linux/arch/x86/kernel/check.c

168 lines
3.8 KiB
C
Raw Normal View History

#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/workqueue.h>
x86: Use memblock to replace early_res 1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-26 04:39:17 +08:00
#include <linux/memblock.h>
#include <asm/proto.h>
/*
* Some BIOSes seem to corrupt the low 64k of memory during events
* like suspend/resume and unplugging an HDMI cable. Reserve all
* remaining free memory in that area and fill it with a distinct
* pattern.
*/
#define MAX_SCAN_AREAS 8
static int __read_mostly memory_corruption_check = -1;
static unsigned __read_mostly corruption_check_size = 64*1024;
static unsigned __read_mostly corruption_check_period = 60; /* seconds */
x86: Use memblock to replace early_res 1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-26 04:39:17 +08:00
static struct scan_area {
u64 addr;
u64 size;
} scan_areas[MAX_SCAN_AREAS];
static int num_scan_areas;
static __init int set_corruption_check(char *arg)
{
ssize_t ret;
unsigned long val;
ret = kstrtoul(arg, 10, &val);
if (ret)
return ret;
memory_corruption_check = val;
return 0;
}
early_param("memory_corruption_check", set_corruption_check);
static __init int set_corruption_check_period(char *arg)
{
ssize_t ret;
unsigned long val;
ret = kstrtoul(arg, 10, &val);
if (ret)
return ret;
corruption_check_period = val;
return 0;
}
early_param("memory_corruption_check_period", set_corruption_check_period);
static __init int set_corruption_check_size(char *arg)
{
char *end;
unsigned size;
size = memparse(arg, &end);
if (*end == '\0')
corruption_check_size = size;
return (size == corruption_check_size) ? 0 : -EINVAL;
}
early_param("memory_corruption_check_size", set_corruption_check_size);
void __init setup_bios_corruption_check(void)
{
phys_addr_t start, end;
u64 i;
if (memory_corruption_check == -1) {
memory_corruption_check =
#ifdef CONFIG_X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1
#else
0
#endif
;
}
if (corruption_check_size == 0)
memory_corruption_check = 0;
if (!memory_corruption_check)
return;
corruption_check_size = round_up(corruption_check_size, PAGE_SIZE);
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:58:09 +08:00
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
NULL) {
start = clamp_t(phys_addr_t, round_up(start, PAGE_SIZE),
PAGE_SIZE, corruption_check_size);
end = clamp_t(phys_addr_t, round_down(end, PAGE_SIZE),
PAGE_SIZE, corruption_check_size);
if (start >= end)
continue;
memblock_reserve(start, end - start);
scan_areas[num_scan_areas].addr = start;
scan_areas[num_scan_areas].size = end - start;
/* Assume we've already mapped this early memory */
memset(__va(start), 0, end - start);
if (++num_scan_areas >= MAX_SCAN_AREAS)
break;
}
if (num_scan_areas)
printk(KERN_INFO "Scanning %d areas for low memory corruption\n", num_scan_areas);
}
void check_for_bios_corruption(void)
{
int i;
int corruption = 0;
if (!memory_corruption_check)
return;
for (i = 0; i < num_scan_areas; i++) {
unsigned long *addr = __va(scan_areas[i].addr);
unsigned long size = scan_areas[i].size;
for (; size; addr++, size -= sizeof(unsigned long)) {
if (!*addr)
continue;
printk(KERN_ERR "Corrupted low memory at %p (%lx phys) = %08lx\n",
addr, __pa(addr), *addr);
corruption = 1;
*addr = 0;
}
}
WARN_ONCE(corruption, KERN_ERR "Memory corruption detected in low memory\n");
}
static void check_corruption(struct work_struct *dummy);
static DECLARE_DELAYED_WORK(bios_check_work, check_corruption);
static void check_corruption(struct work_struct *dummy)
{
check_for_bios_corruption();
schedule_delayed_work(&bios_check_work,
round_jiffies_relative(corruption_check_period*HZ));
}
static int start_periodic_check_for_corruption(void)
{
if (!num_scan_areas || !memory_corruption_check || corruption_check_period == 0)
return 0;
printk(KERN_INFO "Scanning for low memory corruption every %d seconds\n",
corruption_check_period);
/* First time we run the checks right away */
schedule_delayed_work(&bios_check_work, 0);
return 0;
}
device_initcall(start_periodic_check_for_corruption);