linux/arch/powerpc/kernel/prom.c

875 lines
23 KiB
C
Raw Normal View History

/*
* Procedures for creating, accessing and interpreting the device tree.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996-2005 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <stdarg.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/kexec.h>
2006-07-03 19:36:01 +08:00
#include <linux/irq.h>
#include <linux/memblock.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <linux/cpu.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/kdump.h>
#include <asm/smp.h>
#include <asm/mmu.h>
#include <asm/paca.h>
#include <asm/pgtable.h>
#include <asm/powernv.h>
#include <asm/iommu.h>
#include <asm/btext.h>
#include <asm/sections.h>
#include <asm/machdep.h>
#include <asm/pci-bridge.h>
#include <asm/kexec.h>
#include <asm/opal.h>
#include <asm/fadump.h>
#include <asm/epapr_hcalls.h>
#include <asm/firmware.h>
#include <asm/dt_cpu_ftrs.h>
#include <asm/drmem.h>
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 02:22:34 +08:00
#include <mm/mmu_decl.h>
#ifdef DEBUG
#define DBG(fmt...) printk(KERN_ERR fmt)
#else
#define DBG(fmt...)
#endif
#ifdef CONFIG_PPC64
int __initdata iommu_is_off;
int __initdata iommu_force_on;
unsigned long tce_alloc_start, tce_alloc_end;
u64 ppc64_rma_size;
#endif
static phys_addr_t first_memblock_size;
static int __initdata boot_cpu_count;
static int __init early_parse_mem(char *p)
{
if (!p)
return 1;
memory_limit = PAGE_ALIGN(memparse(p, &p));
DBG("memory limit = 0x%llx\n", memory_limit);
return 0;
}
early_param("mem", early_parse_mem);
/*
* overlaps_initrd - check for overlap with page aligned extension of
* initrd.
*/
static inline int overlaps_initrd(unsigned long start, unsigned long size)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (!initrd_start)
return 0;
return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
#else
return 0;
#endif
}
/**
* move_device_tree - move tree to an unused area, if needed.
*
* The device tree may be allocated beyond our memory limit, or inside the
* crash kernel region for kdump, or within the page aligned range of initrd.
* If so, move it out of the way.
*/
static void __init move_device_tree(void)
{
unsigned long start, size;
void *p;
DBG("-> move_device_tree\n");
start = __pa(initial_boot_params);
size = fdt_totalsize(initial_boot_params);
if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
overlaps_crashkernel(start, size) ||
overlaps_initrd(start, size)) {
p = __va(memblock_alloc(size, PAGE_SIZE));
memcpy(p, initial_boot_params, size);
initial_boot_params = p;
DBG("Moved device tree to 0x%p\n", p);
}
DBG("<- move_device_tree\n");
}
/*
* ibm,pa-features is a per-cpu property that contains a string of
* attribute descriptors, each of which has a 2 byte header plus up
* to 254 bytes worth of processor attribute bits. First header
* byte specifies the number of bytes following the header.
* Second header byte is an "attribute-specifier" type, of which
* zero is the only currently-defined value.
* Implementation: Pass in the byte and bit offset for the feature
* that we are interested in. The function will return -1 if the
* pa-features property is missing, or a 1/0 to indicate if the feature
* is supported/not supported. Note that the bit numbers are
* big-endian to match the definition in PAPR.
*/
static struct ibm_pa_feature {
unsigned long cpu_features; /* CPU_FTR_xxx bit */
unsigned long mmu_features; /* MMU_FTR_xxx bit */
unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */
unsigned char pabyte; /* byte number in ibm,pa-features */
unsigned char pabit; /* bit number (big-endian) */
unsigned char invert; /* if 1, pa bit set => clear feature */
} ibm_pa_features[] __initdata = {
{ .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
{ .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
{ .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL },
{ .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE },
{ .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE },
#ifdef CONFIG_PPC_RADIX_MMU
{ .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX },
#endif
{ .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN },
{ .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE,
.cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
/*
* If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
* we don't want to turn on TM here, so we use the *_COMP versions
* which are 0 if the kernel doesn't support TM.
*/
{ .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
.cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
};
static void __init scan_features(unsigned long node, const unsigned char *ftrs,
unsigned long tablelen,
struct ibm_pa_feature *fp,
unsigned long ft_size)
{
unsigned long i, len, bit;
/* find descriptor with type == 0 */
for (;;) {
if (tablelen < 3)
return;
len = 2 + ftrs[0];
if (tablelen < len)
return; /* descriptor 0 not found */
if (ftrs[1] == 0)
break;
tablelen -= len;
ftrs += len;
}
/* loop over bits we know about */
for (i = 0; i < ft_size; ++i, ++fp) {
if (fp->pabyte >= ftrs[0])
continue;
bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
if (bit ^ fp->invert) {
cur_cpu_spec->cpu_features |= fp->cpu_features;
cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
cur_cpu_spec->mmu_features |= fp->mmu_features;
} else {
cur_cpu_spec->cpu_features &= ~fp->cpu_features;
cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
cur_cpu_spec->mmu_features &= ~fp->mmu_features;
}
}
}
static void __init check_cpu_pa_features(unsigned long node)
{
const unsigned char *pa_ftrs;
int tablelen;
pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
if (pa_ftrs == NULL)
return;
scan_features(node, pa_ftrs, tablelen,
ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
}
#ifdef CONFIG_PPC_BOOK3S_64
static void __init init_mmu_slb_size(unsigned long node)
{
const __be32 *slb_size_ptr;
slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
if (slb_size_ptr)
mmu_slb_size = be32_to_cpup(slb_size_ptr);
}
#else
#define init_mmu_slb_size(node) do { } while(0)
#endif
static struct feature_property {
const char *name;
u32 min_value;
unsigned long cpu_feature;
unsigned long cpu_user_ftr;
} feature_properties[] __initdata = {
#ifdef CONFIG_ALTIVEC
{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
#endif /* CONFIG_VSX */
#ifdef CONFIG_PPC64
{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
{"ibm,purr", 1, CPU_FTR_PURR, 0},
{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
#endif /* CONFIG_PPC64 */
};
#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
static inline void identical_pvr_fixup(unsigned long node)
{
unsigned int pvr;
const char *model = of_get_flat_dt_prop(node, "model", NULL);
/*
* Since 440GR(x)/440EP(x) processors have the same pvr,
* we check the node path and set bit 28 in the cur_cpu_spec
* pvr for EP(x) processor version. This bit is always 0 in
* the "real" pvr. Then we call identify_cpu again with
* the new logical pvr to enable FPU support.
*/
if (model && strstr(model, "440EP")) {
pvr = cur_cpu_spec->pvr_value | 0x8;
identify_cpu(0, pvr);
DBG("Using logical pvr %x for %s\n", pvr, model);
}
}
#else
#define identical_pvr_fixup(node) do { } while(0)
#endif
static void __init check_cpu_feature_properties(unsigned long node)
{
int i;
struct feature_property *fp = feature_properties;
const __be32 *prop;
for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
prop = of_get_flat_dt_prop(node, fp->name, NULL);
if (prop && be32_to_cpup(prop) >= fp->min_value) {
cur_cpu_spec->cpu_features |= fp->cpu_feature;
cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
}
}
}
static int __init early_init_dt_scan_cpus(unsigned long node,
const char *uname, int depth,
void *data)
{
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
const __be32 *prop;
const __be32 *intserv;
int i, nthreads;
int len;
int found = -1;
int found_thread = 0;
/* We are scanning "cpu" nodes only */
if (type == NULL || strcmp(type, "cpu") != 0)
return 0;
/* Get physical cpuid */
intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
if (!intserv)
intserv = of_get_flat_dt_prop(node, "reg", &len);
nthreads = len / sizeof(int);
/*
* Now see if any of these threads match our boot cpu.
* NOTE: This must match the parsing done in smp_setup_cpu_maps.
*/
for (i = 0; i < nthreads; i++) {
if (be32_to_cpu(intserv[i]) ==
fdt_boot_cpuid_phys(initial_boot_params)) {
found = boot_cpu_count;
found_thread = i;
}
#ifdef CONFIG_SMP
/* logical cpu id is always 0 on UP kernels */
boot_cpu_count++;
#endif
}
/* Not the boot CPU */
if (found < 0)
return 0;
DBG("boot cpu: logical %d physical %d\n", found,
be32_to_cpu(intserv[found_thread]));
boot_cpuid = found;
/*
* PAPR defines "logical" PVR values for cpus that
* meet various levels of the architecture:
* 0x0f000001 Architecture version 2.04
* 0x0f000002 Architecture version 2.05
* If the cpu-version property in the cpu node contains
* such a value, we call identify_cpu again with the
* logical PVR value in order to use the cpu feature
* bits appropriate for the architecture level.
*
* A POWER6 partition in "POWER6 architected" mode
* uses the 0x0f000002 PVR value; in POWER5+ mode
* it uses 0x0f000001.
*
* If we're using device tree CPU feature discovery then we don't
* support the cpu-version property, and it's the responsibility of the
* firmware/hypervisor to provide the correct feature set for the
* architecture level via the ibm,powerpc-cpu-features binding.
*/
if (!dt_cpu_ftrs_in_use()) {
prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
identify_cpu(0, be32_to_cpup(prop));
check_cpu_feature_properties(node);
check_cpu_pa_features(node);
}
identical_pvr_fixup(node);
init_mmu_slb_size(node);
#ifdef CONFIG_PPC64
if (nthreads == 1)
cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
else if (!dt_cpu_ftrs_in_use())
cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
allocate_paca(boot_cpuid);
#endif
set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
return 0;
}
static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
const char *uname,
int depth, void *data)
{
const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
/* Use common scan routine to determine if this is the chosen node */
if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
return 0;
#ifdef CONFIG_PPC64
/* check if iommu is forced on or off */
if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
iommu_is_off = 1;
if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
iommu_force_on = 1;
#endif
/* mem=x on the command line is the preferred mechanism */
lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
if (lprop)
memory_limit = *lprop;
#ifdef CONFIG_PPC64
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
if (lprop)
tce_alloc_start = *lprop;
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
if (lprop)
tce_alloc_end = *lprop;
#endif
#ifdef CONFIG_KEXEC_CORE
lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
if (lprop)
crashk_res.start = *lprop;
lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
if (lprop)
crashk_res.end = crashk_res.start + *lprop - 1;
#endif
/* break now */
return 1;
}
#ifdef CONFIG_PPC_PSERIES
/*
* Interpret the ibm dynamic reconfiguration memory LMBs.
* This contains a list of memory blocks along with NUMA affinity
* information.
*/
static void __init early_init_drmem_lmb(struct drmem_lmb *lmb,
const __be32 **usm)
{
u64 base, size;
int is_kexec_kdump = 0, rngs;
base = lmb->base_addr;
size = drmem_lmb_size();
rngs = 1;
/*
* Skip this block if the reserved bit is set in flags
* or if the block is not assigned to this partition.
*/
if ((lmb->flags & DRCONF_MEM_RESERVED) ||
!(lmb->flags & DRCONF_MEM_ASSIGNED))
return;
if (*usm)
is_kexec_kdump = 1;
if (is_kexec_kdump) {
/*
* For each memblock in ibm,dynamic-memory, a
* corresponding entry in linux,drconf-usable-memory
* property contains a counter 'p' followed by 'p'
* (base, size) duple. Now read the counter from
* linux,drconf-usable-memory property
*/
rngs = dt_mem_next_cell(dt_root_size_cells, usm);
if (!rngs) /* there are no (base, size) duple */
return;
}
do {
if (is_kexec_kdump) {
base = dt_mem_next_cell(dt_root_addr_cells, usm);
size = dt_mem_next_cell(dt_root_size_cells, usm);
}
if (iommu_is_off) {
if (base >= 0x80000000ul)
continue;
if ((base + size) > 0x80000000ul)
size = 0x80000000ul - base;
}
DBG("Adding: %llx -> %llx\n", base, size);
memblock_add(base, size);
} while (--rngs);
}
#endif /* CONFIG_PPC_PSERIES */
static int __init early_init_dt_scan_memory_ppc(unsigned long node,
const char *uname,
int depth, void *data)
{
#ifdef CONFIG_PPC_PSERIES
if (depth == 1 &&
strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
walk_drmem_lmbs_early(node, early_init_drmem_lmb);
return 0;
}
#endif
return early_init_dt_scan_memory(node, uname, depth, data);
}
/*
* For a relocatable kernel, we need to get the memstart_addr first,
* then use it to calculate the virtual kernel start address. This has
* to happen at a very early stage (before machine_init). In this case,
* we just want to get the memstart_address and would not like to mess the
* memblock at this stage. So introduce a variable to skip the memblock_add()
* for this reason.
*/
#ifdef CONFIG_RELOCATABLE
static int add_mem_to_memblock = 1;
#else
#define add_mem_to_memblock 1
#endif
void __init early_init_dt_add_memory_arch(u64 base, u64 size)
{
#ifdef CONFIG_PPC64
if (iommu_is_off) {
if (base >= 0x80000000ul)
return;
if ((base + size) > 0x80000000ul)
size = 0x80000000ul - base;
}
#endif
/* Keep track of the beginning of memory -and- the size of
* the very first block in the device-tree as it represents
* the RMA on ppc64 server
*/
if (base < memstart_addr) {
memstart_addr = base;
first_memblock_size = size;
}
/* Add the chunk to the MEMBLOCK list */
if (add_mem_to_memblock)
memblock_add(base, size);
}
static void __init early_reserve_mem_dt(void)
{
unsigned long i, dt_root;
int len;
const __be32 *prop;
early_init_fdt_reserve_self();
early_init_fdt_scan_reserved_mem();
dt_root = of_get_flat_dt_root();
prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
if (!prop)
return;
DBG("Found new-style reserved-ranges\n");
/* Each reserved range is an (address,size) pair, 2 cells each,
* totalling 4 cells per range. */
for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
u64 base, size;
base = of_read_number(prop + (i * 4) + 0, 2);
size = of_read_number(prop + (i * 4) + 2, 2);
if (size) {
DBG("reserving: %llx -> %llx\n", base, size);
memblock_reserve(base, size);
}
}
}
static void __init early_reserve_mem(void)
{
__be64 *reserve_map;
reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
fdt_off_mem_rsvmap(initial_boot_params));
/* Look for the new "reserved-regions" property in the DT */
early_reserve_mem_dt();
#ifdef CONFIG_BLK_DEV_INITRD
/* Then reserve the initrd, if any */
if (initrd_start && (initrd_end > initrd_start)) {
memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
_ALIGN_UP(initrd_end, PAGE_SIZE) -
_ALIGN_DOWN(initrd_start, PAGE_SIZE));
}
#endif /* CONFIG_BLK_DEV_INITRD */
#ifdef CONFIG_PPC32
/*
* Handle the case where we might be booting from an old kexec
* image that setup the mem_rsvmap as pairs of 32-bit values
*/
if (be64_to_cpup(reserve_map) > 0xffffffffull) {
u32 base_32, size_32;
__be32 *reserve_map_32 = (__be32 *)reserve_map;
DBG("Found old 32-bit reserve map\n");
while (1) {
base_32 = be32_to_cpup(reserve_map_32++);
size_32 = be32_to_cpup(reserve_map_32++);
if (size_32 == 0)
break;
DBG("reserving: %x -> %x\n", base_32, size_32);
memblock_reserve(base_32, size_32);
}
return;
}
#endif
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static bool tm_disabled __initdata;
static int __init parse_ppc_tm(char *str)
{
bool res;
if (kstrtobool(str, &res))
return -EINVAL;
tm_disabled = !res;
return 0;
}
early_param("ppc_tm", parse_ppc_tm);
static void __init tm_init(void)
{
if (tm_disabled) {
pr_info("Disabling hardware transactional memory (HTM)\n");
cur_cpu_spec->cpu_user_features2 &=
~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
return;
}
pnv_tm_init();
}
#else
static void tm_init(void) { }
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
void __init early_init_devtree(void *params)
{
phys_addr_t limit;
DBG(" -> early_init_devtree(%p)\n", params);
/* Too early to BUG_ON(), do it by hand */
if (!early_init_dt_verify(params))
panic("BUG: Failed verifying flat device tree, bad version?");
#ifdef CONFIG_PPC_RTAS
/* Some machines might need RTAS info for debugging, grab it now. */
of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
#endif
#ifdef CONFIG_PPC_POWERNV
/* Some machines might need OPAL info for debugging, grab it now. */
of_scan_flat_dt(early_init_dt_scan_opal, NULL);
#endif
#ifdef CONFIG_FA_DUMP
/* scan tree to see if dump is active during last boot */
of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
#endif
/* Retrieve various informations from the /chosen node of the
* device-tree, including the platform type, initrd location and
* size, TCE reserve, and more ...
*/
of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
/* Scan memory nodes and rebuild MEMBLOCKs */
of_scan_flat_dt(early_init_dt_scan_root, NULL);
of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
parse_early_param();
/* make sure we've parsed cmdline for mem= before this */
if (memory_limit)
first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
setup_initial_memory_limit(memstart_addr, first_memblock_size);
/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
2008-08-30 09:43:47 +08:00
/* If relocatable, reserve first 32k for interrupt vectors etc. */
if (PHYSICAL_START > MEMORY_START)
memblock_reserve(MEMORY_START, 0x8000);
reserve_kdump_trampoline();
#ifdef CONFIG_FA_DUMP
/*
* If we fail to reserve memory for firmware-assisted dump then
* fallback to kexec based kdump.
*/
if (fadump_reserve_mem() == 0)
#endif
reserve_crashkernel();
early_reserve_mem();
/* Ensure that total memory size is page-aligned. */
limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
memblock_enforce_memory_limit(limit);
memblock: s/memblock_analyze()/memblock_allow_resize()/ and update users The only function of memblock_analyze() is now allowing resize of memblock region arrays. Rename it to memblock_allow_resize() and update its users. * The following users remain the same other than renaming. arm/mm/init.c::arm_memblock_init() microblaze/kernel/prom.c::early_init_devtree() powerpc/kernel/prom.c::early_init_devtree() openrisc/kernel/prom.c::early_init_devtree() sh/mm/init.c::paging_init() sparc/mm/init_64.c::paging_init() unicore32/mm/init.c::uc32_memblock_init() * In the following users, analyze was used to update total size which is no longer necessary. powerpc/kernel/machine_kexec.c::reserve_crashkernel() powerpc/kernel/prom.c::early_init_devtree() powerpc/mm/init_32.c::MMU_init() powerpc/mm/tlb_nohash.c::__early_init_mmu() powerpc/platforms/ps3/mm.c::ps3_mm_add_memory() powerpc/platforms/embedded6xx/wii.c::wii_memory_fixups() sh/kernel/machine_kexec.c::reserve_crashkernel() * x86/kernel/e820.c::memblock_x86_fill() was directly setting memblock_can_resize before populating memblock and calling analyze afterwards. Call memblock_allow_resize() before start populating. memblock_can_resize is now static inside memblock.c. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: "H. Peter Anvin" <hpa@zytor.com>
2011-12-09 02:22:08 +08:00
memblock_allow_resize();
memblock_dump_all();
DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
/* We may need to relocate the flat tree, do it now.
* FIXME .. and the initrd too? */
move_device_tree();
allocate_paca_ptrs();
DBG("Scanning CPUs ...\n");
dt_cpu_ftrs_scan();
/* Retrieve CPU related informations from the flat tree
* (altivec support, boot CPU ID, ...)
*/
of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
if (boot_cpuid < 0) {
printk("Failed to identify boot CPU !\n");
BUG();
}
#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
/* We'll later wait for secondaries to check in; there are
* NCPUS-1 non-boot CPUs :-)
*/
spinning_secondaries = boot_cpu_count - 1;
#endif
mmu_early_init_devtree();
#ifdef CONFIG_PPC_POWERNV
/* Scan and build the list of machine check recoverable ranges */
of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
#endif
epapr_paravirt_early_init();
/* Now try to figure out if we are running on LPAR and so on */
pseries_probe_fw_features();
#ifdef CONFIG_PPC_PS3
/* Identify PS3 firmware */
if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
#endif
tm_init();
DBG(" <- early_init_devtree()\n");
}
#ifdef CONFIG_RELOCATABLE
/*
* This function run before early_init_devtree, so we have to init
* initial_boot_params.
*/
void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
{
/* Setup flat device-tree pointer */
initial_boot_params = params;
/*
* Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
* mess the memblock.
*/
add_mem_to_memblock = 0;
of_scan_flat_dt(early_init_dt_scan_root, NULL);
of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
add_mem_to_memblock = 1;
if (size)
*size = first_memblock_size;
}
#endif
/*******
*
* New implementation of the OF "find" APIs, return a refcounted
* object, call of_node_put() when done. The device tree and list
* are protected by a rw_lock.
*
* Note that property management will need some locking as well,
* this isn't dealt with yet.
*
*******/
/**
* of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
* @np: device node of the device
*
* This looks for a property "ibm,chip-id" in the node or any
* of its parents and returns its content, or -1 if it cannot
* be found.
*/
int of_get_ibm_chip_id(struct device_node *np)
{
of_node_get(np);
while (np) {
u32 chip_id;
/*
* Skiboot may produce memory nodes that contain more than one
* cell in chip-id, we only read the first one here.
*/
if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
of_node_put(np);
return chip_id;
}
np = of_get_next_parent(np);
}
return -1;
}
EXPORT_SYMBOL(of_get_ibm_chip_id);
/**
* cpu_to_chip_id - Return the cpus chip-id
* @cpu: The logical cpu number.
*
* Return the value of the ibm,chip-id property corresponding to the given
* logical cpu number. If the chip-id can not be found, returns -1.
*/
int cpu_to_chip_id(int cpu)
{
struct device_node *np;
np = of_get_cpu_node(cpu, NULL);
if (!np)
return -1;
of_node_put(np);
return of_get_ibm_chip_id(np);
}
EXPORT_SYMBOL(cpu_to_chip_id);
bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
#ifdef CONFIG_SMP
/*
* Early firmware scanning must use this rather than
* get_hard_smp_processor_id because we don't have pacas allocated
* until memory topology is discovered.
*/
if (cpu_to_phys_id != NULL)
return (int)phys_id == cpu_to_phys_id[cpu];
#endif
return (int)phys_id == get_hard_smp_processor_id(cpu);
}