linux/drivers/usb/host/isp116x-hcd.c

1722 lines
44 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* ISP116x HCD (Host Controller Driver) for USB.
*
* Derived from the SL811 HCD, rewritten for ISP116x.
* Copyright (C) 2005 Olav Kongas <ok@artecdesign.ee>
*
* Portions:
* Copyright (C) 2004 Psion Teklogix (for NetBook PRO)
* Copyright (C) 2004 David Brownell
*
* Periodic scheduling is based on Roman's OHCI code
* Copyright (C) 1999 Roman Weissgaerber
*
*/
/*
* The driver basically works. A number of people have used it with a range
* of devices.
*
* The driver passes all usbtests 1-14.
*
* Suspending/resuming of root hub via sysfs works. Remote wakeup works too.
* And suspending/resuming of platform device works too. Suspend/resume
* via HCD operations vector is not implemented.
*
* Iso transfer support is not implemented. Adding this would include
* implementing recovery from the failure to service the processed ITL
* fifo ram in time, which will involve chip reset.
*
* TODO:
+ More testing of suspend/resume.
*/
/*
ISP116x chips require certain delays between accesses to its
registers. The following timing options exist.
1. Configure your memory controller (the best)
2. Implement platform-specific delay function possibly
combined with configuring the memory controller; see
include/linux/usb-isp116x.h for more info. Some broken
memory controllers line LH7A400 SMC need this. Also,
uncomment for that to work the following
USE_PLATFORM_DELAY macro.
3. Use ndelay (easiest, poorest). For that, uncomment
the following USE_NDELAY macro.
*/
#define USE_PLATFORM_DELAY
//#define USE_NDELAY
//#define DEBUG
//#define VERBOSE
/* Transfer descriptors. See dump_ptd() for printout format */
//#define PTD_TRACE
/* enqueuing/finishing log of urbs */
//#define URB_TRACE
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/errno.h>
#include <linux/list.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/isp116x.h>
#include <linux/usb/hcd.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include "isp116x.h"
#define DRIVER_VERSION "03 Nov 2005"
#define DRIVER_DESC "ISP116x USB Host Controller Driver"
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
static const char hcd_name[] = "isp116x-hcd";
/*-----------------------------------------------------------------*/
/*
Write len bytes to fifo, pad till 32-bit boundary
*/
static void write_ptddata_to_fifo(struct isp116x *isp116x, void *buf, int len)
{
u8 *dp = (u8 *) buf;
u16 *dp2 = (u16 *) buf;
u16 w;
int quot = len % 4;
/* buffer is already in 'usb data order', which is LE. */
/* When reading buffer as u16, we have to take care byte order */
/* doesn't get mixed up */
if ((unsigned long)dp2 & 1) {
/* not aligned */
for (; len > 1; len -= 2) {
w = *dp++;
w |= *dp++ << 8;
isp116x_raw_write_data16(isp116x, w);
}
if (len)
isp116x_write_data16(isp116x, (u16) * dp);
} else {
/* aligned */
for (; len > 1; len -= 2) {
/* Keep byte order ! */
isp116x_raw_write_data16(isp116x, cpu_to_le16(*dp2++));
}
if (len)
isp116x_write_data16(isp116x, 0xff & *((u8 *) dp2));
}
if (quot == 1 || quot == 2)
isp116x_raw_write_data16(isp116x, 0);
}
/*
Read len bytes from fifo and then read till 32-bit boundary.
*/
static void read_ptddata_from_fifo(struct isp116x *isp116x, void *buf, int len)
{
u8 *dp = (u8 *) buf;
u16 *dp2 = (u16 *) buf;
u16 w;
int quot = len % 4;
/* buffer is already in 'usb data order', which is LE. */
/* When reading buffer as u16, we have to take care byte order */
/* doesn't get mixed up */
if ((unsigned long)dp2 & 1) {
/* not aligned */
for (; len > 1; len -= 2) {
w = isp116x_raw_read_data16(isp116x);
*dp++ = w & 0xff;
*dp++ = (w >> 8) & 0xff;
}
if (len)
*dp = 0xff & isp116x_read_data16(isp116x);
} else {
/* aligned */
for (; len > 1; len -= 2) {
/* Keep byte order! */
*dp2++ = le16_to_cpu(isp116x_raw_read_data16(isp116x));
}
if (len)
*(u8 *) dp2 = 0xff & isp116x_read_data16(isp116x);
}
if (quot == 1 || quot == 2)
isp116x_raw_read_data16(isp116x);
}
/*
Write ptd's and data for scheduled transfers into
the fifo ram. Fifo must be empty and ready.
*/
static void pack_fifo(struct isp116x *isp116x)
{
struct isp116x_ep *ep;
struct ptd *ptd;
int buflen = isp116x->atl_last_dir == PTD_DIR_IN
? isp116x->atl_bufshrt : isp116x->atl_buflen;
isp116x_write_reg16(isp116x, HCuPINT, HCuPINT_AIIEOT);
isp116x_write_reg16(isp116x, HCXFERCTR, buflen);
isp116x_write_addr(isp116x, HCATLPORT | ISP116x_WRITE_OFFSET);
for (ep = isp116x->atl_active; ep; ep = ep->active) {
ptd = &ep->ptd;
dump_ptd(ptd);
dump_ptd_out_data(ptd, ep->data);
isp116x_write_data16(isp116x, ptd->count);
isp116x_write_data16(isp116x, ptd->mps);
isp116x_write_data16(isp116x, ptd->len);
isp116x_write_data16(isp116x, ptd->faddr);
buflen -= sizeof(struct ptd);
/* Skip writing data for last IN PTD */
if (ep->active || (isp116x->atl_last_dir != PTD_DIR_IN)) {
write_ptddata_to_fifo(isp116x, ep->data, ep->length);
buflen -= ALIGN(ep->length, 4);
}
}
BUG_ON(buflen);
}
/*
Read the processed ptd's and data from fifo ram back to
URBs' buffers. Fifo must be full and done
*/
static void unpack_fifo(struct isp116x *isp116x)
{
struct isp116x_ep *ep;
struct ptd *ptd;
int buflen = isp116x->atl_last_dir == PTD_DIR_IN
? isp116x->atl_buflen : isp116x->atl_bufshrt;
isp116x_write_reg16(isp116x, HCuPINT, HCuPINT_AIIEOT);
isp116x_write_reg16(isp116x, HCXFERCTR, buflen);
isp116x_write_addr(isp116x, HCATLPORT);
for (ep = isp116x->atl_active; ep; ep = ep->active) {
ptd = &ep->ptd;
ptd->count = isp116x_read_data16(isp116x);
ptd->mps = isp116x_read_data16(isp116x);
ptd->len = isp116x_read_data16(isp116x);
ptd->faddr = isp116x_read_data16(isp116x);
buflen -= sizeof(struct ptd);
/* Skip reading data for last Setup or Out PTD */
if (ep->active || (isp116x->atl_last_dir == PTD_DIR_IN)) {
read_ptddata_from_fifo(isp116x, ep->data, ep->length);
buflen -= ALIGN(ep->length, 4);
}
dump_ptd(ptd);
dump_ptd_in_data(ptd, ep->data);
}
BUG_ON(buflen);
}
/*---------------------------------------------------------------*/
/*
Set up PTD's.
*/
static void preproc_atl_queue(struct isp116x *isp116x)
{
struct isp116x_ep *ep;
struct urb *urb;
struct ptd *ptd;
u16 len;
for (ep = isp116x->atl_active; ep; ep = ep->active) {
u16 toggle = 0, dir = PTD_DIR_SETUP;
BUG_ON(list_empty(&ep->hep->urb_list));
urb = container_of(ep->hep->urb_list.next,
struct urb, urb_list);
ptd = &ep->ptd;
len = ep->length;
ep->data = (unsigned char *)urb->transfer_buffer
+ urb->actual_length;
switch (ep->nextpid) {
case USB_PID_IN:
toggle = usb_gettoggle(urb->dev, ep->epnum, 0);
dir = PTD_DIR_IN;
break;
case USB_PID_OUT:
toggle = usb_gettoggle(urb->dev, ep->epnum, 1);
dir = PTD_DIR_OUT;
break;
case USB_PID_SETUP:
len = sizeof(struct usb_ctrlrequest);
ep->data = urb->setup_packet;
break;
case USB_PID_ACK:
toggle = 1;
len = 0;
dir = (urb->transfer_buffer_length
&& usb_pipein(urb->pipe))
? PTD_DIR_OUT : PTD_DIR_IN;
break;
default:
ERR("%s %d: ep->nextpid %d\n", __func__, __LINE__,
ep->nextpid);
BUG();
}
ptd->count = PTD_CC_MSK | PTD_ACTIVE_MSK | PTD_TOGGLE(toggle);
ptd->mps = PTD_MPS(ep->maxpacket)
| PTD_SPD(urb->dev->speed == USB_SPEED_LOW)
| PTD_EP(ep->epnum);
ptd->len = PTD_LEN(len) | PTD_DIR(dir);
ptd->faddr = PTD_FA(usb_pipedevice(urb->pipe));
if (!ep->active) {
ptd->mps |= PTD_LAST_MSK;
isp116x->atl_last_dir = dir;
}
isp116x->atl_bufshrt = sizeof(struct ptd) + isp116x->atl_buflen;
isp116x->atl_buflen = isp116x->atl_bufshrt + ALIGN(len, 4);
}
}
/*
Take done or failed requests out of schedule. Give back
processed urbs.
*/
static void finish_request(struct isp116x *isp116x, struct isp116x_ep *ep,
struct urb *urb, int status)
__releases(isp116x->lock) __acquires(isp116x->lock)
{
unsigned i;
ep->error_count = 0;
if (usb_pipecontrol(urb->pipe))
ep->nextpid = USB_PID_SETUP;
urb_dbg(urb, "Finish");
usb_hcd_unlink_urb_from_ep(isp116x_to_hcd(isp116x), urb);
spin_unlock(&isp116x->lock);
usb_hcd_giveback_urb(isp116x_to_hcd(isp116x), urb, status);
spin_lock(&isp116x->lock);
/* take idle endpoints out of the schedule */
if (!list_empty(&ep->hep->urb_list))
return;
/* async deschedule */
if (!list_empty(&ep->schedule)) {
list_del_init(&ep->schedule);
return;
}
/* periodic deschedule */
DBG("deschedule qh%d/%p branch %d\n", ep->period, ep, ep->branch);
for (i = ep->branch; i < PERIODIC_SIZE; i += ep->period) {
struct isp116x_ep *temp;
struct isp116x_ep **prev = &isp116x->periodic[i];
while (*prev && ((temp = *prev) != ep))
prev = &temp->next;
if (*prev)
*prev = ep->next;
isp116x->load[i] -= ep->load;
}
ep->branch = PERIODIC_SIZE;
isp116x_to_hcd(isp116x)->self.bandwidth_allocated -=
ep->load / ep->period;
/* switch irq type? */
if (!--isp116x->periodic_count) {
isp116x->irqenb &= ~HCuPINT_SOF;
isp116x->irqenb |= HCuPINT_ATL;
}
}
/*
Analyze transfer results, handle partial transfers and errors
*/
static void postproc_atl_queue(struct isp116x *isp116x)
{
struct isp116x_ep *ep;
struct urb *urb;
struct usb_device *udev;
struct ptd *ptd;
int short_not_ok;
int status;
u8 cc;
for (ep = isp116x->atl_active; ep; ep = ep->active) {
BUG_ON(list_empty(&ep->hep->urb_list));
urb =
container_of(ep->hep->urb_list.next, struct urb, urb_list);
udev = urb->dev;
ptd = &ep->ptd;
cc = PTD_GET_CC(ptd);
short_not_ok = 1;
status = -EINPROGRESS;
/* Data underrun is special. For allowed underrun
we clear the error and continue as normal. For
forbidden underrun we finish the DATA stage
immediately while for control transfer,
we do a STATUS stage. */
if (cc == TD_DATAUNDERRUN) {
if (!(urb->transfer_flags & URB_SHORT_NOT_OK) ||
usb_pipecontrol(urb->pipe)) {
DBG("Allowed or control data underrun\n");
cc = TD_CC_NOERROR;
short_not_ok = 0;
} else {
ep->error_count = 1;
usb_settoggle(udev, ep->epnum,
ep->nextpid == USB_PID_OUT,
PTD_GET_TOGGLE(ptd));
urb->actual_length += PTD_GET_COUNT(ptd);
status = cc_to_error[TD_DATAUNDERRUN];
goto done;
}
}
if (cc != TD_CC_NOERROR && cc != TD_NOTACCESSED
&& (++ep->error_count >= 3 || cc == TD_CC_STALL
|| cc == TD_DATAOVERRUN)) {
status = cc_to_error[cc];
if (ep->nextpid == USB_PID_ACK)
ep->nextpid = 0;
goto done;
}
/* According to usb spec, zero-length Int transfer signals
finishing of the urb. Hey, does this apply only
for IN endpoints? */
if (usb_pipeint(urb->pipe) && !PTD_GET_LEN(ptd)) {
status = 0;
goto done;
}
/* Relax after previously failed, but later succeeded
or correctly NAK'ed retransmission attempt */
if (ep->error_count
&& (cc == TD_CC_NOERROR || cc == TD_NOTACCESSED))
ep->error_count = 0;
/* Take into account idiosyncracies of the isp116x chip
regarding toggle bit for failed transfers */
if (ep->nextpid == USB_PID_OUT)
usb_settoggle(udev, ep->epnum, 1, PTD_GET_TOGGLE(ptd)
^ (ep->error_count > 0));
else if (ep->nextpid == USB_PID_IN)
usb_settoggle(udev, ep->epnum, 0, PTD_GET_TOGGLE(ptd)
^ (ep->error_count > 0));
switch (ep->nextpid) {
case USB_PID_IN:
case USB_PID_OUT:
urb->actual_length += PTD_GET_COUNT(ptd);
if (PTD_GET_ACTIVE(ptd)
|| (cc != TD_CC_NOERROR && cc < 0x0E))
break;
if (urb->transfer_buffer_length != urb->actual_length) {
if (short_not_ok)
break;
} else {
if (urb->transfer_flags & URB_ZERO_PACKET
&& ep->nextpid == USB_PID_OUT
&& !(PTD_GET_COUNT(ptd) % ep->maxpacket)) {
DBG("Zero packet requested\n");
break;
}
}
/* All data for this URB is transferred, let's finish */
if (usb_pipecontrol(urb->pipe))
ep->nextpid = USB_PID_ACK;
else
status = 0;
break;
case USB_PID_SETUP:
if (PTD_GET_ACTIVE(ptd)
|| (cc != TD_CC_NOERROR && cc < 0x0E))
break;
if (urb->transfer_buffer_length == urb->actual_length)
ep->nextpid = USB_PID_ACK;
else if (usb_pipeout(urb->pipe)) {
usb_settoggle(udev, 0, 1, 1);
ep->nextpid = USB_PID_OUT;
} else {
usb_settoggle(udev, 0, 0, 1);
ep->nextpid = USB_PID_IN;
}
break;
case USB_PID_ACK:
if (PTD_GET_ACTIVE(ptd)
|| (cc != TD_CC_NOERROR && cc < 0x0E))
break;
status = 0;
ep->nextpid = 0;
break;
default:
BUG();
}
done:
if (status != -EINPROGRESS || urb->unlinked)
finish_request(isp116x, ep, urb, status);
}
}
/*
Scan transfer lists, schedule transfers, send data off
to chip.
*/
static void start_atl_transfers(struct isp116x *isp116x)
{
struct isp116x_ep *last_ep = NULL, *ep;
struct urb *urb;
u16 load = 0;
int len, index, speed, byte_time;
if (atomic_read(&isp116x->atl_finishing))
return;
if (!HC_IS_RUNNING(isp116x_to_hcd(isp116x)->state))
return;
/* FIFO not empty? */
if (isp116x_read_reg16(isp116x, HCBUFSTAT) & HCBUFSTAT_ATL_FULL)
return;
isp116x->atl_active = NULL;
isp116x->atl_buflen = isp116x->atl_bufshrt = 0;
/* Schedule int transfers */
if (isp116x->periodic_count) {
isp116x->fmindex = index =
(isp116x->fmindex + 1) & (PERIODIC_SIZE - 1);
load = isp116x->load[index];
if (load) {
/* Bring all int transfers for this frame
into the active queue */
isp116x->atl_active = last_ep =
isp116x->periodic[index];
while (last_ep->next)
last_ep = (last_ep->active = last_ep->next);
last_ep->active = NULL;
}
}
/* Schedule control/bulk transfers */
list_for_each_entry(ep, &isp116x->async, schedule) {
urb = container_of(ep->hep->urb_list.next,
struct urb, urb_list);
speed = urb->dev->speed;
byte_time = speed == USB_SPEED_LOW
? BYTE_TIME_LOWSPEED : BYTE_TIME_FULLSPEED;
if (ep->nextpid == USB_PID_SETUP) {
len = sizeof(struct usb_ctrlrequest);
} else if (ep->nextpid == USB_PID_ACK) {
len = 0;
} else {
/* Find current free length ... */
len = (MAX_LOAD_LIMIT - load) / byte_time;
/* ... then limit it to configured max size ... */
len = min(len, speed == USB_SPEED_LOW ?
MAX_TRANSFER_SIZE_LOWSPEED :
MAX_TRANSFER_SIZE_FULLSPEED);
/* ... and finally cut to the multiple of MaxPacketSize,
or to the real length if there's enough room. */
if (len <
(urb->transfer_buffer_length -
urb->actual_length)) {
len -= len % ep->maxpacket;
if (!len)
continue;
} else
len = urb->transfer_buffer_length -
urb->actual_length;
BUG_ON(len < 0);
}
load += len * byte_time;
if (load > MAX_LOAD_LIMIT)
break;
ep->active = NULL;
ep->length = len;
if (last_ep)
last_ep->active = ep;
else
isp116x->atl_active = ep;
last_ep = ep;
}
/* Avoid starving of endpoints */
if ((&isp116x->async)->next != (&isp116x->async)->prev)
list_move(&isp116x->async, (&isp116x->async)->next);
if (isp116x->atl_active) {
preproc_atl_queue(isp116x);
pack_fifo(isp116x);
}
}
/*
Finish the processed transfers
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static void finish_atl_transfers(struct isp116x *isp116x)
{
if (!isp116x->atl_active)
return;
/* Fifo not ready? */
if (!(isp116x_read_reg16(isp116x, HCBUFSTAT) & HCBUFSTAT_ATL_DONE))
return;
atomic_inc(&isp116x->atl_finishing);
unpack_fifo(isp116x);
postproc_atl_queue(isp116x);
atomic_dec(&isp116x->atl_finishing);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t isp116x_irq(struct usb_hcd *hcd)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
u16 irqstat;
irqreturn_t ret = IRQ_NONE;
spin_lock(&isp116x->lock);
isp116x_write_reg16(isp116x, HCuPINTENB, 0);
irqstat = isp116x_read_reg16(isp116x, HCuPINT);
isp116x_write_reg16(isp116x, HCuPINT, irqstat);
if (irqstat & (HCuPINT_ATL | HCuPINT_SOF)) {
ret = IRQ_HANDLED;
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
finish_atl_transfers(isp116x);
}
if (irqstat & HCuPINT_OPR) {
u32 intstat = isp116x_read_reg32(isp116x, HCINTSTAT);
isp116x_write_reg32(isp116x, HCINTSTAT, intstat);
if (intstat & HCINT_UE) {
ERR("Unrecoverable error, HC is dead!\n");
/* IRQ's are off, we do no DMA,
perfectly ready to die ... */
hcd->state = HC_STATE_HALT;
USB: remove remaining usages of hcd->state from usbcore and fix regression This patch (as1467) removes the last usages of hcd->state from usbcore. We no longer check to see if an interrupt handler finds that a controller has died; instead we rely on host controller drivers to make an explicit call to usb_hc_died(). This fixes a regression introduced by commit 9b37596a2e860404503a3f2a6513db60c296bfdc (USB: move usbcore away from hcd->state). It used to be that when a controller shared an IRQ with another device and an interrupt arrived while hcd->state was set to HC_STATE_HALT, the interrupt handler would be skipped. The commit removed that test; as a result the current code doesn't skip calling the handler and ends up believing the controller has died, even though it's only temporarily stopped. The solution is to ignore HC_STATE_HALT following the handler's return. As a consequence of this change, several of the host controller drivers need to be modified. They can no longer implicitly rely on usbcore realizing that a controller has died because of hcd->state. The patch adds calls to usb_hc_died() in the appropriate places. The patch also changes a few of the interrupt handlers. They don't expect to be called when hcd->state is equal to HC_STATE_HALT, even if the controller is still alive. Early returns were added to avoid any confusion. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Tested-by: Manuel Lauss <manuel.lauss@googlemail.com> CC: Rodolfo Giometti <giometti@linux.it> CC: Olav Kongas <ok@artecdesign.ee> CC: <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-18 05:27:12 +08:00
usb_hc_died(hcd);
ret = IRQ_HANDLED;
goto done;
}
if (intstat & HCINT_RHSC)
/* When root hub or any of its ports is going
to come out of suspend, it may take more
than 10ms for status bits to stabilize. */
mod_timer(&hcd->rh_timer, jiffies
+ msecs_to_jiffies(20) + 1);
if (intstat & HCINT_RD) {
DBG("---- remote wakeup\n");
usb_hcd_resume_root_hub(hcd);
}
irqstat &= ~HCuPINT_OPR;
ret = IRQ_HANDLED;
}
if (irqstat & (HCuPINT_ATL | HCuPINT_SOF)) {
start_atl_transfers(isp116x);
}
isp116x_write_reg16(isp116x, HCuPINTENB, isp116x->irqenb);
done:
spin_unlock(&isp116x->lock);
return ret;
}
/*-----------------------------------------------------------------*/
/* usb 1.1 says max 90% of a frame is available for periodic transfers.
* this driver doesn't promise that much since it's got to handle an
* IRQ per packet; irq handling latencies also use up that time.
*/
/* out of 1000 us */
#define MAX_PERIODIC_LOAD 600
static int balance(struct isp116x *isp116x, u16 period, u16 load)
{
int i, branch = -ENOSPC;
/* search for the least loaded schedule branch of that period
which has enough bandwidth left unreserved. */
for (i = 0; i < period; i++) {
if (branch < 0 || isp116x->load[branch] > isp116x->load[i]) {
int j;
for (j = i; j < PERIODIC_SIZE; j += period) {
if ((isp116x->load[j] + load)
> MAX_PERIODIC_LOAD)
break;
}
if (j < PERIODIC_SIZE)
continue;
branch = i;
}
}
return branch;
}
/* NB! ALL the code above this point runs with isp116x->lock
held, irqs off
*/
/*-----------------------------------------------------------------*/
static int isp116x_urb_enqueue(struct usb_hcd *hcd,
struct urb *urb,
gfp_t mem_flags)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
struct usb_device *udev = urb->dev;
unsigned int pipe = urb->pipe;
int is_out = !usb_pipein(pipe);
int type = usb_pipetype(pipe);
int epnum = usb_pipeendpoint(pipe);
struct usb_host_endpoint *hep = urb->ep;
struct isp116x_ep *ep = NULL;
unsigned long flags;
int i;
int ret = 0;
urb_dbg(urb, "Enqueue");
if (type == PIPE_ISOCHRONOUS) {
ERR("Isochronous transfers not supported\n");
urb_dbg(urb, "Refused to enqueue");
return -ENXIO;
}
/* avoid all allocations within spinlocks: request or endpoint */
if (!hep->hcpriv) {
ep = kzalloc(sizeof *ep, mem_flags);
if (!ep)
return -ENOMEM;
}
spin_lock_irqsave(&isp116x->lock, flags);
if (!HC_IS_RUNNING(hcd->state)) {
kfree(ep);
ret = -ENODEV;
goto fail_not_linked;
}
ret = usb_hcd_link_urb_to_ep(hcd, urb);
if (ret) {
kfree(ep);
goto fail_not_linked;
}
if (hep->hcpriv)
ep = hep->hcpriv;
else {
INIT_LIST_HEAD(&ep->schedule);
ep->udev = udev;
ep->epnum = epnum;
ep->maxpacket = usb_maxpacket(udev, urb->pipe, is_out);
usb_settoggle(udev, epnum, is_out, 0);
if (type == PIPE_CONTROL) {
ep->nextpid = USB_PID_SETUP;
} else if (is_out) {
ep->nextpid = USB_PID_OUT;
} else {
ep->nextpid = USB_PID_IN;
}
if (urb->interval) {
/*
With INT URBs submitted, the driver works with SOF
interrupt enabled and ATL interrupt disabled. After
the PTDs are written to fifo ram, the chip starts
fifo processing and usb transfers after the next
SOF and continues until the transfers are finished
(succeeded or failed) or the frame ends. Therefore,
the transfers occur only in every second frame,
while fifo reading/writing and data processing
occur in every other second frame. */
if (urb->interval < 2)
urb->interval = 2;
if (urb->interval > 2 * PERIODIC_SIZE)
urb->interval = 2 * PERIODIC_SIZE;
ep->period = urb->interval >> 1;
ep->branch = PERIODIC_SIZE;
ep->load = usb_calc_bus_time(udev->speed,
!is_out,
(type == PIPE_ISOCHRONOUS),
usb_maxpacket(udev, pipe,
is_out)) /
1000;
}
hep->hcpriv = ep;
ep->hep = hep;
}
/* maybe put endpoint into schedule */
switch (type) {
case PIPE_CONTROL:
case PIPE_BULK:
if (list_empty(&ep->schedule))
list_add_tail(&ep->schedule, &isp116x->async);
break;
case PIPE_INTERRUPT:
urb->interval = ep->period;
ep->length = min_t(u32, ep->maxpacket,
urb->transfer_buffer_length);
/* urb submitted for already existing endpoint */
if (ep->branch < PERIODIC_SIZE)
break;
ep->branch = ret = balance(isp116x, ep->period, ep->load);
if (ret < 0)
goto fail;
ret = 0;
urb->start_frame = (isp116x->fmindex & (PERIODIC_SIZE - 1))
+ ep->branch;
/* sort each schedule branch by period (slow before fast)
to share the faster parts of the tree without needing
dummy/placeholder nodes */
DBG("schedule qh%d/%p branch %d\n", ep->period, ep, ep->branch);
for (i = ep->branch; i < PERIODIC_SIZE; i += ep->period) {
struct isp116x_ep **prev = &isp116x->periodic[i];
struct isp116x_ep *here = *prev;
while (here && ep != here) {
if (ep->period > here->period)
break;
prev = &here->next;
here = *prev;
}
if (ep != here) {
ep->next = here;
*prev = ep;
}
isp116x->load[i] += ep->load;
}
hcd->self.bandwidth_allocated += ep->load / ep->period;
/* switch over to SOFint */
if (!isp116x->periodic_count++) {
isp116x->irqenb &= ~HCuPINT_ATL;
isp116x->irqenb |= HCuPINT_SOF;
isp116x_write_reg16(isp116x, HCuPINTENB,
isp116x->irqenb);
}
}
urb->hcpriv = hep;
start_atl_transfers(isp116x);
fail:
if (ret)
usb_hcd_unlink_urb_from_ep(hcd, urb);
fail_not_linked:
spin_unlock_irqrestore(&isp116x->lock, flags);
return ret;
}
/*
Dequeue URBs.
*/
static int isp116x_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
int status)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
struct usb_host_endpoint *hep;
struct isp116x_ep *ep, *ep_act;
unsigned long flags;
int rc;
spin_lock_irqsave(&isp116x->lock, flags);
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
if (rc)
goto done;
hep = urb->hcpriv;
ep = hep->hcpriv;
WARN_ON(hep != ep->hep);
/* In front of queue? */
if (ep->hep->urb_list.next == &urb->urb_list)
/* active? */
for (ep_act = isp116x->atl_active; ep_act;
ep_act = ep_act->active)
if (ep_act == ep) {
VDBG("dequeue, urb %p active; wait for irq\n",
urb);
urb = NULL;
break;
}
if (urb)
finish_request(isp116x, ep, urb, status);
done:
spin_unlock_irqrestore(&isp116x->lock, flags);
return rc;
}
static void isp116x_endpoint_disable(struct usb_hcd *hcd,
struct usb_host_endpoint *hep)
{
int i;
struct isp116x_ep *ep = hep->hcpriv;
if (!ep)
return;
/* assume we'd just wait for the irq */
for (i = 0; i < 100 && !list_empty(&hep->urb_list); i++)
msleep(3);
if (!list_empty(&hep->urb_list))
WARNING("ep %p not empty?\n", ep);
kfree(ep);
hep->hcpriv = NULL;
}
static int isp116x_get_frame(struct usb_hcd *hcd)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
u32 fmnum;
unsigned long flags;
spin_lock_irqsave(&isp116x->lock, flags);
fmnum = isp116x_read_reg32(isp116x, HCFMNUM);
spin_unlock_irqrestore(&isp116x->lock, flags);
return (int)fmnum;
}
/*
Adapted from ohci-hub.c. Currently we don't support autosuspend.
*/
static int isp116x_hub_status_data(struct usb_hcd *hcd, char *buf)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
int ports, i, changed = 0;
unsigned long flags;
if (!HC_IS_RUNNING(hcd->state))
return -ESHUTDOWN;
/* Report no status change now, if we are scheduled to be
called later */
if (timer_pending(&hcd->rh_timer))
return 0;
ports = isp116x->rhdesca & RH_A_NDP;
spin_lock_irqsave(&isp116x->lock, flags);
isp116x->rhstatus = isp116x_read_reg32(isp116x, HCRHSTATUS);
if (isp116x->rhstatus & (RH_HS_LPSC | RH_HS_OCIC))
buf[0] = changed = 1;
else
buf[0] = 0;
for (i = 0; i < ports; i++) {
u32 status = isp116x_read_reg32(isp116x, i ? HCRHPORT2 : HCRHPORT1);
if (status & (RH_PS_CSC | RH_PS_PESC | RH_PS_PSSC
| RH_PS_OCIC | RH_PS_PRSC)) {
changed = 1;
buf[0] |= 1 << (i + 1);
}
}
spin_unlock_irqrestore(&isp116x->lock, flags);
return changed;
}
static void isp116x_hub_descriptor(struct isp116x *isp116x,
struct usb_hub_descriptor *desc)
{
u32 reg = isp116x->rhdesca;
desc->bDescriptorType = USB_DT_HUB;
desc->bDescLength = 9;
desc->bHubContrCurrent = 0;
desc->bNbrPorts = (u8) (reg & 0x3);
/* Power switching, device type, overcurrent. */
desc->wHubCharacteristics = cpu_to_le16((u16) ((reg >> 8) &
(HUB_CHAR_LPSM |
HUB_CHAR_COMPOUND |
HUB_CHAR_OCPM)));
desc->bPwrOn2PwrGood = (u8) ((reg >> 24) & 0xff);
/* ports removable, and legacy PortPwrCtrlMask */
USB 3.0 Hub Changes Update the USB core to deal with USB 3.0 hubs. These hubs have a slightly different hub descriptor than USB 2.0 hubs, with a fixed (rather than variable length) size. Change the USB core's hub descriptor to have a union for the last fields that differ. Change the host controller drivers that access those last fields (DeviceRemovable and PortPowerCtrlMask) to use the union. Translate the new version of the hub port status field into the old version that khubd understands. (Note: we need to fix it to translate the roothub's port status once we stop converting it to USB 2.0 hub status internally.) Add new code to handle link state change status. Send out new control messages that are needed for USB 3.0 hubs, like Set Hub Depth. This patch is a modified version of the original patch submitted by John Youn. It's updated to reflect the removal of the "bitmap" #define, and change the hub descriptor accesses of a couple new host controller drivers. Signed-off-by: John Youn <johnyoun@synopsys.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com> Cc: Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> Cc: Tony Olech <tony.olech@elandigitalsystems.com> Cc: "Robert P. J. Day" <rpjday@crashcourse.ca> Cc: Max Vozeler <mvz@vozeler.com> Cc: Tejun Heo <tj@kernel.org> Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com> Cc: Rodolfo Giometti <giometti@linux.it> Cc: Mike Frysinger <vapier@gentoo.org> Cc: Anton Vorontsov <avorontsov@mvista.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Lothar Wassmann <LW@KARO-electronics.de> Cc: Olav Kongas <ok@artecdesign.ee> Cc: Martin Fuzzey <mfuzzey@gmail.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: David Brownell <dbrownell@users.sourceforge.net>
2001-09-17 15:00:00 +08:00
desc->u.hs.DeviceRemovable[0] = 0;
desc->u.hs.DeviceRemovable[1] = ~0;
}
/* Perform reset of a given port.
It would be great to just start the reset and let the
USB core to clear the reset in due time. However,
root hub ports should be reset for at least 50 ms, while
our chip stays in reset for about 10 ms. I.e., we must
repeatedly reset it ourself here.
*/
static inline void root_port_reset(struct isp116x *isp116x, unsigned port)
{
u32 tmp;
unsigned long flags, t;
/* Root hub reset should be 50 ms, but some devices
want it even longer. */
t = jiffies + msecs_to_jiffies(100);
while (time_before(jiffies, t)) {
spin_lock_irqsave(&isp116x->lock, flags);
/* spin until any current reset finishes */
for (;;) {
tmp = isp116x_read_reg32(isp116x, port ?
HCRHPORT2 : HCRHPORT1);
if (!(tmp & RH_PS_PRS))
break;
udelay(500);
}
/* Don't reset a disconnected port */
if (!(tmp & RH_PS_CCS)) {
spin_unlock_irqrestore(&isp116x->lock, flags);
break;
}
/* Reset lasts 10ms (claims datasheet) */
isp116x_write_reg32(isp116x, port ? HCRHPORT2 :
HCRHPORT1, (RH_PS_PRS));
spin_unlock_irqrestore(&isp116x->lock, flags);
msleep(10);
}
}
/* Adapted from ohci-hub.c */
static int isp116x_hub_control(struct usb_hcd *hcd,
u16 typeReq,
u16 wValue, u16 wIndex, char *buf, u16 wLength)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
int ret = 0;
unsigned long flags;
int ports = isp116x->rhdesca & RH_A_NDP;
u32 tmp = 0;
switch (typeReq) {
case ClearHubFeature:
DBG("ClearHubFeature: ");
switch (wValue) {
case C_HUB_OVER_CURRENT:
DBG("C_HUB_OVER_CURRENT\n");
spin_lock_irqsave(&isp116x->lock, flags);
isp116x_write_reg32(isp116x, HCRHSTATUS, RH_HS_OCIC);
spin_unlock_irqrestore(&isp116x->lock, flags);
/* fall through */
case C_HUB_LOCAL_POWER:
DBG("C_HUB_LOCAL_POWER\n");
break;
default:
goto error;
}
break;
case SetHubFeature:
DBG("SetHubFeature: ");
switch (wValue) {
case C_HUB_OVER_CURRENT:
case C_HUB_LOCAL_POWER:
DBG("C_HUB_OVER_CURRENT or C_HUB_LOCAL_POWER\n");
break;
default:
goto error;
}
break;
case GetHubDescriptor:
DBG("GetHubDescriptor\n");
isp116x_hub_descriptor(isp116x,
(struct usb_hub_descriptor *)buf);
break;
case GetHubStatus:
DBG("GetHubStatus\n");
*(__le32 *) buf = 0;
break;
case GetPortStatus:
DBG("GetPortStatus\n");
if (!wIndex || wIndex > ports)
goto error;
spin_lock_irqsave(&isp116x->lock, flags);
tmp = isp116x_read_reg32(isp116x, (--wIndex) ? HCRHPORT2 : HCRHPORT1);
spin_unlock_irqrestore(&isp116x->lock, flags);
*(__le32 *) buf = cpu_to_le32(tmp);
DBG("GetPortStatus: port[%d] %08x\n", wIndex + 1, tmp);
break;
case ClearPortFeature:
DBG("ClearPortFeature: ");
if (!wIndex || wIndex > ports)
goto error;
wIndex--;
switch (wValue) {
case USB_PORT_FEAT_ENABLE:
DBG("USB_PORT_FEAT_ENABLE\n");
tmp = RH_PS_CCS;
break;
case USB_PORT_FEAT_C_ENABLE:
DBG("USB_PORT_FEAT_C_ENABLE\n");
tmp = RH_PS_PESC;
break;
case USB_PORT_FEAT_SUSPEND:
DBG("USB_PORT_FEAT_SUSPEND\n");
tmp = RH_PS_POCI;
break;
case USB_PORT_FEAT_C_SUSPEND:
DBG("USB_PORT_FEAT_C_SUSPEND\n");
tmp = RH_PS_PSSC;
break;
case USB_PORT_FEAT_POWER:
DBG("USB_PORT_FEAT_POWER\n");
tmp = RH_PS_LSDA;
break;
case USB_PORT_FEAT_C_CONNECTION:
DBG("USB_PORT_FEAT_C_CONNECTION\n");
tmp = RH_PS_CSC;
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
DBG("USB_PORT_FEAT_C_OVER_CURRENT\n");
tmp = RH_PS_OCIC;
break;
case USB_PORT_FEAT_C_RESET:
DBG("USB_PORT_FEAT_C_RESET\n");
tmp = RH_PS_PRSC;
break;
default:
goto error;
}
spin_lock_irqsave(&isp116x->lock, flags);
isp116x_write_reg32(isp116x, wIndex
? HCRHPORT2 : HCRHPORT1, tmp);
spin_unlock_irqrestore(&isp116x->lock, flags);
break;
case SetPortFeature:
DBG("SetPortFeature: ");
if (!wIndex || wIndex > ports)
goto error;
wIndex--;
switch (wValue) {
case USB_PORT_FEAT_SUSPEND:
DBG("USB_PORT_FEAT_SUSPEND\n");
spin_lock_irqsave(&isp116x->lock, flags);
isp116x_write_reg32(isp116x, wIndex
? HCRHPORT2 : HCRHPORT1, RH_PS_PSS);
spin_unlock_irqrestore(&isp116x->lock, flags);
break;
case USB_PORT_FEAT_POWER:
DBG("USB_PORT_FEAT_POWER\n");
spin_lock_irqsave(&isp116x->lock, flags);
isp116x_write_reg32(isp116x, wIndex
? HCRHPORT2 : HCRHPORT1, RH_PS_PPS);
spin_unlock_irqrestore(&isp116x->lock, flags);
break;
case USB_PORT_FEAT_RESET:
DBG("USB_PORT_FEAT_RESET\n");
root_port_reset(isp116x, wIndex);
break;
default:
goto error;
}
break;
default:
error:
/* "protocol stall" on error */
DBG("PROTOCOL STALL\n");
ret = -EPIPE;
}
return ret;
}
/*-----------------------------------------------------------------*/
#ifdef CONFIG_DEBUG_FS
static void dump_irq(struct seq_file *s, char *label, u16 mask)
{
seq_printf(s, "%s %04x%s%s%s%s%s%s\n", label, mask,
mask & HCuPINT_CLKRDY ? " clkrdy" : "",
mask & HCuPINT_SUSP ? " susp" : "",
mask & HCuPINT_OPR ? " opr" : "",
mask & HCuPINT_AIIEOT ? " eot" : "",
mask & HCuPINT_ATL ? " atl" : "",
mask & HCuPINT_SOF ? " sof" : "");
}
static void dump_int(struct seq_file *s, char *label, u32 mask)
{
seq_printf(s, "%s %08x%s%s%s%s%s%s%s\n", label, mask,
mask & HCINT_MIE ? " MIE" : "",
mask & HCINT_RHSC ? " rhsc" : "",
mask & HCINT_FNO ? " fno" : "",
mask & HCINT_UE ? " ue" : "",
mask & HCINT_RD ? " rd" : "",
mask & HCINT_SF ? " sof" : "", mask & HCINT_SO ? " so" : "");
}
static int isp116x_show_dbg(struct seq_file *s, void *unused)
{
struct isp116x *isp116x = s->private;
seq_printf(s, "%s\n%s version %s\n",
isp116x_to_hcd(isp116x)->product_desc, hcd_name,
DRIVER_VERSION);
if (HC_IS_SUSPENDED(isp116x_to_hcd(isp116x)->state)) {
seq_printf(s, "HCD is suspended\n");
return 0;
}
if (!HC_IS_RUNNING(isp116x_to_hcd(isp116x)->state)) {
seq_printf(s, "HCD not running\n");
return 0;
}
spin_lock_irq(&isp116x->lock);
dump_irq(s, "hc_irq_enable", isp116x_read_reg16(isp116x, HCuPINTENB));
dump_irq(s, "hc_irq_status", isp116x_read_reg16(isp116x, HCuPINT));
dump_int(s, "hc_int_enable", isp116x_read_reg32(isp116x, HCINTENB));
dump_int(s, "hc_int_status", isp116x_read_reg32(isp116x, HCINTSTAT));
isp116x_show_regs_seq(isp116x, s);
spin_unlock_irq(&isp116x->lock);
seq_printf(s, "\n");
return 0;
}
static int isp116x_open_seq(struct inode *inode, struct file *file)
{
return single_open(file, isp116x_show_dbg, inode->i_private);
}
static const struct file_operations isp116x_debug_fops = {
.open = isp116x_open_seq,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int create_debug_file(struct isp116x *isp116x)
{
isp116x->dentry = debugfs_create_file(hcd_name,
S_IRUGO, NULL, isp116x,
&isp116x_debug_fops);
if (!isp116x->dentry)
return -ENOMEM;
return 0;
}
static void remove_debug_file(struct isp116x *isp116x)
{
debugfs_remove(isp116x->dentry);
}
#else
#define create_debug_file(d) 0
#define remove_debug_file(d) do{}while(0)
#endif /* CONFIG_DEBUG_FS */
/*-----------------------------------------------------------------*/
/*
Software reset - can be called from any contect.
*/
static int isp116x_sw_reset(struct isp116x *isp116x)
{
int retries = 15;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&isp116x->lock, flags);
isp116x_write_reg16(isp116x, HCSWRES, HCSWRES_MAGIC);
isp116x_write_reg32(isp116x, HCCMDSTAT, HCCMDSTAT_HCR);
while (--retries) {
/* It usually resets within 1 ms */
mdelay(1);
if (!(isp116x_read_reg32(isp116x, HCCMDSTAT) & HCCMDSTAT_HCR))
break;
}
if (!retries) {
ERR("Software reset timeout\n");
ret = -ETIME;
}
spin_unlock_irqrestore(&isp116x->lock, flags);
return ret;
}
static int isp116x_reset(struct usb_hcd *hcd)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
unsigned long t;
u16 clkrdy = 0;
int ret, timeout = 15 /* ms */ ;
ret = isp116x_sw_reset(isp116x);
if (ret)
return ret;
t = jiffies + msecs_to_jiffies(timeout);
while (time_before_eq(jiffies, t)) {
msleep(4);
spin_lock_irq(&isp116x->lock);
clkrdy = isp116x_read_reg16(isp116x, HCuPINT) & HCuPINT_CLKRDY;
spin_unlock_irq(&isp116x->lock);
if (clkrdy)
break;
}
if (!clkrdy) {
ERR("Clock not ready after %dms\n", timeout);
/* After sw_reset the clock won't report to be ready, if
H_WAKEUP pin is high. */
ERR("Please make sure that the H_WAKEUP pin is pulled low!\n");
ret = -ENODEV;
}
return ret;
}
static void isp116x_stop(struct usb_hcd *hcd)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
unsigned long flags;
u32 val;
spin_lock_irqsave(&isp116x->lock, flags);
isp116x_write_reg16(isp116x, HCuPINTENB, 0);
/* Switch off ports' power, some devices don't come up
after next 'insmod' without this */
val = isp116x_read_reg32(isp116x, HCRHDESCA);
val &= ~(RH_A_NPS | RH_A_PSM);
isp116x_write_reg32(isp116x, HCRHDESCA, val);
isp116x_write_reg32(isp116x, HCRHSTATUS, RH_HS_LPS);
spin_unlock_irqrestore(&isp116x->lock, flags);
isp116x_sw_reset(isp116x);
}
/*
Configure the chip. The chip must be successfully reset by now.
*/
static int isp116x_start(struct usb_hcd *hcd)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
struct isp116x_platform_data *board = isp116x->board;
u32 val;
unsigned long flags;
spin_lock_irqsave(&isp116x->lock, flags);
/* clear interrupt status and disable all interrupt sources */
isp116x_write_reg16(isp116x, HCuPINT, 0xff);
isp116x_write_reg16(isp116x, HCuPINTENB, 0);
val = isp116x_read_reg16(isp116x, HCCHIPID);
if ((val & HCCHIPID_MASK) != HCCHIPID_MAGIC) {
ERR("Invalid chip ID %04x\n", val);
spin_unlock_irqrestore(&isp116x->lock, flags);
return -ENODEV;
}
/* To be removed in future */
hcd->uses_new_polling = 1;
isp116x_write_reg16(isp116x, HCITLBUFLEN, ISP116x_ITL_BUFSIZE);
isp116x_write_reg16(isp116x, HCATLBUFLEN, ISP116x_ATL_BUFSIZE);
/* ----- HW conf */
val = HCHWCFG_INT_ENABLE | HCHWCFG_DBWIDTH(1);
if (board->sel15Kres)
val |= HCHWCFG_15KRSEL;
/* Remote wakeup won't work without working clock */
if (board->remote_wakeup_enable)
val |= HCHWCFG_CLKNOTSTOP;
if (board->oc_enable)
val |= HCHWCFG_ANALOG_OC;
if (board->int_act_high)
val |= HCHWCFG_INT_POL;
if (board->int_edge_triggered)
val |= HCHWCFG_INT_TRIGGER;
isp116x_write_reg16(isp116x, HCHWCFG, val);
/* ----- Root hub conf */
val = (25 << 24) & RH_A_POTPGT;
/* AN10003_1.pdf recommends RH_A_NPS (no power switching) to
be always set. Yet, instead, we request individual port
power switching. */
val |= RH_A_PSM;
/* Report overcurrent per port */
val |= RH_A_OCPM;
isp116x_write_reg32(isp116x, HCRHDESCA, val);
isp116x->rhdesca = isp116x_read_reg32(isp116x, HCRHDESCA);
val = RH_B_PPCM;
isp116x_write_reg32(isp116x, HCRHDESCB, val);
isp116x->rhdescb = isp116x_read_reg32(isp116x, HCRHDESCB);
val = 0;
if (board->remote_wakeup_enable) {
if (!device_can_wakeup(hcd->self.controller))
device_init_wakeup(hcd->self.controller, 1);
val |= RH_HS_DRWE;
}
isp116x_write_reg32(isp116x, HCRHSTATUS, val);
isp116x->rhstatus = isp116x_read_reg32(isp116x, HCRHSTATUS);
isp116x_write_reg32(isp116x, HCFMINTVL, 0x27782edf);
hcd->state = HC_STATE_RUNNING;
/* Set up interrupts */
isp116x->intenb = HCINT_MIE | HCINT_RHSC | HCINT_UE;
if (board->remote_wakeup_enable)
isp116x->intenb |= HCINT_RD;
isp116x->irqenb = HCuPINT_ATL | HCuPINT_OPR; /* | HCuPINT_SUSP; */
isp116x_write_reg32(isp116x, HCINTENB, isp116x->intenb);
isp116x_write_reg16(isp116x, HCuPINTENB, isp116x->irqenb);
/* Go operational */
val = HCCONTROL_USB_OPER;
if (board->remote_wakeup_enable)
val |= HCCONTROL_RWE;
isp116x_write_reg32(isp116x, HCCONTROL, val);
/* Disable ports to avoid race in device enumeration */
isp116x_write_reg32(isp116x, HCRHPORT1, RH_PS_CCS);
isp116x_write_reg32(isp116x, HCRHPORT2, RH_PS_CCS);
isp116x_show_regs_log(isp116x);
spin_unlock_irqrestore(&isp116x->lock, flags);
return 0;
}
#ifdef CONFIG_PM
static int isp116x_bus_suspend(struct usb_hcd *hcd)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
unsigned long flags;
u32 val;
int ret = 0;
spin_lock_irqsave(&isp116x->lock, flags);
val = isp116x_read_reg32(isp116x, HCCONTROL);
switch (val & HCCONTROL_HCFS) {
case HCCONTROL_USB_OPER:
spin_unlock_irqrestore(&isp116x->lock, flags);
val &= (~HCCONTROL_HCFS & ~HCCONTROL_RWE);
val |= HCCONTROL_USB_SUSPEND;
if (hcd->self.root_hub->do_remote_wakeup)
val |= HCCONTROL_RWE;
/* Wait for usb transfers to finish */
msleep(2);
spin_lock_irqsave(&isp116x->lock, flags);
isp116x_write_reg32(isp116x, HCCONTROL, val);
spin_unlock_irqrestore(&isp116x->lock, flags);
/* Wait for devices to suspend */
msleep(5);
break;
case HCCONTROL_USB_RESUME:
isp116x_write_reg32(isp116x, HCCONTROL,
(val & ~HCCONTROL_HCFS) |
HCCONTROL_USB_RESET);
/* fall through */
case HCCONTROL_USB_RESET:
ret = -EBUSY;
/* fall through */
default: /* HCCONTROL_USB_SUSPEND */
spin_unlock_irqrestore(&isp116x->lock, flags);
break;
}
return ret;
}
static int isp116x_bus_resume(struct usb_hcd *hcd)
{
struct isp116x *isp116x = hcd_to_isp116x(hcd);
u32 val;
msleep(5);
spin_lock_irq(&isp116x->lock);
val = isp116x_read_reg32(isp116x, HCCONTROL);
switch (val & HCCONTROL_HCFS) {
case HCCONTROL_USB_SUSPEND:
val &= ~HCCONTROL_HCFS;
val |= HCCONTROL_USB_RESUME;
isp116x_write_reg32(isp116x, HCCONTROL, val);
case HCCONTROL_USB_RESUME:
break;
case HCCONTROL_USB_OPER:
spin_unlock_irq(&isp116x->lock);
return 0;
default:
/* HCCONTROL_USB_RESET: this may happen, when during
suspension the HC lost power. Reinitialize completely */
spin_unlock_irq(&isp116x->lock);
DBG("Chip has been reset while suspended. Reinit from scratch.\n");
isp116x_reset(hcd);
isp116x_start(hcd);
isp116x_hub_control(hcd, SetPortFeature,
USB_PORT_FEAT_POWER, 1, NULL, 0);
if ((isp116x->rhdesca & RH_A_NDP) == 2)
isp116x_hub_control(hcd, SetPortFeature,
USB_PORT_FEAT_POWER, 2, NULL, 0);
return 0;
}
val = isp116x->rhdesca & RH_A_NDP;
while (val--) {
u32 stat =
isp116x_read_reg32(isp116x, val ? HCRHPORT2 : HCRHPORT1);
/* force global, not selective, resume */
if (!(stat & RH_PS_PSS))
continue;
DBG("%s: Resuming port %d\n", __func__, val);
isp116x_write_reg32(isp116x, RH_PS_POCI, val
? HCRHPORT2 : HCRHPORT1);
}
spin_unlock_irq(&isp116x->lock);
hcd->state = HC_STATE_RESUMING;
msleep(USB_RESUME_TIMEOUT);
/* Go operational */
spin_lock_irq(&isp116x->lock);
val = isp116x_read_reg32(isp116x, HCCONTROL);
isp116x_write_reg32(isp116x, HCCONTROL,
(val & ~HCCONTROL_HCFS) | HCCONTROL_USB_OPER);
spin_unlock_irq(&isp116x->lock);
hcd->state = HC_STATE_RUNNING;
return 0;
}
#else
#define isp116x_bus_suspend NULL
#define isp116x_bus_resume NULL
#endif
static const struct hc_driver isp116x_hc_driver = {
.description = hcd_name,
.product_desc = "ISP116x Host Controller",
.hcd_priv_size = sizeof(struct isp116x),
.irq = isp116x_irq,
.flags = HCD_USB11,
.reset = isp116x_reset,
.start = isp116x_start,
.stop = isp116x_stop,
.urb_enqueue = isp116x_urb_enqueue,
.urb_dequeue = isp116x_urb_dequeue,
.endpoint_disable = isp116x_endpoint_disable,
.get_frame_number = isp116x_get_frame,
.hub_status_data = isp116x_hub_status_data,
.hub_control = isp116x_hub_control,
.bus_suspend = isp116x_bus_suspend,
.bus_resume = isp116x_bus_resume,
};
/*----------------------------------------------------------------*/
static int isp116x_remove(struct platform_device *pdev)
{
struct usb_hcd *hcd = platform_get_drvdata(pdev);
struct isp116x *isp116x;
struct resource *res;
if (!hcd)
return 0;
isp116x = hcd_to_isp116x(hcd);
remove_debug_file(isp116x);
usb_remove_hcd(hcd);
iounmap(isp116x->data_reg);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
release_mem_region(res->start, 2);
iounmap(isp116x->addr_reg);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, 2);
usb_put_hcd(hcd);
return 0;
}
static int isp116x_probe(struct platform_device *pdev)
{
struct usb_hcd *hcd;
struct isp116x *isp116x;
struct resource *addr, *data, *ires;
void __iomem *addr_reg;
void __iomem *data_reg;
int irq;
int ret = 0;
unsigned long irqflags;
if (usb_disabled())
return -ENODEV;
if (pdev->num_resources < 3) {
ret = -ENODEV;
goto err1;
}
data = platform_get_resource(pdev, IORESOURCE_MEM, 0);
addr = platform_get_resource(pdev, IORESOURCE_MEM, 1);
ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!addr || !data || !ires) {
ret = -ENODEV;
goto err1;
}
irq = ires->start;
irqflags = ires->flags & IRQF_TRIGGER_MASK;
if (pdev->dev.dma_mask) {
DBG("DMA not supported\n");
ret = -EINVAL;
goto err1;
}
if (!request_mem_region(addr->start, 2, hcd_name)) {
ret = -EBUSY;
goto err1;
}
addr_reg = ioremap(addr->start, resource_size(addr));
if (addr_reg == NULL) {
ret = -ENOMEM;
goto err2;
}
if (!request_mem_region(data->start, 2, hcd_name)) {
ret = -EBUSY;
goto err3;
}
data_reg = ioremap(data->start, resource_size(data));
if (data_reg == NULL) {
ret = -ENOMEM;
goto err4;
}
/* allocate and initialize hcd */
hcd = usb_create_hcd(&isp116x_hc_driver, &pdev->dev, dev_name(&pdev->dev));
if (!hcd) {
ret = -ENOMEM;
goto err5;
}
/* this rsrc_start is bogus */
hcd->rsrc_start = addr->start;
isp116x = hcd_to_isp116x(hcd);
isp116x->data_reg = data_reg;
isp116x->addr_reg = addr_reg;
spin_lock_init(&isp116x->lock);
INIT_LIST_HEAD(&isp116x->async);
isp116x->board = dev_get_platdata(&pdev->dev);
if (!isp116x->board) {
ERR("Platform data structure not initialized\n");
ret = -ENODEV;
goto err6;
}
if (isp116x_check_platform_delay(isp116x)) {
ERR("USE_PLATFORM_DELAY defined, but delay function not "
"implemented.\n");
ERR("See comments in drivers/usb/host/isp116x-hcd.c\n");
ret = -ENODEV;
goto err6;
}
ret = usb_add_hcd(hcd, irq, irqflags);
if (ret)
goto err6;
device_wakeup_enable(hcd->self.controller);
ret = create_debug_file(isp116x);
if (ret) {
ERR("Couldn't create debugfs entry\n");
goto err7;
}
return 0;
err7:
usb_remove_hcd(hcd);
err6:
usb_put_hcd(hcd);
err5:
iounmap(data_reg);
err4:
release_mem_region(data->start, 2);
err3:
iounmap(addr_reg);
err2:
release_mem_region(addr->start, 2);
err1:
ERR("init error, %d\n", ret);
return ret;
}
#ifdef CONFIG_PM
/*
Suspend of platform device
*/
static int isp116x_suspend(struct platform_device *dev, pm_message_t state)
{
VDBG("%s: state %x\n", __func__, state.event);
return 0;
}
/*
Resume platform device
*/
static int isp116x_resume(struct platform_device *dev)
{
VDBG("%s\n", __func__);
return 0;
}
#else
#define isp116x_suspend NULL
#define isp116x_resume NULL
#endif
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:isp116x-hcd");
static struct platform_driver isp116x_driver = {
.probe = isp116x_probe,
.remove = isp116x_remove,
.suspend = isp116x_suspend,
.resume = isp116x_resume,
.driver = {
.name = hcd_name,
},
};
module_platform_driver(isp116x_driver);