2016-04-22 20:15:59 +08:00
|
|
|
#ifndef __NET_SCHED_CODEL_IMPL_H
|
|
|
|
#define __NET_SCHED_CODEL_IMPL_H
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Codel - The Controlled-Delay Active Queue Management algorithm
|
|
|
|
*
|
|
|
|
* Copyright (C) 2011-2012 Kathleen Nichols <nichols@pollere.com>
|
|
|
|
* Copyright (C) 2011-2012 Van Jacobson <van@pollere.net>
|
|
|
|
* Copyright (C) 2012 Michael D. Taht <dave.taht@bufferbloat.net>
|
|
|
|
* Copyright (C) 2012,2015 Eric Dumazet <edumazet@google.com>
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
|
|
* without modification.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. The names of the authors may not be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* Alternatively, provided that this notice is retained in full, this
|
|
|
|
* software may be distributed under the terms of the GNU General
|
|
|
|
* Public License ("GPL") version 2, in which case the provisions of the
|
|
|
|
* GPL apply INSTEAD OF those given above.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
|
|
* DAMAGE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Controlling Queue Delay (CoDel) algorithm
|
|
|
|
* =========================================
|
|
|
|
* Source : Kathleen Nichols and Van Jacobson
|
|
|
|
* http://queue.acm.org/detail.cfm?id=2209336
|
|
|
|
*
|
|
|
|
* Implemented on linux by Dave Taht and Eric Dumazet
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void codel_params_init(struct codel_params *params)
|
|
|
|
{
|
|
|
|
params->interval = MS2TIME(100);
|
|
|
|
params->target = MS2TIME(5);
|
|
|
|
params->ce_threshold = CODEL_DISABLED_THRESHOLD;
|
fq_codel: generalise ce_threshold marking for subset of traffic
Commit e72aeb9ee0e3 ("fq_codel: implement L4S style ce_threshold_ect1
marking") expanded the ce_threshold feature of FQ-CoDel so it can
be applied to a subset of the traffic, using the ECT(1) bit of the ECN
field as the classifier. However, hard-coding ECT(1) as the only
classifier for this feature seems limiting, so let's expand it to be more
general.
To this end, change the parameter from a ce_threshold_ect1 boolean, to a
one-byte selector/mask pair (ce_threshold_{selector,mask}) which is applied
to the whole diffserv/ECN field in the IP header. This makes it possible to
classify packets by any value in either the ECN field or the diffserv
field. In particular, setting a selector of INET_ECN_ECT_1 and a mask of
INET_ECN_MASK corresponds to the functionality before this patch, and a
mask of ~INET_ECN_MASK allows using the selector as a straight-forward
match against a diffserv code point:
# apply ce_threshold to ECT(1) traffic
tc qdisc replace dev eth0 root fq_codel ce_threshold 1ms ce_threshold_selector 0x1/0x3
# apply ce_threshold to ECN-capable traffic marked as diffserv AF22
tc qdisc replace dev eth0 root fq_codel ce_threshold 1ms ce_threshold_selector 0x50/0xfc
Regardless of the selector chosen, the normal rules for ECN-marking of
packets still apply, i.e., the flow must still declare itself ECN-capable
by setting one of the bits in the ECN field to get marked at all.
v2:
- Add tc usage examples to patch description
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20211019174709.69081-1-toke@redhat.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-20 01:47:09 +08:00
|
|
|
params->ce_threshold_mask = 0;
|
|
|
|
params->ce_threshold_selector = 0;
|
2016-04-22 20:15:59 +08:00
|
|
|
params->ecn = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void codel_vars_init(struct codel_vars *vars)
|
|
|
|
{
|
|
|
|
memset(vars, 0, sizeof(*vars));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void codel_stats_init(struct codel_stats *stats)
|
|
|
|
{
|
|
|
|
stats->maxpacket = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Iterative_methods_for_reciprocal_square_roots
|
|
|
|
* new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
|
|
|
|
*
|
|
|
|
* Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
|
|
|
|
*/
|
|
|
|
static void codel_Newton_step(struct codel_vars *vars)
|
|
|
|
{
|
|
|
|
u32 invsqrt = ((u32)vars->rec_inv_sqrt) << REC_INV_SQRT_SHIFT;
|
|
|
|
u32 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
|
|
|
|
u64 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
|
|
|
|
|
|
|
|
val >>= 2; /* avoid overflow in following multiply */
|
|
|
|
val = (val * invsqrt) >> (32 - 2 + 1);
|
|
|
|
|
|
|
|
vars->rec_inv_sqrt = val >> REC_INV_SQRT_SHIFT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* CoDel control_law is t + interval/sqrt(count)
|
|
|
|
* We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
|
|
|
|
* both sqrt() and divide operation.
|
|
|
|
*/
|
|
|
|
static codel_time_t codel_control_law(codel_time_t t,
|
|
|
|
codel_time_t interval,
|
|
|
|
u32 rec_inv_sqrt)
|
|
|
|
{
|
|
|
|
return t + reciprocal_scale(interval, rec_inv_sqrt << REC_INV_SQRT_SHIFT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool codel_should_drop(const struct sk_buff *skb,
|
|
|
|
void *ctx,
|
|
|
|
struct codel_vars *vars,
|
|
|
|
struct codel_params *params,
|
|
|
|
struct codel_stats *stats,
|
|
|
|
codel_skb_len_t skb_len_func,
|
|
|
|
codel_skb_time_t skb_time_func,
|
|
|
|
u32 *backlog,
|
|
|
|
codel_time_t now)
|
|
|
|
{
|
|
|
|
bool ok_to_drop;
|
|
|
|
u32 skb_len;
|
|
|
|
|
|
|
|
if (!skb) {
|
|
|
|
vars->first_above_time = 0;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
skb_len = skb_len_func(skb);
|
|
|
|
vars->ldelay = now - skb_time_func(skb);
|
|
|
|
|
|
|
|
if (unlikely(skb_len > stats->maxpacket))
|
|
|
|
stats->maxpacket = skb_len;
|
|
|
|
|
|
|
|
if (codel_time_before(vars->ldelay, params->target) ||
|
|
|
|
*backlog <= params->mtu) {
|
|
|
|
/* went below - stay below for at least interval */
|
|
|
|
vars->first_above_time = 0;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
ok_to_drop = false;
|
|
|
|
if (vars->first_above_time == 0) {
|
|
|
|
/* just went above from below. If we stay above
|
|
|
|
* for at least interval we'll say it's ok to drop
|
|
|
|
*/
|
|
|
|
vars->first_above_time = now + params->interval;
|
|
|
|
} else if (codel_time_after(now, vars->first_above_time)) {
|
|
|
|
ok_to_drop = true;
|
|
|
|
}
|
|
|
|
return ok_to_drop;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct sk_buff *codel_dequeue(void *ctx,
|
|
|
|
u32 *backlog,
|
|
|
|
struct codel_params *params,
|
|
|
|
struct codel_vars *vars,
|
|
|
|
struct codel_stats *stats,
|
|
|
|
codel_skb_len_t skb_len_func,
|
|
|
|
codel_skb_time_t skb_time_func,
|
|
|
|
codel_skb_drop_t drop_func,
|
|
|
|
codel_skb_dequeue_t dequeue_func)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb = dequeue_func(vars, ctx);
|
|
|
|
codel_time_t now;
|
|
|
|
bool drop;
|
|
|
|
|
|
|
|
if (!skb) {
|
|
|
|
vars->dropping = false;
|
|
|
|
return skb;
|
|
|
|
}
|
|
|
|
now = codel_get_time();
|
|
|
|
drop = codel_should_drop(skb, ctx, vars, params, stats,
|
|
|
|
skb_len_func, skb_time_func, backlog, now);
|
|
|
|
if (vars->dropping) {
|
|
|
|
if (!drop) {
|
|
|
|
/* sojourn time below target - leave dropping state */
|
|
|
|
vars->dropping = false;
|
|
|
|
} else if (codel_time_after_eq(now, vars->drop_next)) {
|
|
|
|
/* It's time for the next drop. Drop the current
|
|
|
|
* packet and dequeue the next. The dequeue might
|
|
|
|
* take us out of dropping state.
|
|
|
|
* If not, schedule the next drop.
|
|
|
|
* A large backlog might result in drop rates so high
|
|
|
|
* that the next drop should happen now,
|
|
|
|
* hence the while loop.
|
|
|
|
*/
|
|
|
|
while (vars->dropping &&
|
|
|
|
codel_time_after_eq(now, vars->drop_next)) {
|
|
|
|
vars->count++; /* dont care of possible wrap
|
|
|
|
* since there is no more divide
|
|
|
|
*/
|
|
|
|
codel_Newton_step(vars);
|
|
|
|
if (params->ecn && INET_ECN_set_ce(skb)) {
|
|
|
|
stats->ecn_mark++;
|
|
|
|
vars->drop_next =
|
|
|
|
codel_control_law(vars->drop_next,
|
|
|
|
params->interval,
|
|
|
|
vars->rec_inv_sqrt);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
stats->drop_len += skb_len_func(skb);
|
|
|
|
drop_func(skb, ctx);
|
|
|
|
stats->drop_count++;
|
|
|
|
skb = dequeue_func(vars, ctx);
|
|
|
|
if (!codel_should_drop(skb, ctx,
|
|
|
|
vars, params, stats,
|
|
|
|
skb_len_func,
|
|
|
|
skb_time_func,
|
|
|
|
backlog, now)) {
|
|
|
|
/* leave dropping state */
|
|
|
|
vars->dropping = false;
|
|
|
|
} else {
|
|
|
|
/* and schedule the next drop */
|
|
|
|
vars->drop_next =
|
|
|
|
codel_control_law(vars->drop_next,
|
|
|
|
params->interval,
|
|
|
|
vars->rec_inv_sqrt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (drop) {
|
|
|
|
u32 delta;
|
|
|
|
|
|
|
|
if (params->ecn && INET_ECN_set_ce(skb)) {
|
|
|
|
stats->ecn_mark++;
|
|
|
|
} else {
|
|
|
|
stats->drop_len += skb_len_func(skb);
|
|
|
|
drop_func(skb, ctx);
|
|
|
|
stats->drop_count++;
|
|
|
|
|
|
|
|
skb = dequeue_func(vars, ctx);
|
|
|
|
drop = codel_should_drop(skb, ctx, vars, params,
|
|
|
|
stats, skb_len_func,
|
|
|
|
skb_time_func, backlog, now);
|
|
|
|
}
|
|
|
|
vars->dropping = true;
|
|
|
|
/* if min went above target close to when we last went below it
|
|
|
|
* assume that the drop rate that controlled the queue on the
|
|
|
|
* last cycle is a good starting point to control it now.
|
|
|
|
*/
|
|
|
|
delta = vars->count - vars->lastcount;
|
|
|
|
if (delta > 1 &&
|
|
|
|
codel_time_before(now - vars->drop_next,
|
|
|
|
16 * params->interval)) {
|
|
|
|
vars->count = delta;
|
|
|
|
/* we dont care if rec_inv_sqrt approximation
|
|
|
|
* is not very precise :
|
|
|
|
* Next Newton steps will correct it quadratically.
|
|
|
|
*/
|
|
|
|
codel_Newton_step(vars);
|
|
|
|
} else {
|
|
|
|
vars->count = 1;
|
|
|
|
vars->rec_inv_sqrt = ~0U >> REC_INV_SQRT_SHIFT;
|
|
|
|
}
|
|
|
|
vars->lastcount = vars->count;
|
|
|
|
vars->drop_next = codel_control_law(now, params->interval,
|
|
|
|
vars->rec_inv_sqrt);
|
|
|
|
}
|
|
|
|
end:
|
fq_codel: implement L4S style ce_threshold_ect1 marking
Add TCA_FQ_CODEL_CE_THRESHOLD_ECT1 boolean option to select Low Latency,
Low Loss, Scalable Throughput (L4S) style marking, along with ce_threshold.
If enabled, only packets with ECT(1) can be transformed to CE
if their sojourn time is above the ce_threshold.
Note that this new option does not change rules for codel law.
In particular, if TCA_FQ_CODEL_ECN is left enabled (this is
the default when fq_codel qdisc is created), ECT(0) packets can
still get CE if codel law (as governed by limit/target) decides so.
Section 4.3.b of current draft [1] states:
b. A scheduler with per-flow queues such as FQ-CoDel or FQ-PIE can
be used for L4S. For instance within each queue of an FQ-CoDel
system, as well as a CoDel AQM, there is typically also ECN
marking at an immediate (unsmoothed) shallow threshold to support
use in data centres (see Sec.5.2.7 of [RFC8290]). This can be
modified so that the shallow threshold is solely applied to
ECT(1) packets. Then if there is a flow of non-ECN or ECT(0)
packets in the per-flow-queue, the Classic AQM (e.g. CoDel) is
applied; while if there is a flow of ECT(1) packets in the queue,
the shallower (typically sub-millisecond) threshold is applied.
Tested:
tc qd replace dev eth1 root fq_codel ce_threshold_ect1 50usec
netperf ... -t TCP_STREAM -- K dctcp
tc -s -d qd sh dev eth1
qdisc fq_codel 8022: root refcnt 32 limit 10240p flows 1024 quantum 9212 target 5ms ce_threshold_ect1 49us interval 100ms memory_limit 32Mb ecn drop_batch 64
Sent 14388596616 bytes 9543449 pkt (dropped 0, overlimits 0 requeues 152013)
backlog 0b 0p requeues 152013
maxpacket 68130 drop_overlimit 0 new_flow_count 95678 ecn_mark 0 ce_mark 7639
new_flows_len 0 old_flows_len 0
[1] L4S current draft:
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4s-arch
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Ingemar Johansson S <ingemar.s.johansson@ericsson.com>
Cc: Tom Henderson <tomh@tomh.org>
Cc: Bob Briscoe <in@bobbriscoe.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-15 01:59:18 +08:00
|
|
|
if (skb && codel_time_after(vars->ldelay, params->ce_threshold)) {
|
|
|
|
bool set_ce = true;
|
|
|
|
|
fq_codel: generalise ce_threshold marking for subset of traffic
Commit e72aeb9ee0e3 ("fq_codel: implement L4S style ce_threshold_ect1
marking") expanded the ce_threshold feature of FQ-CoDel so it can
be applied to a subset of the traffic, using the ECT(1) bit of the ECN
field as the classifier. However, hard-coding ECT(1) as the only
classifier for this feature seems limiting, so let's expand it to be more
general.
To this end, change the parameter from a ce_threshold_ect1 boolean, to a
one-byte selector/mask pair (ce_threshold_{selector,mask}) which is applied
to the whole diffserv/ECN field in the IP header. This makes it possible to
classify packets by any value in either the ECN field or the diffserv
field. In particular, setting a selector of INET_ECN_ECT_1 and a mask of
INET_ECN_MASK corresponds to the functionality before this patch, and a
mask of ~INET_ECN_MASK allows using the selector as a straight-forward
match against a diffserv code point:
# apply ce_threshold to ECT(1) traffic
tc qdisc replace dev eth0 root fq_codel ce_threshold 1ms ce_threshold_selector 0x1/0x3
# apply ce_threshold to ECN-capable traffic marked as diffserv AF22
tc qdisc replace dev eth0 root fq_codel ce_threshold 1ms ce_threshold_selector 0x50/0xfc
Regardless of the selector chosen, the normal rules for ECN-marking of
packets still apply, i.e., the flow must still declare itself ECN-capable
by setting one of the bits in the ECN field to get marked at all.
v2:
- Add tc usage examples to patch description
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20211019174709.69081-1-toke@redhat.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-20 01:47:09 +08:00
|
|
|
if (params->ce_threshold_mask) {
|
|
|
|
int dsfield = skb_get_dsfield(skb);
|
fq_codel: implement L4S style ce_threshold_ect1 marking
Add TCA_FQ_CODEL_CE_THRESHOLD_ECT1 boolean option to select Low Latency,
Low Loss, Scalable Throughput (L4S) style marking, along with ce_threshold.
If enabled, only packets with ECT(1) can be transformed to CE
if their sojourn time is above the ce_threshold.
Note that this new option does not change rules for codel law.
In particular, if TCA_FQ_CODEL_ECN is left enabled (this is
the default when fq_codel qdisc is created), ECT(0) packets can
still get CE if codel law (as governed by limit/target) decides so.
Section 4.3.b of current draft [1] states:
b. A scheduler with per-flow queues such as FQ-CoDel or FQ-PIE can
be used for L4S. For instance within each queue of an FQ-CoDel
system, as well as a CoDel AQM, there is typically also ECN
marking at an immediate (unsmoothed) shallow threshold to support
use in data centres (see Sec.5.2.7 of [RFC8290]). This can be
modified so that the shallow threshold is solely applied to
ECT(1) packets. Then if there is a flow of non-ECN or ECT(0)
packets in the per-flow-queue, the Classic AQM (e.g. CoDel) is
applied; while if there is a flow of ECT(1) packets in the queue,
the shallower (typically sub-millisecond) threshold is applied.
Tested:
tc qd replace dev eth1 root fq_codel ce_threshold_ect1 50usec
netperf ... -t TCP_STREAM -- K dctcp
tc -s -d qd sh dev eth1
qdisc fq_codel 8022: root refcnt 32 limit 10240p flows 1024 quantum 9212 target 5ms ce_threshold_ect1 49us interval 100ms memory_limit 32Mb ecn drop_batch 64
Sent 14388596616 bytes 9543449 pkt (dropped 0, overlimits 0 requeues 152013)
backlog 0b 0p requeues 152013
maxpacket 68130 drop_overlimit 0 new_flow_count 95678 ecn_mark 0 ce_mark 7639
new_flows_len 0 old_flows_len 0
[1] L4S current draft:
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4s-arch
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Ingemar Johansson S <ingemar.s.johansson@ericsson.com>
Cc: Tom Henderson <tomh@tomh.org>
Cc: Bob Briscoe <in@bobbriscoe.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-15 01:59:18 +08:00
|
|
|
|
fq_codel: generalise ce_threshold marking for subset of traffic
Commit e72aeb9ee0e3 ("fq_codel: implement L4S style ce_threshold_ect1
marking") expanded the ce_threshold feature of FQ-CoDel so it can
be applied to a subset of the traffic, using the ECT(1) bit of the ECN
field as the classifier. However, hard-coding ECT(1) as the only
classifier for this feature seems limiting, so let's expand it to be more
general.
To this end, change the parameter from a ce_threshold_ect1 boolean, to a
one-byte selector/mask pair (ce_threshold_{selector,mask}) which is applied
to the whole diffserv/ECN field in the IP header. This makes it possible to
classify packets by any value in either the ECN field or the diffserv
field. In particular, setting a selector of INET_ECN_ECT_1 and a mask of
INET_ECN_MASK corresponds to the functionality before this patch, and a
mask of ~INET_ECN_MASK allows using the selector as a straight-forward
match against a diffserv code point:
# apply ce_threshold to ECT(1) traffic
tc qdisc replace dev eth0 root fq_codel ce_threshold 1ms ce_threshold_selector 0x1/0x3
# apply ce_threshold to ECN-capable traffic marked as diffserv AF22
tc qdisc replace dev eth0 root fq_codel ce_threshold 1ms ce_threshold_selector 0x50/0xfc
Regardless of the selector chosen, the normal rules for ECN-marking of
packets still apply, i.e., the flow must still declare itself ECN-capable
by setting one of the bits in the ECN field to get marked at all.
v2:
- Add tc usage examples to patch description
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20211019174709.69081-1-toke@redhat.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-20 01:47:09 +08:00
|
|
|
set_ce = (dsfield >= 0 &&
|
|
|
|
(((u8)dsfield & params->ce_threshold_mask) ==
|
|
|
|
params->ce_threshold_selector));
|
fq_codel: implement L4S style ce_threshold_ect1 marking
Add TCA_FQ_CODEL_CE_THRESHOLD_ECT1 boolean option to select Low Latency,
Low Loss, Scalable Throughput (L4S) style marking, along with ce_threshold.
If enabled, only packets with ECT(1) can be transformed to CE
if their sojourn time is above the ce_threshold.
Note that this new option does not change rules for codel law.
In particular, if TCA_FQ_CODEL_ECN is left enabled (this is
the default when fq_codel qdisc is created), ECT(0) packets can
still get CE if codel law (as governed by limit/target) decides so.
Section 4.3.b of current draft [1] states:
b. A scheduler with per-flow queues such as FQ-CoDel or FQ-PIE can
be used for L4S. For instance within each queue of an FQ-CoDel
system, as well as a CoDel AQM, there is typically also ECN
marking at an immediate (unsmoothed) shallow threshold to support
use in data centres (see Sec.5.2.7 of [RFC8290]). This can be
modified so that the shallow threshold is solely applied to
ECT(1) packets. Then if there is a flow of non-ECN or ECT(0)
packets in the per-flow-queue, the Classic AQM (e.g. CoDel) is
applied; while if there is a flow of ECT(1) packets in the queue,
the shallower (typically sub-millisecond) threshold is applied.
Tested:
tc qd replace dev eth1 root fq_codel ce_threshold_ect1 50usec
netperf ... -t TCP_STREAM -- K dctcp
tc -s -d qd sh dev eth1
qdisc fq_codel 8022: root refcnt 32 limit 10240p flows 1024 quantum 9212 target 5ms ce_threshold_ect1 49us interval 100ms memory_limit 32Mb ecn drop_batch 64
Sent 14388596616 bytes 9543449 pkt (dropped 0, overlimits 0 requeues 152013)
backlog 0b 0p requeues 152013
maxpacket 68130 drop_overlimit 0 new_flow_count 95678 ecn_mark 0 ce_mark 7639
new_flows_len 0 old_flows_len 0
[1] L4S current draft:
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4s-arch
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Ingemar Johansson S <ingemar.s.johansson@ericsson.com>
Cc: Tom Henderson <tomh@tomh.org>
Cc: Bob Briscoe <in@bobbriscoe.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-15 01:59:18 +08:00
|
|
|
}
|
|
|
|
if (set_ce && INET_ECN_set_ce(skb))
|
|
|
|
stats->ce_mark++;
|
|
|
|
}
|
2016-04-22 20:15:59 +08:00
|
|
|
return skb;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|