates they contain objects which can be reclaimed under memory pressure (typically through a shrinker). This makes the slab pages accounted as NR_SLAB_RECLAIMABLE in vmstat, which is reflected also the MemAvailable meminfo counter and in overcommit decisions. The slab pages are also allocated with __GFP_RECLAIMABLE, which is good for anti-fragmentation through grouping pages by mobility. The generic kmalloc-X caches are created without this flag, but sometimes are used also for objects that can be reclaimed, which due to varying size cannot have a dedicated kmem cache with SLAB_RECLAIM_ACCOUNT flag. A prominent example are dcache external names, which prompted the creation of a new, manually managed vmstat counter NR_INDIRECTLY_RECLAIMABLE_BYTES in commit f1782c9bc547 ("dcache: account external names as indirectly reclaimable memory"). To better handle this and any other similar cases, this patch introduces SLAB_RECLAIM_ACCOUNT variants of kmalloc caches, named kmalloc-rcl-X. They are used whenever the kmalloc() call passes __GFP_RECLAIMABLE among gfp flags. They are added to the kmalloc_caches array as a new type. Allocations with both __GFP_DMA and __GFP_RECLAIMABLE will use a dma type cache. This change only applies to SLAB and SLUB, not SLOB. This is fine, since SLOB's target are tiny system and this patch does add some overhead of kmem management objects. Link: http://lkml.kernel.org/r/20180731090649.16028-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:05:38 +08:00
flags |= SLAB_RECLAIM_ACCOUNT;
mm: memcg/slab: create a new set of kmalloc-cg-<n> caches There are currently two problems in the way the objcg pointer array (memcg_data) in the page structure is being allocated and freed. On its allocation, it is possible that the allocated objcg pointer array comes from the same slab that requires memory accounting. If this happens, the slab will never become empty again as there is at least one object left (the obj_cgroup array) in the slab. When it is freed, the objcg pointer array object may be the last one in its slab and hence causes kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. One way to solve this problem is to split the kmalloc-<n> caches (KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n> (KMALLOC_NORMAL) caches for unaccounted objects only and a new set of kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All the other caches can still allow a mix of accounted and unaccounted objects. With this change, all the objcg pointer array objects will come from KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So both the recursive kfree() problem and non-freeable slab problem are gone. Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have mixed accounted and unaccounted objects, this will slightly reduce the number of objcg pointer arrays that need to be allocated and save a bit of memory. On the other hand, creating a new set of kmalloc caches does have the effect of reducing cache utilization. So it is properly a wash. The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches() will include the newly added caches without change. [vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem] Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com [akpm@linux-foundation.org: un-fat-finger v5 delta creation] [longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches] Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> [longman@redhat.com: fix for CONFIG_ZONE_DMA=n] Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:37:38 +08:00
} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
if (mem_cgroup_kmem_disabled()) {
mm: memcg/slab: create a new set of kmalloc-cg-<n> caches There are currently two problems in the way the objcg pointer array (memcg_data) in the page structure is being allocated and freed. On its allocation, it is possible that the allocated objcg pointer array comes from the same slab that requires memory accounting. If this happens, the slab will never become empty again as there is at least one object left (the obj_cgroup array) in the slab. When it is freed, the objcg pointer array object may be the last one in its slab and hence causes kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. One way to solve this problem is to split the kmalloc-<n> caches (KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n> (KMALLOC_NORMAL) caches for unaccounted objects only and a new set of kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All the other caches can still allow a mix of accounted and unaccounted objects. With this change, all the objcg pointer array objects will come from KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So both the recursive kfree() problem and non-freeable slab problem are gone. Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have mixed accounted and unaccounted objects, this will slightly reduce the number of objcg pointer arrays that need to be allocated and save a bit of memory. On the other hand, creating a new set of kmalloc caches does have the effect of reducing cache utilization. So it is properly a wash. The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches() will include the newly added caches without change. [vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem] Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com [akpm@linux-foundation.org: un-fat-finger v5 delta creation] [longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches] Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> [longman@redhat.com: fix for CONFIG_ZONE_DMA=n] Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:37:38 +08:00
kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
return;
}
flags |= SLAB_ACCOUNT;
mm/slab_common: move dma-kmalloc caches creation into new_kmalloc_cache() There are four types of kmalloc_caches: KMALLOC_NORMAL, KMALLOC_CGROUP, KMALLOC_RECLAIM, and KMALLOC_DMA. While the first three types are created using new_kmalloc_cache(), KMALLOC_DMA caches are created in a separate logic. Let KMALLOC_DMA caches be also created using new_kmalloc_cache(), to enhance readability. Historically, there were only KMALLOC_NORMAL caches and KMALLOC_DMA caches in the first place, and they were initialized in two separate logics. However, when KMALLOC_RECLAIM was introduced in v4.20 via commit 1291523f2c1d ("mm, slab/slub: introduce kmalloc-reclaimable caches") and KMALLOC_CGROUP was introduced in v5.14 via commit 494c1dfe855e ("mm: memcg/slab: create a new set of kmalloc-cg-<n> caches"), their creations were merged with KMALLOC_NORMAL's only. KMALLOC_DMA creation logic should be merged with them, too. By merging KMALLOC_DMA initialization with other types, the following two changes might occur: 1. The order dma-kmalloc-<n> caches added in slab_cache list may be sorted by size. i.e. the order they appear in /proc/slabinfo may change as well. 2. slab_state will be set to UP after KMALLOC_DMA is created. In case of slub, freelist randomization is dependent on slab_state>=UP, and therefore KMALLOC_DMA cache's freelist will not be randomized in creation, but will be deferred to init_freelist_randomization(). Co-developed-by: JaeSang Yoo <jsyoo5b@gmail.com> Signed-off-by: JaeSang Yoo <jsyoo5b@gmail.com> Signed-off-by: Ohhoon Kwon <ohkwon1043@gmail.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Link: https://lore.kernel.org/r/20220410162511.656541-1-ohkwon1043@gmail.com
2022-04-11 00:25:11 +08:00
} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
flags |= SLAB_CACHE_DMA;
mm: memcg/slab: create a new set of kmalloc-cg-<n> caches There are currently two problems in the way the objcg pointer array (memcg_data) in the page structure is being allocated and freed. On its allocation, it is possible that the allocated objcg pointer array comes from the same slab that requires memory accounting. If this happens, the slab will never become empty again as there is at least one object left (the obj_cgroup array) in the slab. When it is freed, the objcg pointer array object may be the last one in its slab and hence causes kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. One way to solve this problem is to split the kmalloc-<n> caches (KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n> (KMALLOC_NORMAL) caches for unaccounted objects only and a new set of kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All the other caches can still allow a mix of accounted and unaccounted objects. With this change, all the objcg pointer array objects will come from KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So both the recursive kfree() problem and non-freeable slab problem are gone. Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have mixed accounted and unaccounted objects, this will slightly reduce the number of objcg pointer arrays that need to be allocated and save a bit of memory. On the other hand, creating a new set of kmalloc caches does have the effect of reducing cache utilization. So it is properly a wash. The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches() will include the newly added caches without change. [vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem] Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com [akpm@linux-foundation.org: un-fat-finger v5 delta creation] [longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches] Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> [longman@redhat.com: fix for CONFIG_ZONE_DMA=n] Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:37:38 +08:00
}
mm, slab/slub: introduce kmalloc-reclaimable caches Kmem caches can be created with a SLAB_RECLAIM_ACCOUNT flag, which indicates they contain objects which can be reclaimed under memory pressure (typically through a shrinker). This makes the slab pages accounted as NR_SLAB_RECLAIMABLE in vmstat, which is reflected also the MemAvailable meminfo counter and in overcommit decisions. The slab pages are also allocated with __GFP_RECLAIMABLE, which is good for anti-fragmentation through grouping pages by mobility. The generic kmalloc-X caches are created without this flag, but sometimes are used also for objects that can be reclaimed, which due to varying size cannot have a dedicated kmem cache with SLAB_RECLAIM_ACCOUNT flag. A prominent example are dcache external names, which prompted the creation of a new, manually managed vmstat counter NR_INDIRECTLY_RECLAIMABLE_BYTES in commit f1782c9bc547 ("dcache: account external names as indirectly reclaimable memory"). To better handle this and any other similar cases, this patch introduces SLAB_RECLAIM_ACCOUNT variants of kmalloc caches, named kmalloc-rcl-X. They are used whenever the kmalloc() call passes __GFP_RECLAIMABLE among gfp flags. They are added to the kmalloc_caches array as a new type. Allocations with both __GFP_DMA and __GFP_RECLAIMABLE will use a dma type cache. This change only applies to SLAB and SLUB, not SLOB. This is fine, since SLOB's target are tiny system and this patch does add some overhead of kmem management objects. Link: http://lkml.kernel.org/r/20180731090649.16028-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:05:38 +08:00
mm, slab: make kmalloc_info[] contain all types of names Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 09:49:21 +08:00
kmalloc_caches[type][idx] = create_kmalloc_cache(
kmalloc_info[idx].name[type],
kmalloc_info[idx].size, flags, 0,
kmalloc_info[idx].size);
/*
* If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
* KMALLOC_NORMAL caches.
*/
if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
kmalloc_caches[type][idx]->refcount = -1;
}
slab: correct size_index table before replacing the bootstrap kmem_cache_node This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:57 +08:00
/*
* Create the kmalloc array. Some of the regular kmalloc arrays
* may already have been created because they were needed to
* enable allocations for slab creation.
*/
void __init create_kmalloc_caches(slab_flags_t flags)
slab: correct size_index table before replacing the bootstrap kmem_cache_node This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:57 +08:00
{
int i;
enum kmalloc_cache_type type;
slab: correct size_index table before replacing the bootstrap kmem_cache_node This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:57 +08:00
mm: memcg/slab: create a new set of kmalloc-cg-<n> caches There are currently two problems in the way the objcg pointer array (memcg_data) in the page structure is being allocated and freed. On its allocation, it is possible that the allocated objcg pointer array comes from the same slab that requires memory accounting. If this happens, the slab will never become empty again as there is at least one object left (the obj_cgroup array) in the slab. When it is freed, the objcg pointer array object may be the last one in its slab and hence causes kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. One way to solve this problem is to split the kmalloc-<n> caches (KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n> (KMALLOC_NORMAL) caches for unaccounted objects only and a new set of kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All the other caches can still allow a mix of accounted and unaccounted objects. With this change, all the objcg pointer array objects will come from KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So both the recursive kfree() problem and non-freeable slab problem are gone. Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have mixed accounted and unaccounted objects, this will slightly reduce the number of objcg pointer arrays that need to be allocated and save a bit of memory. On the other hand, creating a new set of kmalloc caches does have the effect of reducing cache utilization. So it is properly a wash. The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches() will include the newly added caches without change. [vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem] Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com [akpm@linux-foundation.org: un-fat-finger v5 delta creation] [longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches] Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> [longman@redhat.com: fix for CONFIG_ZONE_DMA=n] Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:37:38 +08:00
/*
* Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
*/
mm/slab_common: move dma-kmalloc caches creation into new_kmalloc_cache() There are four types of kmalloc_caches: KMALLOC_NORMAL, KMALLOC_CGROUP, KMALLOC_RECLAIM, and KMALLOC_DMA. While the first three types are created using new_kmalloc_cache(), KMALLOC_DMA caches are created in a separate logic. Let KMALLOC_DMA caches be also created using new_kmalloc_cache(), to enhance readability. Historically, there were only KMALLOC_NORMAL caches and KMALLOC_DMA caches in the first place, and they were initialized in two separate logics. However, when KMALLOC_RECLAIM was introduced in v4.20 via commit 1291523f2c1d ("mm, slab/slub: introduce kmalloc-reclaimable caches") and KMALLOC_CGROUP was introduced in v5.14 via commit 494c1dfe855e ("mm: memcg/slab: create a new set of kmalloc-cg-<n> caches"), their creations were merged with KMALLOC_NORMAL's only. KMALLOC_DMA creation logic should be merged with them, too. By merging KMALLOC_DMA initialization with other types, the following two changes might occur: 1. The order dma-kmalloc-<n> caches added in slab_cache list may be sorted by size. i.e. the order they appear in /proc/slabinfo may change as well. 2. slab_state will be set to UP after KMALLOC_DMA is created. In case of slub, freelist randomization is dependent on slab_state>=UP, and therefore KMALLOC_DMA cache's freelist will not be randomized in creation, but will be deferred to init_freelist_randomization(). Co-developed-by: JaeSang Yoo <jsyoo5b@gmail.com> Signed-off-by: JaeSang Yoo <jsyoo5b@gmail.com> Signed-off-by: Ohhoon Kwon <ohkwon1043@gmail.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Link: https://lore.kernel.org/r/20220410162511.656541-1-ohkwon1043@gmail.com
2022-04-11 00:25:11 +08:00
for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
mm, slab/slub: introduce kmalloc-reclaimable caches Kmem caches can be created with a SLAB_RECLAIM_ACCOUNT flag, which indicates they contain objects which can be reclaimed under memory pressure (typically through a shrinker). This makes the slab pages accounted as NR_SLAB_RECLAIMABLE in vmstat, which is reflected also the MemAvailable meminfo counter and in overcommit decisions. The slab pages are also allocated with __GFP_RECLAIMABLE, which is good for anti-fragmentation through grouping pages by mobility. The generic kmalloc-X caches are created without this flag, but sometimes are used also for objects that can be reclaimed, which due to varying size cannot have a dedicated kmem cache with SLAB_RECLAIM_ACCOUNT flag. A prominent example are dcache external names, which prompted the creation of a new, manually managed vmstat counter NR_INDIRECTLY_RECLAIMABLE_BYTES in commit f1782c9bc547 ("dcache: account external names as indirectly reclaimable memory"). To better handle this and any other similar cases, this patch introduces SLAB_RECLAIM_ACCOUNT variants of kmalloc caches, named kmalloc-rcl-X. They are used whenever the kmalloc() call passes __GFP_RECLAIMABLE among gfp flags. They are added to the kmalloc_caches array as a new type. Allocations with both __GFP_DMA and __GFP_RECLAIMABLE will use a dma type cache. This change only applies to SLAB and SLUB, not SLOB. This is fine, since SLOB's target are tiny system and this patch does add some overhead of kmem management objects. Link: http://lkml.kernel.org/r/20180731090649.16028-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:05:38 +08:00
for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
if (!kmalloc_caches[type][i])
new_kmalloc_cache(i, type, flags);
mm, slab/slub: introduce kmalloc-reclaimable caches Kmem caches can be created with a SLAB_RECLAIM_ACCOUNT flag, which indicates they contain objects which can be reclaimed under memory pressure (typically through a shrinker). This makes the slab pages accounted as NR_SLAB_RECLAIMABLE in vmstat, which is reflected also the MemAvailable meminfo counter and in overcommit decisions. The slab pages are also allocated with __GFP_RECLAIMABLE, which is good for anti-fragmentation through grouping pages by mobility. The generic kmalloc-X caches are created without this flag, but sometimes are used also for objects that can be reclaimed, which due to varying size cannot have a dedicated kmem cache with SLAB_RECLAIM_ACCOUNT flag. A prominent example are dcache external names, which prompted the creation of a new, manually managed vmstat counter NR_INDIRECTLY_RECLAIMABLE_BYTES in commit f1782c9bc547 ("dcache: account external names as indirectly reclaimable memory"). To better handle this and any other similar cases, this patch introduces SLAB_RECLAIM_ACCOUNT variants of kmalloc caches, named kmalloc-rcl-X. They are used whenever the kmalloc() call passes __GFP_RECLAIMABLE among gfp flags. They are added to the kmalloc_caches array as a new type. Allocations with both __GFP_DMA and __GFP_RECLAIMABLE will use a dma type cache. This change only applies to SLAB and SLUB, not SLOB. This is fine, since SLOB's target are tiny system and this patch does add some overhead of kmem management objects. Link: http://lkml.kernel.org/r/20180731090649.16028-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 06:05:38 +08:00
/*
* Caches that are not of the two-to-the-power-of size.
* These have to be created immediately after the
* earlier power of two caches
*/
if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
!kmalloc_caches[type][1])
new_kmalloc_cache(1, type, flags);
if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
!kmalloc_caches[type][2])
new_kmalloc_cache(2, type, flags);
}
}
/* Kmalloc array is now usable */
slab_state = UP;
}
void free_large_kmalloc(struct folio *folio, void *object)
{
unsigned int order = folio_order(folio);
if (WARN_ON_ONCE(order == 0))
pr_warn_once("object pointer: 0x%p\n", object);
kmemleak_free(object);
kasan_kfree_large(object);
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam R. Howlett. An overlapping range-based tree for vmas. It it apparently slight more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com). This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU= =xfWx -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ...
2022-10-11 08:53:04 +08:00
kmsan_kfree_large(object);
mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
-(PAGE_SIZE << order));
__free_pages(folio_page(folio, 0), order);
}
static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
static __always_inline
void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
{
struct kmem_cache *s;
void *ret;
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
ret = __kmalloc_large_node(size, flags, node);
trace_kmalloc(caller, ret, size,
PAGE_SIZE << get_order(size), flags, node);
return ret;
}
s = kmalloc_slab(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
ret = kasan_kmalloc(s, ret, size, flags);
trace_kmalloc(caller, ret, size, s->size, flags, node);
return ret;
}
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
return __do_kmalloc_node(size, flags, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);
void *__kmalloc(size_t size, gfp_t flags)
{
return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc);
void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
int node, unsigned long caller)
{
return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
/**
* kfree - free previously allocated memory
* @object: pointer returned by kmalloc.
*
* If @object is NULL, no operation is performed.
*
* Don't free memory not originally allocated by kmalloc()
* or you will run into trouble.
*/
void kfree(const void *object)
{
struct folio *folio;
struct slab *slab;
struct kmem_cache *s;
trace_kfree(_RET_IP_, object);
if (unlikely(ZERO_OR_NULL_PTR(object)))
return;
folio = virt_to_folio(object);
if (unlikely(!folio_test_slab(folio))) {
free_large_kmalloc(folio, (void *)object);
return;
}
slab = folio_slab(folio);
s = slab->slab_cache;
__kmem_cache_free(s, (void *)object, _RET_IP_);
}
EXPORT_SYMBOL(kfree);
/**
* __ksize -- Report full size of underlying allocation
* @object: pointer to the object
*
* This should only be used internally to query the true size of allocations.
* It is not meant to be a way to discover the usable size of an allocation
* after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
* the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
* and/or FORTIFY_SOURCE.
*
* Return: size of the actual memory used by @object in bytes
*/
size_t __ksize(const void *object)
{
struct folio *folio;
if (unlikely(object == ZERO_SIZE_PTR))
return 0;
folio = virt_to_folio(object);
if (unlikely(!folio_test_slab(folio))) {
if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
return 0;
if (WARN_ON(object != folio_address(folio)))
return 0;
return folio_size(folio);
}
#ifdef CONFIG_SLUB_DEBUG
skip_orig_size_check(folio_slab(folio)->slab_cache, object);
#endif
return slab_ksize(folio_slab(folio)->slab_cache);
}
void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
size, _RET_IP_);
trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
ret = kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmalloc_trace);
void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
int node, size_t size)
{
void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
ret = kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmalloc_node_trace);
gfp_t kmalloc_fix_flags(gfp_t flags)
{
gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
flags &= ~GFP_SLAB_BUG_MASK;
pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
invalid_mask, &invalid_mask, flags, &flags);
dump_stack();
return flags;
}
/*
* To avoid unnecessary overhead, we pass through large allocation requests
* directly to the page allocator. We use __GFP_COMP, because we will need to
* know the allocation order to free the pages properly in kfree.
*/
static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
{
struct page *page;
void *ptr = NULL;
unsigned int order = get_order(size);
if (unlikely(flags & GFP_SLAB_BUG_MASK))
flags = kmalloc_fix_flags(flags);
flags |= __GFP_COMP;
page = alloc_pages_node(node, flags, order);
if (page) {
ptr = page_address(page);
mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
PAGE_SIZE << order);
mm, sl[ou]b: improve memory accounting Patch series "guarantee natural alignment for kmalloc()", v2. This patch (of 2): SLOB currently doesn't account its pages at all, so in /proc/meminfo the Slab field shows zero. Modifying a counter on page allocation and freeing should be acceptable even for the small system scenarios SLOB is intended for. Since reclaimable caches are not separated in SLOB, account everything as unreclaimable. SLUB currently doesn't account kmalloc() and kmalloc_node() allocations larger than order-1 page, that are passed directly to the page allocator. As they also don't appear in /proc/slabinfo, it might look like a memory leak. For consistency, account them as well. (SLAB doesn't actually use page allocator directly, so no change there). Ideally SLOB and SLUB would be handled in separate patches, but due to the shared kmalloc_order() function and different kfree() implementations, it's easier to patch both at once to prevent inconsistencies. Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Darrick J . Wong" <darrick.wong@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 08:58:42 +08:00
}
ptr = kasan_kmalloc_large(ptr, size, flags);
/* As ptr might get tagged, call kmemleak hook after KASAN. */
kmemleak_alloc(ptr, size, 1, flags);
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam R. Howlett. An overlapping range-based tree for vmas. It it apparently slight more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com). This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU= =xfWx -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ...
2022-10-11 08:53:04 +08:00
kmsan_kmalloc_large(ptr, size, flags);
return ptr;
}
void *kmalloc_large(size_t size, gfp_t flags)
{
void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
flags, NUMA_NO_NODE);
return ret;
}
EXPORT_SYMBOL(kmalloc_large);
void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
void *ret = __kmalloc_large_node(size, flags, node);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
flags, node);
return ret;
}
EXPORT_SYMBOL(kmalloc_large_node);
mm: reorganize SLAB freelist randomization The kernel heap allocators are using a sequential freelist making their allocation predictable. This predictability makes kernel heap overflow easier to exploit. An attacker can careful prepare the kernel heap to control the following chunk overflowed. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) ***Problems that needed solving: - Randomize the Freelist (singled linked) used in the SLUB allocator. - Ensure good performance to encourage usage. - Get best entropy in early boot stage. ***Parts: - 01/02 Reorganize the SLAB Freelist randomization to share elements with the SLUB implementation. - 02/02 The SLUB Freelist randomization implementation. Similar approach than the SLAB but tailored to the singled freelist used in SLUB. ***Performance data: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) This patch (of 2): This commit reorganizes the previous SLAB freelist randomization to prepare for the SLUB implementation. It moves functions that will be shared to slab_common. The entropy functions are changed to align with the SLUB implementation, now using get_random_(int|long) functions. These functions were chosen because they provide a bit more entropy early on boot and better performance when specific arch instructions are not available. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 06:21:56 +08:00
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
unsigned int count)
mm: reorganize SLAB freelist randomization The kernel heap allocators are using a sequential freelist making their allocation predictable. This predictability makes kernel heap overflow easier to exploit. An attacker can careful prepare the kernel heap to control the following chunk overflowed. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) ***Problems that needed solving: - Randomize the Freelist (singled linked) used in the SLUB allocator. - Ensure good performance to encourage usage. - Get best entropy in early boot stage. ***Parts: - 01/02 Reorganize the SLAB Freelist randomization to share elements with the SLUB implementation. - 02/02 The SLUB Freelist randomization implementation. Similar approach than the SLAB but tailored to the singled freelist used in SLUB. ***Performance data: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) This patch (of 2): This commit reorganizes the previous SLAB freelist randomization to prepare for the SLUB implementation. It moves functions that will be shared to slab_common. The entropy functions are changed to align with the SLUB implementation, now using get_random_(int|long) functions. These functions were chosen because they provide a bit more entropy early on boot and better performance when specific arch instructions are not available. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 06:21:56 +08:00
{
unsigned int rand;
unsigned int i;
mm: reorganize SLAB freelist randomization The kernel heap allocators are using a sequential freelist making their allocation predictable. This predictability makes kernel heap overflow easier to exploit. An attacker can careful prepare the kernel heap to control the following chunk overflowed. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) ***Problems that needed solving: - Randomize the Freelist (singled linked) used in the SLUB allocator. - Ensure good performance to encourage usage. - Get best entropy in early boot stage. ***Parts: - 01/02 Reorganize the SLAB Freelist randomization to share elements with the SLUB implementation. - 02/02 The SLUB Freelist randomization implementation. Similar approach than the SLAB but tailored to the singled freelist used in SLUB. ***Performance data: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) This patch (of 2): This commit reorganizes the previous SLAB freelist randomization to prepare for the SLUB implementation. It moves functions that will be shared to slab_common. The entropy functions are changed to align with the SLUB implementation, now using get_random_(int|long) functions. These functions were chosen because they provide a bit more entropy early on boot and better performance when specific arch instructions are not available. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 06:21:56 +08:00
for (i = 0; i < count; i++)
list[i] = i;
/* Fisher-Yates shuffle */
for (i = count - 1; i > 0; i--) {
rand = prandom_u32_state(state);
rand %= (i + 1);
swap(list[i], list[rand]);
}
}
/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
gfp_t gfp)
{
struct rnd_state state;
if (count < 2 || cachep->random_seq)
return 0;
cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
if (!cachep->random_seq)
return -ENOMEM;
/* Get best entropy at this stage of boot */
prandom_seed_state(&state, get_random_long());
freelist_randomize(&state, cachep->random_seq, count);
return 0;
}
/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
kfree(cachep->random_seq);
cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (0600)
#else
#define SLABINFO_RIGHTS (0400)
#endif
static void print_slabinfo_header(struct seq_file *m)
{
/*
* Output format version, so at least we can change it
* without _too_ many complaints.
*/
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
seq_puts(m, "slabinfo - version: 2.1\n");
#endif
seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
seq_putc(m, '\n');
}
static void *slab_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&slab_mutex);
return seq_list_start(&slab_caches, *pos);
}
static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &slab_caches, pos);
}
static void slab_stop(struct seq_file *m, void *p)
{
mutex_unlock(&slab_mutex);
}
static void cache_show(struct kmem_cache *s, struct seq_file *m)
{
struct slabinfo sinfo;
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(s, &sinfo);
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
s->name, sinfo.active_objs, sinfo.num_objs, s->size,
sinfo.objects_per_slab, (1 << sinfo.cache_order));
seq_printf(m, " : tunables %4u %4u %4u",
sinfo.limit, sinfo.batchcount, sinfo.shared);
seq_printf(m, " : slabdata %6lu %6lu %6lu",
sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
slabinfo_show_stats(m, s);
seq_putc(m, '\n');
}
static int slab_show(struct seq_file *m, void *p)
{
struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
if (p == slab_caches.next)
print_slabinfo_header(m);
cache_show(s, m);
return 0;
}
mm: oom: show unreclaimable slab info when unreclaimable slabs > user memory The kernel may panic when an oom happens without killable process sometimes it is caused by huge unreclaimable slabs used by kernel. Although kdump could help debug such problem, however, kdump is not available on all architectures and it might be malfunction sometime. And, since kernel already panic it is worthy capturing such information in dmesg to aid touble shooting. Print out unreclaimable slab info (used size and total size) which actual memory usage is not zero (num_objs * size != 0) when unreclaimable slabs amount is greater than total user memory (LRU pages). The output looks like: Unreclaimable slab info: Name Used Total rpc_buffers 31KB 31KB rpc_tasks 7KB 7KB ebitmap_node 1964KB 1964KB avtab_node 5024KB 5024KB xfs_buf 1402KB 1402KB xfs_ili 134KB 134KB xfs_efi_item 115KB 115KB xfs_efd_item 115KB 115KB xfs_buf_item 134KB 134KB xfs_log_item_desc 342KB 342KB xfs_trans 1412KB 1412KB xfs_ifork 212KB 212KB [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:32:07 +08:00
void dump_unreclaimable_slab(void)
{
struct kmem_cache *s;
mm: oom: show unreclaimable slab info when unreclaimable slabs > user memory The kernel may panic when an oom happens without killable process sometimes it is caused by huge unreclaimable slabs used by kernel. Although kdump could help debug such problem, however, kdump is not available on all architectures and it might be malfunction sometime. And, since kernel already panic it is worthy capturing such information in dmesg to aid touble shooting. Print out unreclaimable slab info (used size and total size) which actual memory usage is not zero (num_objs * size != 0) when unreclaimable slabs amount is greater than total user memory (LRU pages). The output looks like: Unreclaimable slab info: Name Used Total rpc_buffers 31KB 31KB rpc_tasks 7KB 7KB ebitmap_node 1964KB 1964KB avtab_node 5024KB 5024KB xfs_buf 1402KB 1402KB xfs_ili 134KB 134KB xfs_efi_item 115KB 115KB xfs_efd_item 115KB 115KB xfs_buf_item 134KB 134KB xfs_log_item_desc 342KB 342KB xfs_trans 1412KB 1412KB xfs_ifork 212KB 212KB [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:32:07 +08:00
struct slabinfo sinfo;
/*
* Here acquiring slab_mutex is risky since we don't prefer to get
* sleep in oom path. But, without mutex hold, it may introduce a
* risk of crash.
* Use mutex_trylock to protect the list traverse, dump nothing
* without acquiring the mutex.
*/
if (!mutex_trylock(&slab_mutex)) {
pr_warn("excessive unreclaimable slab but cannot dump stats\n");
return;
}
pr_info("Unreclaimable slab info:\n");
pr_info("Name Used Total\n");
list_for_each_entry(s, &slab_caches, list) {
if (s->flags & SLAB_RECLAIM_ACCOUNT)
mm: oom: show unreclaimable slab info when unreclaimable slabs > user memory The kernel may panic when an oom happens without killable process sometimes it is caused by huge unreclaimable slabs used by kernel. Although kdump could help debug such problem, however, kdump is not available on all architectures and it might be malfunction sometime. And, since kernel already panic it is worthy capturing such information in dmesg to aid touble shooting. Print out unreclaimable slab info (used size and total size) which actual memory usage is not zero (num_objs * size != 0) when unreclaimable slabs amount is greater than total user memory (LRU pages). The output looks like: Unreclaimable slab info: Name Used Total rpc_buffers 31KB 31KB rpc_tasks 7KB 7KB ebitmap_node 1964KB 1964KB avtab_node 5024KB 5024KB xfs_buf 1402KB 1402KB xfs_ili 134KB 134KB xfs_efi_item 115KB 115KB xfs_efd_item 115KB 115KB xfs_buf_item 134KB 134KB xfs_log_item_desc 342KB 342KB xfs_trans 1412KB 1412KB xfs_ifork 212KB 212KB [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:32:07 +08:00
continue;
get_slabinfo(s, &sinfo);
if (sinfo.num_objs > 0)
pr_info("%-17s %10luKB %10luKB\n", s->name,
mm: oom: show unreclaimable slab info when unreclaimable slabs > user memory The kernel may panic when an oom happens without killable process sometimes it is caused by huge unreclaimable slabs used by kernel. Although kdump could help debug such problem, however, kdump is not available on all architectures and it might be malfunction sometime. And, since kernel already panic it is worthy capturing such information in dmesg to aid touble shooting. Print out unreclaimable slab info (used size and total size) which actual memory usage is not zero (num_objs * size != 0) when unreclaimable slabs amount is greater than total user memory (LRU pages). The output looks like: Unreclaimable slab info: Name Used Total rpc_buffers 31KB 31KB rpc_tasks 7KB 7KB ebitmap_node 1964KB 1964KB avtab_node 5024KB 5024KB xfs_buf 1402KB 1402KB xfs_ili 134KB 134KB xfs_efi_item 115KB 115KB xfs_efd_item 115KB 115KB xfs_buf_item 134KB 134KB xfs_log_item_desc 342KB 342KB xfs_trans 1412KB 1412KB xfs_ifork 212KB 212KB [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:32:07 +08:00
(sinfo.active_objs * s->size) / 1024,
(sinfo.num_objs * s->size) / 1024);
}
mutex_unlock(&slab_mutex);
}
/*
* slabinfo_op - iterator that generates /proc/slabinfo
*
* Output layout:
* cache-name
* num-active-objs
* total-objs
* object size
* num-active-slabs
* total-slabs
* num-pages-per-slab
* + further values on SMP and with statistics enabled
*/
static const struct seq_operations slabinfo_op = {
.start = slab_start,
.next = slab_next,
.stop = slab_stop,
.show = slab_show,
};
static int slabinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &slabinfo_op);
}
static const struct proc_ops slabinfo_proc_ops = {
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 11:09:01 +08:00
.proc_flags = PROC_ENTRY_PERMANENT,
.proc_open = slabinfo_open,
.proc_read = seq_read,
.proc_write = slabinfo_write,
.proc_lseek = seq_lseek,
.proc_release = seq_release,
};
static int __init slab_proc_init(void)
{
proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
return 0;
}
module_init(slab_proc_init);
mm, memcg: add a memcg_slabinfo debugfs file There are concerns about memory leaks from extensive use of memory cgroups as each memory cgroup creates its own set of kmem caches. There is a possiblity that the memcg kmem caches may remain even after the memory cgroups have been offlined. Therefore, it will be useful to show the status of each of memcg kmem caches. This patch introduces a new <debugfs>/memcg_slabinfo file which is somewhat similar to /proc/slabinfo in format, but lists only information about kmem caches that have child memcg kmem caches. Information available in /proc/slabinfo are not repeated in memcg_slabinfo. A portion of a sample output of the file was: # <name> <css_id[:dead]> <active_objs> <num_objs> <active_slabs> <num_slabs> rpc_inode_cache root 13 51 1 1 rpc_inode_cache 48 0 0 0 0 fat_inode_cache root 1 45 1 1 fat_inode_cache 41 2 45 1 1 xfs_inode root 770 816 24 24 xfs_inode 92 22 34 1 1 xfs_inode 88:dead 1 34 1 1 xfs_inode 89:dead 23 34 1 1 xfs_inode 85 4 34 1 1 xfs_inode 84 9 34 1 1 The css id of the memcg is also listed. If a memcg is not online, the tag ":dead" will be attached as shown above. [longman@redhat.com: memcg: add ":deact" tag for reparented kmem caches in memcg_slabinfo] Link: http://lkml.kernel.org/r/20190621173005.31514-1-longman@redhat.com [longman@redhat.com: set the flag in the common code as suggested by Roman] Link: http://lkml.kernel.org/r/20190627184324.5875-1-longman@redhat.com Link: http://lkml.kernel.org/r/20190619171621.26209-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Suggested-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:56:38 +08:00
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
static __always_inline __realloc_size(2) void *
__do_krealloc(const void *p, size_t new_size, gfp_t flags)
{
void *ret;
size_t ks;
/* Check for double-free before calling ksize. */
if (likely(!ZERO_OR_NULL_PTR(p))) {
if (!kasan_check_byte(p))
return NULL;
ks = ksize(p);
} else
ks = 0;
/* If the object still fits, repoison it precisely. */
mm: slub: add kernel address sanitizer support for slub allocator With this patch kasan will be able to catch bugs in memory allocated by slub. Initially all objects in newly allocated slab page, marked as redzone. Later, when allocation of slub object happens, requested by caller number of bytes marked as accessible, and the rest of the object (including slub's metadata) marked as redzone (inaccessible). We also mark object as accessible if ksize was called for this object. There is some places in kernel where ksize function is called to inquire size of really allocated area. Such callers could validly access whole allocated memory, so it should be marked as accessible. Code in slub.c and slab_common.c files could validly access to object's metadata, so instrumentation for this files are disabled. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Signed-off-by: Dmitry Chernenkov <dmitryc@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 06:39:42 +08:00
if (ks >= new_size) {
kasan, mm: change hooks signatures Patch series "kasan: add software tag-based mode for arm64", v13. This patchset adds a new software tag-based mode to KASAN [1]. (Initially this mode was called KHWASAN, but it got renamed, see the naming rationale at the end of this section). The plan is to implement HWASan [2] for the kernel with the incentive, that it's going to have comparable to KASAN performance, but in the same time consume much less memory, trading that off for somewhat imprecise bug detection and being supported only for arm64. The underlying ideas of the approach used by software tag-based KASAN are: 1. By using the Top Byte Ignore (TBI) arm64 CPU feature, we can store pointer tags in the top byte of each kernel pointer. 2. Using shadow memory, we can store memory tags for each chunk of kernel memory. 3. On each memory allocation, we can generate a random tag, embed it into the returned pointer and set the memory tags that correspond to this chunk of memory to the same value. 4. By using compiler instrumentation, before each memory access we can add a check that the pointer tag matches the tag of the memory that is being accessed. 5. On a tag mismatch we report an error. With this patchset the existing KASAN mode gets renamed to generic KASAN, with the word "generic" meaning that the implementation can be supported by any architecture as it is purely software. The new mode this patchset adds is called software tag-based KASAN. The word "tag-based" refers to the fact that this mode uses tags embedded into the top byte of kernel pointers and the TBI arm64 CPU feature that allows to dereference such pointers. The word "software" here means that shadow memory manipulation and tag checking on pointer dereference is done in software. As it is the only tag-based implementation right now, "software tag-based" KASAN is sometimes referred to as simply "tag-based" in this patchset. A potential expansion of this mode is a hardware tag-based mode, which would use hardware memory tagging support (announced by Arm [3]) instead of compiler instrumentation and manual shadow memory manipulation. Same as generic KASAN, software tag-based KASAN is strictly a debugging feature. [1] https://www.kernel.org/doc/html/latest/dev-tools/kasan.html [2] http://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html [3] https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a ====== Rationale On mobile devices generic KASAN's memory usage is significant problem. One of the main reasons to have tag-based KASAN is to be able to perform a similar set of checks as the generic one does, but with lower memory requirements. Comment from Vishwath Mohan <vishwath@google.com>: I don't have data on-hand, but anecdotally both ASAN and KASAN have proven problematic to enable for environments that don't tolerate the increased memory pressure well. This includes (a) Low-memory form factors - Wear, TV, Things, lower-tier phones like Go, (c) Connected components like Pixel's visual core [1]. These are both places I'd love to have a low(er) memory footprint option at my disposal. Comment from Evgenii Stepanov <eugenis@google.com>: Looking at a live Android device under load, slab (according to /proc/meminfo) + kernel stack take 8-10% available RAM (~350MB). KASAN's overhead of 2x - 3x on top of it is not insignificant. Not having this overhead enables near-production use - ex. running KASAN/KHWASAN kernel on a personal, daily-use device to catch bugs that do not reproduce in test configuration. These are the ones that often cost the most engineering time to track down. CPU overhead is bad, but generally tolerable. RAM is critical, in our experience. Once it gets low enough, OOM-killer makes your life miserable. [1] https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/ ====== Technical details Software tag-based KASAN mode is implemented in a very similar way to the generic one. This patchset essentially does the following: 1. TCR_TBI1 is set to enable Top Byte Ignore. 2. Shadow memory is used (with a different scale, 1:16, so each shadow byte corresponds to 16 bytes of kernel memory) to store memory tags. 3. All slab objects are aligned to shadow scale, which is 16 bytes. 4. All pointers returned from the slab allocator are tagged with a random tag and the corresponding shadow memory is poisoned with the same value. 5. Compiler instrumentation is used to insert tag checks. Either by calling callbacks or by inlining them (CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE flags are reused). 6. When a tag mismatch is detected in callback instrumentation mode KASAN simply prints a bug report. In case of inline instrumentation, clang inserts a brk instruction, and KASAN has it's own brk handler, which reports the bug. 7. The memory in between slab objects is marked with a reserved tag, and acts as a redzone. 8. When a slab object is freed it's marked with a reserved tag. Bug detection is imprecise for two reasons: 1. We won't catch some small out-of-bounds accesses, that fall into the same shadow cell, as the last byte of a slab object. 2. We only have 1 byte to store tags, which means we have a 1/256 probability of a tag match for an incorrect access (actually even slightly less due to reserved tag values). Despite that there's a particular type of bugs that tag-based KASAN can detect compared to generic KASAN: use-after-free after the object has been allocated by someone else. ====== Testing Some kernel developers voiced a concern that changing the top byte of kernel pointers may lead to subtle bugs that are difficult to discover. To address this concern deliberate testing has been performed. It doesn't seem feasible to do some kind of static checking to find potential issues with pointer tagging, so a dynamic approach was taken. All pointer comparisons/subtractions have been instrumented in an LLVM compiler pass and a kernel module that would print a bug report whenever two pointers with different tags are being compared/subtracted (ignoring comparisons with NULL pointers and with pointers obtained by casting an error code to a pointer type) has been used. Then the kernel has been booted in QEMU and on an Odroid C2 board and syzkaller has been run. This yielded the following results. The two places that look interesting are: is_vmalloc_addr in include/linux/mm.h is_kernel_rodata in mm/util.c Here we compare a pointer with some fixed untagged values to make sure that the pointer lies in a particular part of the kernel address space. Since tag-based KASAN doesn't add tags to pointers that belong to rodata or vmalloc regions, this should work as is. To make sure debug checks to those two functions that check that the result doesn't change whether we operate on pointers with or without untagging has been added. A few other cases that don't look that interesting: Comparing pointers to achieve unique sorting order of pointee objects (e.g. sorting locks addresses before performing a double lock): tty_ldisc_lock_pair_timeout in drivers/tty/tty_ldisc.c pipe_double_lock in fs/pipe.c unix_state_double_lock in net/unix/af_unix.c lock_two_nondirectories in fs/inode.c mutex_lock_double in kernel/events/core.c ep_cmp_ffd in fs/eventpoll.c fsnotify_compare_groups fs/notify/mark.c Nothing needs to be done here, since the tags embedded into pointers don't change, so the sorting order would still be unique. Checks that a pointer belongs to some particular allocation: is_sibling_entry in lib/radix-tree.c object_is_on_stack in include/linux/sched/task_stack.h Nothing needs to be done here either, since two pointers can only belong to the same allocation if they have the same tag. Overall, since the kernel boots and works, there are no critical bugs. As for the rest, the traditional kernel testing way (use until fails) is the only one that looks feasible. Another point here is that tag-based KASAN is available under a separate config option that needs to be deliberately enabled. Even though it might be used in a "near-production" environment to find bugs that are not found during fuzzing or running tests, it is still a debug tool. ====== Benchmarks The following numbers were collected on Odroid C2 board. Both generic and tag-based KASAN were used in inline instrumentation mode. Boot time [1]: * ~1.7 sec for clean kernel * ~5.0 sec for generic KASAN * ~5.0 sec for tag-based KASAN Network performance [2]: * 8.33 Gbits/sec for clean kernel * 3.17 Gbits/sec for generic KASAN * 2.85 Gbits/sec for tag-based KASAN Slab memory usage after boot [3]: * ~40 kb for clean kernel * ~105 kb (~260% overhead) for generic KASAN * ~47 kb (~20% overhead) for tag-based KASAN KASAN memory overhead consists of three main parts: 1. Increased slab memory usage due to redzones. 2. Shadow memory (the whole reserved once during boot). 3. Quaratine (grows gradually until some preset limit; the more the limit, the more the chance to detect a use-after-free). Comparing tag-based vs generic KASAN for each of these points: 1. 20% vs 260% overhead. 2. 1/16th vs 1/8th of physical memory. 3. Tag-based KASAN doesn't require quarantine. [1] Time before the ext4 driver is initialized. [2] Measured as `iperf -s & iperf -c 127.0.0.1 -t 30`. [3] Measured as `cat /proc/meminfo | grep Slab`. ====== Some notes A few notes: 1. The patchset can be found here: https://github.com/xairy/kasan-prototype/tree/khwasan 2. Building requires a recent Clang version (7.0.0 or later). 3. Stack instrumentation is not supported yet and will be added later. This patch (of 25): Tag-based KASAN changes the value of the top byte of pointers returned from the kernel allocation functions (such as kmalloc). This patch updates KASAN hooks signatures and their usage in SLAB and SLUB code to reflect that. Link: http://lkml.kernel.org/r/aec2b5e3973781ff8a6bb6760f8543643202c451.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 16:29:37 +08:00
p = kasan_krealloc((void *)p, new_size, flags);
return (void *)p;
mm: slub: add kernel address sanitizer support for slub allocator With this patch kasan will be able to catch bugs in memory allocated by slub. Initially all objects in newly allocated slab page, marked as redzone. Later, when allocation of slub object happens, requested by caller number of bytes marked as accessible, and the rest of the object (including slub's metadata) marked as redzone (inaccessible). We also mark object as accessible if ksize was called for this object. There is some places in kernel where ksize function is called to inquire size of really allocated area. Such callers could validly access whole allocated memory, so it should be marked as accessible. Code in slub.c and slab_common.c files could validly access to object's metadata, so instrumentation for this files are disabled. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Signed-off-by: Dmitry Chernenkov <dmitryc@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 06:39:42 +08:00
}
ret = kmalloc_track_caller(new_size, flags);
if (ret && p) {
/* Disable KASAN checks as the object's redzone is accessed. */
kasan_disable_current();
memcpy(ret, kasan_reset_tag(p), ks);
kasan_enable_current();
}
return ret;
}
/**
* krealloc - reallocate memory. The contents will remain unchanged.
* @p: object to reallocate memory for.
* @new_size: how many bytes of memory are required.
* @flags: the type of memory to allocate.
*
* The contents of the object pointed to are preserved up to the
mm: slab: clarify krealloc()'s behavior with __GFP_ZERO Patch series "slab: provide and use krealloc_array()", v3. Andy brought to my attention the fact that users allocating an array of equally sized elements should check if the size multiplication doesn't overflow. This is why we have helpers like kmalloc_array(). However we don't have krealloc_array() equivalent and there are many users who do their own multiplication when calling krealloc() for arrays. This series provides krealloc_array() and uses it in a couple places. A separate series will follow adding devm_krealloc_array() which is needed in the xilinx adc driver. This patch (of 9): __GFP_ZERO is ignored by krealloc() (unless we fall-back to kmalloc() path, in which case it's honored). Point that out in the kerneldoc. Link: https://lkml.kernel.org/r/20201109110654.12547-1-brgl@bgdev.pl Link: https://lkml.kernel.org/r/20201109110654.12547-2-brgl@bgdev.pl Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Gustavo Padovan <gustavo@padovan.org> Cc: Christian Knig <christian.koenig@amd.com> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Tony Luck <tony.luck@intel.com> Cc: James Morse <james.morse@arm.com> Cc: Robert Richter <rric@kernel.org> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Maxime Ripard <mripard@kernel.org> Cc: Thomas Zimmermann <tzimmermann@suse.de> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: "Michael S . Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Cc: Borislav Petkov <bp@suse.de> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Takashi Iwai <tiwai@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 11:03:50 +08:00
* lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
* If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
* is 0 and @p is not a %NULL pointer, the object pointed to is freed.
*
* Return: pointer to the allocated memory or %NULL in case of error
*/
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
void *ret;
if (unlikely(!new_size)) {
kfree(p);
return ZERO_SIZE_PTR;
}
ret = __do_krealloc(p, new_size, flags);
if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
kfree(p);
return ret;
}
EXPORT_SYMBOL(krealloc);
/**
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:18:13 +08:00
* kfree_sensitive - Clear sensitive information in memory before freeing
* @p: object to free memory of
*
* The memory of the object @p points to is zeroed before freed.
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:18:13 +08:00
* If @p is %NULL, kfree_sensitive() does nothing.
*
* Note: this function zeroes the whole allocated buffer which can be a good
* deal bigger than the requested buffer size passed to kmalloc(). So be
* careful when using this function in performance sensitive code.
*/
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:18:13 +08:00
void kfree_sensitive(const void *p)
{
size_t ks;
void *mem = (void *)p;
ks = ksize(mem);
if (ks) {
kasan_unpoison_range(mem, ks);
memzero_explicit(mem, ks);
}
kfree(mem);
}
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 14:18:13 +08:00
EXPORT_SYMBOL(kfree_sensitive);
size_t ksize(const void *objp)
{
mm/kasan: add object validation in ksize() ksize() has been unconditionally unpoisoning the whole shadow memory region associated with an allocation. This can lead to various undetected bugs, for example, double-kzfree(). Specifically, kzfree() uses ksize() to determine the actual allocation size, and subsequently zeroes the memory. Since ksize() used to just unpoison the whole shadow memory region, no invalid free was detected. This patch addresses this as follows: 1. Add a check in ksize(), and only then unpoison the memory region. 2. Preserve kasan_unpoison_slab() semantics by explicitly unpoisoning the shadow memory region using the size obtained from __ksize(). Tested: 1. With SLAB allocator: a) normal boot without warnings; b) verified the added double-kzfree() is detected. 2. With SLUB allocator: a) normal boot without warnings; b) verified the added double-kzfree() is detected. [elver@google.com: s/BUG_ON/WARN_ON_ONCE/, per Kees] Link: http://lkml.kernel.org/r/20190627094445.216365-6-elver@google.com Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=199359 Link: http://lkml.kernel.org/r/20190626142014.141844-6-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:54:18 +08:00
/*
* We need to first check that the pointer to the object is valid.
* The KASAN report printed from ksize() is more useful, then when
* it's printed later when the behaviour could be undefined due to
* a potential use-after-free or double-free.
mm/kasan: add object validation in ksize() ksize() has been unconditionally unpoisoning the whole shadow memory region associated with an allocation. This can lead to various undetected bugs, for example, double-kzfree(). Specifically, kzfree() uses ksize() to determine the actual allocation size, and subsequently zeroes the memory. Since ksize() used to just unpoison the whole shadow memory region, no invalid free was detected. This patch addresses this as follows: 1. Add a check in ksize(), and only then unpoison the memory region. 2. Preserve kasan_unpoison_slab() semantics by explicitly unpoisoning the shadow memory region using the size obtained from __ksize(). Tested: 1. With SLAB allocator: a) normal boot without warnings; b) verified the added double-kzfree() is detected. 2. With SLUB allocator: a) normal boot without warnings; b) verified the added double-kzfree() is detected. [elver@google.com: s/BUG_ON/WARN_ON_ONCE/, per Kees] Link: http://lkml.kernel.org/r/20190627094445.216365-6-elver@google.com Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=199359 Link: http://lkml.kernel.org/r/20190626142014.141844-6-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:54:18 +08:00
*
kasan: fix bug detection via ksize for HW_TAGS mode The currently existing kasan_check_read/write() annotations are intended to be used for kernel modules that have KASAN compiler instrumentation disabled. Thus, they are only relevant for the software KASAN modes that rely on compiler instrumentation. However there's another use case for these annotations: ksize() checks that the object passed to it is indeed accessible before unpoisoning the whole object. This is currently done via __kasan_check_read(), which is compiled away for the hardware tag-based mode that doesn't rely on compiler instrumentation. This leads to KASAN missing detecting some memory corruptions. Provide another annotation called kasan_check_byte() that is available for all KASAN modes. As the implementation rename and reuse kasan_check_invalid_free(). Use this new annotation in ksize(). To avoid having ksize() as the top frame in the reported stack trace pass _RET_IP_ to __kasan_check_byte(). Also add a new ksize_uaf() test that checks that a use-after-free is detected via ksize() itself, and via plain accesses that happen later. Link: https://linux-review.googlesource.com/id/Iaabf771881d0f9ce1b969f2a62938e99d3308ec5 Link: https://lkml.kernel.org/r/f32ad74a60b28d8402482a38476f02bb7600f620.1610733117.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:05:50 +08:00
* We use kasan_check_byte(), which is supported for the hardware
* tag-based KASAN mode, unlike kasan_check_read/write().
*
* If the pointed to memory is invalid, we return 0 to avoid users of
mm/kasan: add object validation in ksize() ksize() has been unconditionally unpoisoning the whole shadow memory region associated with an allocation. This can lead to various undetected bugs, for example, double-kzfree(). Specifically, kzfree() uses ksize() to determine the actual allocation size, and subsequently zeroes the memory. Since ksize() used to just unpoison the whole shadow memory region, no invalid free was detected. This patch addresses this as follows: 1. Add a check in ksize(), and only then unpoison the memory region. 2. Preserve kasan_unpoison_slab() semantics by explicitly unpoisoning the shadow memory region using the size obtained from __ksize(). Tested: 1. With SLAB allocator: a) normal boot without warnings; b) verified the added double-kzfree() is detected. 2. With SLUB allocator: a) normal boot without warnings; b) verified the added double-kzfree() is detected. [elver@google.com: s/BUG_ON/WARN_ON_ONCE/, per Kees] Link: http://lkml.kernel.org/r/20190627094445.216365-6-elver@google.com Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=199359 Link: http://lkml.kernel.org/r/20190626142014.141844-6-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:54:18 +08:00
* ksize() writing to and potentially corrupting the memory region.
*
* We want to perform the check before __ksize(), to avoid potentially
* crashing in __ksize() due to accessing invalid metadata.
*/
kasan: fix bug detection via ksize for HW_TAGS mode The currently existing kasan_check_read/write() annotations are intended to be used for kernel modules that have KASAN compiler instrumentation disabled. Thus, they are only relevant for the software KASAN modes that rely on compiler instrumentation. However there's another use case for these annotations: ksize() checks that the object passed to it is indeed accessible before unpoisoning the whole object. This is currently done via __kasan_check_read(), which is compiled away for the hardware tag-based mode that doesn't rely on compiler instrumentation. This leads to KASAN missing detecting some memory corruptions. Provide another annotation called kasan_check_byte() that is available for all KASAN modes. As the implementation rename and reuse kasan_check_invalid_free(). Use this new annotation in ksize(). To avoid having ksize() as the top frame in the reported stack trace pass _RET_IP_ to __kasan_check_byte(). Also add a new ksize_uaf() test that checks that a use-after-free is detected via ksize() itself, and via plain accesses that happen later. Link: https://linux-review.googlesource.com/id/Iaabf771881d0f9ce1b969f2a62938e99d3308ec5 Link: https://lkml.kernel.org/r/f32ad74a60b28d8402482a38476f02bb7600f620.1610733117.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 04:05:50 +08:00
if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
mm/kasan: add object validation in ksize() ksize() has been unconditionally unpoisoning the whole shadow memory region associated with an allocation. This can lead to various undetected bugs, for example, double-kzfree(). Specifically, kzfree() uses ksize() to determine the actual allocation size, and subsequently zeroes the memory. Since ksize() used to just unpoison the whole shadow memory region, no invalid free was detected. This patch addresses this as follows: 1. Add a check in ksize(), and only then unpoison the memory region. 2. Preserve kasan_unpoison_slab() semantics by explicitly unpoisoning the shadow memory region using the size obtained from __ksize(). Tested: 1. With SLAB allocator: a) normal boot without warnings; b) verified the added double-kzfree() is detected. 2. With SLUB allocator: a) normal boot without warnings; b) verified the added double-kzfree() is detected. [elver@google.com: s/BUG_ON/WARN_ON_ONCE/, per Kees] Link: http://lkml.kernel.org/r/20190627094445.216365-6-elver@google.com Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=199359 Link: http://lkml.kernel.org/r/20190626142014.141844-6-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:54:18 +08:00
return 0;
return kfence_ksize(objp) ?: __ksize(objp);
}
EXPORT_SYMBOL(ksize);
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
mm: make should_failslab always available for fault injection should_failslab() is a convenient function to hook into for directed error injection into kmalloc(). However, it is only available if a config flag is set. The following BCC script, for example, fails kmalloc() calls after a btrfs umount: from bcc import BPF prog = r""" BPF_HASH(flag); #include <linux/mm.h> int kprobe__btrfs_close_devices(void *ctx) { u64 key = 1; flag.update(&key, &key); return 0; } int kprobe__should_failslab(struct pt_regs *ctx) { u64 key = 1; u64 *res; res = flag.lookup(&key); if (res != 0) { bpf_override_return(ctx, -ENOMEM); } return 0; } """ b = BPF(text=prog) while 1: b.kprobe_poll() This patch refactors the should_failslab implementation so that the function is always available for error injection, independent of flags. This change would be similar in nature to commit f5490d3ec921 ("block: Add should_fail_bio() for bpf error injection"). Link: http://lkml.kernel.org/r/20180222020320.6944-1-hmclauchlan@fb.com Signed-off-by: Howard McLauchlan <hmclauchlan@fb.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Josef Bacik <jbacik@fb.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Alexei Starovoitov <ast@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 07:23:57 +08:00
int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
if (__should_failslab(s, gfpflags))
return -ENOMEM;
return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);